JPH10272733A - Manufacture of metal-clad laminate - Google Patents

Manufacture of metal-clad laminate

Info

Publication number
JPH10272733A
JPH10272733A JP8161797A JP8161797A JPH10272733A JP H10272733 A JPH10272733 A JP H10272733A JP 8161797 A JP8161797 A JP 8161797A JP 8161797 A JP8161797 A JP 8161797A JP H10272733 A JPH10272733 A JP H10272733A
Authority
JP
Japan
Prior art keywords
metal
clad laminate
glass
prepreg
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8161797A
Other languages
Japanese (ja)
Inventor
Hiroshi Narisawa
浩 成沢
Masahisa Ose
昌久 尾瀬
Yoshihiro Nakamura
吉宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8161797A priority Critical patent/JPH10272733A/en
Publication of JPH10272733A publication Critical patent/JPH10272733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for manufacturing a metal-clad laminate in which a glass-woven cloth is used as a base and the dimension change rate is small in a heating process. SOLUTION: A glass-woven cloth is formed of glass yarns of the name of D450 1/0 specified in JIS R 3413, and the ratio of count number per 25 mm (number of warps/number of wefts)=1.0-1.2, and the weight per unit area is 55-65 g/m<2> . The glass-woven cloth of plane weave fabrics is used as a base, and the base is so impregnated with thermoset resin varnish as to set the solid adhesion amount of 45-60 wt.% and dried to manufacture a prepreg, and then metal foils are overlapped on the prepreg and heated and pressurized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属張積層板の製
造方法に関する。
[0001] The present invention relates to a method for producing a metal-clad laminate.

【0002】[0002]

【従来の技術】プリント配線板は、金属張積層板に回路
加工を施して製造され、この金属張積層板は、基材に熱
硬化性樹脂ワニスを含浸乾燥して得られるプリプレグと
金属はくとを積層して製造される。基材としては、紙、
ガラス繊維の織布、ガラス繊維の不織布などが用途に応
じて用いられている。電子部品の小型化、高集積化に対
応してプリント配線板も薄型化してきており、このよう
な薄型の金属張積層板においては、補強効果に優れたガ
ラス織布が用いられる。
2. Description of the Related Art A printed wiring board is manufactured by subjecting a metal-clad laminate to circuit processing. This metal-clad laminate is prepared by impregnating and drying a base material with a thermosetting resin varnish and a metal foil. And laminated. Paper, paper,
Glass fiber woven fabric, glass fiber non-woven fabric and the like are used depending on the application. Printed wiring boards have also become thinner in response to miniaturization and higher integration of electronic components, and in such thin metal-clad laminates, glass woven fabrics having an excellent reinforcing effect are used.

【0003】[0003]

【発明が解決しようとする課題】プリント配線板は、部
品実装時のはんだ処理、多層化するための2次成形など
で加熱処理される。プリント配線板は、このような加熱
工程に置かれることによって、主として収縮する方向に
寸法の変化を生ずる。この寸法の変化は、基材としてガ
ラス織布を用いた金属張積層板においては、厚さが薄く
なるほど顕著になり、厚さ0.1mm未満のものでは、
加熱処理に起因する寸法変化率(以下、寸法変化率とい
う、また寸法変化率の大小について言及するときはその
絶対値の大小をいう)が−0.10%以上になる場合が
あった。請求項1〜3の発明は、いずれも、基材として
ガラス織布を用い、加熱工程に置かれたときの寸法変化
率が小さい金属張積層板を得るための製造方法を提供す
るものである。
The printed wiring board is subjected to a heat treatment by soldering at the time of component mounting, secondary molding for multilayering, and the like. When subjected to such a heating step, the printed wiring board undergoes a dimensional change mainly in the shrinking direction. This change in size is more remarkable in a metal-clad laminate using a glass woven fabric as a base material, as the thickness becomes thinner.
In some cases, the dimensional change rate due to the heat treatment (hereinafter referred to as the dimensional change rate, and when the magnitude of the dimensional change rate is referred to as the absolute value thereof) is −0.10% or more. The inventions of claims 1 to 3 all provide a manufacturing method for obtaining a metal-clad laminate having a small dimensional change rate when placed in a heating step, using a glass woven fabric as a base material. .

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、JI
S R 3413に規定される糸の呼称がD4501/
0のガラス糸を、25mm当りの打ち込み本数の比率が
(たて糸本数/よこ糸本数)=1.0〜1.2であり、
単位面積当りの重量が55〜65g/m2 であり、平織
り製織されたガラス織布を基材として用い、この基材に
固形分付着量が45〜60重量%となるように熱硬化性
樹脂ワニスを含浸乾燥してプリプレグとし、次いでこの
プリプレグに金属はくを重ねて加熱加圧することを特徴
とする金属張積層板の製造方法である。
Means for Solving the Problems The invention of claim 1 is a JI.
The name of the yarn specified in SR3413 is D4501 /
0 glass thread, the ratio of the number of driven yarns per 25 mm is (number of warp yarns / number of weft yarns) = 1.0 to 1.2,
A thermosetting resin having a weight per unit area of 55 to 65 g / m 2 and a plain-woven glass woven fabric as a base material, and having a solid content of 45 to 60% by weight on the base material. This is a method for producing a metal-clad laminate, which comprises impregnating and drying a varnish to form a prepreg, and then laminating a metal foil on the prepreg and heating and pressing.

【0005】基材として用いるガラス織布の、25mm
当りの打ち込み本数の比率が(たて糸本数/よこ糸本
数)=1.0未満であると、たて方向とよこ方向の寸法
収縮率の差が大きくなりかつたて方向の寸法収縮率が
0.1%を超えてしまう。また、この比率が1.2を超
えると、たて方向とよこ方向の寸法収縮率の差が大きく
なりかつよこ方向の寸法収縮率が0.1%を超えてしま
う。基材として用いるガラス織布の単位面積当りの重量
が55g/m2 未満であると、ガラスの占める体積が小
さく、寸法収縮率が大きくなるおそれがある。また、こ
の重量が65g/m2 を超えると、プリプレグの厚さが
大きくなる。基材の織物組織としては平織に限られる。
繻子織や綾織は表面の平滑性の観点から好ましくないた
めである。
[0005] A glass woven fabric used as a substrate has a thickness of 25 mm.
If the ratio of the number of driven yarns per hit is less than (the number of warp yarns / the number of weft yarns) = 1.0, the difference in the dimensional shrinkage ratio between the warp direction and the weft direction becomes large and the dimensional shrinkage ratio in the warp direction is 0.1%. Will be exceeded. If this ratio exceeds 1.2, the difference between the dimensional contraction rates in the vertical direction and the horizontal direction increases, and the dimensional contraction rate in the horizontal direction exceeds 0.1%. If the weight per unit area of the glass woven fabric used as the base material is less than 55 g / m 2 , the volume occupied by the glass may be small and the dimensional shrinkage may increase. When the weight exceeds 65 g / m 2 , the thickness of the prepreg increases. The fabric structure of the substrate is limited to plain weave.
This is because satin weave and twill weave are not preferable from the viewpoint of surface smoothness.

【0006】このようなガラス織布を基材として熱硬化
性樹脂ワニスを含浸乾燥してプリプレグとされるが、熱
硬化性樹脂ワニスを含浸するとき、付着量は、乾燥後の
固形分付着量として45〜60重量%とされる。乾燥後
の固形分付着量が45重量%未満であると、樹脂分が不
足するため、樹脂分の欠落箇所を生じ、また、60重量
%を超えると、寸法変化率を小さくすることができなく
なる。このことから、熱硬化性樹脂ワニスを含浸すると
き、付着量は、乾燥後の固形分付着量として50〜55
重量%とするのがより好ましい。
A prepreg is obtained by impregnating and drying a thermosetting resin varnish using such a glass woven fabric as a base material. When the thermosetting resin varnish is impregnated, the adhesion amount is determined by the solid adhesion amount after drying. Is 45 to 60% by weight. If the solid content after drying is less than 45% by weight, the resin content is insufficient, resulting in a missing portion of the resin. If it exceeds 60% by weight, the dimensional change rate cannot be reduced. . From this, when impregnating the thermosetting resin varnish, the adhesion amount is 50 to 55 as a solid adhesion amount after drying.
More preferably, it is set to be% by weight.

【0007】請求項2の発明は、請求項1の発明におい
て、ガラス織布を、熱膨張係数が3×10-6/℃以下で
あるガラス織布としたものである。熱膨張係数が3×1
-6/℃以下であるガラス織布を基材とすることによ
り、より一層寸法変化率を小さくできるので好ましい。
According to a second aspect of the present invention, in the first aspect, the glass woven fabric is a glass woven fabric having a coefficient of thermal expansion of 3 × 10 −6 / ° C. or less. Thermal expansion coefficient is 3 × 1
It is preferable to use a glass woven fabric having a temperature of 0 −6 / ° C. or less because the dimensional change rate can be further reduced.

【0008】さらに、請求項3の発明は、請求項1又は
2の発明において、金属はくを、180℃における熱間
伸び率(以下、単に、熱間伸び率という)が10%〜5
0%の金属はくとしたものである。金属はくとして熱間
伸び率が10%以上の金属はくを用いることにより、よ
り一層寸法変化率を小さくできるようになる。しかしな
がら、熱間伸び率が50%を超えると、取扱い性が悪
く、折れしわや積層するときにしわを生じやすくなるの
で、極めて慎重に取り扱う必要があり、製造工数が上が
る結果となる。なお、熱間伸び率とは、測定すべき金属
はくから長方形に試験片を切り取り、この試験片を試験
片の温度を180℃として引っ張り試験機により引っ張
り、試験片が破断したときの伸びを%で表したものであ
る。
Further, the invention of claim 3 is the invention according to claim 1 or 2, wherein the metal foil has a hot elongation at 180 ° C. (hereinafter, simply referred to as a hot elongation) of 10% to 5%.
0% of the metal is solid. By using a metal foil having a hot elongation of 10% or more as a metal foil, the dimensional change rate can be further reduced. However, if the hot elongation exceeds 50%, the handleability is poor, and folds and wrinkles are liable to occur when laminating. Therefore, it is necessary to handle very carefully, resulting in an increase in the number of manufacturing steps. The hot elongation is defined by cutting a test piece from a metal foil to be measured into a rectangle, pulling the test piece at a temperature of 180 ° C by a tensile tester, and elongating the test piece when it breaks. It is expressed in%.

【0009】[0009]

【発明の実施の形態】JIS R 3413に規定され
る糸の呼称がD450 1/0のガラス糸は、直径5±
1.5μmのガラスフィラメントを200±10本束ね
た単糸である。ガラス織布の単位面積あたりの重量は、
織密度すなわち25mm当りの打ち込み本数により調整
される。したがって、本発明で基材として用いられるガ
ラス織布は、所定の単位面積あたりの重量を得るための
織密度の範囲内で、たて糸本数/よこ糸本数が1.0〜
1.2となるようにして製織される。織物組織は平織で
あればよく、製織するための織機など特に制限はない。
また、熱硬化性樹脂との親和性をよくすることから、シ
ランカップリング剤で処理することが好ましい。また、
熱膨張係数が、3×10-6/℃以下のガラス織布として
は、Sガラス織布(熱膨張係数=2.8×10-6/℃)
などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION A glass yarn having a name of D450 1/0 specified in JIS R 3413 has a diameter of 5 ±
It is a single yarn in which 200 ± 10 1.5 μm glass filaments are bundled. The weight per unit area of glass woven fabric is
It is adjusted by the weaving density, that is, the number of shots per 25 mm. Therefore, the glass woven fabric used as a substrate in the present invention has a warp yarn number / weft yarn number of 1.0 to 1.0 within a range of a weaving density for obtaining a weight per a predetermined unit area.
It is woven so as to be 1.2. The fabric structure may be a plain weave, and there is no particular limitation on the loom for weaving.
Further, in order to improve the affinity with the thermosetting resin, it is preferable to perform treatment with a silane coupling agent. Also,
As a glass woven fabric having a thermal expansion coefficient of 3 × 10 −6 / ° C. or less, an S glass woven fabric (thermal expansion coefficient = 2.8 × 10 −6 / ° C.)
And the like.

【0010】プリプレグとするために使用される熱硬化
性樹脂としては、エポキシ樹脂、ポリイミド樹脂、不飽
和ポリエステル樹脂、ビスマレイミド−トリアジン樹脂
など、従来から積層板用に用いられている熱硬化性樹脂
が挙げられる。これらの熱硬化性樹脂をワニスとすると
き用いられる溶剤としては従来公知の溶剤が使用でき、
また、プリプレグを製造する方法条件なども従来同様の
方法条件によることができる。
[0010] Thermosetting resins used for prepreg include epoxy resins, polyimide resins, unsaturated polyester resins, bismaleimide-triazine resins, and the like, which are conventionally used for laminated boards. Is mentioned. As a solvent used when these thermosetting resins are used as a varnish, conventionally known solvents can be used,
Further, the method conditions for producing the prepreg can be the same as the conventional method conditions.

【0011】金属張積層板を得るために使用される金属
はくとしては、通常銅はくが使用される。熱間伸び率が
10%〜50%の銅はくとしては、例えば、三井金属工
業株式会社からHTEはく、日本電解株式会社からHG
Rはく及びMGRはくという商品名でそれぞれ市販され
ている銅はくが挙げられる。
As the metal foil used to obtain the metal-clad laminate, copper foil is usually used. Examples of the copper foil having a hot elongation of 10% to 50% include, for example, HTE foil from Mitsui Kinzoku Kogyo Co., Ltd. and HG from Nihon Electrolysis Co., Ltd.
Copper foil which is commercially available under the trade names R foil and MGR foil, respectively, may be mentioned.

【0012】プリプレグと金属はくとから金属張積層板
を製造する方法条件などは、従来同様の方法条件による
ことができる。すなわち、プリプレグを製造しようとす
る金属張積層板の厚さに応じた枚数重ね、その外側(通
常は両外側)に金属はくを重ね、ステンレス鏡板で挟ん
で加熱加圧して、金属張積層板を得る。
The method conditions for producing a metal-clad laminate from a prepreg and a metal foil can be the same as those in the conventional method. That is, the number of layers corresponding to the thickness of the metal-clad laminate for which the prepreg is to be manufactured is overlapped, a metal foil is laminated on the outside (usually both sides), heated and pressed with a stainless steel end plate, and Get.

【0013】本発明の製造方法により製造された金属張
積層板は、多層プリント配線板の内層板としても好適で
ある。すなわち、本発明の製造方法により製造された金
属張積層板に回路加工を施して内層板として使用する。
また、本発明の製造方法により片面金属張積層板を多層
プリント配線板の外層板として使用することもできる。
これら多層プリント配線板を製造するとき、本発明の製
造方法に用いたプリプレグを接着用プリプレグとして用
いるのが多層プリント配線板の寸法変化率を小さくする
ことから好ましい。接着用プリプレグとしては、乾燥後
の固形分付着量を多めに、例えば55〜60重量%とす
るのが好ましい。
The metal-clad laminate produced by the production method of the present invention is also suitable as an inner layer of a multilayer printed wiring board. That is, the metal-clad laminate manufactured by the manufacturing method of the present invention is subjected to circuit processing and used as an inner layer board.
Further, the single-sided metal-clad laminate can be used as an outer layer of a multilayer printed wiring board by the production method of the present invention.
When these multilayer printed wiring boards are manufactured, it is preferable to use the prepreg used in the manufacturing method of the present invention as a bonding prepreg in order to reduce the dimensional change rate of the multilayer printed wiring board. As the adhesive prepreg, it is preferable to set the solid content after drying to a relatively large value, for example, 55 to 60% by weight.

【0014】[0014]

【実施例】 エポキシ樹脂ワニスの調製 ビスフェノールAを、1,000部(重量部、以下同
じ)、37%ホルマリン220部、シュウ酸10部を反
応釜に仕込み、2時間反応させた後、脱水濃縮してビス
フェノールAノボラック樹脂を調製した。調製したビス
フェノールAノボラック樹脂60部、ビスフェノールA
ノボラック型エポキシ樹脂(大日本インキ化学工業株式
会社製、エピクロンN−865(商品名)を使用した)
100部及び1−シアノエチル−2−エチル−4−メチ
ルイミダゾール0.5部を、メチルエチルケトン100
部に溶解してエポキシ樹脂ワニスを得た。
EXAMPLES Preparation of epoxy resin varnish 1,000 parts (parts by weight, the same applies hereinafter) of bisphenol A, 220 parts of 37% formalin, and 10 parts of oxalic acid were charged into a reaction vessel, reacted for 2 hours, and then dehydrated and concentrated. Thus, bisphenol A novolak resin was prepared. 60 parts of prepared bisphenol A novolak resin, bisphenol A
Novolak type epoxy resin (Epiclon N-865 (trade name) manufactured by Dainippon Ink and Chemicals, Inc.)
100 parts and 1-cyanoethyl-2-ethyl-4-methylimidazole 0.5 part
The epoxy resin varnish was obtained.

【0015】実施例1 JIS R 3413に規定される糸の呼称がD450
1/0のガラス糸を、25mm当りの打ち込み本数の
比率が(たて糸本数/よこ糸本数)=1.17であり、
単位面積当りの重量が58g/m2 であり、熱膨張係数
が5.0×10-6/℃である平織り製織されたガラス織
布を基材として用い、この基材に前記のエポキシ樹脂ワ
ニスを、樹脂分が乾燥後で52重量%となるように含浸
し、乾燥して厚さ0.55mmのプリプレグを作製し
た。作製したプリプレグ1枚の両面に、厚さ18μm、
熱間伸び率1.7%の銅はくを重ね、減圧下に、温度1
75℃、圧力3MPaで、60分間加熱加圧して銅張積
層板を作製した。
Example 1 The yarn name specified in JIS R 3413 is D450
The ratio of the number of driving of 1/0 glass thread per 25 mm is (number of warp / number of weft) = 1.17,
A plain woven glass woven fabric having a weight per unit area of 58 g / m 2 and a coefficient of thermal expansion of 5.0 × 10 −6 / ° C. is used as a base material, and the epoxy resin varnish is used as the base material. Was impregnated so that the resin content was 52% by weight after drying, and dried to prepare a prepreg having a thickness of 0.55 mm. 18 μm thick on both sides of one prepreg prepared,
A copper foil having a hot elongation of 1.7% is overlaid, and the temperature is reduced to 1 at a reduced pressure.
A copper-clad laminate was produced by heating and pressing at 75 ° C. and a pressure of 3 MPa for 60 minutes.

【0016】実施例2 銅はくを、180℃における熱間伸び率30.4%の銅
はく(三井金属工業株式会社製、HTEはく(商品名)
を使用)に変更したほかは実施例1と同様にして銅張積
層板を作製した。
Example 2 Copper foil having a hot elongation at 180 ° C. of 30.4% (HTE foil (trade name, manufactured by Mitsui Kinzoku Kogyo KK))
Was used in the same manner as in Example 1 except that the copper-clad laminate was used.

【0017】実施例3 JIS R 3413に規定される糸の呼称がD450
1/0のガラス糸を、25mm当りの打ち込み本数の
比率が(たて糸本数/よこ糸本数)=1.17であり、
単位面積当りの重量が58g/m2 であり、熱膨張係数
が2.8×10-6/℃である平織り製織されたガラス織
布を基材として用いたほかは実施例2と同様にして銅張
積層板を作製した。
Example 3 The yarn name specified in JIS R 3413 is D450
The ratio of the number of driving of 1/0 glass thread per 25 mm is (number of warp / number of weft) = 1.17,
The same procedure as in Example 2 was carried out except that a plain woven glass woven fabric having a weight per unit area of 58 g / m 2 and a coefficient of thermal expansion of 2.8 × 10 −6 / ° C. was used as a base material. A copper-clad laminate was produced.

【0018】比較例l JIS R 3413に規定される糸の呼称がD450
1/0のガラス糸を、25mm当りの打ち込み本数の
比率が(たて糸本数/よこ糸本数)=1.25であり、
単位面積当りの重量が48g/m2 であり、熱膨張係数
が5.0×10-6/℃である平織り製織されたガラス織
布を基材として用い、樹脂分が乾燥後で58重量%とな
るように含浸し、乾燥して厚さ0.055mmのプリプ
レグを作製したほかは実施例1と同様にして銅張積層板
を作製した。
Comparative Example 1 The yarn name specified in JIS R 3413 is D450
The ratio of the number of driving of 1/0 glass yarn per 25 mm is (number of warp yarns / number of weft yarns) = 1.25,
A plain woven glass woven fabric having a weight per unit area of 48 g / m 2 and a coefficient of thermal expansion of 5.0 × 10 −6 / ° C. is used as a base material, and the resin content is 58% by weight after drying. Then, a copper-clad laminate was produced in the same manner as in Example 1 except that a prepreg having a thickness of 0.055 mm was produced by drying.

【0019】比較例2 JIS R 3413に規定される糸の呼称がD450
1/0のガラス糸を、25mm当りの打ち込み本数の
比率が(たて糸本数/よこ糸本数)=1.25であり、
単位面積当りの重量が48g/m2 であり、熱膨張係数
が2.8×10-6/℃である平織り製織されたガラス織
布を基材として用い、樹脂分が乾燥後で58重量%とな
るように含浸し、乾燥して厚さ0.055mmのプリプ
レグを作製したほかは実施例1と同様にして銅張積層板
を作製した。
Comparative Example 2 The yarn name specified in JIS R 3413 is D450
The ratio of the number of driving of 1/0 glass yarn per 25 mm is (number of warp yarns / number of weft yarns) = 1.25,
A plain woven glass woven fabric having a weight per unit area of 48 g / m 2 and a coefficient of thermal expansion of 2.8 × 10 −6 / ° C. is used as a base material, and the resin content is 58% by weight after drying. Then, a copper-clad laminate was produced in the same manner as in Example 1 except that a prepreg having a thickness of 0.055 mm was produced by drying.

【0020】以上作製した銅張積層板について、寸法変
化率及び熱膨張係数を以下に説明するようにして調べ
た。その結果を表lに示す。
The dimensional change rate and the coefficient of thermal expansion of the copper-clad laminate prepared as described above were examined as described below. The results are shown in Table 1.

【0021】寸法変化率(JIS C 6481「プリ
ント配線板用銅張積層板試験方法」準拠):銅張積層板
から長さ300mm、幅300mmの大きさの試験片を
切り取り、その四隅に基準マークを付ける。試験片を温
度20℃、相対湿度60〜70%の室内に24時間放置
した後、長さ及び幅方向の基準マーク間隔を測定し、こ
れをl0 とする。次に、試験片の銅はくを全面エッチン
グし、水洗乾燥後、80℃で15分間乾燥し、次に、温
度20℃、相対湿度60〜70%の室内に11時間放置
し、次に、温度170℃に30分間保持、室温まで冷却
した後、長さ及び幅方向の基準マーク間隔を測定し、こ
れをl1 とし、式数1により算出する。
Dimensional change rate (based on JIS C 6481 "Test method for copper-clad laminate for printed wiring boards"): A test piece having a length of 300 mm and a width of 300 mm is cut out from the copper-clad laminate, and reference marks are formed at the four corners. Attached. After leaving the test piece in a room at a temperature of 20 ° C. and a relative humidity of 60 to 70% for 24 hours, the reference mark interval in the length and width directions is measured, and this is defined as 10 . Next, the copper foil of the test piece was entirely etched, rinsed and dried, dried at 80 ° C. for 15 minutes, and then left in a room at a temperature of 20 ° C. and a relative humidity of 60 to 70% for 11 hours. After maintaining at a temperature of 170 ° C. for 30 minutes and cooling to room temperature, the reference mark interval in the length and width directions is measured, and this is set to l 1, and calculated by the equation (1).

【数1】寸法変化率=(l0−l1)×100/l0 ## EQU1 ## Dimensional change rate = (l 0 −l 1 ) × 100 / l 0

【0022】熱膨張係数(JIS C 6481「プリ
ント配線板用銅張積層板試験方法」準拠):銅張積層板
から6mm角の大きさの試験片を切り取り、銅はくを全
面エッチングにより除去後乾燥し、熱分析装置(TM
A)にセットし、室温から120℃まで昇温速度10℃
/分で昇温させ、その間の厚さ方向の伸び又は縮みを測
定して算出する。
Thermal expansion coefficient (based on JIS C 6481 "Test method for copper-clad laminates for printed wiring boards"): A test piece having a size of 6 mm square is cut out from the copper-clad laminate, and copper foil is removed by etching the entire surface. Dry and use a thermal analyzer (TM
A), set at 10 ° C from room temperature to 120 ° C
/ Minute, and elongation or shrinkage in the thickness direction during that time is measured and calculated.

【0023】[0023]

【表1】 [Table 1]

【0024】表1により、実施例1においては、比較例
1と比較して、顕著に寸法変化率が小さくなっているこ
とが示される。また、熱間伸び率が30.4%の銅はく
を用いた実施例2では、実施例1よりもさらに寸法変化
率が小さくなっていることが示され、また、熱膨張係数
が2.8×10-6/℃のガラス織布を用いた実施例3で
は、実施例2よりもさらに寸法変化率が小さくなってい
ることが示される。
Table 1 shows that Example 1 has a significantly smaller dimensional change rate than Comparative Example 1. Further, in Example 2 using a copper foil having a hot elongation of 30.4%, it was shown that the dimensional change rate was smaller than that in Example 1, and the coefficient of thermal expansion was 2. In Example 3 using the glass woven fabric of 8 × 10 −6 / ° C., it is shown that the dimensional change rate is smaller than that of Example 2.

【0025】[0025]

【発明の効果】請求項1の発明によれば、寸法変化率が
小さい金属張積層板を製造することができ、また、請求
項2及び3の発明によれば、請求項1の発明によるより
もさらに寸法変化率が小さい金属張積層板を製造するこ
とができる。
According to the first aspect of the present invention, it is possible to manufacture a metal-clad laminate having a small dimensional change rate, and according to the second and third aspects, it is possible to manufacture a metal-clad laminate. Also, a metal-clad laminate having a smaller dimensional change rate can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 JIS R 3413に規定される糸の
呼称がD450 1/0のガラス糸を、25mm当りの
打ち込み本数の比率が(たて糸本数/よこ糸本数)=
1.0〜1.2であり、単位面積当りの重量が55〜6
5g/m2 であり、平織り製織されたガラス織布を基材
として用い、この基材に固形分付着量が45〜60重量
%となるように熱硬化性樹脂ワニスを含浸乾燥してプリ
プレグとし、次いでこのプリプレグに金属はくを重ねて
加熱加圧することを特徴とする金属張積層板の製造方
法。
1. A yarn specified in JIS R 3413 having a name of D450 1/0 and a ratio of the number of driving yarns per 25 mm (the number of warp yarns / the number of weft yarns) =
1.0 to 1.2, and the weight per unit area is 55 to 6
5 g / m 2 , using a plain-woven glass woven fabric as a base material, and impregnating and drying a thermosetting resin varnish on the base material so as to have a solid content of 45 to 60% by weight to obtain a prepreg. Then, a metal foil is laminated on the prepreg and heated and pressed, and a method for producing a metal-clad laminate is provided.
【請求項2】 ガラス織布が、熱膨張係数が3×10-6
/℃以下であるガラス織布である請求項1に記載の金属
張積層板の製造方法。
2. The glass woven fabric has a coefficient of thermal expansion of 3 × 10 −6.
The method for producing a metal-clad laminate according to claim 1, wherein the metal-clad laminate is a glass woven fabric having a temperature of / C or lower.
【請求項3】 金属はくが、180℃における熱間伸び
率が10〜50%の金属はくである請求項1又は2に記
載の金属張積層板の製造方法。
3. The method for producing a metal-clad laminate according to claim 1, wherein the metal foil is a metal foil having a hot elongation of 10 to 50% at 180 ° C.
JP8161797A 1997-03-31 1997-03-31 Manufacture of metal-clad laminate Pending JPH10272733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8161797A JPH10272733A (en) 1997-03-31 1997-03-31 Manufacture of metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8161797A JPH10272733A (en) 1997-03-31 1997-03-31 Manufacture of metal-clad laminate

Publications (1)

Publication Number Publication Date
JPH10272733A true JPH10272733A (en) 1998-10-13

Family

ID=13751295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8161797A Pending JPH10272733A (en) 1997-03-31 1997-03-31 Manufacture of metal-clad laminate

Country Status (1)

Country Link
JP (1) JPH10272733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194120A (en) * 2000-12-22 2002-07-10 Hitachi Chem Co Ltd Metal foil clad laminated plate and prepreg
JP2003086939A (en) * 2001-09-11 2003-03-20 Hitachi Chem Co Ltd Method of manufacturing multilayered printed wiring board
US7049253B1 (en) 1999-04-05 2006-05-23 Asahi-Schwebel Co., Ltd. Glass cloth and printed wiring board
JP2014111361A (en) * 2012-11-12 2014-06-19 Panasonic Corp Metal-clad laminate, printed wiring board, multilayer printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049253B1 (en) 1999-04-05 2006-05-23 Asahi-Schwebel Co., Ltd. Glass cloth and printed wiring board
JP2002194120A (en) * 2000-12-22 2002-07-10 Hitachi Chem Co Ltd Metal foil clad laminated plate and prepreg
JP2003086939A (en) * 2001-09-11 2003-03-20 Hitachi Chem Co Ltd Method of manufacturing multilayered printed wiring board
JP2014111361A (en) * 2012-11-12 2014-06-19 Panasonic Corp Metal-clad laminate, printed wiring board, multilayer printed wiring board

Similar Documents

Publication Publication Date Title
JP3324916B2 (en) Glass cloth, prepreg, laminated board and multilayer printed wiring board
JPH10272733A (en) Manufacture of metal-clad laminate
JP2001011750A (en) Glass fiber woven fabric
JP2003334886A (en) Laminated sheet
JPH1161596A (en) Glass cloth and laminate therefrom
JPH05318482A (en) Manufacture of laminate
JP4908240B2 (en) Organic fiber woven fabric for laminate reinforcement
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JP3323116B2 (en) Glass cloth
JP2570250B2 (en) Prepreg and laminate
JPH11157009A (en) Manufacture of metal foil-clad laminated sheet
JP2713024B2 (en) Manufacturing method of multilayer metal foil-clad laminate
JPH09143837A (en) Glass fiber woven fabric for printed circuit board
JP3402392B2 (en) Multilayer printed wiring board
JP3461523B2 (en) Prepreg
JPH05169582A (en) Production of laminated sheet
JPH0564857A (en) Manufacture of laminate
JPH07314607A (en) Laminated sheet
JPH0760903A (en) Laminated sheet
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2002194120A (en) Metal foil clad laminated plate and prepreg
JPH10173345A (en) Multilayer printed wiring board
JPH02155726A (en) Manufacture of heat curing resin laminated sheet
JPH10157012A (en) Prepreg and laminate
JPH10146918A (en) Laminated board