JP2003334886A - Laminated sheet - Google Patents

Laminated sheet

Info

Publication number
JP2003334886A
JP2003334886A JP2002146582A JP2002146582A JP2003334886A JP 2003334886 A JP2003334886 A JP 2003334886A JP 2002146582 A JP2002146582 A JP 2002146582A JP 2002146582 A JP2002146582 A JP 2002146582A JP 2003334886 A JP2003334886 A JP 2003334886A
Authority
JP
Japan
Prior art keywords
thickness
resin composition
glass fiber
mass
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002146582A
Other languages
Japanese (ja)
Inventor
Eiji Motobe
英次 元部
Yoshihiko Nakamura
善彦 中村
Tatsushi Takahashi
龍史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002146582A priority Critical patent/JP2003334886A/en
Publication of JP2003334886A publication Critical patent/JP2003334886A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated sheet which has high deflection resistance and can decrease generation of warpage after it is processed into a multi-layer printed-wiring board. <P>SOLUTION: The laminated sheet is obtained by heat pressure molding of a glass fiber woven fabric base material impregnated with a heat-curable resin composition. In the laminated sheet with a sheet thickness of 0.1-0.3 mm, when the laminated sheet with a width of 5 cm is supported between two support points with a distance between the support points of 10 mm and a load is applied thereon, an amount of displacement per weight obtained by dividing a distance (the unit is mm) of deflection of the laminated sheet by the load (the unit is g) is divided by the reciprocal of the sheet thickness to obtain a value of 0.003-0.045 as a strain index. In the thin laminated sheet with a sheet thickness of 0.1-0.3 mm, the laminated sheet with the strain index in a range of 0.003-0.045 exhibits high rigidity and high deflection resistance. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板に
加工して用いられる積層板、特に多層プリント配線板の
内層回路板として用いるのに適した積層板に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated board processed into a printed wiring board, and more particularly to a laminated board suitable for use as an inner layer circuit board of a multilayer printed wiring board.

【0002】[0002]

【従来の技術】電子機器の小型化・高機能化に伴なっ
て、プリント配線板の薄物化・高多層化・高密度化の要
求が強まっている。これらの要求に応じて、ガラス繊維
織布を基材として形成された内層回路板の上に、絶縁樹
脂層と導体回路層を順次、交互に積み上げていくビルド
アップ工法で得られる多層プリント配線板が用いられる
ようになっている。
2. Description of the Related Art With the miniaturization and high functionality of electronic equipment, there is an increasing demand for thinner, higher multilayer and higher density printed wiring boards. In response to these demands, a multilayer printed wiring board obtained by a build-up method in which an insulating resin layer and a conductor circuit layer are sequentially and alternately stacked on an inner layer circuit board formed using a glass fiber woven fabric as a base material. Is being used.

【0003】内層回路板の上に絶縁樹脂層と導体回路層
を形成する方法としては、銅箔等の金属箔にエポキシ樹
脂等の熱硬化性樹脂を塗工して作製した樹脂付き金属箔
を用い、樹脂付き金属箔を内層回路板上に重ねて加熱加
圧成形することによって、絶縁樹脂層と導体回路層を同
時に形成方法や、感光性樹脂や熱硬化性樹脂を内層回路
板上に塗工して絶縁樹脂層を形成した後にその上に導体
回路層を形成する方法など、種々の方法が開発されてい
る。絶縁樹脂層をこのように補強繊維を含まない熱硬化
性樹脂で作製することによって、この上に設ける導体回
路層に、配線ピッチ200μm以下、ビアホール径20
0μm以下といった微細配線を容易に形成することが可
能になるのである。
As a method of forming the insulating resin layer and the conductor circuit layer on the inner layer circuit board, a resin-coated metal foil prepared by coating a metal foil such as a copper foil with a thermosetting resin such as an epoxy resin is used. Using a resin-coated metal foil over the inner layer circuit board and heat-pressing it, a method for simultaneously forming an insulating resin layer and a conductor circuit layer, or coating a photosensitive resin or thermosetting resin on the inner layer circuit board Various methods such as a method of forming an insulating resin layer and then forming a conductor circuit layer on the insulating resin layer have been developed. By forming the insulating resin layer with the thermosetting resin containing no reinforcing fiber, the conductor circuit layer provided thereon has a wiring pitch of 200 μm or less and a via hole diameter of 20.
It is possible to easily form fine wiring of 0 μm or less.

【0004】しかし近年では、更なる高密度化・高機能
化に対応するために、内層回路板の上に形成される絶縁
樹脂層の層数が2層、3層と増加する傾向にあり、補強
繊維を含まない層の割合が増加している。従って多層プ
リント配線板は全体がたわみ易くなっており、この結
果、半田リフロー工程や部品実装工程など加熱処理を伴
う工程で多層プリント配線板に大きな反りが発生し易い
という問題が生じている。現状では、多層プリント配線
板への部品実装の大半は表面実装で行なわれているの
で、このように多層プリント配線板に大きな反りが発生
すると、部品実装を行なうことが困難になるものであっ
た。
However, in recent years, the number of insulating resin layers formed on the inner layer circuit board tends to increase to two layers or three layers in order to cope with higher density and higher functionality. The proportion of layers without reinforcing fibers is increasing. Therefore, the entire multilayer printed wiring board is easily bent, and as a result, there is a problem that a large warp is likely to occur in the multilayer printed wiring board in a process involving heat treatment such as a solder reflow process or a component mounting process. At present, most of the components mounted on the multilayer printed wiring board are surface-mounted, so if a large warp occurs in the multilayer printed wiring board in this way, it becomes difficult to mount the components. .

【0005】[0005]

【発明が解決しようとする課題】そこで、内層回路板に
加工して用いる積層板として、たわみが発生し難いもの
を用いる必要があるが、特開2001−199009号
公報などにみられるように、積層板のたわみ性は曲げ弾
性率で規定されているのが一般的である。
Therefore, it is necessary to use, as the laminated board which is processed into the inner layer circuit board, one which is less likely to be bent. However, as seen in JP 2001-199009 A, etc., The flexibility of the laminate is generally defined by the flexural modulus.

【0006】ここで図2は、厚みが0.1〜0.3mm
と薄い積層板について、幅5cmの積層板を100mm
の支点間距離の2点で支えた上に荷重を掛けたときの、
積層板のたわみ量と積層板の曲げ弾性率の関係を測定し
た結果を示すグラフである。このグラフにみられるよう
に、厚みの薄い積層板については、たわみ性と曲げ弾性
率との間には相関関係を認めることができない。
In FIG. 2, the thickness is 0.1 to 0.3 mm.
For thin laminated boards, a 5 cm wide laminated board is 100 mm
When a load is applied after being supported at two points of the fulcrum distance of
It is a graph which shows the result of having measured the amount of flexure of a laminated board, and the bending elastic modulus of a laminated board. As can be seen from this graph, for thin laminated plates, no correlation can be observed between the flexibility and the flexural modulus.

【0007】従って、曲げ弾性率で管理した積層板を内
層回路板に加工して用いる場合、曲げ弾性率の数値は規
格内であっても、積層板にたわみが大きく発生すること
があり、多層プリント配線板に加熱後の反りが発生する
ことを防ぐことができないことがあるという問題を有す
るものであった。
Therefore, when a laminated board whose flexural modulus is controlled is processed into an inner layer circuit board and used, even if the numerical value of the flexural modulus is within the standard, the flexure of the laminated board may be large, resulting in a multilayer The printed wiring board has a problem in that it may not be possible to prevent warpage after heating.

【0008】本発明は上記の点に鑑みてなされたもので
あり、耐たわみ性が高く、多層プリント配線板に加工し
た後の反りの発生を低減することができる積層板を提供
することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a laminated board which has high flexibility and can reduce the occurrence of warpage after being processed into a multilayer printed wiring board. It is what

【0009】[0009]

【課題を解決するための手段】本発明の請求項1に係る
積層板は、熱硬化性樹脂組成物を含浸したガラス繊維織
布基材を加熱加圧成形して得られる積層板において、板
厚が0.1〜0.3mmの積層板であって、幅5cmの
積層板を100mmの支点間距離の2点で支えた上に荷
重を掛けたときの、積層板がたわんだ距離(単位:m
m)を荷重(単位:g)で割った荷重当りの変位量を板
厚(単位:mm)の逆数で割って得られる値が、0.0
03〜0.045のものであることを特徴とするもので
ある。
A laminated board according to claim 1 of the present invention is a laminated board obtained by heat-pressing a glass fiber woven fabric substrate impregnated with a thermosetting resin composition. The thickness of the laminated plate having a thickness of 0.1 to 0.3 mm, the distance when the laminated plate is bent when a load is applied after supporting the laminated plate having a width of 5 cm at two points of the fulcrum distance of 100 mm (unit: : M
The value obtained by dividing the displacement per load by dividing m) by the load (unit: g) by the reciprocal of the plate thickness (unit: mm) is 0.0
It is characterized by being from 03 to 0.045.

【0010】また請求項2の発明は、請求項1におい
て、ガラス繊維織布基材が平織りであり、単量(単位:
g/m)を厚みで割って得られる値が1.15〜1.
40g/cmのものを複数枚用いることを特徴とする
ものである。
According to a second aspect of the present invention, in the first aspect, the glass fiber woven fabric base material is plain weave, and a unit amount (unit:
g / m 2 ) divided by the thickness is 1.15 to 1.
It is characterized by using a plurality of sheets of 40 g / cm 3 .

【0011】また請求項3の発明は、請求項1又は2に
おいて、熱硬化性樹脂組成物には、熱硬化性樹脂100
質量部に対して40〜150質量部の無機フィラーが含
有されていることを特徴とするものである。
According to the invention of claim 3, in the thermosetting resin composition according to claim 1 or 2, the thermosetting resin 100
It is characterized by containing 40 to 150 parts by mass of an inorganic filler with respect to parts by mass.

【0012】また請求項4の発明は、請求項1乃至3の
いずれかにおいて、熱硬化性樹脂組成物は、ガラス転移
温度が180℃以上であることを特徴とするものであ
る。
The invention of claim 4 is characterized in that, in any of claims 1 to 3, the thermosetting resin composition has a glass transition temperature of 180 ° C. or higher.

【0013】また請求項5の発明は、請求項1乃至4の
いずれかにおいて、熱硬化性樹脂は、エポキシ樹脂であ
ることを特徴とするものである。
The invention of claim 5 is characterized in that, in any one of claims 1 to 4, the thermosetting resin is an epoxy resin.

【0014】また請求項6の発明は、請求項1乃至5の
いずれかにおいて、ガラス繊維織布基材のガラス組成は
SガラスあるいはEガラスであることを特徴とするもの
である。
The invention of claim 6 is characterized in that, in any one of claims 1 to 5, the glass composition of the glass fiber woven fabric substrate is S glass or E glass.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0016】本発明に係る積層板は、ガラス繊維織布基
材に熱硬化性樹脂組成物のワニスを含浸・乾燥して調製
したプリプレグを複数枚重ね、さらに必要に応じて片面
あるいは両面に銅箔等の金属箔を重ね、これを加熱加圧
して積層成形することによって得ることができる。そし
て板厚が0.1〜0.3mmの積層板(金属箔は除く)
において、幅5cmの積層板を100mmの支点間距離
の2点で支えた上に荷重を掛けたときの、積層板がたわ
んだ距離(単位:mm)を荷重(単位:g)で割った荷
重当りの変位量を板厚(単位:mm)の逆数で割って得
られる値(以下歪指数という)が、0.003〜0.0
45(単位:(mm/g)/板厚の逆数)である積層板
を、適正な積層板とするようにしたものである。
The laminated sheet according to the present invention is formed by stacking a plurality of prepregs prepared by impregnating a glass fiber woven fabric substrate with a varnish of a thermosetting resin composition and drying, and further, if necessary, copper on one side or both sides. It can be obtained by stacking metal foils such as foils and heating and pressing the foils to form a laminate. And a laminated plate with a plate thickness of 0.1 to 0.3 mm (excluding metal foil)
In ,, when a load was applied on a laminated plate with a width of 5 cm supported at two points with a fulcrum distance of 100 mm, the distance (unit: mm) deflected by the laminated plate was divided by the load (unit: g) The value obtained by dividing the amount of displacement per unit by the reciprocal of the plate thickness (unit: mm) (hereinafter referred to as the strain index) is 0.003 to 0.0
A laminated plate having a size of 45 (unit: (mm / g) / reciprocal of plate thickness) is an appropriate laminated plate.

【0017】板厚が0.1〜0.3mmと薄い積層板に
おいては、既述のようにたわみ性と曲げ弾性率との間に
相関関係が認められない。一方、本発明は、このような
板厚が0.1〜0.3mmと薄い積層板においては、た
わみ性と歪指数の間に相関関係があり、そして歪指数が
0.003〜0.045の範囲にある積層板は剛性が高
くたわみ難いという知見を得て、なされたものである。
従って、内層回路板に補強繊維を含まない絶縁樹脂層と
導体回路層をビルドアップして多層プリント配線板を製
造するにあたって、歪指数が0.003〜0.045の
積層板から作製した内層回路板を用いることによって、
多層プリント配線板に加熱後の反りが大きく発生するこ
とを防ぐことができるものである。歪指数が0.045
を超える積層板は剛性が低く耐たわみ性が不十分であ
り、多層プリント配線板に加工した後の反りの発生を防
ぐことは難しい。歪指数が小さいほど積層板の耐たわみ
性が高くなるので好ましいが、板厚が0.1〜0.3m
mと薄い積層板において歪指数が0.003未満のもの
は得ることが困難であり、実用上0.003が歪指数の
下限である。
In a thin laminated plate having a plate thickness of 0.1 to 0.3 mm, there is no correlation between flexibility and flexural modulus as described above. On the other hand, according to the present invention, in such a thin laminated plate having a plate thickness of 0.1 to 0.3 mm, there is a correlation between the flexibility and the strain index, and the strain index is 0.003 to 0.045. The laminated plate in the range of 1 is made with the knowledge that it has high rigidity and is hard to bend.
Therefore, when a multilayer printed wiring board is manufactured by building up an insulating resin layer containing no reinforcing fibers and a conductor circuit layer on the inner layer circuit board, an inner layer circuit manufactured from a laminated board having a strain index of 0.003 to 0.045. By using a plate,
It is possible to prevent a large amount of warpage after heating from occurring in the multilayer printed wiring board. Strain index is 0.045
Laminates having a hardness of less than 3 have low rigidity and insufficient flexural resistance, and it is difficult to prevent warpage after processing into a multilayer printed wiring board. The smaller the strain index, the higher the bending resistance of the laminated plate, which is preferable, but the plate thickness is 0.1 to 0.3 m.
It is difficult to obtain a laminated sheet having a thickness of m and a strain index of less than 0.003. In practice, 0.003 is the lower limit of the strain index.

【0018】ここで、上記のガラス繊維織布基材として
は、織組織が平織りのものが好ましい。平織りのガラス
繊維織布基材は、ななこ織りや朱子織りや綾織りに比較
して織り方向の等方性に優れているものであり、価格の
点でも有利である。そしてガラス繊維織布基材の厚み当
りの単量(基材単量/基材厚み)、すなわちガラス繊維
織布基材の単量(単位:g/m)をガラス繊維織布基
材の厚みで割って得られる値が1.15〜1.40(単
位:g/cm)のものを用いるのが、耐たわみ性を大
きく得るうえで好ましい。ガラス繊維織布基材の厚み当
りの単量が1.15g/cm未満であると、耐たわみ
性が不十分であり、また1.40g/cmを超えると
熱硬化性樹脂組成物の含浸性など成形性に問題が生じる
おそれがある。このように、ガラス繊維織布基材として
平織りであって、厚み当りの単量が1.15〜1.40
g/cmのものを用いることによって、歪指数が低い
積層板を得ることができるものである。このガラス繊維
織布基材は積層板に複数枚用いるのが好ましく、従って
ガラス繊維織布基材からなるプリプレグを複数枚積層し
て積層板を作製するのが望ましい。ガラス繊維織布基材
の積層枚数は特に制限されるものではないが、2〜4枚
程度が好ましい。
Here, the glass fiber woven fabric base material is preferably a plain weave fabric. The plain weave glass fiber woven fabric base material is superior in isotropicity in the weaving direction as compared with the satin weave, satin weave, and twill weave, and is also advantageous in terms of price. Then, the unit amount per unit thickness of the glass fiber woven fabric substrate (base unit amount / substrate thickness), that is, the unit amount of the glass fiber woven fabric substrate (unit: g / m 2 ) is It is preferable to use one having a value obtained by dividing by the thickness of 1.15 to 1.40 (unit: g / cm 3 ) in order to obtain large flexural resistance. When the amount per unit thickness of the glass fiber woven fabric substrate is less than 1.15 g / cm 3 , the flex resistance is insufficient, and when it exceeds 1.40 g / cm 3 , the thermosetting resin composition There may be a problem with moldability such as impregnation. Thus, the glass fiber woven fabric base material is plain weave, and the unit amount per thickness is 1.15 to 1.40.
By using g / cm 3, a laminate having a low strain index can be obtained. It is preferable to use a plurality of glass fiber woven fabric base materials for a laminated plate, and therefore it is desirable to laminate a plurality of prepregs made of a glass fiber woven fabric base material to produce a laminated plate. The number of laminated glass fiber woven base materials is not particularly limited, but is preferably about 2 to 4.

【0019】また、ガラス繊維織布基材を形成するガラ
ス組成はSガラスあるいはEガラスであることが好まし
い。Sガラスは高強度であるため、Sガラスからなるガ
ラス繊維織布基材を用いて積層板を製造することよっ
て、剛性が高く歪指数の小さい積層板を得ることがで
き、反り低減の効果を高く得ることができるものであ
る。EガラスはSガラスほど反り低減の効果はないが、
価格が安価で、ドリル加工性に優れているので、反り、
価格、加工性のすべてにバランスがとれた積層板を得る
ことができるものである。
The glass composition forming the glass fiber woven substrate is preferably S glass or E glass. Since S glass has a high strength, a laminated plate having a high rigidity and a small strain index can be obtained by manufacturing a laminated plate using a glass fiber woven fabric base material made of S glass, and an effect of reducing warpage can be obtained. You can get high. E glass is not as effective in reducing warpage as S glass,
Because the price is low and the drill workability is excellent,
It is possible to obtain a laminated plate that is well balanced in price and workability.

【0020】本発明において、ガラス繊維織布基材に含
浸させる熱硬化性樹脂組成物の熱硬化性樹脂としては、
特に限定するものではないが、フェノール樹脂、エポキ
シ樹脂、シリコン樹脂、不飽和ポリエステル樹脂、メラ
ミン樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、
変性ポリイミド樹脂、熱硬化性ポリフェニレン樹脂など
がある。これらのなかでも価格や性能のバランスがとれ
たエポキシ樹脂が特に好ましい。
In the present invention, as the thermosetting resin of the thermosetting resin composition to be impregnated into the glass fiber woven fabric substrate,
Although not particularly limited, phenol resin, epoxy resin, silicone resin, unsaturated polyester resin, melamine resin, diallyl phthalate resin, polyimide resin,
Examples include modified polyimide resin and thermosetting polyphenylene resin. Among these, an epoxy resin having a balanced price and performance is particularly preferable.

【0021】またエポキシ樹脂の種類も特に限定される
ものではなく、ビスフェノール型、ノボラック型、ジシ
クロペンタジエン型、ビフェニル型など任意のものを使
用することができ、これらに難燃性を付与したものでも
よい。さらにエポキシ樹脂用の硬化剤も特に限定される
ものではなく、Dicy(ジシアンジアミド)硬化剤や
フェノール硬化剤などを挙げることができる。さらにエ
ポキシ樹脂に必要に応じて硬化促進剤、UV遮蔽剤、蛍
光発光剤、難燃剤などを添加することもできる。
The type of epoxy resin is not particularly limited, and any of bisphenol type, novolac type, dicyclopentadiene type, biphenyl type and the like can be used, and those imparting flame retardancy thereto But it's okay. Further, the curing agent for the epoxy resin is not particularly limited, and examples thereof include Dicy (dicyandiamide) curing agent and phenol curing agent. Further, if necessary, a curing accelerator, a UV shielding agent, a fluorescent light emitting agent, a flame retardant, etc. can be added to the epoxy resin.

【0022】上記の熱硬化性樹脂組成物は、硬化物のガ
ラス転移温度(Tg)が180℃以上のものが好まし
い。ガラス転移温度が180℃以上の熱硬化性樹脂組成
物は、熱に対する樹脂強度の低下が小さく、熱時におけ
る歪量が小さい積層板を得ることができるものであり、
この積層板を内層回路板として作製した多層プリント配
線板の加熱後の反りを抑制することができるものであ
る。熱硬化性樹脂組成物のガラス転移温度は高い程好ま
しいが、230℃程度が積層板の製造に使用できる熱硬
化性樹脂組成物のガラス転移温度の上限である。
The thermosetting resin composition preferably has a glass transition temperature (Tg) of 180 ° C. or higher. The thermosetting resin composition having a glass transition temperature of 180 ° C. or higher is capable of obtaining a laminate having a small decrease in resin strength due to heat and a small amount of strain when heated.
It is possible to suppress warpage after heating of a multilayer printed wiring board produced by using this laminated board as an inner layer circuit board. The higher the glass transition temperature of the thermosetting resin composition is, the more preferable. However, about 230 ° C. is the upper limit of the glass transition temperature of the thermosetting resin composition that can be used for producing a laminate.

【0023】また、熱硬化性樹脂組成物にはさらに無機
フィラーを配合することもできる。無機フィラーとして
は、熱硬化性樹脂より弾性率が高いものであれば特に制
限されることなく使用することができるものであり、シ
リカ、アルミナ、タルク、マイカ、水酸化アルミニウ
ム、水酸化マクネシウム、チタン酸カリウム、二酸化チ
タン、ケイ酸カルシウム、ガラスパウダーなどを用いる
ことができる。無機フィラーの形状については、球状、
破砕、針状、ウィスカ、短繊維等限定されるものではな
い。さらに無機フィラーには熱硬化性樹脂との親和性の
ためにカップリング処理をしてもよい。
Further, the thermosetting resin composition may further contain an inorganic filler. The inorganic filler can be used without particular limitation as long as it has a higher elastic modulus than the thermosetting resin, silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, titanium. Potassium acid, titanium dioxide, calcium silicate, glass powder and the like can be used. Regarding the shape of the inorganic filler, spherical,
Crushed, needle-shaped, whiskers, short fibers and the like are not limited. Further, the inorganic filler may be subjected to a coupling treatment in order to have an affinity with the thermosetting resin.

【0024】熱硬化性樹脂組成物において無機フィラー
の配合量は、熱硬化性樹脂100質量部に対して40〜
150質量部の範囲が好ましく、熱硬化性樹脂に対する
無機フィラーの配合量をこの範囲に設定することによっ
て、この熱硬化性樹脂組成物を用いて作製した積層板の
歪指数を小さくすることができ、この積層板を内層回路
板として作製した多層プリント配線板の加熱後の反りを
抑制することができるものである。
The content of the inorganic filler in the thermosetting resin composition is 40 to 100 parts by weight of the thermosetting resin.
The range of 150 parts by mass is preferable, and by setting the blending amount of the inorganic filler with respect to the thermosetting resin to this range, the strain index of the laminate produced using this thermosetting resin composition can be reduced. The warp after heating of the multilayer printed wiring board produced by using this laminated board as the inner layer circuit board can be suppressed.

【0025】[0025]

【実施例】次に、本発明を実施例によって具体的に説明
する。 (実施例1)次の組成でエポキシ樹脂組成物のワニスを
作製した。 ・エポキシ樹脂:YDCN−220(東都化成株式会社製) 20質量部 YDB−500(東都化成株式会社製) 76.5質量部 ・硬化剤: ジシアンジアミド 3質量部 ・硬化促進剤: 2−エチル−4−メチルイミダゾール 0.1質量部 ・溶媒: メチルエチルケトン 40質量部 N、N−ジメチルホルムアミド 20質量部 一方、縦糸と横糸にそれぞれECDE 150 1/0
のガラス繊維ヤーン(Eガラス、長繊維、ガラス径6μ
m、ストランド1ポンド当りの長さ15000ヤード、
ストランドの合撚本数1本、単糸)を用い、縦糸の打ち
込み本数を60本/25mm、横糸の打ち込み本数を5
0本/25mmとして、平織りすることによって、単量
149g/m(JIS R 3420による)の織布
を作製し、これを開繊処理して厚み108μm(JIS
R 3420による)まで扁平にしたものを、ガラス
繊維織布基材として用いた。このガラス繊維織布基材の
厚み当りの単量は1.38g/cmである。
EXAMPLES Next, the present invention will be specifically described with reference to examples. (Example 1) A varnish of an epoxy resin composition was prepared with the following composition. -Epoxy resin: YDCN-220 (manufactured by Tohto Kasei Co., Ltd.) 20 parts by mass YDB-500 (manufactured by Toto Kasei Co., Ltd.) 76.5 parts by mass-Curing agent: 3 parts by mass of dicyandiamide-Curing accelerator: 2-ethyl-4 -Methylimidazole 0.1 part by mass Solvent: Methylethylketone 40 parts by mass N, N-Dimethylformamide 20 parts by mass On the other hand, ECDE 150 1/0 for warp and weft respectively
Glass fiber yarn (E glass, long fiber, glass diameter 6μ
m, length 15,000 yards per pound of strand,
Using 1 strand of twisted strands (single yarn), the number of warp threads is 60/25 mm, and the number of weft threads is 5
A piece of 149 g / m 2 (according to JIS R 3420) was produced by plain weaving with 0 threads / 25 mm, and the cloth was opened to have a thickness of 108 μm (JIS
Flattened to R 3420) was used as the glass fiber woven substrate. The unit weight per thickness of this glass fiber woven fabric substrate is 1.38 g / cm 3 .

【0026】そして上記のエポキシ樹脂組成物のワニス
をこのガラス繊維織布基材に含浸し、150℃で10分
乾燥して、エポキシ樹脂組成物及びガラス繊維織布基材
の合計100質量部に対し、エポキシ樹脂組成物の含有
量が45質量部であるプリプレグを得た。
Then, the glass fiber woven base material was impregnated with the varnish of the above epoxy resin composition and dried at 150 ° C. for 10 minutes to obtain a total of 100 parts by mass of the epoxy resin composition and the glass fiber woven base material. On the other hand, a prepreg having an epoxy resin composition content of 45 parts by mass was obtained.

【0027】次にこのプリプレグを2枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを170℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.28mm(銅箔は含まない)の銅張り積
層板を得た。
Next, two sheets of this prepreg were stacked, and copper foil having a thickness of 18 μm was further stacked on both sides of the prepreg.
By heat-press molding under conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.28 mm (copper foil not included) was obtained.

【0028】(実施例2)縦糸と横糸にそれぞれECE
225 1/0のガラス繊維ヤーン(Eガラス、長繊
維、ガラス径7μm、ストランド1ポンド当りの長さ2
2500ヤード、ストランドの合撚本数1本、単糸)を
用い、縦糸の打ち込み本数を59本/25mm、横糸の
打ち込み本数を46本/25mmとして、平織りするこ
とによって、単量95g/mの織布を作製し、これを
開繊処理して厚み75μmまで扁平にしたものを、ガラ
ス繊維織布基材として用いた。このガラス繊維織布基材
の厚み当りの単量は1.27g/cm3である。
(Embodiment 2) ECE for warp and weft respectively
225 1/0 glass fiber yarn (E glass, long fiber, glass diameter 7 μm, length 2 per pound of strand
2500 yards, 1 strand of twisted strands, single yarn) is used, and the number of warp yarns is 59/25 mm and the number of weft yarns is 46/25 mm. By plain weaving, a unit weight of 95 g / m 2 is obtained. A woven fabric was prepared, which was subjected to a fiber opening treatment and flattened to a thickness of 75 μm, which was used as a glass fiber woven fabric substrate. The unit weight of the glass fiber woven fabric substrate per thickness is 1.27 g / cm 3 .

【0029】そして実施例1で得たエポキシ樹脂組成物
のワニスをこのガラス繊維織布基材に含浸し、150℃
で10分乾燥して、エポキシ樹脂組成物及びガラス繊維
織布基材の合計100質量部に対し、エポキシ樹脂組成
物の含有量が44質量部であるプリプレグを得た。
Then, the glass fiber woven fabric substrate was impregnated with the varnish of the epoxy resin composition obtained in Example 1, and the temperature was raised to 150 ° C.
And dried for 10 minutes to obtain a prepreg in which the content of the epoxy resin composition is 44 parts by mass with respect to 100 parts by mass of the total of the epoxy resin composition and the glass fiber woven fabric substrate.

【0030】次にこのプリプレグを3枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを170℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.26mm(銅箔は含まない)の銅張り積
層板を得た。
Next, three of these prepregs were stacked, and copper foil having a thickness of 18 μm was stacked on both sides of the prepreg.
By heat-press molding under the conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.26 mm (copper foil not included) was obtained.

【0031】(実施例3)次の組成でエポキシ樹脂組成
物のワニスを作製した。尚、フィラーの分散にはナノミ
ルを用いた。 ・エポキシ樹脂:DER593(ダウ社製) 100質量部 ・硬化剤: ジシアンジアミド 3質量部 ・硬化促進剤: 2−エチル−4−メチルイミダゾール 0.3質量部 ・溶媒: メチルエチルケトン 40質量部 N、N−ジメチルホルムアミド 20質量部 ・無機フィラー:水酸化アルミニウム(昭和電工製「ハジライトH−42」) 50質量部 タルク(富士タルク工業製「ST100」) 30質量部 シリカ(アドマテック製「アドマファインSO−25R」) 40質量部 そして、ガラス繊維織布基材として日東紡社製「WEA
13D X125」(単量147g/m、基材厚み1
17μm:厚み当りの単量1.26g/cm3)を用い、
上記のエポキシ樹脂組成物のワニスをこのガラス繊維織
布基材に含浸し、150℃で10分乾燥して、エポキシ
樹脂組成物及びガラス繊維織布基材の合計100質量部
に対し、エポキシ樹脂組成物の含有量が44質量部であ
るプリプレグを得た。
Example 3 A varnish of an epoxy resin composition having the following composition was prepared. A nanomill was used to disperse the filler. Epoxy resin: DER593 (manufactured by Dow) 100 parts by mass Curing agent: Dicyandiamide 3 parts by mass Curing accelerator: 2-Ethyl-4-methylimidazole 0.3 parts by mass Solvent: Methyl ethyl ketone 40 parts by mass N, N- Dimethylformamide 20 parts by mass / inorganic filler: aluminum hydroxide (Showa Denko's "Hazilite H-42") 50 parts by mass Talc (Fuji Talc Industry's "ST100") 30 parts by mass Silica (Admatech's "Admafine SO-25R") ) 40 parts by mass and "WEA" manufactured by Nitto Boseki as a glass fiber woven base material.
13D X125 "(single weight 147 g / m 2 , substrate thickness 1)
17 μm: 1.26 g / cm 3 per unit thickness is used,
The glass fiber woven fabric substrate was impregnated with the varnish of the epoxy resin composition described above and dried at 150 ° C. for 10 minutes to obtain an epoxy resin based on 100 parts by mass of the epoxy resin composition and the glass fiber woven fabric substrate. A prepreg having a composition content of 44 parts by mass was obtained.

【0032】次にこのプリプレグを2枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを200℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.24mm(銅箔は含まない)の銅張り積
層板を得た。
Next, two sheets of this prepreg were stacked, and copper foil having a thickness of 18 μm was further stacked on both sides of the prepreg.
By heat-press molding under conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.24 mm (copper foil not included) was obtained.

【0033】(実施例4)次の組成でエポキシ樹脂組成
物のワニスを作製した。尚、フィラーの分散にはナノミ
ルを用いた。 ・エポキシ樹脂:DER593(ダウ社製) 100質量部 ・硬化剤: ジシアンジアミド 3質量部 ・硬化促進剤: 2−エチル−4−メチルイミダゾール 0.3質量部 ・溶媒: メチルエチルケトン 40質量部 N、N−ジメチルホルムアミド 20質量部 ・無機フィラー:タルク(富士タルク工業製「ST100」) 30質量部 シリカ(アドマテック製「アドマファインSO−25R」) 30質量部 そして、ガラス繊維織布基材として日東紡社製「WEA
13D X125」(単量147g/m、基材厚み1
17μm:厚み当りの単量1.26g/cm)を用
い、上記のエポキシ樹脂組成物のワニスをこのガラス繊
維織布基材に含浸し、150℃で10分乾燥して、エポ
キシ樹脂組成物及びガラス繊維織布基材の合計100質
量部に対し、エポキシ樹脂組成物の含有量が50質量部
であるプリプレグを得た。
(Example 4) A varnish of an epoxy resin composition having the following composition was produced. A nanomill was used to disperse the filler. Epoxy resin: DER593 (manufactured by Dow) 100 parts by mass Curing agent: Dicyandiamide 3 parts by mass Curing accelerator: 2-Ethyl-4-methylimidazole 0.3 parts by mass Solvent: Methyl ethyl ketone 40 parts by mass N, N- Dimethylformamide 20 parts by mass Inorganic filler: talc (Fuji talc industry "ST100") 30 parts by mass Silica (Admatech "Admafine SO-25R") 30 parts by mass Nitto Boseki as a glass fiber woven substrate "WEA
13D X125 "(single weight 147 g / m 2 , substrate thickness 1)
17 μm: 1.26 g / cm 3 per unit thickness), the glass fiber woven fabric substrate was impregnated with the varnish of the above epoxy resin composition, and dried at 150 ° C. for 10 minutes to obtain an epoxy resin composition. A prepreg having an epoxy resin composition content of 50 parts by mass was obtained based on 100 parts by mass of the glass fiber woven fabric substrate.

【0034】次にこのプリプレグを2枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを200℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.28mm(銅箔は含まない)の銅張り積
層板を得た。
Next, two sheets of this prepreg were laminated, and copper foil having a thickness of 18 μm was further laminated on both sides of the prepreg.
By heat-press molding under conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.28 mm (copper foil not included) was obtained.

【0035】(実施例5)次の組成でエポキシ樹脂組成
物のワニスを作製した。尚、フィラーの分散にはナノミ
ルを用いた。 ・エポキシ樹脂:YDCN−220(東都化成株式会社製) 20質量部 YDB−500(東都化成株式会社製) 76.5質量部 ・硬化剤: ジシアンジアミド 3質量部 ・硬化促進剤: 2−エチル−4−メチルイミダゾール 0.1質量部 ・溶媒: メチルエチルケトン 40質量部 N、N−ジメチルホルムアミド 20質量部 ・無機フィラー:水酸化アルミニウム(昭和電工製「ハジライトH−42」) 50質量部 タルク(富士タルク工業製「ST100」) 30質量部 シリカ(アドマテック製「アドマファインSO−25R」) 40質量部 そして、このエポキシ樹脂組成物のワニスを実施例2で
使用したガラス繊維織布基材に含浸し、150℃で10
分乾燥して、エポキシ樹脂組成物及びガラス繊維織布基
材の合計100質量部に対し、エポキシ樹脂組成物の含
有量が45質量部であるプリプレグを得た。
Example 5 A varnish of an epoxy resin composition having the following composition was prepared. A nanomill was used to disperse the filler. -Epoxy resin: YDCN-220 (manufactured by Tohto Kasei Co., Ltd.) 20 parts by mass YDB-500 (manufactured by Toto Kasei Co., Ltd.) 76.5 parts by mass-Curing agent: 3 parts by mass of dicyandiamide-Curing accelerator: 2-ethyl-4 -Methylimidazole 0.1 part by mass-Solvent: Methyl ethyl ketone 40 parts by mass N, N-Dimethylformamide 20 parts by mass-Inorganic filler: Aluminum hydroxide (Showa Denko's "Hazilite H-42") 50 parts by mass Talc (Fuji Talc Industrial Co., Ltd.) Manufactured "ST100") 30 parts by mass silica ("Admafine SO-25R" manufactured by Admatech) 40 parts by mass Then, the glass fiber woven fabric base material used in Example 2 was impregnated with varnish of this epoxy resin composition, and 150 10 at ℃
After minute drying, a prepreg having an epoxy resin composition content of 45 parts by mass was obtained with respect to 100 parts by mass of the total of the epoxy resin composition and the glass fiber woven fabric substrate.

【0036】次にこのプリプレグを2枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを170℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.17mm(銅箔は含まない)の銅張り積
層板を得た。
Next, two sheets of this prepreg were stacked, and a copper foil having a thickness of 18 μm was stacked on both sides of the prepreg.
By heat-press molding under conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.17 mm (excluding copper foil) was obtained.

【0037】(実施例6)ガラス組成をSガラスに変更
する他は実施例1と同様にしてガラス繊維織布基材を作
製した。そして実施例4で調製したエポキシ樹脂組成物
のワニスをこのガラス繊維織布基材に含浸し、150℃
で10分乾燥して、エポキシ樹脂組成物及びガラス繊維
織布基材の合計100質量部に対し、エポキシ樹脂組成
物の含有量が42質量部であるプリプレグを得た。
Example 6 A glass fiber woven fabric substrate was produced in the same manner as in Example 1 except that the glass composition was changed to S glass. Then, the glass fiber woven fabric substrate was impregnated with the varnish of the epoxy resin composition prepared in Example 4, and the temperature was changed to 150 ° C.
And dried for 10 minutes to obtain a prepreg having an epoxy resin composition content of 42 parts by mass with respect to 100 parts by mass of the total of the epoxy resin composition and the glass fiber woven fabric substrate.

【0038】次にこのプリプレグを2枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを200℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.25mm(銅箔は含まない)の銅張り積
層板を得た。
Next, two sheets of this prepreg were stacked, and a copper foil having a thickness of 18 μm was stacked on both sides of the prepreg.
By heat-press molding under the conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.25 mm (copper foil is not included) was obtained.

【0039】(比較例1)ガラス繊維織布基材として日
東紡社製「WEA19BS236」(単量214g/m
、基材厚み183μm:厚み当りの単量1.17g/
cm)を用い、実施例1で調製したエポキシ樹脂組成
物のワニスをこのガラス繊維織布基材に含浸し、150
℃で10分乾燥して、エポキシ樹脂組成物及びガラス繊
維織布基材の合計100質量部に対し、エポキシ樹脂組
成物の含有量が46質量部であるプリプレグを得た。
(Comparative Example 1) "WEA19BS236" manufactured by Nitto Boseki Co., Ltd. as a glass fiber woven base material (single weight 214 g / m2)
2 , substrate thickness 183 μm: single amount per thickness 1.17 g /
cm 3 ), this glass fiber woven fabric substrate was impregnated with the varnish of the epoxy resin composition prepared in Example 1,
After drying at 10 ° C. for 10 minutes, a prepreg having an epoxy resin composition content of 46 parts by mass was obtained with respect to a total of 100 parts by mass of the epoxy resin composition and the glass fiber woven fabric substrate.

【0040】次にこのプリプレグを1枚用い、その両側
に厚み18μmの銅箔を重ね、これを170℃、3MP
a、120分の条件で加熱加圧成形することによって、
厚み0.21mm(銅箔は含まない)の銅張り積層板を
得た。
Next, one piece of this prepreg was used, and copper foil having a thickness of 18 μm was superposed on both sides of the prepreg.
a, by heat and pressure molding under the condition of 120 minutes,
A copper-clad laminate having a thickness of 0.21 mm (excluding copper foil) was obtained.

【0041】(比較例2)ガラス繊維織布基材として日
東紡社製「WEA116ES136」(単量104g/
、基材厚み95μm:厚み当りの単量1.09g/
cm)を用い、実施例1で調製したエポキシ樹脂組成
物のワニスをこのガラス繊維織布基材に含浸し、150
℃で10分乾燥して、エポキシ樹脂組成物及びガラス繊
維織布基材の合計100質量部に対し、エポキシ樹脂組
成物の含有量が48質量部であるプリプレグを得た。
(Comparative Example 2) "WEA116ES136" manufactured by Nitto Boseki Co., Ltd. as a glass fiber woven fabric substrate (unit weight 104 g /
m 2 , substrate thickness 95 μm: single amount per thickness 1.09 g /
cm 3 ), this glass fiber woven fabric substrate was impregnated with the varnish of the epoxy resin composition prepared in Example 1,
After drying at 0 ° C. for 10 minutes, a prepreg having an epoxy resin composition content of 48 parts by mass relative to 100 parts by mass of the epoxy resin composition and the glass fiber woven fabric substrate was obtained.

【0042】次にこのプリプレグを2枚重ね、さらにそ
の両側に厚み18μmの銅箔を重ね、これを170℃、
3MPa、120分の条件で加熱加圧成形することによ
って、厚み0.23mm(銅箔は含まない)の銅張り積
層板を得た。
Next, two sheets of this prepreg were laminated, and copper foil having a thickness of 18 μm was further laminated on both sides of the prepreg.
By heat-press molding under conditions of 3 MPa and 120 minutes, a copper-clad laminate having a thickness of 0.23 mm (copper foil is not included) was obtained.

【0043】(比較例3)ガラス繊維織布基材として日
東紡社製「WEA15 S236」(単量165g/m
、基材厚み140μm:厚み当りの単量1.18g/
cm)を用い、実施例1で調製したエポキシ樹脂組成
物のワニスをこのガラス繊維織布基材に含浸し、150
℃で10分乾燥して、エポキシ樹脂組成物及びガラス繊
維織布基材の合計100質量部に対し、エポキシ樹脂組
成物の含有量が44質量部であるプリプレグを得た。
(Comparative Example 3) "WEA15 S236" manufactured by Nitto Boseki Co., Ltd. as a glass fiber woven fabric substrate (single amount 165 g / m
2 , substrate thickness 140 μm: single amount per thickness 1.18 g /
cm 3 ), this glass fiber woven fabric substrate was impregnated with the varnish of the epoxy resin composition prepared in Example 1,
After drying at 0 ° C. for 10 minutes, a prepreg having an epoxy resin composition content of 44 parts by mass with respect to a total of 100 parts by mass of the epoxy resin composition and the glass fiber woven fabric substrate was obtained.

【0044】次にこのプリプレグを1枚用い、その両側
に厚み18μmの銅箔を重ね、これを170℃、3MP
a、120分の条件で加熱加圧成形することによって、
厚み0.15mm(銅箔は含まない)の銅張り積層板を
得た。
Next, one piece of this prepreg was used, and copper foil having a thickness of 18 μm was superposed on both sides of the prepreg.
a, by heat and pressure molding under the condition of 120 minutes,
A copper-clad laminate having a thickness of 0.15 mm (excluding copper foil) was obtained.

【0045】上記のようにして実施例1〜6及び比較例
1〜3で得た銅張り積層板について、エポキシ樹脂組成
物のガラス転移温度、積層板の歪指数を測定した。
With respect to the copper-clad laminates obtained in Examples 1 to 6 and Comparative Examples 1 to 3 as described above, the glass transition temperature of the epoxy resin composition and the strain index of the laminate were measured.

【0046】ガラス転移温度は、得られたプリプレグを
板厚が約0.8mmになるように重ね、さらにその両外
側に離型シート重ね、これを金属プレートで挟んで各実
施例や比較例と同じ加熱加圧条件で成形を行ない、離型
シートを剥離して得られた積層板を試験片として、この
試験片の動的粘弾性の温度分散性を測定し、そして得ら
れたtanδのピーク温度より求めた。
Regarding the glass transition temperature, the obtained prepregs were stacked so that the plate thickness was about 0.8 mm, and release sheets were stacked on both outer sides of the prepreg. The temperature dispersion of dynamic viscoelasticity of this test piece was measured using the laminated sheet obtained by performing the molding under the same heat and pressure conditions and peeling the release sheet, and the obtained tan δ peak. Calculated from temperature.

【0047】歪指数の測定は、実施例1〜6及び比較例
1〜3で得た銅張り積層板の銅箔をエッチングして除去
し、これを幅5cm、長さ15cmの大きさに切断して
試験片1を作製し、図1に示すように距離Lが100m
mの二つの支点2の上に試験片1を水平に置き、二つの
支点2間の中央位置において試験片1の上に分銅3を載
せたときの、試験片1のたわんだ距離Δをハイトゲージ
で計測することによって行なった。そして分銅3として
荷重10g、荷重20g、荷重30g、荷重40gのも
のを用い、荷重を横軸、たわんだ距離Δを縦軸とするグ
ラフに、荷重とその際のたわんだ距離Δをプロットし、
原点を通る傾き(たわんだ距離(mm)/荷重(g))
を求め、これを試験片1の板厚の逆数で割ることによっ
て、積層板の歪指数を求めた。
To measure the strain index, the copper foils of the copper-clad laminates obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were removed by etching, and the copper foil was cut into a piece having a width of 5 cm and a length of 15 cm. Then, the test piece 1 is manufactured, and the distance L is 100 m as shown in FIG.
The test piece 1 is placed horizontally on the two fulcrums 2 of m, and the deflection distance Δ of the test piece 1 when the weight 3 is placed on the test piece 1 at the center position between the two fulcrums 2 is the height gauge. It was done by measuring at. Then, the weight 3 having a load of 10 g, a load of 20 g, a load of 30 g, and a load of 40 g is used, and the load and the deflected distance Δ at that time are plotted in a graph having the load on the horizontal axis and the deflected distance Δ on the vertical axis,
Inclination passing through the origin (deflected distance (mm) / load (g))
Was calculated, and this was divided by the reciprocal of the plate thickness of the test piece 1 to obtain the strain index of the laminated plate.

【0048】また、実施例1〜6及び比較例1〜3で得
た銅張り積層板を用い、表面の銅箔にエッチング加工を
施して内層回路を形成し、内層回路に酸化剤によって黒
化処理を施すことによって、内層回路板を作製した。そ
して銅箔の片面にエポキシ樹脂を塗工して製造された樹
脂付き銅箔(松下電工社製「R−0880」:樹脂厚6
0μm、銅箔厚18μm)を用い、内層回路板の両側に
この樹脂付き銅箔を樹脂層側で重ね、これを170℃、
3MPa、120分の条件で加熱加圧成形することによ
って、内層回路板の両側に絶縁樹脂層を介して銅箔を積
層した積層板を得た。さらにこの積層板の表面の銅箔を
エッチング加工して内層回路を形成し、この内層回路に
酸化剤によって黒化処理を施した後、両側に上記と同じ
樹脂付き銅箔を重ね、上記と同じ条件で加熱加圧成形を
して、絶縁樹脂層を介して銅箔を積層することによっ
て、6層回路構成の多層プリント配線板を得た。
Using the copper clad laminates obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the copper foil on the surface was subjected to etching to form an inner layer circuit, and the inner layer circuit was blackened with an oxidizing agent. The inner layer circuit board was produced by performing the treatment. And a resin-coated copper foil manufactured by coating an epoxy resin on one surface of the copper foil (“R-0880” manufactured by Matsushita Electric Works, Ltd .: resin thickness 6)
0 μm, copper foil thickness 18 μm), and the resin-coated copper foil is laid on both sides of the inner layer circuit board on the resin layer side, and 170 ° C.
By heat-press molding under the conditions of 3 MPa and 120 minutes, a laminated board was obtained in which copper foil was laminated on both sides of the inner layer circuit board with an insulating resin layer interposed therebetween. Further, the inner layer circuit is formed by etching the copper foil on the surface of this laminated plate, and the inner layer circuit is subjected to a blackening treatment with an oxidizing agent, and then the same resin-coated copper foil is laminated on both sides as described above. Heat and pressure molding was performed under the conditions, and a copper foil was laminated via an insulating resin layer to obtain a multilayer printed wiring board having a 6-layer circuit configuration.

【0049】このようにして得られた多層プリント配線
板を200mm×150mmの寸法に切断して試験片を
作製し、これをリフローピーク温度220〜230℃で
10秒間加熱し、リフロー処理を行なった。そしてこの
後、試験片の反り量を測定した。反り量の測定は、常盤
の上に試験片を置き、レーザー変位計で試験片の四隅端
部の変位を読み取ることによって行ない、最大値を反り
量とし、30枚の試験片の平均値を求めた。
The multilayer printed wiring board thus obtained was cut into a size of 200 mm × 150 mm to prepare a test piece, which was heated at a reflow peak temperature of 220 to 230 ° C. for 10 seconds to carry out a reflow treatment. . After this, the amount of warpage of the test piece was measured. The amount of warpage is measured by placing the test piece on a plate and reading the displacement of the four corners of the test piece with a laser displacement meter. The maximum value is taken as the warp amount, and the average value of 30 test pieces is calculated. It was

【0050】上記の各測定結果を表1に示す。The results of the above measurements are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】表1にみられるように、各実施例のもの
は、積層板の歪指数が0.045を超えている比較例1
〜3に比べて、多層プリント配線板のリフロー後の反り
量が低減していることが確認される。また、各実施例の
ものは厚み当りの単量(基材単重/基材厚み)が1.1
5〜1.40g/cmの範囲のガラス繊維織布基材を
複数枚使用しているので、比較例1や比較例3に比べ
て、多層プリント配線板のリフロー後の反り量が低減し
ていることが確認される。また、無機フィラーを樹脂1
00質量部に対して40〜150質量部の範囲で含有し
ている実施例3、4、5、6は、無機フィラーを用いて
いない実施例1、2に比べて、更に多層プリント配線板
のリフロー後の反り量が低減していることが確認され
る。また、熱硬化性樹脂のガラス転移温度が180℃以
上である実施例3、4、6は、熱硬化性樹脂のガラス転
移温度が180℃未満である実施例1、2、5に比べ
て、多層プリント配線板のリフロー後の反り量がさらに
低減していることが確認される。さらに、ガラス繊維織
布基材の組成がSガラスである実施例6は、Eガラスを
用いている実施例4に比べて、多層プリント配線板のリ
フロー後の反り量がさらに低減していることが確認され
る。
As shown in Table 1, in each of the examples, the strain index of the laminated plate exceeds 0.045 in Comparative Example 1.
It is confirmed that the amount of warpage after reflow of the multilayer printed wiring board is reduced as compared with the cases of Nos. Further, in each of the examples, the unit amount per unit thickness (base material unit weight / base material thickness) is 1.1.
Since a plurality of glass fiber woven fabric base materials in the range of 5 to 1.40 g / cm 3 are used, the warpage amount after reflow of the multilayer printed wiring board is reduced as compared with Comparative Example 1 and Comparative Example 3. Is confirmed. In addition, the inorganic filler is resin 1
Examples 3, 4, 5, and 6, which contain 40 to 150 parts by mass with respect to 00 parts by mass, further include multilayer printed wiring boards as compared with Examples 1 and 2 in which an inorganic filler is not used. It is confirmed that the amount of warpage after reflow is reduced. Further, Examples 3, 4, and 6 in which the glass transition temperature of the thermosetting resin is 180 ° C. or higher are compared with Examples 1, 2, and 5 in which the glass transition temperature of the thermosetting resin is less than 180 ° C. It is confirmed that the amount of warpage after reflow of the multilayer printed wiring board is further reduced. Furthermore, in Example 6 in which the composition of the glass fiber woven fabric substrate is S glass, the amount of warpage after reflow of the multilayer printed wiring board is further reduced as compared with Example 4 in which E glass is used. Is confirmed.

【0053】[0053]

【発明の効果】上記のように本発明の請求項1に係る積
層板は、熱硬化性樹脂組成物を含浸したガラス繊維織布
基材を加熱加圧成形して得られる積層板において、板厚
が0.1〜0.3mmの積層板であって、幅5cmの積
層板を100mmの支点間距離の2点で支えた上に荷重
を掛けたときの、積層板がたわんだ距離(単位:mm)
を荷重(単位:g)で割った荷重当りの変位量を板厚
(単位:mm)の逆数で割って得られる値が、0.00
3〜0.045のものであるので、板厚が0.1〜0.
3mmと薄い積層板において、歪指数が0.003〜
0.045の範囲にある積層板は剛性が高く耐たわみ性
が高いものであり、従って、歪指数が0.003〜0.
045の積層板から内層回路板を作製し、これに絶縁樹
脂層と導体回路層をビルドアップして製造した多層プリ
ント配線板に加熱後の反りが大きく発生することを防ぐ
ことができるものである。
As described above, the laminated plate according to claim 1 of the present invention is a laminated plate obtained by heat-pressing a woven glass fiber base material impregnated with a thermosetting resin composition. The thickness of the laminated plate having a thickness of 0.1 to 0.3 mm, the distance when the laminated plate is bent when a load is applied after supporting the laminated plate having a width of 5 cm at two points of the fulcrum distance of 100 mm (unit: : Mm)
The value obtained by dividing the displacement amount per load by dividing the load by the load (unit: g) by the reciprocal of the plate thickness (unit: mm) is 0.00
Since it is 3 to 0.045, the plate thickness is 0.1 to 0.
Strain index of 0.003 to 3 mm
The laminated plate in the range of 0.045 has high rigidity and high bending resistance, and therefore has a strain index of 0.003 to 0.
It is possible to prevent a large amount of warpage after heating from occurring in a multilayer printed wiring board manufactured by manufacturing an inner layer circuit board from a laminated board of 045 and building up an insulating resin layer and a conductor circuit layer on the inner circuit board. .

【0054】また請求項2の発明は、請求項1におい
て、ガラス繊維織布基材が平織りであり、単量(単位:
g/m)を厚みで割って得られる値が1.15〜1.
40g/cmのものを複数枚用いることにより、積層
板の歪指数を小さくすることができ、耐たわみ性が高い
積層板を得ることができるものである。
According to a second aspect of the present invention, in the first aspect, the glass fiber woven fabric base material is plain weave, and a unit amount (unit:
g / m 2 ) divided by the thickness is 1.15 to 1.
By using a plurality of sheets of 40 g / cm 3 , the strain index of the laminated plate can be reduced, and a laminated plate having high bending resistance can be obtained.

【0055】また請求項3の発明は、請求項1又は2に
おいて、熱硬化性樹脂組成物には、熱硬化性樹脂100
質量部に対して40〜150質量部の無機フィラーが含
有されているので、この熱硬化性樹脂組成物から得られ
る積層板の歪指数を小さくすることができ、耐たわみ性
が高い積層板を得ることができるものである。
The invention of claim 3 is the thermosetting resin composition according to claim 1 or 2, wherein the thermosetting resin is 100
Since the inorganic filler is contained in an amount of 40 to 150 parts by mass with respect to parts by mass, the strain index of the laminate obtained from this thermosetting resin composition can be reduced, and a laminate having high bending resistance can be obtained. Is what you can get.

【0056】また請求項4の発明は、請求項1乃至3の
いずれかにおいて、熱硬化性樹脂組成物は、ガラス転移
温度が180℃以上であるので、この熱硬化性樹脂組成
物から得られる積層板の熱に対する強度低下を小さくす
ることができ、熱時のたわみ量が小さい積層板を得るこ
とができるものである。
The invention according to claim 4 is the thermosetting resin composition according to any one of claims 1 to 3, which has a glass transition temperature of 180 ° C. or higher, and is thus obtained from this thermosetting resin composition. It is possible to reduce a decrease in strength of the laminated plate with respect to heat and to obtain a laminated plate having a small amount of deflection when heated.

【0057】また請求項5の発明は、請求項1乃至4の
いずれかにおいて、熱硬化性樹脂は、エポキシ樹脂であ
るので、低価格を維持しながら積層板の歪指数を小さく
することができ、耐たわみ性が高い積層板を得ることが
できるものである。
Further, in the invention of claim 5 according to any one of claims 1 to 4, since the thermosetting resin is an epoxy resin, it is possible to reduce the strain index of the laminated plate while maintaining a low price. Thus, it is possible to obtain a laminated plate having high flex resistance.

【0058】また請求項6の発明は、請求項1乃至5の
いずれかにおいて、ガラス繊維織布基材のガラス組成は
SガラスあるいはEガラスであるので、ガラス繊維不織
布基材から得られる積層板の歪指数を小さくすることが
でき、耐たわみ性が高い積層板を得ることができるもの
である。
The invention according to claim 6 is the laminated plate obtained from the glass fiber non-woven fabric substrate according to any one of claims 1 to 5, wherein the glass composition of the glass fiber woven fabric substrate is S glass or E glass. The strain index can be reduced, and a laminate having high bending resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層板のたわみ量の測定を示す概略図である。FIG. 1 is a schematic diagram showing a measurement of a flexure amount of a laminated plate.

【図2】従来における積層板の曲げ弾性率とたわみ量の
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the flexural modulus and the amount of flexure of a conventional laminated plate.

【符号の説明】[Explanation of symbols]

1 試験片 2 支点 3 分銅 1 test piece 2 fulcrum 3 weights

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 龍史 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 4F100 AA01A AA01B AA01C AA01E AA01H AB17 AG00A AG00B AG00C AG00E AK01A AK01B AK01C AK01E AK53A AK53B AK53C AK53E AL05A AL05B AL05C AL05E BA02 BA03 BA04 BA05 BA10A BA10B BA10C BA10E BA12 CA23 DG11A DG11B DG11C DG11E DG12A DG12B DG12C DG12E EJ17 EJ172 EJ42 EJ422 EJ82 EJ822 EJ86 EJ862 GB43 JA05A JA05B JA05C JA05E JB13A JB13B JB13C JB13E JK01 JL04 YY00A YY00B YY00C YY00E 5E346 AA12 CC04 CC09 EE06 HH11   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryushi Takahashi             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company F-term (reference) 4F100 AA01A AA01B AA01C AA01E                       AA01H AB17 AG00A AG00B                       AG00C AG00E AK01A AK01B                       AK01C AK01E AK53A AK53B                       AK53C AK53E AL05A AL05B                       AL05C AL05E BA02 BA03                       BA04 BA05 BA10A BA10B                       BA10C BA10E BA12 CA23                       DG11A DG11B DG11C DG11E                       DG12A DG12B DG12C DG12E                       EJ17 EJ172 EJ42 EJ422                       EJ82 EJ822 EJ86 EJ862                       GB43 JA05A JA05B JA05C                       JA05E JB13A JB13B JB13C                       JB13E JK01 JL04 YY00A                       YY00B YY00C YY00E                 5E346 AA12 CC04 CC09 EE06 HH11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂組成物を含浸したガラス繊
維織布基材を加熱加圧成形して得られる積層板におい
て、板厚が0.1〜0.3mmの積層板であって、幅5
cmの積層板を100mmの支点間距離の2点で支えた
上に荷重を掛けたときの、積層板がたわんだ距離(単
位:mm)を荷重(単位:g)で割った荷重当りの変位
量を板厚(単位:mm)の逆数で割って得られる値が、
0.003〜0.045のものであることを特徴とする
積層板。
1. A laminate obtained by heat-pressing a glass fiber woven fabric substrate impregnated with a thermosetting resin composition, wherein the laminate has a thickness of 0.1 to 0.3 mm, Width 5
Displacement per load obtained by dividing the distance (unit: mm) deflected by the laminate by the load (unit: g) when a load is applied to a cm laminated plate supported at two points with a fulcrum distance of 100 mm. The value obtained by dividing the quantity by the reciprocal of the plate thickness (unit: mm) is
A laminate having a thickness of 0.003 to 0.045.
【請求項2】 ガラス繊維織布基材が平織りであり、単
量(単位:g/m)を厚みで割って得られる値が1.
15〜1.40g/cmのものを複数枚用いることを
特徴とする請求項1に記載の積層板。
2. The glass fiber woven fabric substrate is a plain weave, and the value obtained by dividing a unit amount (unit: g / m 2 ) by the thickness is 1.
The laminated board according to claim 1, wherein a plurality of sheets of 15 to 1.40 g / cm 3 are used.
【請求項3】 熱硬化性樹脂組成物には、熱硬化性樹脂
100質量部に対して40〜150質量部の無機フィラ
ーが含有されていることを特徴とする請求項1又は2に
記載の積層板。
3. The thermosetting resin composition according to claim 1, wherein the thermosetting resin composition contains 40 to 150 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermosetting resin. Laminated board.
【請求項4】 熱硬化性樹脂組成物は、ガラス転移温度
が180℃以上であることを特徴とする請求項1乃至3
のいずれかに記載の積層板。
4. The thermosetting resin composition has a glass transition temperature of 180 ° C. or higher.
The laminated plate according to any one of 1.
【請求項5】 熱硬化性樹脂は、エポキシ樹脂であるこ
とを特徴とする請求項1乃至4のいずれかに記載の積層
板。
5. The laminated board according to claim 1, wherein the thermosetting resin is an epoxy resin.
【請求項6】 ガラス繊維織布基材のガラス組成はSガ
ラスあるいはEガラスであることを特徴とする請求項1
乃至5のいずれかに記載の積層板。
6. The glass composition of the glass fiber woven fabric substrate is S glass or E glass.
6. The laminated plate according to any one of 5 to 6.
JP2002146582A 2002-05-21 2002-05-21 Laminated sheet Pending JP2003334886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146582A JP2003334886A (en) 2002-05-21 2002-05-21 Laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146582A JP2003334886A (en) 2002-05-21 2002-05-21 Laminated sheet

Publications (1)

Publication Number Publication Date
JP2003334886A true JP2003334886A (en) 2003-11-25

Family

ID=29705530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146582A Pending JP2003334886A (en) 2002-05-21 2002-05-21 Laminated sheet

Country Status (1)

Country Link
JP (1) JP2003334886A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238617A (en) * 2004-02-26 2005-09-08 Sumitomo Bakelite Co Ltd Metal clad laminated sheet and printed wiring board
JP2006013249A (en) * 2004-06-28 2006-01-12 Tdk Corp Electronic component and multilayered substrate
WO2008032383A1 (en) * 2006-09-14 2008-03-20 Panasonic Electric Works Co., Ltd. Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board
WO2008102853A1 (en) * 2007-02-23 2008-08-28 Panasonic Electric Works Co., Ltd. Epoxy resin composition, prepreg, laminates and printed wiring boards
JP2013514674A (en) * 2009-12-17 2013-04-25 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Printed wiring board having a plurality of printed wiring board layers provided to be overlapped by bare die attachment for use as a transmission control device
WO2017213085A1 (en) * 2016-06-06 2017-12-14 日立化成株式会社 Method for manufacturing multilayer wiring board
WO2017213086A1 (en) * 2016-06-06 2017-12-14 日立化成株式会社 Method for manufacturing multilayer wiring board
JP2019214177A (en) * 2018-06-13 2019-12-19 ユニチカ株式会社 Membrane material and membrane roof using the same
JP2022103187A (en) * 2018-06-13 2022-07-07 ユニチカ株式会社 Membrane material and membrane roof using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238617A (en) * 2004-02-26 2005-09-08 Sumitomo Bakelite Co Ltd Metal clad laminated sheet and printed wiring board
JP2006013249A (en) * 2004-06-28 2006-01-12 Tdk Corp Electronic component and multilayered substrate
JP4496858B2 (en) * 2004-06-28 2010-07-07 Tdk株式会社 Electronic components and multilayer boards
WO2008032383A1 (en) * 2006-09-14 2008-03-20 Panasonic Electric Works Co., Ltd. Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board
JPWO2008032383A1 (en) * 2006-09-14 2010-01-21 パナソニック電工株式会社 Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal-clad laminate, printed wiring board, and multilayer printed wiring board
KR101051865B1 (en) * 2006-09-14 2011-07-25 파나소닉 전공 주식회사 Epoxy resin composition for printed wiring boards, resin composition varnishes, prepregs, metal clad laminates, printed wiring boards and multilayer printed wiring boards
CN101511900B (en) * 2006-09-14 2011-11-23 松下电工株式会社 Epoxy resin composition for printed circuit board, resin composition Chinese varnish, preforming material, metal-coating lamination body, printed circuit board and multi-layer printed circuit board
JP5039707B2 (en) * 2006-09-14 2012-10-03 パナソニック株式会社 Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal-clad laminate, printed wiring board, and multilayer printed wiring board
US8344262B2 (en) 2006-09-14 2013-01-01 Panasonic Corporation Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board
WO2008102853A1 (en) * 2007-02-23 2008-08-28 Panasonic Electric Works Co., Ltd. Epoxy resin composition, prepreg, laminates and printed wiring boards
JP2009074036A (en) * 2007-02-23 2009-04-09 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
US8895871B2 (en) 2009-12-17 2014-11-25 Conti Temic Microelectronic Gmbh Circuit board having a plurality of circuit board layers arranged one over the other having bare die mounting for use as a gearbox controller
JP2013514674A (en) * 2009-12-17 2013-04-25 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Printed wiring board having a plurality of printed wiring board layers provided to be overlapped by bare die attachment for use as a transmission control device
JP2020182008A (en) * 2016-06-06 2020-11-05 日立化成株式会社 Method for manufacturing multilayer wiring board
TWI777958B (en) * 2016-06-06 2022-09-21 日商林克斯泰克股份有限公司 Manufacturing method of multilayer circuit board
JPWO2017213086A1 (en) * 2016-06-06 2019-03-14 日立化成株式会社 Manufacturing method of multilayer wiring board
JPWO2017213085A1 (en) * 2016-06-06 2019-03-28 日立化成株式会社 Manufacturing method of multilayer wiring board
WO2017213086A1 (en) * 2016-06-06 2017-12-14 日立化成株式会社 Method for manufacturing multilayer wiring board
WO2017213085A1 (en) * 2016-06-06 2017-12-14 日立化成株式会社 Method for manufacturing multilayer wiring board
JP2020182007A (en) * 2016-06-06 2020-11-05 日立化成株式会社 Method for manufacturing multilayer wiring board
TWI733829B (en) * 2016-06-06 2021-07-21 日商昭和電工材料股份有限公司 Manufacturing method of multilayer circuit board
US11240915B2 (en) 2016-06-06 2022-02-01 Lincstech Co., Ltd. Method for manufacturing multilayer wiring board
US11291124B2 (en) 2016-06-06 2022-03-29 Lincstech Co., Ltd. Method for manufacturing multilayer wiring board
JP2019214177A (en) * 2018-06-13 2019-12-19 ユニチカ株式会社 Membrane material and membrane roof using the same
JP7116474B2 (en) 2018-06-13 2022-08-10 ユニチカ株式会社 Membrane material and membrane ceiling using the same
JP2022103187A (en) * 2018-06-13 2022-07-07 ユニチカ株式会社 Membrane material and membrane roof using the same
JP7219519B2 (en) 2018-06-13 2023-02-08 ユニチカ株式会社 Membrane material and membrane ceiling using the same

Similar Documents

Publication Publication Date Title
JP5234195B2 (en) Prepreg, laminated board, printed wiring board, and semiconductor device
US10414916B2 (en) Resin composition, article of manufacture made therefrom and method of making the same
JPWO2017183621A1 (en) Prepreg, metal-clad laminate and printed wiring board
JPH09234831A (en) Laminate
JP3821728B2 (en) Prepreg
JP2007002071A (en) Prepreg, circuit board and semiconductor device
JP2003334886A (en) Laminated sheet
JP2010238907A (en) Laminated board, multilayer printed wiring board, and semiconductor device
JPH08294997A (en) Laminate board and glass fabric for the laminate board base material and method of using the laminate board
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
JP6778889B2 (en) Prepreg, metal-clad laminate and printed wiring board
JP2004277671A (en) Prepreg and printed circuit board using the same
JP2003073543A (en) Resin composition, prepreg and printed circuit board using the same
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP2006315391A (en) Laminated plate and printed circuit board using the same
JP3452674B2 (en) Manufacturing method of high rigidity copper clad laminate
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JPH05318640A (en) Laminated sheet
JPH08216340A (en) Highly rigid copper-clad laminated plate and manufacture thereof
JP5275533B2 (en) Metal foil laminate and prepreg
JP2004149577A (en) Prepreg and laminated sheet
JP2003096296A (en) Resin composition, prepreg and printed circuit board using the same
JP4092862B2 (en) Prepreg manufacturing method, prepreg, printed wiring board and laminate
JPH09254331A (en) Laminated sheet
JPH07314607A (en) Laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080225

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111