JP3452674B2 - Manufacturing method of high rigidity copper clad laminate - Google Patents

Manufacturing method of high rigidity copper clad laminate

Info

Publication number
JP3452674B2
JP3452674B2 JP02178795A JP2178795A JP3452674B2 JP 3452674 B2 JP3452674 B2 JP 3452674B2 JP 02178795 A JP02178795 A JP 02178795A JP 2178795 A JP2178795 A JP 2178795A JP 3452674 B2 JP3452674 B2 JP 3452674B2
Authority
JP
Japan
Prior art keywords
filler
copper foil
copper
clad laminate
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02178795A
Other languages
Japanese (ja)
Other versions
JPH08216335A (en
Inventor
徳雄 岡野
和仁 小林
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP02178795A priority Critical patent/JP3452674B2/en
Publication of JPH08216335A publication Critical patent/JPH08216335A/en
Application granted granted Critical
Publication of JP3452674B2 publication Critical patent/JP3452674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品を実装する積
層板に関し、回路加工工程、部品実装工程及び完成した
製品におけるたわみ及びそりが小さく、なお且つ積層板
の熱膨張率が小さく、実装部品のはんだ接合部の信頼性
が高い積層板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated board on which electronic parts are mounted, the circuit processing step, the parts mounting step and the finished product having a small deflection and a warp, and the laminated board having a small thermal expansion coefficient. The present invention relates to a laminated plate having a highly reliable solder joint part.

【0002】[0002]

【従来の技術】近年、プリント配線板は極めて広範囲の
用途に使用されており、このプリント配線板を構成する
積層板に対する要求特性も益々多岐に渡っている。こう
した中で電子機器の小型軽量化に伴い、プリント配線板
の薄型化への要求が強まっている。しかしながら、プリ
ント配線板の薄型化は、プリント配線板の曲げ剛性を低
下させるため、回路加工工程での寸法変化やそりが大き
くなりがちで寸法精度が低下し易く、また、部品実装工
程のリフローソルダー、ソルダーレベラー時に生じるた
わみが大きく、部品の実装精度が低下し易いといった問
題点がある。これらの問題点を解決するため、これまで
に薄型積層板の剛性を高めるための、各種の方法が提案
されている。
2. Description of the Related Art In recent years, printed wiring boards have been used in an extremely wide range of applications, and the characteristics required for laminated boards constituting these printed wiring boards have become more diverse. Under these circumstances, the demand for thinner printed wiring boards is increasing as electronic devices become smaller and lighter. However, thinning the printed wiring board lowers the bending rigidity of the printed wiring board, which tends to cause large dimensional changes and warpage in the circuit processing process, which tends to reduce dimensional accuracy. However, there is a problem that the deflection that occurs at the time of the solder leveler is large, and the mounting accuracy of components is likely to decrease. In order to solve these problems, various methods for increasing the rigidity of thin laminated plates have been proposed so far.

【0003】通常、プリント配線板用積層板に使用され
ているEガラス繊維に代え、より弾性率の高いSガラス
繊維、アラミド繊維、カーボン繊維を織布に使用する方
法、積層板の樹脂中に各種の充填材を添加する方法、ガ
ラスクロス基材に含浸されるエポキシ樹脂の配合比率を
低下させる方法が、積層板剛性の向上方法として提案さ
れている。
In place of the E glass fiber which is usually used for a laminated board for a printed wiring board, a method of using S glass fiber, aramid fiber or carbon fiber having a higher elastic modulus in a woven cloth, and a resin of the laminated board are used. A method of adding various fillers and a method of reducing the compounding ratio of the epoxy resin with which the glass cloth base material is impregnated have been proposed as a method for improving the rigidity of the laminate.

【0004】[0004]

【発明が解決しようとする課題】しかし、Sガラス繊維
は、Eガラス繊維より弾性率が16%高いだけであり、
大幅な積層板剛性の向上は出来ない。また、アラミド繊
維織布を用いた積層板は、剛性は向上するものの、機械
加工性、耐湿耐熱性に大きく劣る。カーボン繊維織布を
用いた積層板は導電性であるため、絶縁基板としては使
用困難である。ガラスクロス基材に含浸されるエポキシ
樹脂の配合比率を低下させる方法、言い換えると積層板
中のガラスクロスの体積分率を高める方法は、30%程
度の剛性向上の効果を発揮する。さらに、Sガラスクロ
スとの組み合わせにより、いっそうの高剛性化も可能で
ある。しかしながら、このようなガラスクロスの体積分
率を高くしたプリプレグを用いて作製した銅張積層板で
は、耐電食性が劣るため、銅イオンのマイグレーション
による回路間短絡事故を発生し易い。原因は、ガラスク
ロスの体積分率を高くすることによって、銅箔とガラス
繊維が接触することにある。銅イオンは、ガラス繊維に
沿って移動するため、銅箔とガラス繊維が接触したプリ
ント配線板は、銅イオンのマイグレーションによる回路
間短絡事故を発生し易いのである。さらには、銅箔と繊
維が直接接触するため、銅箔の接着強度が低下する問題
も発生する。
However, S glass fiber has only 16% higher elastic modulus than E glass fiber,
The rigidity of the laminated plate cannot be improved significantly. Further, the laminated sheet using the aramid fiber woven fabric has improved rigidity, but is largely inferior in machinability and moisture and heat resistance. Since a laminated board using a carbon fiber woven cloth is electrically conductive, it is difficult to use as an insulating substrate. The method of decreasing the compounding ratio of the epoxy resin with which the glass cloth base material is impregnated, in other words, the method of increasing the volume fraction of the glass cloth in the laminated plate exhibits an effect of improving the rigidity by about 30%. Further, by combining with S glass cloth, higher rigidity can be achieved. However, a copper-clad laminate produced by using a prepreg having such a high volume fraction of glass cloth is inferior in electrolytic corrosion resistance, so that a short circuit between circuits due to migration of copper ions is likely to occur. The cause is that the copper foil and the glass fiber come into contact with each other by increasing the volume fraction of the glass cloth. Since copper ions move along the glass fibers, a printed wiring board in which the copper foil and the glass fibers are in contact is likely to cause a short circuit between circuits due to migration of copper ions. Further, since the copper foil and the fiber are in direct contact with each other, there is a problem that the adhesive strength of the copper foil is lowered.

【0005】積層板の樹脂中に充填材を配合する方法
は、上記のガラスクロスの体積分率を高める方法より
も、積層板中の樹脂体積分率をより低下させることが可
能であり、充填材の高体積分率化により、30%以上の
剛性の向上が可能である。しかしながら、このような充
填材を高体積分率になるよう配合したプリプレグを用い
て作製した銅張積層板では、銅イオンのマイグレーショ
ンによる回路間短絡事故を発生し易く、耐電食性が劣
る。原因は、充填材の体積分率を高くすることによって
銅箔と充填材が接触することにある。銅イオンは、充填
材と樹脂の界面に沿って移動するため、銅箔と充填材及
び充填材同士が接触してしまう。充填材を高体積分率に
配合したプリント配線板は、銅イオンのマイグレーショ
ンによる回路間短絡事故を発生し易いのである。さらに
は、銅箔と充填材が直接接触するため、銅箔の接着強度
が低下する問題も発生する。
The method of blending the filler in the resin of the laminated board can lower the resin volume fraction of the laminated board more than the method of increasing the volume fraction of the glass cloth described above. By increasing the volume fraction of the material, it is possible to improve the rigidity by 30% or more. However, a copper-clad laminate produced by using a prepreg in which such a filler is mixed to have a high volume fraction is likely to cause a short circuit between circuits due to migration of copper ions and has poor electrolytic corrosion resistance. The cause is that the copper foil comes into contact with the filler by increasing the volume fraction of the filler. Since copper ions move along the interface between the filler and the resin, the copper foil comes into contact with the filler and the fillers. A printed wiring board containing a filler in a high volume fraction is apt to cause a short circuit between circuits due to migration of copper ions. Furthermore, since the copper foil and the filler are in direct contact with each other, there arises a problem that the adhesive strength of the copper foil is lowered.

【0006】本発明は、耐電食性及び銅箔接着性等の他
の特性を損なうことなく、剛性と低熱膨張性に優れた銅
張積層板の製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for producing a copper clad laminate excellent in rigidity and low thermal expansion without impairing other properties such as electrolytic corrosion resistance and copper foil adhesion.

【0007】[0007]

【課題を解決するための手段】すなわち本発明の銅張積
層板の製造方法は、充填材を20〜60体積%含有する
熱硬化性樹脂組成物をガラスクロスに含浸乾燥させたプ
リプレグを1枚ないし複数枚積層し、その少なくとも片
面に該プリプレグと接する側の面に厚さ1〜5μmの接
着剤層を形成した銅箔を、重ね合わせて一体に熱圧成形
することを特徴とする。
That is, the method for producing a copper-clad laminate of the present invention comprises a prepreg obtained by impregnating and drying a glass cloth with a thermosetting resin composition containing 20 to 60% by volume of a filler. Or, a plurality of copper foils are laminated, and a copper foil having an adhesive layer having a thickness of 1 to 5 μm formed on at least one surface thereof in contact with the prepreg is superposed and integrally thermoformed.

【0008】本発明で使用する充填材は、通常の樹脂に
用いれ、なお且つ樹脂よりも弾性率が高いものであれば
特に限定されるものではない。充填材を例示すれば、水
酸化マグネシウム、タルク、アルミナ、マグネシア、E
ガラス、シリカ、二酸化チタン、チタン酸カリウム、ケ
イ酸カルシウム、ケイ酸アルミニウム、炭酸カルシウ
ム、クレイ、窒化けい素、炭化けい素、硼酸アルミニウ
ム、合成雲母等の粉末状の充填材や、ガラス、アスベス
ト、ロックウール、アラミド等の短繊維状の充填材や、
炭化けい素、アルミナ、硼酸アルミニウム等のウィスカ
が挙げられる。また、充填材は、充填材入り樹脂中の充
填材体積分率が20〜60%となるように樹脂に配合す
る。なぜならば、充填材体積分率が20%以下では、積
層板の高剛性化の効果が小さく、60%以上では、成形
後の積層板中にボイドが発生するためである。
The filler used in the present invention is not particularly limited as long as it is used for ordinary resins and has a higher elastic modulus than the resin. Examples of fillers include magnesium hydroxide, talc, alumina, magnesia, E
Powdered fillers such as glass, silica, titanium dioxide, potassium titanate, calcium silicate, aluminum silicate, calcium carbonate, clay, silicon nitride, silicon carbide, aluminum borate, and synthetic mica, and glass, asbestos, Short fiber filler such as rock wool and aramid,
Examples thereof include whiskers such as silicon carbide, alumina and aluminum borate. The filler is mixed with the resin so that the volume fraction of the filler in the resin containing the filler is 20 to 60%. This is because when the filler volume fraction is 20% or less, the effect of increasing the rigidity of the laminated plate is small, and when it is 60% or more, voids are generated in the laminated plate after molding.

【0009】本発明で使用するガラスクロスとしては、
一般的に使用されているEガラス繊維または、シリカ、
アルミナ、マグネシアの含有量が、それぞれ、60重量
%以上、20重量%以上、15重量%以下で、且つ、こ
れら3成分の合計が97重量%以上である通称Sガラス
繊維からなるガラスクロスを使用するのが好ましい。ガ
ラスクロスの織り方としては、一般的なプリント配線板
用ガラスクロスで用いられている平織りが好ましいが、
さらには、繊維の交錯間隔を特別に長くした平織りクロ
スや繻子織りクロスが、樹脂の絶対量不足によるかすれ
が発生しないガラス体積分率の限界が高い理由から、よ
り好適である。
As the glass cloth used in the present invention,
E glass fiber or silica commonly used,
A glass cloth made of so-called S glass fiber whose alumina and magnesia contents are 60% by weight or more, 20% by weight or more and 15% by weight or less, respectively, and the sum of these three components is 97% by weight or more is used. Preferably. As the weaving method of the glass cloth, the plain weave used in the general glass cloth for printed wiring boards is preferable,
Further, a plain weave cloth and a satin weave cloth having a particularly long interlacing interval of fibers are more preferable because they have a high limit of the glass volume fraction that does not cause a blur due to a shortage of the absolute amount of the resin.

【0010】本発明で使用する樹脂としては、通常の熱
硬化性樹脂、すなわち、光、放射線または加熱により分
子間に架橋が生じ、不溶不融の硬化物が得られるもので
あれば特に限定されるものではなく、例えば、フェノー
ル樹脂、メラミン樹脂、エポキシ樹脂、けい素樹脂、不
飽和ポリエステル樹脂、シアン酸エステル樹脂、イソシ
アネート樹脂、ポリイミド樹脂またはこれらの種々の変
性樹脂類が挙げられる。この中で、積層板特性上、特に
エポキシ樹脂及びポリイミド樹脂は好適である。
The resin used in the present invention is not particularly limited as long as it is an ordinary thermosetting resin, that is, a resin that can be crosslinked between molecules by light, radiation or heating to give an insoluble and infusible cured product. Examples thereof include phenol resins, melamine resins, epoxy resins, silicon resins, unsaturated polyester resins, cyanate ester resins, isocyanate resins, polyimide resins and various modified resins thereof. Of these, epoxy resin and polyimide resin are particularly preferable in view of the characteristics of the laminated plate.

【0011】また、本発明のプリプレグ中におけるガラ
スと充填材の合計の体積分率は、55%以上であること
が好ましい。この体積分率は、55%以上であれば、特
に大きな剛性向上の効果が得れるからである。さらに、
このガラスと充填材の合計の体積分率は、樹脂の絶対量
不足によるかすれが、発生しない範囲で可能な限り高い
方が好ましい。かすれが発生しない限界のガラスと充填
材の合計の体積分率は、一般的なプリント配線板用ガラ
スクロスでは、約60%であるが、ガラスクロスの繊維
径及びストランド本数、織り方により異なるため、実験
により、予め求めておくことが望ましい。
The total volume fraction of glass and filler in the prepreg of the present invention is preferably 55% or more. This is because if the volume fraction is 55% or more, a particularly large effect of improving rigidity can be obtained. further,
It is preferable that the total volume fraction of the glass and the filler is as high as possible within a range in which blur due to insufficient absolute amount of resin does not occur. The total volume fraction of the glass and the filler, which is the limit where no blur occurs, is about 60% for a general glass cloth for printed wiring boards, but it varies depending on the fiber diameter of the glass cloth, the number of strands, and the weaving method. It is desirable to obtain in advance by experiments.

【0012】本発明で、ガラスクロスと樹脂からなる複
合材料層との間に形成する接着剤層及び銅箔に形成する
接着剤層としては、電気絶縁性樹脂である。フェノール
樹脂、エポキシ樹脂、ブチラール樹脂等の熱硬化性樹脂
や熱可塑性樹脂の単独あるいは混合物を用いる。接着剤
層の厚さは、1μm未満であると耐電食性及び銅箔との
接着性の改善効果が小さく、5μm以上であると剛性向
上の効果が小さくなる。したがって、本発明では接着剤
層の厚さは、1〜5μmを採用する。
In the present invention, the adhesive layer formed between the glass cloth and the composite material layer made of resin and the adhesive layer formed on the copper foil are electrically insulating resins. A thermosetting resin such as a phenol resin, an epoxy resin or a butyral resin or a thermoplastic resin is used alone or in a mixture. If the thickness of the adhesive layer is less than 1 μm, the effect of improving electrolytic corrosion resistance and adhesion with the copper foil is small, and if it is 5 μm or more, the effect of improving rigidity is small. Therefore, in the present invention, the thickness of the adhesive layer is 1 to 5 μm.

【0013】[0013]

【作用】以上の如くして得られた銅張積層板は、樹脂中
に20〜60体積%の充填材を含み、通常の銅張積層板
に比較し、大幅に剛性を向上できる。なお且つ、該複合
材料層と銅箔との間に1〜5μmの接着剤層を設けたた
め、充填材を多量に含有した銅張積層板で起こり易い充
填材と銅箔との接触を防止でき、その結果、耐電食性及
び銅箔接着性も損なうことがない。さらに、樹脂体積分
率が低いため低熱膨張係率となる結果、プリント配線板
加工工程における寸法変化やそりが小さく、寸法精度が
向上し、部品実装後の実装部品との接続信頼性も向上で
きる。さらに、プリプレグ中におけるガラスクロスと充
填材の合計の体積分率を55%以上とすることにより、
上記した効果をいっそう高めることができる。
The copper-clad laminate obtained as described above contains 20 to 60% by volume of the filler in the resin, and the rigidity can be greatly improved as compared with the ordinary copper-clad laminate. Moreover, since the adhesive layer having a thickness of 1 to 5 μm is provided between the composite material layer and the copper foil, it is possible to prevent the contact between the filler and the copper foil, which is likely to occur in the copper clad laminate containing a large amount of the filler. As a result, electrolytic corrosion resistance and copper foil adhesiveness are not impaired. Further, since the resin volume fraction is low, the coefficient of thermal expansion is low. As a result, dimensional changes and warpage are small in the printed wiring board processing process, dimensional accuracy is improved, and connection reliability with mounted components after component mounting can also be improved. . Furthermore, by setting the total volume fraction of the glass cloth and the filler in the prepreg to be 55% or more,
The effects described above can be further enhanced.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。単位
面積当りの質量が48g/m2のEガラス繊維からなる
平織りのガラスクロスに、水酸化アルミニウムを50体
積%含むエポキシ樹脂ワニスを含浸し、乾燥して、ガラ
ス体積分率が40%、充填材体積分率30%であるプリ
プレグを作製した。一方、厚さ18μmの電解銅箔の粗
化面にブチラール樹脂を主成分とする厚さ2μmの接着
剤層を形成した。前記プリプレグを2枚積層し、その上
下に接着剤層がプリプレグと接するように、前記接着剤
層付き銅箔を構成し、プレスにより熱圧成形して一体化
し、銅箔を除く厚さが100μmである銅張積層板を得
た。この銅張積層板の銅箔引き剥がし強さ、熱膨張率、
曲げ弾性率の測定結果と電食試験結果を表1に示す。熱
膨張率は、銅箔をエッチングにより除去した後、TMA
法にて面方向(たて糸方向と横糸方向の平均)を測定
し、曲げ弾性率は、銅箔をエッチングにより除去した
後、3点曲げから測定した。電食試験基板は、ライン/
スペースが100μm/100μmの導体パターンを該
銅張積層板の銅箔から形成し、その上にエポキシ接着フ
ィルムからなる絶縁体層を形成したものであり、この電
食試験基板を121℃、85%RHの環境条件の中、該
導体ライン間にDC15Vを1000h印加した。銅箔
引き剥がし強さは、2.1kgf/cmであり、熱膨張
率は、8.5ppm/℃(面方向)であった。電食試験
では、ショート等の不具合は発生せず、1000hの試
験後のライン間の絶縁抵抗は10の12乗以上であっ
た。曲げ弾性率は、27GPaであった。
EXAMPLES The present invention will now be described in detail based on examples, but the present invention is not limited thereto. A plain weave glass cloth made of E glass fiber having a mass per unit area of 48 g / m 2 is impregnated with an epoxy resin varnish containing 50% by volume of aluminum hydroxide and dried to fill the glass with a volume fraction of 40%. A prepreg having a volume fraction of 30% was produced. On the other hand, an adhesive layer having a thickness of 2 μm and containing butyral resin as a main component was formed on the roughened surface of the electrolytic copper foil having a thickness of 18 μm. Two pieces of the prepreg are laminated, and the copper foil with the adhesive layer is formed so that the adhesive layers contact the prepreg above and below, and they are integrated by thermocompression molding by pressing, and the thickness excluding the copper foil is 100 μm. A copper clad laminate was obtained. Copper foil peeling strength of this copper clad laminate, coefficient of thermal expansion,
Table 1 shows the measurement results of the flexural modulus and the electrolytic corrosion test results. The thermal expansion coefficient is TMA after removing the copper foil by etching.
The surface direction (the average of the warp yarn direction and the weft yarn direction) was measured by the method, and the bending elastic modulus was measured from three-point bending after removing the copper foil by etching. Electrolytic corrosion test board is line /
A conductor pattern having a space of 100 μm / 100 μm is formed from the copper foil of the copper-clad laminate, and an insulating layer made of an epoxy adhesive film is formed on the copper foil. Under environmental conditions of RH, DC15V was applied for 1000 hours between the conductor lines. The copper foil peeling strength was 2.1 kgf / cm, and the thermal expansion coefficient was 8.5 ppm / ° C. (plane direction). In the electrolytic corrosion test, defects such as short circuit did not occur, and the insulation resistance between the lines after the test for 1000 hours was 10 12 or more. The flexural modulus was 27 GPa.

【0015】次にこれらの実施例の効果を確認するため
の比較例を示す。
Next, a comparative example for confirming the effects of these examples will be shown.

【0016】比較例1 単位面積当りの質量が48g/m2 のEガラス繊維から
なる平織りのガラスクロスに、エポキシ樹脂ワニスに含
浸し、乾燥してガラス体積分率が、38%のプリプレグ
を作製した。前記プリプレグを2枚積層し、その上下に
粗化面がプリプレグと接するように、厚さ18μmの片
面粗化電解銅箔を構成し、プレスにより熱圧成形して一
体化し、銅箔を除く厚さが100μmであり、ガラスク
ロスと樹脂との複合体中におけるガラス体積分率が38
%である銅張積層板を得た。この銅張積層板の銅箔引き
剥がし強さ、熱膨張率、曲げ弾性率の測定結果と電食試
験結果を表1に示す。測定及び試験条件は、実施例と同
じである。銅箔引き剥がし強さは、2.1kgf/cm
であり、熱膨張率は、15.5ppm/℃(面方向)で
あった。電食試験では、ショート等の不具合は発生せ
ず、1000hの試験後のライン間の絶縁抵抗は10の
12乗以上であったが、曲げ弾性率は、15GPaであ
った。
Comparative Example 1 The mass per unit area is 48 g / m 2. Epoxy resin varnish was impregnated into a plain weave glass cloth made of E glass fiber of No. 1 and dried to prepare a prepreg having a glass volume fraction of 38%. The above-mentioned two prepregs are laminated, and a single-sided roughened electrolytic copper foil having a thickness of 18 μm is constructed so that the roughened surfaces are in contact with the prepregs above and below, and they are integrated by thermocompression molding with a press, and the thickness excluding the copper foil. Is 100 μm, and the glass volume fraction in the composite of glass cloth and resin is 38.
% Copper-clad laminate was obtained. Table 1 shows the measurement results of the copper foil peeling strength, the coefficient of thermal expansion, and the flexural modulus of the copper-clad laminate, and the electrolytic corrosion test results. The measurement and test conditions are the same as in the example. Copper foil peeling strength is 2.1kgf / cm
And the coefficient of thermal expansion was 15.5 ppm / ° C. (plane direction). In the electrolytic corrosion test, defects such as a short circuit did not occur, and the insulation resistance between lines after the test for 1000 hours was 10 12 or more, but the flexural modulus was 15 GPa.

【0017】比較例2 単位面積当りの質量が48g/m2 のEガラス繊維から
なる平織りのガラスクロスに、水酸化アルミニウムを5
0体積%含むエポキシ樹脂のワニスを含浸し、乾燥し
て、ガラス体積分率が38%、充填材体積分率が31%
であるプリプレグを作製した。前記プリプレグを2枚積
層し、その上下に粗化面がプリプレグと接するように、
厚さ18μmの片面粗化電解銅箔を構成し、プレスによ
り熱圧成形して一体化し、銅箔を除く厚さが100μm
ある銅張積層板を得た。この銅張積層板の銅箔引き剥が
し強さ、熱膨張率、曲げ弾性率の測定結果と電食試験結
果を表1に示す。測定及び試験条件は、実施例1と同じ
である。銅箔引き剥がし強さは、1.2kgf/cmで
あり、熱膨張率は、8.5ppm/℃(面方向)であっ
た。曲げ弾性率は、28GPaであったが、電食試験で
は、30h後にはライン間でショートが発生した。
Comparative Example 2 The mass per unit area is 48 g / m 2. A plain weave glass cloth made of E glass fiber with 5 parts aluminum hydroxide
Impregnated with 0% by volume of epoxy resin varnish and dried to give a glass volume fraction of 38% and a filler volume fraction of 31%.
Was prepared. Two sheets of the prepreg are laminated, and the roughened surfaces are in contact with the prepreg above and below the prepreg.
A single-sided roughened electrolytic copper foil having a thickness of 18 μm is formed, and thermocompressed by a press to be integrated, and the thickness excluding the copper foil is 100 μm.
A copper clad laminate was obtained. Table 1 shows the measurement results of the copper foil peeling strength, the coefficient of thermal expansion, and the flexural modulus of the copper-clad laminate, and the electrolytic corrosion test results. The measurement and test conditions are the same as in Example 1. The copper foil peeling strength was 1.2 kgf / cm, and the thermal expansion coefficient was 8.5 ppm / ° C. (plane direction). The flexural modulus was 28 GPa, but in the electrolytic corrosion test, a short circuit occurred between the lines after 30 hours.

【0018】実施例に示すように、本発明により得られ
た銅張積層板は、充填材を大量に配合してあるため、比
較例1に示したようなガラス体積分率が40%前後であ
る通常の銅張積層板に比較し、大幅に剛性を向上でき
る。なお且つ、該複合材料層と銅箔との間に1〜5μm
の接着剤層を設けたため、比較例2に示したような従来
の充填材を大量に配合しただけの銅張積層板で発生する
充填材と銅箔との接触を防止でき、その結果、耐電食性
及び銅箔接着性も損なうことがない。さらに、樹脂体積
分率が低いため低熱膨張率となる結果、プリント配線板
加工工程における寸法変化やそりが小さく、寸法精度が
向上し、部品実装後の実装部品との接続信頼性も向上で
きる。
As shown in the examples, since the copper clad laminate obtained by the present invention contains a large amount of filler, the glass volume fraction as shown in Comparative Example 1 is about 40%. Rigidity can be significantly improved compared to a normal copper clad laminate. Moreover, between the composite material layer and the copper foil is 1 to 5 μm.
Since the adhesive layer of No. 1 is provided, it is possible to prevent the contact between the filler and the copper foil, which is generated in the copper-clad laminate having only a large amount of the conventional filler as shown in Comparative Example 2, as a result. There is no loss of corrosion and copper foil adhesion. Further, as the resin volume fraction is low, the coefficient of thermal expansion is low. As a result, dimensional change and warpage in the printed wiring board processing step are small, dimensional accuracy is improved, and connection reliability with mounted components after component mounting can be improved.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の銅張積層板は、耐電食性及び銅
箔接着性等の他の特性を損なうことなく、従来の銅張積
層板に比較し、大幅な剛性向上を達成したものである。
さらに、低熱膨張率であるため、プリント配線板加工工
程における寸法変化やそりが小さく、寸法精度が向上
し、部品実装後の実装部品との接続信頼性も優れる。
The copper-clad laminate of the present invention achieves a significant improvement in rigidity as compared with the conventional copper-clad laminate without impairing other characteristics such as electrolytic corrosion resistance and copper foil adhesion. is there.
Furthermore, since the coefficient of thermal expansion is low, dimensional changes and warpage in the printed wiring board processing step are small, dimensional accuracy is improved, and connection reliability with mounted components after component mounting is excellent.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−270151(JP,A) 特開 昭57−197892(JP,A) 特開 昭56−40296(JP,A) 特開 平5−309789(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 H05K 3/00 H05K 1/03 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-61-270151 (JP, A) JP-A-57-197892 (JP, A) JP-A-56-40296 (JP, A) JP-A-5- 309789 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 1/00-35/00 H05K 3/00 H05K 1/03

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充填材を20〜60体積%含有する熱硬
化性樹脂組成物をガラスクロスに含浸乾燥させたプリプ
レグを1枚ないし複数枚積層し、その少なくとも片面に
該プリプレグと接する側の面に、充填材と銅箔との接触
を防止するための厚さ1〜5μmの接着剤層を形成した
銅箔を、重ね合わせて一体に熱圧成形することを特徴と
する銅張積層板の製造方法。
1. A single or a plurality of prepregs obtained by impregnating and drying a glass cloth with a thermosetting resin composition containing 20 to 60% by volume of a filler are laminated, and at least one surface of the prepreg is in contact with the prepreg. In addition, a copper foil having an adhesive layer having a thickness of 1 to 5 μm for preventing the contact between the filler and the copper foil is superposed and thermocompression-molded integrally, Production method.
【請求項2】 プリプレグ中のガラスクロスと充填材の
合計の体積含有率が55%以上であることを特徴とする
請求項1記載の銅張積層板の製造方法。
2. The method for producing a copper clad laminate according to claim 1, wherein the total volume content of the glass cloth and the filler in the prepreg is 55% or more.
【請求項3】 ガラスクロスに、熱硬化性樹脂と20〜
60体積%の充填材とを含有する熱硬化性樹脂組成物を
含浸したプリプレグの少なくとも片面に、充填材と銅箔
との接触を防止するための厚さ5μm以下の接着剤層を
介して銅箔が積層された、銅張積層板。
3. A glass cloth with a thermosetting resin and 20 to 20 parts.
Copper is provided on at least one surface of a prepreg impregnated with a thermosetting resin composition containing 60% by volume of a filler via an adhesive layer having a thickness of 5 μm or less for preventing contact between the filler and the copper foil. A copper clad laminate in which foils are laminated.
【請求項4】 プリプレグ中のガラスクロスと充填材の
合計の体積含有率が55%以上であることを特徴とする
請求項3記載の銅張積層板。
4. The copper clad laminate according to claim 3, wherein the total volume content of the glass cloth and the filler in the prepreg is 55% or more.
JP02178795A 1995-02-09 1995-02-09 Manufacturing method of high rigidity copper clad laminate Expired - Fee Related JP3452674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02178795A JP3452674B2 (en) 1995-02-09 1995-02-09 Manufacturing method of high rigidity copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02178795A JP3452674B2 (en) 1995-02-09 1995-02-09 Manufacturing method of high rigidity copper clad laminate

Publications (2)

Publication Number Publication Date
JPH08216335A JPH08216335A (en) 1996-08-27
JP3452674B2 true JP3452674B2 (en) 2003-09-29

Family

ID=12064786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02178795A Expired - Fee Related JP3452674B2 (en) 1995-02-09 1995-02-09 Manufacturing method of high rigidity copper clad laminate

Country Status (1)

Country Link
JP (1) JP3452674B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI309606B (en) 2003-11-12 2009-05-11 Mitsui Chemicals Inc Resin composition, prepreg and laminate using the composition
JPWO2007135748A1 (en) * 2006-05-22 2009-09-24 新神戸電機株式会社 Prepreg, laminate and method for producing the same
WO2013046631A1 (en) * 2011-09-29 2013-04-04 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate manufacturing method
KR102412000B1 (en) 2015-05-12 2022-06-22 삼성전기주식회사 Copper clad laminates and method for printed circuit board using the same
KR102460757B1 (en) * 2015-12-23 2022-10-31 삼성전기주식회사 Insulating resin sheet and printed circuit board using the same

Also Published As

Publication number Publication date
JPH08216335A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US6846549B2 (en) Multilayer printed wiring board
JP3119577B2 (en) Laminated board
JP3520604B2 (en) Composite laminate
JP3116341B2 (en) Glass woven fabric for laminates and laminate substrates, and methods of using laminates
JP3452674B2 (en) Manufacturing method of high rigidity copper clad laminate
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
JP2692508B2 (en) Manufacturing method of laminated board
JPH08216340A (en) Highly rigid copper-clad laminated plate and manufacture thereof
JP2003334886A (en) Laminated sheet
JPH11298153A (en) Multilayered printed circuit board
JP2956370B2 (en) Copper clad laminate and method for producing the same
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JPH05261861A (en) Laminated sheet
JPH05318640A (en) Laminated sheet
JP2659490B2 (en) Printed circuit laminate
JP5275533B2 (en) Metal foil laminate and prepreg
JP2551249B2 (en) Composite laminate
JPH09254331A (en) Laminated sheet
JP3033335B2 (en) Manufacturing method of laminated board
JPH08111571A (en) Laminated board for printed circuit
JP2557325B2 (en) Multilayer copper clad laminate
JP2858521B2 (en) Metal foil clad laminate and method for producing the same
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JP3804812B2 (en) Method for producing insulating varnish

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees