WO2013046631A1 - Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate manufacturing method - Google Patents

Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate manufacturing method Download PDF

Info

Publication number
WO2013046631A1
WO2013046631A1 PCT/JP2012/006064 JP2012006064W WO2013046631A1 WO 2013046631 A1 WO2013046631 A1 WO 2013046631A1 JP 2012006064 W JP2012006064 W JP 2012006064W WO 2013046631 A1 WO2013046631 A1 WO 2013046631A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
clad laminate
base material
fiber base
Prior art date
Application number
PCT/JP2012/006064
Other languages
French (fr)
Japanese (ja)
Inventor
大東 範行
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2013046631A1 publication Critical patent/WO2013046631A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/068Features of the lamination press or of the lamination process, e.g. using special separator sheets

Definitions

  • the present invention relates to a metal-clad laminate, a printed wiring board, a semiconductor package, a semiconductor device, and a method for producing a metal-clad laminate.
  • POP package-on-package
  • a mobile device for example, a mobile phone, a smartphone, a tablet PC, etc.
  • the thickness of the semiconductor element and the sealing material that have conventionally been responsible for most of the rigidity of the semiconductor device becomes extremely thin, and the warp of the semiconductor device is likely to occur.
  • the ratio of the core substrate as a constituent member increases, the physical properties and behavior of the core substrate have a great influence on the warpage of the semiconductor device.
  • the maximum temperature in the reflow process that takes place when solder balls are mounted on printed circuit boards or when semiconductor packages are mounted on motherboards becomes very high. It is coming. Since the melting point of commonly used lead-free solder is about 210 degrees, the maximum temperature during the reflow process is a level exceeding 260 degrees. For this reason, the semiconductor packages above and below the POP during heating may be greatly warped because the difference in thermal expansion between the semiconductor element and the printed wiring board on which the semiconductor element is mounted is very large.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-50599 discloses that an adhesive layer containing a thermoplastic polyimide is formed at the time of thermal lamination in a manufacturing process of a flexible metal-clad laminate. Further, it is described that the tension applied to the film-like joining member is regulated in the range of 0.3 to 1 N / m. It is described that when such means are taken, a flexible metal-clad laminate having excellent dimensional stability can be obtained even when the thickness of the film-like joining member is as thin as 5 to 15 ⁇ m or less.
  • the present invention has been made in view of the above-described problems, and provides a metal-clad laminate in which warpage during mounting is reduced.
  • the present inventor diligently investigated the mechanism of warping of the metal-clad laminate. As a result, by defining the dimensional change rate before and after the reflow treatment of the metal-clad laminate within a certain range, it was found that the warp of the metal-clad laminate during mounting was reduced, and the present invention was completed. .
  • a metal-clad laminate having a metal foil on both sides of an insulating layer containing a thermosetting resin, a filler, and a fiber substrate After removing the metal foil on both sides by etching, (1) preheating treatment at 105 ° C. for 4 hours; (2) When a heat treatment comprising a surface temperature of 260 to 265 ° C.
  • the rate of change of the dimension after the preheating treatment from before the etching is A
  • the change rate of the dimension after the reflow treatment from before the etching is B
  • the rate of dimensional change calculated from BA is Provided is a metal-clad laminate that is ⁇ 0.080% or more and 0% or less in both the longitudinal and lateral directions of the metal-clad laminate.
  • a printed wiring board obtained by subjecting the metal-clad laminate to circuit processing.
  • a semiconductor package in which a semiconductor element is mounted on the printed wiring board.
  • a semiconductor device including the semiconductor package is provided.
  • step (A) impregnating a fiber base material with a resin composition containing a thermosetting resin and a filler; (B) semi-curing the thermosetting resin by heating to obtain a prepreg; (C) superimposing metal foil on both sides of the prepreg and heating and pressurizing,
  • step (A) a method for producing a metal-clad laminate is provided in which the tension applied to the fiber substrate is 25 N / m or more and 350 N / m or less.
  • FIG. 1 is a cross-sectional view showing a configuration of a metal-clad laminate 100 in the present embodiment.
  • the metal-clad laminate 100 has an insulating layer 101 including a thermosetting resin, a filler, and a fiber base material, and includes metal foils 103 on both surfaces of the insulating layer 101. Then, after removing the metal foil 103 on both sides of the metal-clad laminate 100 by etching, (1) a preheating treatment at 105 ° C. for 4 hours, and (2) a reflow treatment at a surface temperature of 260 to 265 ° C. for 5 seconds.
  • the dimensional change rate calculated from the following formulas (1) to (3) is ⁇ 0.080% or more and 0% in both the longitudinal direction 105 and the lateral direction 107 of the metal-clad laminate 100. Or less, preferably -0.070% or more and 0% or less, more preferably -0.060% or more and 0% or less.
  • a (%) (dimension after preheating treatment ⁇ initial dimension) / initial dimension ⁇ 100 (1)
  • B (%) (dimension after reflow treatment-initial dimension) / initial dimension x 100
  • Dimensional change rate (%) BA (3)
  • the dimensions of the laminate at each stage are measured at room temperature in accordance with 2.4.39 of IPC-TM-650.
  • the initial dimension in the above formula indicates the dimension of the laminate before etching.
  • the dimension after the preheating treatment in the above formula (1) indicates the dimension of the laminated plate after the preheating treatment.
  • the dimension after the reflow process in the above formula (2) indicates the dimension of the laminated board after the reflow process.
  • the vertical direction 105 refers to the conveyance direction (so-called MD) of the laminated plate 100
  • the horizontal direction 107 refers to a direction orthogonal to the conveyance direction of the laminated plate (so-called TD).
  • the temperature of the preheating treatment is the atmospheric temperature
  • the temperature of the reflow treatment is the temperature of the surface of the laminate.
  • a metal-clad laminate having metal foils on both sides of an insulating layer is a composite material manufactured through many processes, and includes distortion generated during the manufacturing process.
  • the present inventor has scrutinized the mechanism of the occurrence of this internal strain.
  • the insulating layer is constrained by a metal foil having a different linear expansion coefficient during the manufacturing process, so that the strain is accumulated inside the metal-clad laminate. I found.
  • the distortion generated inside is released all at once during the reflow process after the metal foil etching, causing a dimensional change of the laminate. Therefore, it is speculated that the warping of the laminated plate occurs particularly in the reflow process.
  • the metal-clad laminate 100 according to this embodiment that satisfies the above dimensional change rate can reduce the warp of the metal-clad laminate 100 after heat treatment such as reflow. Furthermore, as a result, warpage of the printed wiring board formed by processing the metal-clad laminate 100, the semiconductor package 200, and the semiconductor device 300 can be reduced.
  • the absolute value of the difference in dimensional change rate between the longitudinal direction 105 and the lateral direction 107 of the metal-clad laminate 100 is preferably 0%. It is 0.03% or less and more preferably 0% or more and 0.02% or less.
  • the metal-clad laminate 100 in which the absolute value of the difference between the dimensional change rates in the vertical direction 105 and the horizontal direction 107 satisfies the above range has a small dimensional change anisotropy when subjected to heat treatment such as reflow. The warp of the metal-clad laminate 100 can be further reduced.
  • the glass transition temperature at a frequency of 1 Hz by dynamic viscoelasticity measurement of the metal-clad laminate 100 is preferably It is 200 degreeC or more, More preferably, it is 220 degreeC or more. About an upper limit, 350 degrees C or less is preferable, for example.
  • the metal-clad laminate 100 increases the rigidity of the metal-clad laminate 100 and further warps the metal-clad laminate 100 during mounting. Can be reduced.
  • the storage elastic modulus E ′ by dynamic viscoelasticity measurement at 250 ° C. of the metal-clad laminate 100 is not particularly limited. Preferably it is 5 GPa or more, More preferably, it is 10 GPa or more. Although it does not specifically limit about an upper limit, For example, it can be 50 GPa or less.
  • the metal-clad laminate 100 increases the rigidity of the metal-clad laminate 100 and further reduces the warp of the metal-clad laminate 100 during mounting. it can.
  • the thickness of the insulating layer 101 (the portion excluding the metal foil 103 from the metal-clad laminate 100) in the present embodiment is preferably 0.025 mm to 0.6 mm, more preferably 0.04 mm to 0.4 mm. Or less, more preferably 0.04 mm or more and 0.3 mm or less, and particularly preferably 0.05 mm or more and 0.2 mm or less.
  • the thickness of the insulating layer 101 is within the above range, the balance between mechanical strength and productivity is particularly excellent, and the metal-clad laminate 100 suitable for a thin circuit board can be obtained.
  • the linear expansion coefficient in the plane direction of the insulating layer 101 in this embodiment is preferably ⁇ 11 ppm / ° C. or more and 11 ppm / ° C. or less, more preferably ⁇ 9 ppm / ° C. or more and 9 ppm / ° C. or less, and further preferably ⁇ 7 ppm. / ° C. or more and 7 ppm / ° C. or less.
  • the coefficient of linear expansion of the insulating layer 101 is within the above range, it is possible to more effectively obtain warpage suppression and temperature cycle reliability improvement of a printed wiring board on which a wiring pattern is formed and a semiconductor package 200 on which a semiconductor element is mounted. . Furthermore, the temperature cycle reliability with the mother board of the semiconductor device 300 on which the semiconductor package 200 is secondarily mounted can be improved more effectively.
  • the metal-clad laminate 100 is obtained by heat-curing a prepreg including a thermosetting resin, a filler, and a fiber base material.
  • the prepreg used here is a sheet-like material, which has excellent dielectric properties, various properties such as mechanical and electrical connection reliability under high temperature and high humidity, and is suitable for manufacturing a metal-clad laminate 100 for a printed wiring board. preferable.
  • the metal-clad laminate 100 is a composite material manufactured through many processes as described above, and includes distortion generated during the manufacturing process. For this reason, it is assumed that the distortion is released and a dimensional change occurs during the reflow process after the metal foil etching.
  • the present inventor is a step of impregnating the fiber base material with the resin composition in the production of the prepreg, and by adjusting the tension of the fiber base material to a low pressure, the strain generated inside the metal-clad laminate 100 is relieved, It has been found that a metal-clad laminate 100 having a dimensional change rate satisfying the above range can be obtained.
  • a fiber base material whose tension is adjusted to a low pressure is impregnated with a resin composition containing one or more thermosetting resins and fillers, and then impregnated resin composition.
  • the method for impregnating the fiber base material with the resin composition is not particularly limited as long as the tension applied to the fiber base material can be adjusted to a low pressure.
  • an insulating resin layer with a support base material The method of laminating to a material, (2) The method of melt
  • a method of laminating an insulating resin layer with a supporting base material on a fiber base material is more preferable. Since the method of laminating the insulating resin layer with the supporting base material on the fiber base material can easily adjust the tension applied to the fiber base material to a low pressure, the stress accumulated in the insulating layer 101 can be further reduced. it can. Therefore, the warp of the metal-clad laminate 100 during mounting can be further reduced.
  • a method of laminating the insulating resin layer with a supporting substrate on the fiber substrate is preferable. According to this method, the amount of the resin composition impregnated into the fiber base can be freely adjusted, and the moldability of the prepreg can be further improved.
  • FIG. 2 is a cross-sectional view showing a method for producing a prepreg.
  • FIG. 3 is a schematic diagram showing an example of the width dimension of each of the support base 13, the insulating resin layers 15a and 15b, and the fiber base 11 used in the prepreg manufacturing method of the present embodiment. .
  • a method for producing a prepreg using a method of laminating an insulating resin layer with a supporting substrate is as follows.
  • An insulating resin layer 15a containing a thermosetting resin and a filler is formed on one side of the supporting substrate 13.
  • the insulating resin layer 15a side of the material 5a and the insulating resin layer 15b side of the second carrier material 5b are respectively overlapped on both surfaces of the fiber base material 11, and these are laminated under reduced pressure conditions, whereby the insulating resin layer 15a And a step of impregnating the fiber base material with the insulating resin layer 15b.
  • the second carrier material 5b in which the layer 15b is formed on one side of the support base 13 is manufactured and prepared.
  • the first carrier material 5a and the second carrier material 5b are obtained by forming an insulating resin layer 15a and an insulating resin layer 15b in a thin layer on one side of the support base material 13, respectively.
  • the insulating resin layer 15a and the insulating resin layer 15b can be formed on one side of the support base 13 with a predetermined thickness.
  • the production method of the first carrier material 5a and the second carrier material 5b is not particularly limited.
  • the resin composition is coated on the support base 13 using various coaters such as a comma coater, a knife coater, and a die coater.
  • a method of applying the resin composition to the support substrate 13 using various spray devices such as a spray nozzle.
  • the method of applying the resin composition to the support substrate 13 using various coater apparatuses is preferable. Thereby, the insulating resin layers 15a and 15b excellent in thickness accuracy can be formed with a simple apparatus.
  • the resin composition After applying the resin composition to the support substrate 13, it can be dried at room temperature or under heating as necessary. Thus, when an organic solvent or a dispersion medium is used when preparing the resin composition, these are substantially removed, the tackiness of the surface of the insulating resin layer is eliminated, and the first carrier excellent in handleability.
  • the material 5a and the second carrier material 5b can be used. Further, the curing reaction of the thermosetting resin can be advanced halfway, and the fluidity of the insulating resin layers 15a and 15b in the step (B) or the step (C) described later can be adjusted. Although it does not specifically limit as a method to dry under the said heating, The method of processing continuously using a hot air drying apparatus, an infrared heating apparatus, etc. can be applied preferably.
  • the thicknesses of the insulating resin layers 15a and 15b can be appropriately set according to the thickness of the fiber base 11 used. For example, it can be 1 ⁇ m or more and 100 ⁇ m or less.
  • the insulating resin layers 15a and 15b may be formed by one or more coatings using the same thermosetting resin, or may be formed by multiple coatings using different thermosetting resins. May be.
  • a protective film may be overlaid.
  • the support substrate 13 for example, a long sheet can be suitably used.
  • the thermoplastic resin film formed from thermoplastic resins such as a polyethylene terephthalate, polyethylene, a polyimide, copper, a copper alloy, aluminum, an aluminum alloy, silver, a silver alloy, etc.
  • a metal foil formed from any of these metals can be suitably used.
  • the thermoplastic resin for forming the thermoplastic resin film polyethylene terephthalate is preferable because it is excellent in heat resistance and inexpensive.
  • a metal which forms metal foil it is excellent in electroconductivity, the circuit formation by an etching is easy, and since it is cheap, copper or a copper alloy is preferable.
  • thermoplastic resin film sheet As the support substrate 13, it is preferable that the surface on which the insulating resin layers 15a and 15b are formed is subjected to a detachable treatment. Thereby, the insulating resin layers 15a and 15b and the support base material 13 can be easily separated at the time of manufacturing the prepreg or after manufacturing.
  • the thickness of the thermoplastic resin film sheet for example, a thickness of 15 ⁇ m or more and 75 ⁇ m or less can be used. In this case, workability at the time of manufacturing the first carrier material 5a and the second carrier material 5b can be improved.
  • the thickness of the thermoplastic resin film is not less than the above lower limit value, it is possible to sufficiently secure the mechanical strength when the first carrier material 5a and the second carrier material 5b are manufactured. Moreover, productivity below 1st carrier material 5a and 2nd carrier material 5b may be improved as it is below the said upper limit.
  • a surface on which the insulating resin layers 15a and 15b are formed may be subjected to a detachable process, or is such a process not performed?
  • a material subjected to a treatment for improving the adhesion with the insulating resin layers 15a and 15b may be used.
  • the same effect as that obtained when the thermoplastic resin film is used is exhibited. be able to.
  • the thickness of this metal foil is, for example, 1 ⁇ m or more and 70 ⁇ m or less. Thereby, workability
  • the thickness of the metal foil is equal to or more than the above lower limit value, it is possible to sufficiently ensure the mechanical strength when manufacturing the first carrier material 5a and the second carrier material 5b. Further, when the thickness is not more than the above upper limit value, the productivity of the first carrier material 5a and the second carrier material 5b may be improved.
  • the side in which insulating resin layer 15a, 15b is formed is preferably as small as possible.
  • the surface smoothness of the insulating layer 101 can be improved. Therefore, when the surface of the insulating layer 101 is roughened, a new conductor layer is formed by metal plating or the like. In addition, a fine circuit can be processed and formed more easily.
  • the metal-clad laminate 100 is manufactured.
  • this metal foil can be used as it is as a conductor layer (metal foil 103 in FIG. 1) for circuit formation.
  • the unevenness of the surface of the support base on the side where the insulating resin layers 15a and 15b are formed is not particularly limited, but for example, Ra: 0.1 ⁇ m or more and 1.5 ⁇ m or less can be used.
  • the insulating layer 101 and the metal foil 103 can be secured, and a fine circuit can be easily processed and formed by performing an etching process or the like on the metal foil 103.
  • thickness of this metal foil 103 what is 1 micrometer or more and 35 micrometers or less can be used suitably, for example.
  • the thickness of the metal foil 103 is not less than the above lower limit value, the mechanical strength when the first carrier material 5a and the second carrier material 5b are manufactured can be sufficiently secured. Further, when the thickness is not more than the above upper limit value, it becomes easy to process and form a fine circuit.
  • This metal foil 103 can be used to manufacture a prepreg by using at least one support base material 13 of the first carrier material 5a and the second carrier material 5b used for manufacturing the prepreg.
  • a metal foil 103 formed from one layer can be used, or a metal foil 103 formed of two or more layers from which the metal foil 103 can be peeled off is used. It can also be used.
  • the first metal foil 103 on the side to be in close contact with the insulating layer and the second metal foil 103 that can support the first metal foil 103 on the side opposite to the side to be in close contact with the insulating layer can be peeled off.
  • a bonded metal foil having a two-layer structure can be used.
  • the step (B) the insulating resin layer is formed on one side of the support base material, the first carrier material 5a and the insulating resin layer side of the second carrier material 5b are overlapped on both sides of the fiber base material 11, respectively. They are laminated under reduced pressure conditions.
  • FIG. 2 shows an example when the first carrier material 5a, the second carrier material 5b, and the fiber base material 11 are overlapped.
  • First carrier material 5a in which the first resin composition is applied to the base material in advance and second carrier material 5b in which the second resin composition is applied to the base material are manufactured.
  • the first carrier materials 5a and 5b are overlapped from both sides of the fiber base material 11 under reduced pressure, and if necessary, the laminating roll 61 is heated above the temperature at which the resin composition melts.
  • the fiber base material 11 is impregnated with the resin composition bonded and coated on the base material.
  • the insulating resin layers of the first carrier material 5a and the second carrier material 5b and the fiber substrate 11 are bonded by bonding under reduced pressure, the inside of the fiber substrate 11 or the first carrier.
  • the joining under reduced pressure is preferably performed at 7000 Pa or less. More preferably, it is 3000 Pa or less. Thereby, the said effect can be expressed highly.
  • Examples of other devices for joining the fiber base material 11 with the first carrier material 5a and the second carrier material 5b under such reduced pressure include a vacuum box device and a vacuum becquerel device.
  • the fiber base material 11 can be continuously supplied and transported in the same direction as the transport direction of the first carrier material 5a and the second carrier material 5b, and has dimensions in the width direction.
  • the dimension in the width direction refers to the dimension of the fiber base material 11 in the direction orthogonal to the transport direction of the fiber base material 11.
  • the thing of a long sheet form can be used suitably, for example.
  • the heating method is not particularly limited, but for example, a method using a laminate roll heated to a predetermined temperature when joining can be suitably used.
  • the heating temperature (hereinafter, also referred to as “laminate temperature”) is not particularly limited because it varies depending on the type and composition of the resin forming the insulating resin layer, but the softening point of the resin forming the insulating resin layer +10 A temperature of at least ° C is preferred, and a softening point of + 30 ° C or more is more preferred. Thereby, the fiber base material 11 and the insulating resin layer can be easily joined. Further, the productivity of the metal-clad laminate 100 can be further improved by increasing the lamination speed. For example, it can be carried out at 60 ° C. or higher and 150 ° C. or lower.
  • the softening point can be defined by a peak temperature of G ′ / G ′′ in a dynamic viscoelasticity test, for example.
  • the laminating speed at the time of laminating is preferably from 0.5 m / min to 10 m / min, and more preferably from 1.0 m / min to 10 m / min. If it is 0.5 m / min or more, sufficient lamination becomes possible, and if it is 1.0 m / min or more, productivity can be further improved.
  • other methods for applying pressure during lamination are not particularly limited, and for example, a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, or the like can be employed.
  • the method of carrying out without substantially applying pressure to the above-mentioned joined one is preferable.
  • this method since the resin component does not flow excessively in the step (B), a prepreg having a desired insulating layer thickness and high uniformity in the insulating layer thickness can be efficiently obtained. Can be manufactured.
  • the stress which acts on the fiber base material 11 with the flow of the resin component can be minimized, the internal strain can be extremely reduced.
  • the pressure is not substantially applied when the resin component is melted, it is possible to substantially eliminate the occurrence of a dent in this step.
  • the lamination pressure is not particularly limited, but is preferably in the range of 15 N / cm 2 or more and 250 N / cm 2 or less, and more preferably in the range of 20 N / cm 2 or more and 100 N / cm 2 or less. Within this range, productivity can be further improved, and the metal-clad laminate 100 that satisfies the above range of dimensional change rate can be obtained more efficiently.
  • the tension applied to the fiber base material 11 is as small as possible without causing problems in appearance such as wrinkles. Specifically, it is preferably within a range of 25 N / m to 350 N / m, more preferably within a range of 35 N / m to 250 N / m, and a range of 55 N / m to 150 N / m. Is particularly preferred.
  • the tension cutting method is not particularly limited, and for example, a known tension cutting method such as a nip roll or an S-shaped nip roll can be used. Further, the tension cut can be achieved by introducing a tension cut device before the lamination. By performing the tension cut by the method as exemplified above, the tension can be reduced as much as possible without impairing the transportability of the fiber base material 11. Therefore, it is possible to further suppress the occurrence of distortion that occurs during lamination and causes dimensional changes.
  • the specific configuration of the means for carrying out the lamination is not particularly limited, but in order to improve the appearance of the obtained metal-clad laminate 100, it is between the pressing surface and the support substrate 11.
  • a protective film may be arranged.
  • FIG. 3 is a schematic diagram showing an example of each width direction dimension of the support base material, the insulating resin layer, and the fiber base material used in the prepreg manufacturing method of the present embodiment.
  • the first carrier material 5a and the second carrier material 5b have a support base material 13 having a width dimension larger than that of the fiber base material 11, and more than the fiber base material 11.
  • What has the insulating resin layer 15 with a large width direction dimension is used.
  • FIG. 3 (1) shows the relationship among the width direction dimensions of the support base 13, the insulating resin layers 15a and 15b, and the fiber cloth.
  • the insulating resin layer 15a of the first carrier material 5a and The fiber base material 11, the insulating resin layer 15b of the second carrier material 5b, and the fiber base material 11 can be bonded to each other. Further, in the outer region of the width direction dimension of the fiber base material 11, that is, the region where the fiber base material 11 does not exist, the insulating resin layer 15a surface of the first carrier material 5a and the insulating resin of the second carrier material 5b. The surface of the layer 15b can be directly joined. This state is shown in FIG.
  • step (C) it is possible to prevent air from entering from the peripheral portion in the width direction and forming a new void. This state is shown in FIG.
  • the support base material 13 whose width direction dimension is larger than the fiber base material 11 as the 1st carrier material 5a and the 2nd carrier material 5b
  • one of the 1st carrier material 5a and the 2nd carrier material 5b For example, as the first carrier material 5a, a material having an insulating resin layer 15a having a width dimension larger than that of the fiber base material 11 is used. As the second carrier material 5b, an insulating resin layer having the same width direction dimension as the fiber base material 11 is used. You may use what has 15b.
  • first carrier material 5a and the second carrier material 5b those having the insulating resin layers 15a and 15b having the same width direction dimensions as the fiber base 11 may be used.
  • it does not specifically limit as another method of heat-processing,
  • it is a conventionally well-known thing which can be heated at predetermined
  • a hot air drying device or an infrared heating device it can be carried out without substantially applying pressure to the joined one.
  • a prepreg having a desired insulating layer thickness and high uniformity in the insulating layer thickness can be manufactured more efficiently. Can do.
  • a heating roll apparatus and a flat hot disk press apparatus it can implement by making a predetermined pressure act on the said joined thing.
  • the stress acting on the fiber base material along with the flow of the resin component can be minimized, the internal strain can be extremely reduced.
  • the pressure is not substantially applied when the resin component is melted, it is possible to substantially eliminate the occurrence of a dent in this step.
  • the heating temperature is not particularly limited because it varies depending on the type and composition of the resin forming the resin layer, but the temperature range is such that the thermosetting resin used melts and the curing reaction of the thermosetting resin does not proceed rapidly. It is preferable to do.
  • the time for the heat treatment is not particularly limited because it varies depending on the type of the thermosetting resin to be used, but for example, the heat treatment can be performed by treating for 1 to 10 minutes.
  • a step of continuously winding the prepreg obtained above may be performed as necessary.
  • operativity at the time of manufacturing the metal-clad laminated board 100 etc. using a prepreg can be improved.
  • the prepreg manufacturing method in the present embodiment other than the above method includes (2) a method of preparing a resin varnish by dissolving the resin composition in a solvent, and applying the resin varnish to a fiber substrate.
  • the method is described in paragraphs 0022 to 0041 of Reference Document 1 (Japanese Patent Laid-Open No. 2010-275337).
  • Reference Document 1 Japanese Patent Laid-Open No. 2010-275337
  • the fiber base material 3 is conveyed so that it passes between the coating machines provided with the 1st coating apparatus 1a which is a die coater, and the 2nd coating apparatus 1b, and one side is each on both surfaces of the fiber base material 3 A resin varnish 4 is applied to each.
  • the first coating apparatus 1a and the second coating apparatus 1b may use the same die coater or different die coaters.
  • the 1st coating apparatus 1a and the 2nd coating apparatus 1b may use a roll coater.
  • the coating distance L and the tip overlap distance D preferably have a constant distance as shown in FIGS. 4 and 5, but may not have a constant distance as shown in FIG. .
  • the first coating device 1 a and the second coating device 1 b each have a coating tip 2, and each coating tip 2 is elongated in the width direction of the fiber base 3.
  • tip part 2a which is a coating front-end
  • tip part 2b protrudes toward the other surface of the fiber base material 3.
  • the discharge amount per unit time of the resin varnish 4 discharged from the first coating device 1a and the second coating device 1b may be the same or different.
  • the thickness of the resin varnish 4 to be applied can be individually controlled on one side and the other side of the fiber base 3, and the layer of the resin layer The thickness can be easily adjusted.
  • a prepreg is manufactured by heating at a predetermined temperature in a dryer to volatilize the solvent of the applied resin varnish 4 and to semi-cur the resin composition. In this way, by supplying only the necessary resin amount to the fiber base material 11, the stress acting on the fiber base material 11 can be minimized, and the strain generated inside the prepreg is alleviated.
  • the solvent used in the resin varnish preferably exhibits good solubility in the resin component in the resin composition, but a poor solvent may be used as long as it does not have an adverse effect.
  • the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve and carbitol.
  • the solid content of the resin varnish is not particularly limited, but is preferably 40% by mass to 80% by mass, and more preferably 50% by mass to 65% by mass. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved.
  • a prepreg can be obtained by impregnating a fiber base material with a resin composition and drying at a predetermined temperature, for example, 80 ° C. or more and 200 ° C. or less.
  • the manufacturing method of the metal-clad laminated board 100 using a prepreg is not specifically limited, For example, it is as follows. After peeling the supporting base material from the obtained prepreg, the metal foil 103 is overlapped on the upper and lower sides or one side of the outer side of the prepreg, and these are joined under a high vacuum condition using a laminator device or a becquerel device, or the outer side of the prepreg is left as it is. Put metal foil on the top and bottom or one side.
  • the metal-clad laminate 100 can be obtained by heating and pressurizing a prepreg with a metal foil on a vacuum press or by heating with a dryer.
  • the thickness of the metal foil 103 is, for example, not less than 1 ⁇ m and not more than 35 ⁇ m.
  • the thickness of the metal foil 103 is not less than the above lower limit value, the mechanical strength when the first carrier material 5a and the second carrier material 5b are manufactured can be sufficiently secured. Further, when the thickness is not more than the above upper limit value, it becomes easy to process and form a fine circuit.
  • metal foil is used as a support base material, it can be used as the metal-clad laminate 100 as it is, without peeling a support base material.
  • Examples of the metal constituting the metal foil 103 include copper, a copper alloy, aluminum, an aluminum alloy, silver, a silver alloy, gold, a gold alloy, zinc, a zinc alloy, nickel, a nickel alloy, tin, Examples thereof include tin-based alloys, iron, iron-based alloys, Kovar (trade name), 42 alloys, Fe-Ni alloys such as Invar and Super Invar, tungsten, molybdenum, and the like. Also, an electrolytic copper foil with a carrier can be used.
  • thermosetting resin Although it does not specifically limit as a thermosetting resin, It is preferable that it has a low linear expansion coefficient and a high elasticity modulus, and is excellent in the reliability of thermal shock property.
  • the glass transition temperature at a frequency of 1 Hz as measured by dynamic viscoelasticity of the thermosetting resin is preferably 160 ° C. or higher, and more preferably 200 ° C. or higher. By using the resin composition having such a glass transition temperature, it is possible to obtain an effect that the lead-free solder reflow heat resistance is further improved.
  • the upper limit of the glass transition temperature in frequency 1Hz by the dynamic viscoelasticity measurement of a resin composition It can be 350 degrees C or less.
  • thermosetting resins for example, novolac type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenol resin, oil-modified resole modified with tung oil, linseed oil, walnut oil, etc.
  • Phenol resin such as phenolic resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Bisphenol type epoxy resin such as Z type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, biffe Type epoxy resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene Type epoxy resin, epoxy resin, urea (urea) resin, resin having triazine ring such as melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring, Examples
  • cyanate resins are particularly preferable.
  • cyanate resin including prepolymers of cyanate resins
  • the linear expansion coefficient of the insulating layer 101 can be reduced.
  • the electrical characteristics (low dielectric constant, low dielectric loss tangent), mechanical strength, and the like of the insulating layer 101 can be improved.
  • cyanate resin for example, those obtained by reacting a cyanogen halide compound with phenols, or those obtained by prepolymerization by a method such as heating as required can be used.
  • bisphenol cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, naphthol aralkyl type polyvalent naphthols, and cyanogen halides Cyanate resin, dicyclopentadiene-type cyanate resin, biphenylalkyl-type cyanate resin, and the like obtained by the above reaction.
  • novolac type cyanate resin is preferable.
  • the novolak cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. Furthermore, even when the thickness of the insulating layer 101 is 0.6 mm or less, the metal-clad laminate 100 including the insulating layer 101 produced by curing the novolac-type cyanate resin has excellent rigidity. In particular, since such a metal-clad laminate 100 is excellent in rigidity during heating, it is also excellent in reliability when mounting a semiconductor element. As a novolak-type cyanate resin, what is shown by the following general formula (I) can be used, for example.
  • the average repeating unit n of the novolak cyanate resin represented by the general formula (I) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. When n is not less than the above lower limit, the heat resistance of the novolak-type cyanate resin is improved, and it is possible to suppress desorption and volatilization of the low monomer during heating.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 7 or less. It can suppress that melt viscosity becomes it high that n is below the said upper limit, and can suppress that the moldability of the insulating layer 101 falls.
  • a naphthol type cyanate resin represented by the following general formula (II) is also preferably used.
  • the naphthol type cyanate resin represented by the following general formula (II) includes, for example, naphthols such as ⁇ -naphthol or ⁇ -naphthol and p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4- It is obtained by condensing naphthol aralkyl resin obtained by reaction with di (2-hydroxy-2-propyl) benzene and cyanic acid.
  • N in the general formula (II) is more preferably 10 or less.
  • n 10 or less
  • the resin viscosity does not increase, the impregnation property to the fiber base material is good, and the performance as the metal-clad laminate 100 does not tend to deteriorate.
  • intramolecular polymerization hardly occurs at the time of synthesis, the liquid separation property at the time of washing with water tends to be improved, and the decrease in yield tends to be prevented.
  • R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • a dicyclopentadiene type cyanate resin represented by the following general formula (III) is also preferably used.
  • n in the following general formula (III) is preferably 0 or more and 8 or less.
  • n is 8 or less, the resin viscosity is not high, the impregnation property to the fiber base material is good, and the performance as the metal-clad laminate 100 can be prevented from being lowered.
  • the low hygroscopic property and chemical resistance of a laminated board can be improved by using dicyclopentadiene type cyanate resin.
  • N represents an integer of 0 or more and 8 or less.
  • Mw500 or more is preferable and Mw600 or more is more preferable.
  • Mw600 or more is more preferable.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 4,500 or less, and more preferably Mw 3,000 or less.
  • Mw is not more than the above upper limit value, it is possible to suppress the reaction from being accelerated, and in the case of a printed wiring board, it is possible to suppress the occurrence of molding defects and the decrease in interlayer peel strength.
  • Mw such as cyanate resin can be measured by, for example, GPC (gel permeation chromatography, standard substance: converted to polystyrene).
  • one kind of cyanate resin may be used alone, or two or more kinds having different Mw may be used in combination, and one kind or two kinds or more and prepolymers thereof. And may be used in combination.
  • the content of the thermosetting resin contained in the resin composition is not particularly limited as long as it is appropriately adjusted according to the purpose, but is preferably 5% by mass or more and 90% by mass or less based on the entire resin composition, 10 mass% or more and 80 mass% or less are more preferable, and 20 mass% or more and 50 mass% or less are especially preferable.
  • the content of the thermosetting resin is not less than the above lower limit, the handling property of the resin composition is improved, and it becomes easy to form the resin layer.
  • the content of the thermosetting resin is not more than the above upper limit value, the strength and flame retardancy of the insulating layer 101 are improved, the linear expansion coefficient of the insulating layer 101 is reduced, and the effect of reducing the warpage of the laminate is improved. Sometimes.
  • an epoxy resin substantially free of halogen atoms
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z type epoxy resin and the like.
  • Type epoxy resin phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, arylphenyl type epoxy resin such as biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, Naphthalenediol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin Naphthalene-type epoxy resins such as xylene resin, naphthalene-aralkyl-type epoxy resin, anthracene-type epoxy resin, phenoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy resin, etc. .
  • epoxy resin one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of these prepolymers and May be used in combination.
  • aryl alkylene type epoxy resins are particularly preferable. Thereby, the moisture absorption solder heat resistance and flame retardance of the insulating layer 101 can be further improved.
  • the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit.
  • a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned.
  • a biphenyl dimethylene type epoxy resin is preferable.
  • mold epoxy resin can be shown, for example with the following general formula (IV).
  • the average repeating unit n of the biphenyl dimethylene type epoxy resin represented by the general formula (IV) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. When n is not less than the above lower limit, crystallization of the biphenyldimethylene type epoxy resin can be suppressed and the solubility in a general-purpose solvent is improved, so that handling becomes easy.
  • the upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 5 or less. When n is not more than the above upper limit value, the fluidity of the resin is improved, and the occurrence of defective molding of the insulating layer 101 can be suppressed.
  • a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, the heat resistance and low thermal expansion property of the insulating layer 101 can be further improved.
  • the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, and tetraphen or other condensed ring aromatic hydrocarbon structure.
  • the novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged. Moreover, since the glass transition temperature is also high, it is excellent in heat resistance.
  • the molecular weight of the repeating structure is large, it is superior in flame retardancy compared to conventional novolak type epoxies, and the weakness of cyanate resin can be improved by combining with cyanate resin. Therefore, when used in combination with a cyanate resin, the glass transition temperature of the resin layer 101 is further increased, so that the mounting reliability corresponding to lead-free can be improved.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is obtained by epoxidizing a novolac-type phenol resin synthesized from a phenol compound, a formaldehyde compound, and a condensed ring aromatic hydrocarbon compound.
  • the phenol compound is not particularly limited, but examples thereof include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, 6-xylenol, 3,4-xylenol, xylenols such as 3,5-xylenol, trimethylphenols such as 2,3,5 trimethylphenol, ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols, alkylphenols such as isopropylphenol, butylphenol, t-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphtha And naphthalenediols such as 2,7-dihydroxy
  • the aldehyde compound is not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
  • the fused ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene, anthracene derivatives such as methoxyanthracene, phenanthrene derivatives such as methoxyphenanthrene, other tetracene derivatives, chrysene derivatives, pyrene derivatives, Derivatives include triphenylene and tetraphen derivatives.
  • the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited.
  • methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, methoxynaphthalene-modified novolak epoxy resin, etc. Is mentioned.
  • a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure represented by the following formula (V) is preferable.
  • Ar is a condensed ring aromatic hydrocarbon group.
  • R may be the same or different from each other, and may be a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen element, a phenyl group, A group selected from an aryl group such as a benzyl group and an organic group containing a glycidyl ether, n, p, and q are integers of 1 or more, and the values of p and q may be the same or different for each repeating unit. May be.
  • R in formula (V) is a structure represented by (Ar1) to (Ar4) in formula (VI).
  • R in formula (VI) may be the same or different from each other. It is often a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an aryl group such as a halogen element, a phenyl group and a benzyl group, and an organic group including glycidyl ether.
  • naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin and the like are preferable.
  • the heat resistance and low thermal expansion property of the insulating layer 101 can be further improved.
  • the naphthalene ring has a higher ⁇ - ⁇ stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage.
  • the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
  • the naphthol type epoxy resin for example, the following general formula (VII-1), as the naphthalenediol type epoxy resin, the following formula (VII-2), as the bifunctional or tetrafunctional epoxy type naphthalene resin, the following formula (VII-3) ) (VII-4) (VII-5) and naphthylene ether type epoxy resin can be represented by, for example, the following general formula (VII-6).
  • N represents a number of 1 to 6 on average.
  • R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group.
  • O and m are each an integer of 0 to 2, and either o or m is 1 or more.
  • the lower limit of the content of the epoxy resin is not particularly limited, but is preferably 1% by mass or more and more preferably 2% by mass or more in the entire resin composition.
  • the content is not less than the above lower limit, the reactivity of the cyanate resin is improved, and the moisture resistance of the resulting product can be improved.
  • the upper limit of content of an epoxy resin is not specifically limited, 55 mass% or less is preferable and 40 mass% or less is more preferable.
  • the heat resistance of the insulating layer 101 can be further improved.
  • the lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 500 or higher, more preferably 800 or higher. It can suppress that tackiness arises in a resin layer as Mw is more than the said lower limit.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and more preferably Mw 15,000 or less. When the Mw is not more than the above upper limit, the impregnation property of the resin composition into the fiber base material is improved during prepreg production, and a more uniform product can be obtained.
  • the Mw of the epoxy resin can be measured by GPC, for example.
  • Cyanate resins (especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins) and epoxy resins (arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons)
  • epoxy resins arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons
  • a phenol resin examples include novolac type phenol resins, resol type phenol resins, aryl alkylene type phenol resins, and the like.
  • phenol resin one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of those prepolymers may be used. You may use together.
  • aryl alkylene type phenol resins are particularly preferable. Thereby, the moisture absorption solder heat resistance of the metal-clad laminate 100 can be further improved.
  • aryl alkylene type phenol resin examples include a xylylene type phenol resin and a biphenyl dimethylene type phenol resin.
  • a biphenyl dimethylene type phenol resin can be shown by the following general formula (VIII), for example.
  • the repeating unit n of the biphenyldimethylene type phenol resin represented by the general formula (VIII) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable.
  • the heat resistance of the insulating layer 101 can be improved more as n is more than the said lower limit.
  • the upper limit of the repeating unit n is not particularly limited, but is preferably 12 or less, particularly preferably 8 or less. Moreover, compatibility with other resin improves that n is below the said upper limit, and the workability
  • Cyanate resin especially novolac-type cyanate resin, naphthol-type cyanate resin, dicyclopentadiene-type cyanate resin
  • epoxy resin arylalkylene-type epoxy resin, especially biphenyldimethylene-type epoxy resin, condensed ring aromatic hydrocarbon structure
  • the crosslink density of the resin layer can be controlled and the reactivity of the resin composition can be easily controlled by a combination of a novolac type epoxy resin or a naphthalene type epoxy resin) and an arylalkylene type phenol resin.
  • the minimum of content of a phenol resin is not specifically limited, 1 mass% or more is preferable in the whole resin composition, and 5 mass% or more is more preferable.
  • the heat resistance of the insulating layer 101 can be improved as content of a phenol resin is more than the said lower limit.
  • especially the upper limit of content of a phenol resin is although it is not limited, 55 mass% or less is preferable in the whole resin composition, and 40 mass% or less is more preferable.
  • the content of the phenol resin is not more than the above upper limit value, the low thermal expansion characteristic of the insulating layer 101 can be improved.
  • the minimum of the weight average molecular weight (Mw) of a phenol resin is not specifically limited, Mw400 or more are preferable and Mw500 or more are more preferable. It can suppress that tackiness arises in a resin layer as Mw is more than the said minimum.
  • the upper limit of Mw of a phenol resin is not specifically limited, Mw18,000 or less is preferable and Mw15,000 or less is more preferable. When Mw is not more than the above upper limit, the impregnation property of the resin composition into the fiber base material is improved during the production of the prepreg, and a more uniform product can be obtained.
  • the Mw of the phenol resin can be measured by GPC, for example.
  • cyanate resins especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins
  • phenol resins arylalkylene-type phenol resins, especially biphenyldimethylene-type phenol resins
  • epoxy resins arylalkylene-type epoxy resins
  • the resin composition further includes a filler.
  • filler examples include talc, calcined clay, unfired clay, mica, glass and other silicates, titanium oxide, alumina, boehmite, silica, fused silica and other oxides, calcium carbonate, magnesium carbonate, hydrotalcite Carbonates such as, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borates such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate.
  • hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites
  • barium sulfate calcium sul
  • the filler one of these may be used alone, or two or more may be used in combination.
  • silica is preferable, and fused silica (particularly spherical fused silica) is more preferable in terms of excellent low thermal expansion.
  • the fused silica has a crushed shape and a spherical shape.
  • a usage method suitable for the purpose such as using spherical silica to lower the melt viscosity of the resin composition.
  • the lower limit of the average particle diameter of the filler is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. It can suppress that the viscosity of a varnish becomes high as the particle size of a filler is the said lower limit or more, and the workability
  • the upper limit of the average particle diameter is not particularly limited, but is preferably 5.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less. When the particle size of the filler is not more than the above upper limit value, phenomena such as sedimentation of the filler in the varnish can be suppressed, and a more uniform insulating layer 101 can be obtained.
  • the L / S of the conductor circuit of the inner layer substrate is less than 20/20 ⁇ m, it is possible to suppress the influence on the insulation between the wirings.
  • the average particle size of the filler is measured by, for example, a particle size distribution of the particles on a volume basis using a laser diffraction type particle size distribution analyzer (manufactured by HORIBA, LA-500), and the median diameter (D50) is defined as the average particle size. .
  • the filler is not particularly limited, but a monodispersed filler having an average particle diameter may be used, or a filler having a polydispersed average particle diameter may be used. Furthermore, a monodispersed and / or polydispersed filler having an average particle diameter may be used alone or in combination of two or more.
  • the resin composition of the present embodiment preferably includes a nanosilica median diameter d 50 of less 100 nm (particularly spherical nanosilica) a volume-based particle size distribution by a laser diffraction scattering particle size distribution measuring method. Since the said nano silica can exist in the clearance gap of a filler with a large particle size, or the strand of a fiber base material, the filling property of a filler can further be improved by containing nano silica.
  • the content of the filler is not particularly limited, but is preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 75% by mass or less in the entire resin composition.
  • the content is within the above range, particularly the insulating layer 101 can be further reduced in thermal expansion and water absorption.
  • the resin composition used in the present embodiment can also contain a rubber component, for example, rubber particles can be used.
  • rubber particles include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade names, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade names, manufactured by Mitsubishi Rayon Co., Ltd.).
  • NBR crosslinked acrylonitrile butadiene rubber
  • XER-91 average particle size 0.5 ⁇ m, manufactured by JSR.
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include methabrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
  • the silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane.
  • core-shell structure particles coated with silicone mainly composed of a three-dimensional crosslinking type examples of silicone rubber fine particles.
  • commercially available products such as KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning) Can be used.
  • the content of the rubber particles is not particularly limited, it is preferably 20% by mass or more and 80% by mass or less, and particularly preferably 30% by mass or more and 75% by mass or less based on the whole resin composition together with the filler. When the content is within the range, the insulating layer 101 can be further reduced in water absorption.
  • additives such as a coupling agent, a curing accelerator, a curing agent, a thermoplastic resin, and an organic filler can be appropriately blended in the resin composition as necessary.
  • the resin composition used in the present embodiment can be suitably used in a liquid form in which the above components are dissolved and / or dispersed with an organic solvent or the like.
  • the coupling agent By using the coupling agent, the wettability of the interface between the thermosetting resin and the filler is improved, and the resin composition can be uniformly fixed to the fiber substrate. Therefore, by using the coupling agent, the heat resistance of the metal-clad laminate 100, particularly the solder heat resistance after moisture absorption can be improved.
  • any of those usually used as a coupling agent can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and silicone. It is preferable to use one or more coupling agents selected from oil-type coupling agents. Thereby, the wettability of the interface of a thermosetting resin and a filler can be improved, As a result, the heat resistance of the insulating layer 101 can be improved further.
  • the lower limit of the content of the coupling agent is not particularly limited because it depends on the specific surface area of the filler, but is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the filler. .
  • the content of the coupling agent is not less than the above lower limit value, the filler can be sufficiently covered, so that the wettability of the interface between the thermosetting resin and the filler can be further improved, As a result, the heat resistance of the insulating layer 101 can be further improved.
  • the upper limit of the content of the coupling agent is not particularly limited, but is preferably 3 parts by mass or less, and more preferably 2 parts by mass or less.
  • the coupling agent can be inhibited from affecting the reaction of the thermosetting resin, and a decrease in bending strength or the like of the resulting metal-clad laminate 100 is inhibited. be able to.
  • organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2, Tertiary amines such as 2,2] octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxy Imidazoles such as imidazole and 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesulfate, phenolic compounds, phenol, bisphenol A and nonyl
  • the curing accelerator one kind including these derivatives may be used alone, or two or more kinds including these derivatives may be used in combination.
  • the onium salt compound is not particularly limited, and for example, an onium salt compound represented by the following general formula (IX) can be used.
  • R 1 , R 2 , R 3 and R 4 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted aliphatic group.
  • a ⁇ represents an anion of an n (n ⁇ 1) -valent proton donor having at least one proton that can be released outside the molecule, or Indicates a complex anion.
  • the minimum of content of a hardening accelerator is not specifically limited, 0.005 mass% or more of the whole resin composition is preferable, and 0.01 mass% or more is more preferable.
  • stimulates hardening can fully be demonstrated as content is more than the said lower limit.
  • the upper limit of content of a hardening accelerator is not specifically limited, 5 mass% or less of the whole resin composition is preferable, and 2 mass% or less is more preferable.
  • the preservability of a prepreg can be improved more as content is below the said upper limit.
  • thermoplastic elastomers such as polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyamide-based elastomers, polyester-based elastomers, and diene-based elastomers such as polybutadiene, epoxy-modified polybutadiene, acrylic-modified polybutadiene, and methacryl-modified polybutadiene It may be used.
  • phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having an anthracene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used.
  • a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin.
  • the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton.
  • the heat resistance of the metal-clad laminate 100 can be improved, and the adhesion of the wiring layer to the laminate can be improved when a printed wiring board is manufactured.
  • a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin.
  • a phenoxy resin having a bisphenolacetophenone structure represented by the following general formula (X).
  • R 1 may be the same or different and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a group selected from halogen elements.
  • R 2 is a hydrogen atom, carbon It is a group selected from a hydrocarbon group having 1 to 10 carbon atoms or a halogen element,
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer from 0 to 5.
  • the phenoxy resin containing a bisphenol acetophenone structure has a bulky structure, it has excellent solvent solubility and compatibility with the thermosetting resin component to be blended.
  • the insulating layer 101 having a low roughness and a uniform rough surface can be formed, so that the fine wiring formability of the metal-clad laminate 100 can be further improved. it can.
  • the phenoxy resin having a bisphenolacetophenone structure can be synthesized by a known method such as a method in which an epoxy resin and a phenol resin are polymerized with a catalyst.
  • the phenoxy resin having a bisphenol acetophenone structure may contain a structure other than the bisphenol acetophenone structure of the general formula (X), and the structure is not particularly limited, but bisphenol A type, bisphenol F type, bisphenol S type, biphenyl Type, phenol novolac type, cresol novolac type structure and the like. Among these, those containing a biphenyl type structure are preferable because the glass transition temperature of the insulating layer 101 can be further improved.
  • the content of the bisphenol acetophenone structure of the general formula (X) in the phenoxy resin containing a bisphenol acetophenone structure is not particularly limited, but is preferably 5 mol% to 95 mol%, more preferably 10 mol% to 85 mol%. Or less, more preferably 15 mol% or more and 75 mol% or less.
  • the content is at least the above lower limit, the effect of improving the heat resistance of the insulating layer 101 and the moisture resistance reliability of the printed wiring board can be sufficiently exhibited.
  • the solvent solubility of a phenoxy resin can be improved as content is below the said upper limit.
  • the weight average molecular weight (Mw) of the phenoxy resin is not particularly limited, but is preferably from 5,000 to 100,000, more preferably from 10,000 to 70,000, particularly preferably from 20,000 to 50,000. .
  • Mw is not more than the above upper limit, compatibility with other resins and solubility in a solvent can be improved.
  • it is at least the above lower limit the film-forming property is improved, and it is possible to suppress the occurrence of problems when used for the production of a printed wiring board.
  • the content of the phenoxy resin is not particularly limited, but is preferably 0.5% by mass or more and 40% by mass or less, and particularly preferably 1% by mass or more and 20% by mass or less of the resin composition excluding the filler.
  • the content is equal to or higher than the lower limit, it is possible to suppress a decrease in mechanical strength of the insulating layer 101 and a decrease in plating adhesion with a conductor circuit.
  • it is not more than the above upper limit, an increase in the coefficient of thermal expansion of the insulating layer 101 can be suppressed, and the heat resistance can be lowered.
  • the resin composition may contain additives other than the above components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers as necessary. It may be added.
  • pigments examples include kaolin, synthetic iron oxide red, cadmium yellow, nickel titanium yellow, strontium yellow, hydrous chromium oxide, chromium oxide, cobalt aluminate, synthetic ultramarine blue and other inorganic pigments, phthalocyanine polycyclic pigments, azo pigments, etc. Etc.
  • the dye examples include isoindolinone, isoindoline, quinophthalone, xanthene, diketopyrrolopyrrole, perylene, perinone, anthraquinone, indigoid, oxazine, quinacridone, benzimidazolone, violanthrone, phthalocyanine, and azomethine.
  • the fiber substrate is not particularly limited, but glass fiber substrate such as glass cloth, polybenzoxazole resin fiber, polyamide resin fiber, aromatic polyamide resin fiber, polyamide resin fiber such as wholly aromatic polyamide resin fiber, polyester Synthetic fiber base material composed mainly of resin fiber, aromatic polyester resin fiber, polyester resin fiber such as wholly aromatic polyester resin fiber, polyimide resin fiber, fluororesin fiber, kraft paper, cotton linter paper, linter And organic fiber base materials such as paper base materials mainly composed of mixed paper of kraft pulp and the like.
  • a glass fiber substrate is particularly preferable from the viewpoint of strength and water absorption.
  • the linear expansion coefficient of the insulating layer 101 can be further reduced by using a glass fiber substrate.
  • the glass fiber substrate used in the present embodiment preferably has a basis weight (weight of the fiber substrate per 1 m 2 ) of 4 g / m 2 or more and 150 g / m 2 or less, and 8 g / m 2 or more and 110 g / m 2.
  • the following are more preferred, those of 12 g / m 2 or more and 60 g / m 2 or less are more preferred, those of 12 g / m 2 or more and 30 g / m 2 or less are particularly preferred, and those of 12 g / m 2 or more and 24 g / m 2 or less. Is most preferred.
  • the basis weight is not more than the above upper limit value, the impregnation property of the resin composition in the glass fiber base material is improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed.
  • strength of a glass fiber base material or a prepreg can be improved as basic weight is more than the said lower limit. As a result, handling properties can be improved, preparation of a prepreg can be facilitated, and reduction in the effect of reducing the warpage of the laminate can be suppressed.
  • a glass fiber substrate having a linear expansion coefficient of 6 ppm or less is particularly preferable, and a glass fiber substrate having 3.5 ppm or less is more preferable.
  • a glass fiber base material having such a linear expansion coefficient warpage of the metal-clad laminate 100 of this embodiment can be further suppressed.
  • the tensile elastic modulus of the material constituting the glass fiber substrate used in the present embodiment is preferably 60 GPa or more and 100 GPa or less, more preferably 65 GPa or more and 92 GPa or less, and particularly preferably 86 GPa or more and 92 GPa or less.
  • the glass fiber substrate used in the present embodiment preferably has a dielectric constant at 1 MHz of 3.8 or more and 7.0 or less, more preferably 3.8 or more and 6.8 or less, and particularly preferably 3 .8 or more and 5.5 or less. Since the dielectric constant of the metal-clad laminate 100 can be further reduced by using the glass fiber base material having such a dielectric constant, the metal-clad laminate 100 is preferably used for a semiconductor package using a high-speed signal. be able to.
  • the glass fiber base material having the above linear expansion coefficient, tensile elastic modulus, and dielectric constant is selected from the group consisting of E glass, S glass, D glass, T glass, NE glass, quartz glass, and UN glass, for example.
  • a glass fiber base material containing at least one kind is preferably used.
  • the thickness of the fiber base material is not particularly limited, but is preferably 5 ⁇ m or more and 150 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and further preferably 12 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the fiber base material is not more than the above upper limit value, the impregnation property of the resin composition in the fiber base material is improved, and the occurrence of a decrease in strand voids and insulation reliability can be suppressed.
  • strength of a fiber base material or a prepreg can be improved as the thickness of a fiber base material is more than the said lower limit. As a result, handling properties can be improved, production of a prepreg can be facilitated, and a reduction in warpage reduction effect of the metal-clad laminate 100 can be suppressed.
  • the number of fiber base materials used is not limited to one, and a plurality of thin fiber base materials can be used in a stacked manner.
  • the total thickness only needs to satisfy the above range.
  • the sum total of the fiber base material and filler contained in the insulating layer 101 in this embodiment is 55 mass% or more and 90 mass% or less, and it is more preferable that it is 70 mass% or more and 85 mass% or less. preferable.
  • the rigidity of the metal-clad laminate 100 can be increased while balancing the resin impregnation property and moldability into the fiber base material. The warp of the metal-clad laminate 100 at the time can be further reduced.
  • the metal-clad laminate 100 can be used in a semiconductor package 200 as shown in FIG.
  • a method for manufacturing the printed wiring board and the semiconductor package 200 is not particularly limited, and examples thereof include the following methods. Through-holes for interlayer connection are formed in the metal-clad laminate 100, and a wiring layer is produced by a subtractive method, a semi-additive method, or the like. Thereafter, build-up layers (not shown in FIG. 7) are stacked as necessary, and the steps of interlayer connection and circuit formation by the additive method are repeated.
  • a printed wiring board can be obtained by laminating
  • some or all of the buildup layers and the solder resist layer 201 may or may not include a fiber base material.
  • solder resist layer 201 After a photoresist is applied to the entire surface of the solder resist layer 201, a part of the photoresist is removed to expose a part of the solder resist layer 201. Note that a resist having a photoresist function may be used for the solder resist layer 201. In this case, the step of applying a photoresist can be omitted. Next, the exposed solder resist layer 201 is removed to form an opening 209.
  • the semiconductor element 203 is fixed to the connection terminal 205 which is a part of the wiring pattern via the solder bump 207. Thereafter, the semiconductor package 203 as shown in FIG. 7 can be obtained by sealing the semiconductor element 203, the solder bump 207, and the like with the sealing material 211.
  • the semiconductor package 200 can be used in a semiconductor device 300 as shown in FIG.
  • a method for manufacturing the semiconductor device 300 is not particularly limited, and examples thereof include the following methods.
  • the solder bump 301 is formed by supplying a solder paste to the opening 209 of the solder resist layer 201 of the obtained semiconductor package 200 and performing a reflow process.
  • the solder bump 301 can also be formed by attaching a solder ball prepared in advance to the opening 209.
  • the semiconductor package 200 is mounted on the mounting substrate 303 by joining the connection terminals 305 and the solder bumps 301 of the mounting substrate 303, and the semiconductor device 300 shown in FIG. 8 is obtained.
  • the metal-clad laminate 100 As described above, according to this embodiment, it is possible to provide the metal-clad laminate 100 with reduced warpage during mounting. In particular, even when the metal-clad laminate 100 is thin, the occurrence of warpage can be effectively suppressed. And the printed wiring board using the metal-clad laminated board 100 in this embodiment is excellent in mechanical characteristics, such as curvature and dimensional stability, and a moldability. Therefore, the metal-clad laminate 100 in the present embodiment can be suitably used for applications that require reliability, such as printed wiring boards that require higher density and higher multilayer.
  • the occurrence of warpage is reduced in the above-described circuit processing and the subsequent processes. Further, the semiconductor package 200 in the present embodiment is less likely to warp and crack, and can be thinned. Therefore, the semiconductor device 300 including the semiconductor package 200 can improve connection reliability.
  • each thickness is represented by the average film thickness.
  • Epoxy resin A Biphenyl aralkyl type novolak epoxy resin (Nippon Kayaku Co., Ltd., NC-3000)
  • Epoxy resin B biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000FH)
  • Epoxy resin C naphthalene diol diglycidyl ether (DIC Corporation, Epicron HP-4032D)
  • Epoxy resin D naphthylene ether type epoxy resin (manufactured by DIC, Epicron HP-6000)
  • Cyanate resin A Novolac-type cyanate resin (Lonza Japan, Primaset PT-30)
  • Cyanate resin B p-xylene-modified naphthol aralkyl-type cyanate resin represented by the general formula (II) (reaction product of naphthol aralkyl-type phenol resin (manufactured by Toto Kasei Co., Ltd., “SN-485 derivative”) and cyanogen chloride)
  • Phenol resin A biphenyl dimethylene type phenol resin (manufactured by Nippon Kayaku Co., Ltd., GPH-103)
  • Amine compound 4,4′-diaminodiphenylmethane bismaleimide compound (KMI Kasei Kogyo BMI-70)
  • Phenoxy resin A Phenoxy resin containing bisphenolacetophenone structure (Mitsubishi Chemical Co., Ltd., YX-6654BH30)
  • Filler A Spherical silica (manufactured by Admatechs, SO-25R, average particle size 0.5 ⁇ m)
  • Filler B Spherical silica (manufactured by Admatechs, SO-31R, average particle size 1.0 ⁇ m)
  • Filler C Spherical silica (manufactured by Tokuyama, NSS-5N, average particle size 75 nm)
  • Filler D Boehmite (Navaltech AOH-30)
  • Filler E Silicone particles (manufactured by Shin-Etsu Chemical Co., Ltd., KMP-600, average particle size 5 ⁇ m)
  • Coupling agent A ⁇ -glycidoxypropyltrimethoxysilane (GE Toshiba Silicone, A-187)
  • Coupling agent B N-phenyl- ⁇ -aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
  • Curing accelerator A Phosphorus catalyst of an onium salt compound corresponding to the above general formula (IX) (C05-MB, manufactured by Sumitomo Bakelite Co., Ltd.)
  • Curing accelerator B Zinc octylate
  • the metal-clad laminate in this embodiment was produced using the following procedure. First, production of a prepreg will be described.
  • the composition of the resin varnish used is shown in Table 1, and the thickness of each layer of the obtained prepregs 1 to 16 is shown in Table 2.
  • P1 to P16 mean prepregs 1 to prepreg 16, unitica shown in Table 2 means Unitika Glass Fiber, and Nittobo means Nittobo.
  • Prepreg 1 Preparation of Varnish 1 of Resin Composition 11.0 parts by mass of biphenylaralkyl type novolac epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) as epoxy resin A, 3.5 parts by mass of 4,4′-diaminodiphenylmethane as amine compound
  • As a bismaleimide compound 20.0 parts by mass of bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane (manufactured by KAI Kasei Kogyo Co., Ltd., BMI-70) was dissolved and dispersed in methyl ethyl ketone.
  • Resin varnish 1 is dried on a thin copper foil with carrier foil (Mitsui Metal Mining Co., Ltd., Micro Thin Ex, 1.5 ⁇ m) as a support substrate using a die coater device. The thickness of the coating was 30 ⁇ m. Subsequently, this was dried for 5 minutes with a 160 degreeC drying apparatus, and resin sheet 1A (carrier material 1A) with a copper foil for 1st resin layers was obtained.
  • carrier foil Mitsubishi Metal Mining Co., Ltd., Micro Thin Ex, 1.5 ⁇ m
  • the resin varnish 1 is applied in the same manner onto an ultrathin copper foil with carrier foil (Mitsui Metal Mining Co., Ltd., Microcin Ex, 1.5 ⁇ m), and the thickness of the resin layer after drying is 30 ⁇ m. And drying for 5 minutes with a dryer at 160 ° C. to obtain a resin sheet 1B with copper foil (carrier material 1B) for the second resin layer.
  • an ultrathin copper foil with carrier foil Mitsubishi Metal Mining Co., Ltd., Microcin Ex, 1.5 ⁇ m
  • prepreg 1 The carrier material 1A for the first resin layer and the carrier material 1B for the second resin layer are made of a glass fiber substrate (thickness 91 ⁇ m, T glass woven fabric manufactured by Nittobo, WTX-116E, IPC standard 2116T, linear expansion coefficient : 2.8 ppm / ° C.) prepreg 1 in which the resin layer is disposed so as to face the fiber base material, impregnated with the resin composition by the vacuum laminating apparatus and hot air drying apparatus shown in FIG. Got.
  • the carrier material A and the carrier material B are overlapped on both surfaces of the glass fiber base so that they are positioned at the center in the width direction of the glass fiber base, respectively, and 9.999 ⁇ 10 4 Pa (from normal pressure) Under reduced pressure of about 750 Torr) or more, the laminating speed was set to 2 m / min, the tension applied to the glass fiber substrate was set to 140 N / m, and bonding was performed using a laminating roll at 100 ° C.
  • the resin layers of the carrier material 1A and the carrier material 1B are respectively bonded to both sides of the glass fiber base material, and the width direction dimension of the glass fiber base material In the outer region, the resin layers of the carrier material 1A and the carrier material 1B were joined together.
  • prepreg 1 (P1).
  • prepreg 2--7 The prepregs 2 to 7 were the same except that the types of resin varnishes, the thicknesses of the first and second resin layers, the glass fiber substrate used, the lamination speed, and the tension applied to the glass fiber substrate were changed as shown in Table 2. Manufactured in the same manner as prepreg 1.
  • the prepreg 8 uses a PET film (polyethylene terephthalate, Purex manufactured by Teijin DuPont Films Co., Ltd., thickness 36 ⁇ m) as a supporting substrate, the type of resin varnish, the thickness of the first and second resin layers, and the glass fiber substrate used. This was produced in the same manner as in the prepreg 1 except that the lamination speed and the tension applied to the glass fiber substrate were changed as shown in Table 2.
  • PET film polyethylene terephthalate, Purex manufactured by Teijin DuPont Films Co., Ltd., thickness 36 ⁇ m
  • Prepreg 9 The prepreg 9 impregnates the resin varnish 4 into a glass fiber substrate (thickness 91 ⁇ m, Nittobo T glass woven fabric, WTX-116E, IPC standard 2116T, linear expansion coefficient: 2.8 ppm / ° C.) with a coating apparatus. And dried in a heating furnace at 180 ° C. for 2 minutes to produce a prepreg having a thickness of 100 ⁇ m.
  • rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
  • Prepreg 10-11 The prepregs 10 to 11 apply the resin varnish 4 to a glass fiber substrate (thickness: 43 ⁇ m, N glass fiber fabric manufactured by Nittobo, WTX-1078T, IPC standard 1078T, linear expansion coefficient: 2.8 ppm / ° C.) And was dried in a heating furnace at 180 ° C. for 2 minutes to produce a prepreg having a thickness of 50 ⁇ m.
  • rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
  • prepreg 12-13 The prepregs 12 to 13 were obtained by coating the resin varnish 4 on a PET film (polyethylene terephthalate, Purex manufactured by Teijin DuPont Films, Inc., thickness 36 ⁇ m), the thickness of the first and second resin layers, and the glass fiber base used. This was produced in the same manner as in the prepreg 1 except that the lamination speed and the tension applied to the glass fiber substrate were changed as shown in Table 2.
  • prepreg 14 was similarly applied to the resin varnish 4 on an ultrathin copper foil with carrier foil (manufactured by Mitsui Kinzoku Mining Co., Ltd., Micro Thin Ex, 1.5 ⁇ m), and the thicknesses of the first and second resin layers were used. Manufactured in the same manner as prepreg 1 except that the glass fiber substrate, the lamination speed, and the tension applied to the glass fiber substrate were changed as shown in Table 2.
  • the prepreg 15 is obtained by impregnating the resin varnish 4 into a glass fiber substrate (thickness: 43 ⁇ m, E glass woven fabric manufactured by Unitika, E06E, IPC standard 1078, linear expansion coefficient: 5.5 ppm / ° C.) with a coating apparatus, 180
  • the prepreg having a thickness of 50 ⁇ m was produced by drying in a heating furnace at a temperature of 2 ° C. for 2 minutes.
  • rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
  • Prepreg 16 The prepreg 16 impregnates the resin varnish 4 in a glass fiber base material (thickness 91 ⁇ m, E glass woven fabric manufactured by Unitika, E10T, IPC standard 2116, linear expansion coefficient: 5.5 ppm / ° C.) with a coating apparatus, 180 A prepreg having a thickness of 100 ⁇ m was produced by drying in a heating furnace at 2 ° C. for 2 minutes.
  • rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
  • Example 1 Manufacture of metal-clad laminate A metal-clad laminate was obtained by sandwiching a prepreg 1 laminated with a copper foil between smooth metal plates and heating and pressing at 220 ° C. and 1.5 MPa for 2 hours. The thickness of the core layer (part consisting of an insulating layer) of the obtained metal-clad laminate was 0.10 mm.
  • an electroless copper plating film was formed to about 0.5 ⁇ m to form a plating resist.
  • the power feeding layer was removed by flash etching.
  • a solder resist layer was laminated, and then blind via holes (non-through holes) were formed by a carbonic acid laser so that the semiconductor element mounting pads and the like were exposed.
  • an electroless nickel plating layer of 3 ⁇ m is formed on the circuit layer exposed from the solder resist layer, and further, an electroless gold plating layer of 0.1 ⁇ m is formed thereon. Cut to a size of ⁇ 50 mm to obtain a printed wiring board for a semiconductor package.
  • a semiconductor element (TEG chip, size 20 mm ⁇ 20 mm, thickness 725 ⁇ m) having solder bumps was mounted on a printed wiring board for a semiconductor package by thermocompression bonding using a flip chip bonder device.
  • a liquid sealing resin (CRP-X4800B, manufactured by Sumitomo Bakelite Co., Ltd.) was filled, and the liquid sealing resin was cured to obtain a semiconductor package.
  • the liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes.
  • the solder bump of the semiconductor element used what was formed with the lead free solder of Sn / Ag / Cu composition.
  • Examples 2 to 7, Comparative Example 3 A metal-clad laminate and a semiconductor package were produced in the same manner as in Example 1 except that the type of prepreg was changed.
  • Example 8 Comparative Examples 1 and 2
  • Ultra-thin copper foil (Mitsui Metal Mining Co., Ltd., Microcin Ex, 1.5 ⁇ m) is superposed on both sides of the two prepregs from which the PET films on both sides of the PET-laminated prepreg are peeled off, and 220 ° C .;
  • a metal-clad laminate was obtained by heat and pressure molding at 0 MPa for 2 hours.
  • the thickness of the core layer (part consisting of an insulating layer) of the obtained metal-clad laminate was 0.10 mm.
  • a semiconductor package was manufactured in the same manner as in Example 1 except that the carrier material shown in Table 2 was used.
  • Examples 9 to 11, Comparative Examples 4 and 5 A metal-clad laminate is obtained by superimposing ultrathin copper foils (Mitsui Metal Mining Co., Ltd., Microcin Ex, 1.5 ⁇ m) on both sides of a predetermined number of prepregs, and heating and pressing at 220 ° C. and 3.0 MPa for 2 hours. I got a plate. The thickness of the core layer (part consisting of an insulating layer) of the obtained metal-clad laminate was 0.10 mm.
  • a semiconductor package was manufactured in the same manner as in Example 1 except that the carrier material shown in Table 2 was used.
  • the metal-clad laminate was subjected to a reflow treatment at 260 to 265 ° C. for 5 seconds. Then, it cooled to room temperature and measured the dimension after the reflow process at room temperature based on 2.4.39 of IPC-TM-650. From the following formulas (1) to (3), the rate of dimensional change in the vertical and horizontal directions of the metal-clad laminate was calculated.
  • a (%) (dimension after preheating treatment ⁇ initial dimension) / initial dimension ⁇ 100 (1)
  • B (%) (dimension after reflow treatment-initial dimension) / initial dimension x 100
  • Dimensional change rate (%) BA (3)
  • Substrate warpage amount The vicinity of the center of the metal-clad laminate produced in Examples and Comparative Examples was cut at a size of 270 mm ⁇ 350 mm, the metal foil was peeled off with an etching solution, and then cut at a size of 50 mm ⁇ 50 mm at intervals of 30 mm. A total of 12 pieces of substrate warping samples were obtained. Substrate warpage of the obtained sample was measured at normal temperature (25 ° C.) using a temperature variable laser three-dimensional measuring machine (LS200-MT100MT50: manufactured by TETECH).
  • the measurement range is 48 mm x 48 mm, the measurement is performed by applying a laser to one side of the substrate, the distance from the laser head is the difference between the farthest point and the nearest point, and the warp amount of each piece. The average of the amount of warpage was taken as the amount of substrate warpage.
  • the measurement location was 61 locations per semiconductor package, and a total of 183 locations were measured.
  • Each code is as follows. (Double-circle): There was no disconnection location. ⁇ : The disconnection portion was 1% or more and less than 11%. (Triangle
  • the semiconductor packages obtained in Comparative Examples 2 to 5 have more disconnection points in the continuity test, and more cracks are generated in the semiconductor elements and solder bumps in the temperature cycle test. And connection reliability was inferior.
  • the semiconductor packages obtained in Examples 1 to 11 have no or few disconnections in the continuity test, and further, there are no or few cracks in the semiconductor elements and solder bumps in the temperature cycle test. It was excellent.

Abstract

 The metal-clad laminate (100) according to the present invention comprises an insulating layer (101) including a thermosetting resin, a filler material, and a fibre base, and is provided with metal foil (103) on both surfaces of the insulating layer (101). After a heat treatment has been carried out, after the metal foil (103) on both surfaces has been removed by means of etching, the heat treatment comprising (1) a four hour preliminary heat treatment at 105℃ and (2) a five second reflow treatment in which the surface temperature is 260-265℃, the dimensional change of the metal-clad laminate (100), calculated from formulas (1)-(3) below, is -0.080-0% in both the longitudinal direction (105) and the transverse direction (107) of the metal-clad laminate (100). A(%) = (post preliminary heat treatment dimensions - initial dimensions)/initial dimensions x 100 (1); B(%) = (post reflow treatment dimensions - initial dimensions)/initial dimensions x 100 (2); dimensional change(%) = B - A (3). The dimensions of the laminate in each stage are measured at room temperature and in compliance with 2.4.39 of IPC-TM-650.

Description

金属張積層板、プリント配線基板、半導体パッケージ、半導体装置および金属張積層板の製造方法Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate production method
 本発明は、金属張積層板、プリント配線基板、半導体パッケージ、半導体装置および金属張積層板の製造方法に関する。 The present invention relates to a metal-clad laminate, a printed wiring board, a semiconductor package, a semiconductor device, and a method for producing a metal-clad laminate.
 近年の電子機器の高機能化および軽薄短小化の要求にともなって、電子部品の高密度集積化、さらには高密度実装化が進んできており、これらの電子機器に使用される半導体装置の小型化が急速に進行している。
 そのため、半導体素子を含めた電子部品を実装するプリント配線基板も薄型化される傾向にあり、プリント配線基板の内層コア基板(以下、単に積層板ともいう)は、厚みが約0.8mmのものが主流となっている。
 さらに最近では、0.4mm以下のコア基板を用いた半導体パッケージ同士を積層するパッケージ・オン・パッケージ(以下、POPという。)がモバイル機器(例えば、携帯電話、スマートフォン、タブレット型PCなど)に搭載されている。
In recent years, with the demand for higher functionality and lighter, thinner and smaller electronic devices, high-density integration and further high-density mounting of electronic components have been promoted. The miniaturization of semiconductor devices used in these electronic devices The process is progressing rapidly.
For this reason, printed wiring boards on which electronic components including semiconductor elements are mounted tend to be thinned, and the inner core board (hereinafter also simply referred to as a laminated board) of the printed wiring board has a thickness of about 0.8 mm. Has become the mainstream.
More recently, a package-on-package (hereinafter referred to as POP) in which semiconductor packages using a core substrate of 0.4 mm or less are stacked is mounted on a mobile device (for example, a mobile phone, a smartphone, a tablet PC, etc.). Has been.
特開2007-50599号公報JP 2007-50599 A
 このように半導体装置の小型化が進むと、従来では半導体装置の剛性の大部分を担っていた半導体素子、封止材の厚みが極めて薄くなり、半導体装置の反りが発生しやすくなる。また、構成部材としてコア基板の占める割合が大きくなるため、コア基板の物性・挙動が半導体装置の反りに大きな影響を及ぼすようになってきている。 As the semiconductor device is miniaturized in this way, the thickness of the semiconductor element and the sealing material that have conventionally been responsible for most of the rigidity of the semiconductor device becomes extremely thin, and the warp of the semiconductor device is likely to occur. In addition, since the ratio of the core substrate as a constituent member increases, the physical properties and behavior of the core substrate have a great influence on the warpage of the semiconductor device.
 一方、地球環境保護の観点から半田の鉛フリー化が進むにつれて、プリント配線基板へ半田ボールを搭載するときや、マザーボードへ半導体パッケージを実装するときにおこなうリフロー工程での最高温度が非常に高くなってきている。一般的に良く使われている鉛フリー半田の融点が約210度であることからリフロー工程中での最高温度は260度を超えるレベルとなっている。
 そのため、加熱時にPOPの上下の半導体パッケージは、半導体素子と半導体素子が搭載されるプリント配線基板との熱膨張の差が非常に大きいため、大きく反ってしまう場合があった。
On the other hand, as lead-free soldering progresses from the viewpoint of protecting the global environment, the maximum temperature in the reflow process that takes place when solder balls are mounted on printed circuit boards or when semiconductor packages are mounted on motherboards becomes very high. It is coming. Since the melting point of commonly used lead-free solder is about 210 degrees, the maximum temperature during the reflow process is a level exceeding 260 degrees.
For this reason, the semiconductor packages above and below the POP during heating may be greatly warped because the difference in thermal expansion between the semiconductor element and the printed wiring board on which the semiconductor element is mounted is very large.
 このような問題を解決する手段として、特許文献1(特開2007-50599号公報)には、フレキシブル金属張積層板の製造工程において、熱ラミネート時に、熱可塑性ポリイミドを含有する接着層が形成されたフィルム状接合部材にかかる張力を0.3~1N/mの範囲に規定することが記載されている。このような手段を取ると、フィルム状接合部材の厚みが5~15μm以下と薄くても、寸法安定性が優れるフレキシブル金属張積層板が得られると記載されている。 As means for solving such a problem, Patent Document 1 (Japanese Patent Laid-Open No. 2007-50599) discloses that an adhesive layer containing a thermoplastic polyimide is formed at the time of thermal lamination in a manufacturing process of a flexible metal-clad laminate. Further, it is described that the tension applied to the film-like joining member is regulated in the range of 0.3 to 1 N / m. It is described that when such means are taken, a flexible metal-clad laminate having excellent dimensional stability can be obtained even when the thickness of the film-like joining member is as thin as 5 to 15 μm or less.
 本発明は上述のような課題に鑑みてなされたものであり、実装時の反りが低減された金属張積層板を提供するものである。 The present invention has been made in view of the above-described problems, and provides a metal-clad laminate in which warpage during mounting is reduced.
 本発明者は金属張積層板に反りが発生するメカニズムを鋭意調べた。その結果、金属張積層板のリフロー処理前後での寸法変化率をある範囲に規定することにより、実装時の金属張積層板の反りが低減されることを見出し、本発明を完成するに至った。 The present inventor diligently investigated the mechanism of warping of the metal-clad laminate. As a result, by defining the dimensional change rate before and after the reflow treatment of the metal-clad laminate within a certain range, it was found that the warp of the metal-clad laminate during mounting was reduced, and the present invention was completed. .
 すなわち、本発明によれば、
 熱硬化性樹脂と、充填材と、繊維基材とを含む絶縁層の両面に金属箔を有する金属張積層板であって、
 エッチングにより両面の金属箔を除去後、
 (1)105℃で4時間の予備加熱処理と、
 (2)表面温度が260~265℃で5秒のリフロー処理と
からなる加熱処理をおこなったとき、
 IPC-TM-650の2.4.39に準拠して測定した室温での当該積層板の寸法において、
 上記エッチング前から上記予備加熱処理後の上記寸法の変化率をAとし、
 上記エッチング前から上記リフロー処理後の上記寸法の変化率をBとしたとき、
 B-Aより算出される寸法変化率が、
 当該金属張積層板の縦方向および横方向ともに、-0.080%以上0%以下である、金属張積層板が提供される。
That is, according to the present invention,
A metal-clad laminate having a metal foil on both sides of an insulating layer containing a thermosetting resin, a filler, and a fiber substrate,
After removing the metal foil on both sides by etching,
(1) preheating treatment at 105 ° C. for 4 hours;
(2) When a heat treatment comprising a surface temperature of 260 to 265 ° C. and a reflow treatment of 5 seconds is performed,
In the dimensions of the laminate at room temperature measured according to 2.4.39 of IPC-TM-650,
The rate of change of the dimension after the preheating treatment from before the etching is A,
When the change rate of the dimension after the reflow treatment from before the etching is B,
The rate of dimensional change calculated from BA is
Provided is a metal-clad laminate that is −0.080% or more and 0% or less in both the longitudinal and lateral directions of the metal-clad laminate.
 さらに、本発明によれば、上記金属張積層板を回路加工してなる、プリント配線基板が提供される。 Furthermore, according to the present invention, there is provided a printed wiring board obtained by subjecting the metal-clad laminate to circuit processing.
 さらに、本発明によれば、上記プリント配線基板に半導体素子が搭載された、半導体パッケージが提供される。 Furthermore, according to the present invention, there is provided a semiconductor package in which a semiconductor element is mounted on the printed wiring board.
 さらに、本発明によれば、上記半導体パッケージを含む半導体装置が提供される。 Furthermore, according to the present invention, a semiconductor device including the semiconductor package is provided.
 さらに、本発明によれば、
 (A)熱硬化性樹脂と充填材を含む樹脂組成物を繊維基材に含浸させる工程と、
 (B)加熱により上記熱硬化性樹脂を半硬化させ、プリプレグを得る工程と、
 (C)上記プリプレグの両面に金属箔を重ね合わせ、加熱加圧する工程と
を含み、
 上記(A)工程において、上記繊維基材にかかる張力を25N/m以上350N/m以下とする、金属張積層板の製造方法が提供される。
Furthermore, according to the present invention,
(A) impregnating a fiber base material with a resin composition containing a thermosetting resin and a filler;
(B) semi-curing the thermosetting resin by heating to obtain a prepreg;
(C) superimposing metal foil on both sides of the prepreg and heating and pressurizing,
In the step (A), a method for producing a metal-clad laminate is provided in which the tension applied to the fiber substrate is 25 N / m or more and 350 N / m or less.
 本発明によれば、実装時の反りが低減された金属張積層板を提供することができる。 According to the present invention, it is possible to provide a metal-clad laminate with reduced warpage during mounting.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態における金属張積層板の構成の一例を示す断面図である。 本実施形態におけるプリプレグの製造方法の一例を示す断面図である。 本実施形態におけるプリプレグの製造方法に用いられる、支持基材、絶縁樹脂層、および、繊維基材について、各々の幅方向寸法の形態例を示す概略図である。 本実施形態におけるプリプレグの製造方法の一例を示す断面図である。 本実施形態におけるプリプレグの製造方法の一例を示す断面図である。 本実施形態におけるプリプレグの製造方法の一例を示す断面図である。 本実施形態における半導体パッケージの構成の一例を示す断面図である。 本実施形態における半導体装置の構成の一例を示す断面図である。
The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
It is sectional drawing which shows an example of a structure of the metal-clad laminated board in this embodiment. It is sectional drawing which shows an example of the manufacturing method of the prepreg in this embodiment. It is the schematic which shows the form example of each width direction dimension about the support base material, the insulating resin layer, and the fiber base material which are used for the manufacturing method of the prepreg in this embodiment. It is sectional drawing which shows an example of the manufacturing method of the prepreg in this embodiment. It is sectional drawing which shows an example of the manufacturing method of the prepreg in this embodiment. It is sectional drawing which shows an example of the manufacturing method of the prepreg in this embodiment. It is sectional drawing which shows an example of a structure of the semiconductor package in this embodiment. It is sectional drawing which shows an example of a structure of the semiconductor device in this embodiment.
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar constituent elements are denoted by common reference numerals, and description thereof is omitted as appropriate. Moreover, the figure is a schematic diagram and does not necessarily match the actual dimensional ratio.
(金属張積層板)
 はじめに、本実施形態における金属張積層板100の構成について説明する。図1は、本実施形態における金属張積層板100の構成を示す断面図である。
 金属張積層板100は、熱硬化性樹脂と、充填材と、繊維基材とを含む絶縁層101を有し、絶縁層101の両面に金属箔103を備えている。
 そして、金属張積層板100はエッチングにより両面の金属箔103を除去後、(1)105℃で4時間の予備加熱処理と、(2)表面温度が260~265℃で5秒のリフロー処理とからなる加熱処理をおこなったとき、下記式(1)~(3)から算出される寸法変化率が、金属張積層板100の縦方向105および横方向107ともに、-0.080%以上0%以下であり、好ましくは-0.070%以上0%以下であり、さらに好ましくは-0.060%以上0%以下である。
 A(%)=(予備加熱処理後寸法-初期寸法)/初期寸法×100   (1)
 B(%)=(リフロー処理後寸法-初期寸法)/初期寸法×100   (2)
 寸法変化率(%)=B-A   (3)
 各段階における積層板の寸法はIPC-TM-650の2.4.39に準拠して室温で測定する。また、上記式中の初期寸法とはエッチング前の積層板の寸法を示す。上記式(1)中の予備加熱処理後寸法とは予備加熱処理後の積層板の寸法を示す。上記式(2)中のリフロー処理後寸法とはリフロー処理後の積層板の寸法を示す。
 ここで、縦方向105は積層板100の搬送方向(いわゆるMD)を指し、横方向107は、積層板の搬送方向と直交方向(いわゆるTD)を指す。なお、予備加熱処理の温度は雰囲気温度であり、リフロー処理の温度は積層板の表面の温度である。
(Metal-clad laminate)
First, the configuration of the metal-clad laminate 100 in this embodiment will be described. FIG. 1 is a cross-sectional view showing a configuration of a metal-clad laminate 100 in the present embodiment.
The metal-clad laminate 100 has an insulating layer 101 including a thermosetting resin, a filler, and a fiber base material, and includes metal foils 103 on both surfaces of the insulating layer 101.
Then, after removing the metal foil 103 on both sides of the metal-clad laminate 100 by etching, (1) a preheating treatment at 105 ° C. for 4 hours, and (2) a reflow treatment at a surface temperature of 260 to 265 ° C. for 5 seconds. When the heat treatment is performed, the dimensional change rate calculated from the following formulas (1) to (3) is −0.080% or more and 0% in both the longitudinal direction 105 and the lateral direction 107 of the metal-clad laminate 100. Or less, preferably -0.070% or more and 0% or less, more preferably -0.060% or more and 0% or less.
A (%) = (dimension after preheating treatment−initial dimension) / initial dimension × 100 (1)
B (%) = (dimension after reflow treatment-initial dimension) / initial dimension x 100 (2)
Dimensional change rate (%) = BA (3)
The dimensions of the laminate at each stage are measured at room temperature in accordance with 2.4.39 of IPC-TM-650. The initial dimension in the above formula indicates the dimension of the laminate before etching. The dimension after the preheating treatment in the above formula (1) indicates the dimension of the laminated plate after the preheating treatment. The dimension after the reflow process in the above formula (2) indicates the dimension of the laminated board after the reflow process.
Here, the vertical direction 105 refers to the conveyance direction (so-called MD) of the laminated plate 100, and the horizontal direction 107 refers to a direction orthogonal to the conveyance direction of the laminated plate (so-called TD). Note that the temperature of the preheating treatment is the atmospheric temperature, and the temperature of the reflow treatment is the temperature of the surface of the laminate.
 絶縁層の両面に金属箔を有する金属張積層板は、多くのプロセスを経て製造される複合材料であり、その内部には製造工程中に発生した歪みを内包している。
 本発明者はこの内部歪みの発生メカニズムを鋭意調べたところ、製造工程中は線膨張係数が異なる金属箔によって絶縁層が拘束されているため、金属張積層板の内部に歪みがたまってしまうことを見出した。
 この内部に発生した歪みは金属箔エッチング後のリフロー処理時に一気に開放され、積層板の寸法変化を引き起こす。そのため、リフロー工程においてとくに積層板の反りが起こってしまうと推察される。
A metal-clad laminate having metal foils on both sides of an insulating layer is a composite material manufactured through many processes, and includes distortion generated during the manufacturing process.
The present inventor has scrutinized the mechanism of the occurrence of this internal strain. As a result, the insulating layer is constrained by a metal foil having a different linear expansion coefficient during the manufacturing process, so that the strain is accumulated inside the metal-clad laminate. I found.
The distortion generated inside is released all at once during the reflow process after the metal foil etching, causing a dimensional change of the laminate. Therefore, it is speculated that the warping of the laminated plate occurs particularly in the reflow process.
 よって、上記の寸法変化率を満たす本実施形態における金属張積層板100は、リフローなどの加熱処理後の金属張積層板100の反りを低減することができる。さらに、その結果として、金属張積層板100を回路加工してなるプリント配線基板や、半導体パッケージ200、半導体装置300の反りも低減することができる。 Therefore, the metal-clad laminate 100 according to this embodiment that satisfies the above dimensional change rate can reduce the warp of the metal-clad laminate 100 after heat treatment such as reflow. Furthermore, as a result, warpage of the printed wiring board formed by processing the metal-clad laminate 100, the semiconductor package 200, and the semiconductor device 300 can be reduced.
 また、金属張積層板100の反りの防止効果をより効果的に得るためには、金属張積層板100の縦方向105および横方向107における寸法変化率の差の絶対値が、好ましくは0%以上0.03%以下であり、さらに好ましくは0%以上0.02%以下である。
 縦方向105および横方向107における寸法変化率の差の絶対値が上記範囲を満たした金属張積層板100は、リフローなどの加熱処理したときの寸法変化の異方性が小さいため、実装時の金属張積層板100の反りをより一層低減することができる。
In order to obtain the effect of preventing warpage of the metal-clad laminate 100 more effectively, the absolute value of the difference in dimensional change rate between the longitudinal direction 105 and the lateral direction 107 of the metal-clad laminate 100 is preferably 0%. It is 0.03% or less and more preferably 0% or more and 0.02% or less.
The metal-clad laminate 100 in which the absolute value of the difference between the dimensional change rates in the vertical direction 105 and the horizontal direction 107 satisfies the above range has a small dimensional change anisotropy when subjected to heat treatment such as reflow. The warp of the metal-clad laminate 100 can be further reduced.
 また、金属張積層板100の反りの防止効果をより効果的に得るためには、とくに限定されないが、金属張積層板100の動的粘弾性測定による周波数1Hzでのガラス転移温度が、好ましくは200℃以上であり、より好ましくは220℃以上である。上限については、例えば、350℃以下が好ましい。
 金属張積層板100は、動的粘弾性測定による周波数1Hzでのガラス転移温度が上記範囲を満たすと、金属張積層板100の剛性が高まり、実装時の金属張積層板100の反りをより一層低減することができる。
Further, in order to obtain the effect of preventing warpage of the metal-clad laminate 100 more effectively, the glass transition temperature at a frequency of 1 Hz by dynamic viscoelasticity measurement of the metal-clad laminate 100 is preferably It is 200 degreeC or more, More preferably, it is 220 degreeC or more. About an upper limit, 350 degrees C or less is preferable, for example.
When the glass transition temperature at a frequency of 1 Hz by dynamic viscoelasticity measurement satisfies the above range, the metal-clad laminate 100 increases the rigidity of the metal-clad laminate 100 and further warps the metal-clad laminate 100 during mounting. Can be reduced.
 また、金属張積層板100の反りの防止効果をより効果的に得るためには、とくに限定されないが、金属張積層板100の250℃での動的粘弾性測定による貯蔵弾性率E'が、好ましくは5GPa以上であり、より好ましくは10GPa以上である。上限値については、特に限定されるものではないが、例えば、50GPa以下とすることができる。
 金属張積層板100は、150℃での貯蔵弾性率E'が上記範囲を満たすと、金属張積層板100の剛性が高まり、実装時の金属張積層板100の反りをより一層低減することができる。
Moreover, in order to obtain the effect of preventing warpage of the metal-clad laminate 100 more effectively, the storage elastic modulus E ′ by dynamic viscoelasticity measurement at 250 ° C. of the metal-clad laminate 100 is not particularly limited. Preferably it is 5 GPa or more, More preferably, it is 10 GPa or more. Although it does not specifically limit about an upper limit, For example, it can be 50 GPa or less.
When the storage elastic modulus E ′ at 150 ° C. satisfies the above range, the metal-clad laminate 100 increases the rigidity of the metal-clad laminate 100 and further reduces the warp of the metal-clad laminate 100 during mounting. it can.
 本実施形態における絶縁層101(金属張積層板100から金属箔103を除いた部分)の厚さは、好ましくは0.025mm以上0.6mm以下であり、より好ましくは0.04mm以上0.4mm以下であり、さらに好ましくは0.04mm以上0.3mm以下であり、とくに好ましくは0.05mm以上0.2mm以下である。絶縁層101の厚さが上記範囲内であると、機械的強度および生産性のバランスがとくに優れ、薄型回路基板に適した金属張積層板100を得ることができる。 The thickness of the insulating layer 101 (the portion excluding the metal foil 103 from the metal-clad laminate 100) in the present embodiment is preferably 0.025 mm to 0.6 mm, more preferably 0.04 mm to 0.4 mm. Or less, more preferably 0.04 mm or more and 0.3 mm or less, and particularly preferably 0.05 mm or more and 0.2 mm or less. When the thickness of the insulating layer 101 is within the above range, the balance between mechanical strength and productivity is particularly excellent, and the metal-clad laminate 100 suitable for a thin circuit board can be obtained.
 本実施形態における絶縁層101の面方向の線膨張係数は、好ましくは-11ppm/℃以上11ppm/℃以下であり、より好ましくは-9ppm/℃以上9ppm/℃以下であり、さらに好ましくは-7ppm/℃以上7ppm/℃以下である。絶縁層101の線膨張係数が上記範囲内であると、配線パターンを形成したプリント配線基板、半導体素子を搭載した半導体パッケージ200の反り抑制や温度サイクル信頼性の向上がより一層効果的に得られる。さらに半導体パッケージ200を二次実装した半導体装置300のマザーボードとの温度サイクル信頼性の向上がより一層効果的に得られる。 The linear expansion coefficient in the plane direction of the insulating layer 101 in this embodiment is preferably −11 ppm / ° C. or more and 11 ppm / ° C. or less, more preferably −9 ppm / ° C. or more and 9 ppm / ° C. or less, and further preferably −7 ppm. / ° C. or more and 7 ppm / ° C. or less. When the coefficient of linear expansion of the insulating layer 101 is within the above range, it is possible to more effectively obtain warpage suppression and temperature cycle reliability improvement of a printed wiring board on which a wiring pattern is formed and a semiconductor package 200 on which a semiconductor element is mounted. . Furthermore, the temperature cycle reliability with the mother board of the semiconductor device 300 on which the semiconductor package 200 is secondarily mounted can be improved more effectively.
(金属張積層板100の製造方法)
 つづいて、本実施形態における金属張積層板100の製造方法について説明する。金属張積層板100は、熱硬化性樹脂、充填材および繊維基材を含むプリプレグを加熱硬化することによって得られる。ここで用いるプリプレグはシート状材料であり、誘電特性、高温多湿下での機械的、電気的接続信頼性などの各種特性に優れ、プリント配線基板用の金属張積層板100の製造に適しており好ましい。
(Method for producing metal-clad laminate 100)
It continues and demonstrates the manufacturing method of the metal-clad laminated board 100 in this embodiment. The metal-clad laminate 100 is obtained by heat-curing a prepreg including a thermosetting resin, a filler, and a fiber base material. The prepreg used here is a sheet-like material, which has excellent dielectric properties, various properties such as mechanical and electrical connection reliability under high temperature and high humidity, and is suitable for manufacturing a metal-clad laminate 100 for a printed wiring board. preferable.
 金属張積層板100は、上述したように多くのプロセスを経て製造される複合材料であり、その内部に製造工程中に発生した歪みを内包している。そのため、金属箔エッチング後のリフロー処理時にその歪みが開放され寸法変化が起こると推察される。
 本発明者はプリプレグの製造の中で繊維基材に樹脂組成物を含浸させる工程で、繊維基材の張力を低圧に調節することによって、金属張積層板100内部に発生する歪みが緩和され、寸法変化率が上記の範囲を満たす金属張積層板100が得られることを見出した。
The metal-clad laminate 100 is a composite material manufactured through many processes as described above, and includes distortion generated during the manufacturing process. For this reason, it is assumed that the distortion is released and a dimensional change occurs during the reflow process after the metal foil etching.
The present inventor is a step of impregnating the fiber base material with the resin composition in the production of the prepreg, and by adjusting the tension of the fiber base material to a low pressure, the strain generated inside the metal-clad laminate 100 is relieved, It has been found that a metal-clad laminate 100 having a dimensional change rate satisfying the above range can be obtained.
 したがって、本実施形態におけるプリプレグは、例えば、張力を低圧に調節した繊維基材に一または二以上の熱硬化性樹脂および充填材を含む樹脂組成物を含浸させ、その後、含浸させた樹脂組成物を半硬化させることによって得ることができる。
 本実施形態において、樹脂組成物を繊維基材に含浸させる方法としては、繊維基材にかかる張力を低圧に調節できればとくに限定されないが、例えば、(1)支持基材付き絶縁樹脂層を繊維基材にラミネートする方法、(2)樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、樹脂ワニスを繊維基材に塗布する方法、などが挙げられる。
Therefore, in the prepreg in the present embodiment, for example, a fiber base material whose tension is adjusted to a low pressure is impregnated with a resin composition containing one or more thermosetting resins and fillers, and then impregnated resin composition. Can be obtained by semi-curing.
In this embodiment, the method for impregnating the fiber base material with the resin composition is not particularly limited as long as the tension applied to the fiber base material can be adjusted to a low pressure. For example, (1) an insulating resin layer with a support base material The method of laminating to a material, (2) The method of melt | dissolving a resin composition in a solvent, preparing a resin varnish, and apply | coating a resin varnish to a fiber base material, etc. are mentioned.
 これらの中でも、(1)支持基材付き絶縁樹脂層を繊維基材にラミネートする方法がより好ましい。支持基材付き絶縁樹脂層を繊維基材にラミネートする方法は、繊維基材にかかる張力を低圧に調節することが容易であるため、絶縁層101に蓄積される応力をより一層低減させることができる。そのため、実装時の金属張積層板100の反りをより一層低減させることができる。 Among these, (1) a method of laminating an insulating resin layer with a supporting base material on a fiber base material is more preferable. Since the method of laminating the insulating resin layer with the supporting base material on the fiber base material can easily adjust the tension applied to the fiber base material to a low pressure, the stress accumulated in the insulating layer 101 can be further reduced. it can. Therefore, the warp of the metal-clad laminate 100 during mounting can be further reduced.
 とくに、繊維基材の厚さが0.2mm以下の場合、(1)支持基材付き絶縁樹脂層を繊維基材にラミネートする方法が好ましい。この方法によれば、繊維基材に対する樹脂組成物の含浸量を自在に調節でき、プリプレグの成形性をさらに向上させることができる。なお、支持基材付き絶縁樹脂層を繊維基材にラミネートする場合、真空のラミネート装置などを用いることがより好ましい。 In particular, when the thickness of the fiber substrate is 0.2 mm or less, (1) a method of laminating the insulating resin layer with a supporting substrate on the fiber substrate is preferable. According to this method, the amount of the resin composition impregnated into the fiber base can be freely adjusted, and the moldability of the prepreg can be further improved. In addition, when laminating the insulating resin layer with the supporting base material on the fiber base material, it is more preferable to use a vacuum laminating apparatus or the like.
 以下に、(1)支持基材付き絶縁樹脂層を繊維基材にラミネートする方法を用いたプリプレグの製造方法について説明し、金属張積層板100の構成材料についてもその都度説明する。図2は、プリプレグの製造方法を示す断面図である。図3は、本実施形態におけるプリプレグの製造方法に用いられる、支持基材13、絶縁樹脂層15a、15b、および、繊維基材11について、各々の幅方向寸法の形態例を示す概略図である。
 (1)支持基材付き絶縁樹脂層をラミネートする方法を用いたプリプレグの製造方法は、(A)熱硬化性樹脂と充填材を含む絶縁樹脂層15aが支持基材13の片面に形成された第一キャリア材料5aと、熱硬化性樹脂と充填材を含む絶縁樹脂層15bが支持基材13の片面に形成された第二キャリア材料5bとをそれぞれ準備する工程と、(B)第一キャリア材料5aの絶縁樹脂層15a側と、第二キャリア材料5bの絶縁樹脂層15b側とを、繊維基材11の両面にそれぞれ重ね合わせ、減圧条件下でこれらをラミネートすることにより、絶縁樹脂層15aおよび絶縁樹脂層15bを繊維基材に含浸させる工程とを含んでいる。
Below, (1) The manufacturing method of the prepreg using the method of laminating the insulating resin layer with a support base material on a fiber base material is demonstrated, and the constituent material of the metal-clad laminate 100 is also demonstrated each time. FIG. 2 is a cross-sectional view showing a method for producing a prepreg. FIG. 3 is a schematic diagram showing an example of the width dimension of each of the support base 13, the insulating resin layers 15a and 15b, and the fiber base 11 used in the prepreg manufacturing method of the present embodiment. .
(1) A method for producing a prepreg using a method of laminating an insulating resin layer with a supporting substrate is as follows. (A) An insulating resin layer 15a containing a thermosetting resin and a filler is formed on one side of the supporting substrate 13. A step of preparing a first carrier material 5a and a second carrier material 5b in which an insulating resin layer 15b including a thermosetting resin and a filler is formed on one side of the support base 13, and (B) a first carrier The insulating resin layer 15a side of the material 5a and the insulating resin layer 15b side of the second carrier material 5b are respectively overlapped on both surfaces of the fiber base material 11, and these are laminated under reduced pressure conditions, whereby the insulating resin layer 15a And a step of impregnating the fiber base material with the insulating resin layer 15b.
 まず、上記(A)工程について説明する。
 上記(A)工程においては、熱硬化性樹脂と充填材を含む絶縁樹脂層15aが支持基材13の片面に形成された第一キャリア材料5aと、熱硬化性樹脂と充填材を含む絶縁樹脂層15bが支持基材13の片面に形成された第二キャリア材料5bとをそれぞれ製造し、準備する。第一キャリア材料5aおよび第二キャリア材料5bは、支持基材13の片面側に、絶縁樹脂層15aおよび絶縁樹脂層15bが薄層状にそれぞれ形成されたものである。絶縁樹脂層15aおよび絶縁樹脂層15bは、支持基材13の片面側に所定厚みで形成することができる。
First, the step (A) will be described.
In the step (A), a first carrier material 5a in which an insulating resin layer 15a including a thermosetting resin and a filler is formed on one surface of the support base 13, and an insulating resin including a thermosetting resin and a filler. The second carrier material 5b in which the layer 15b is formed on one side of the support base 13 is manufactured and prepared. The first carrier material 5a and the second carrier material 5b are obtained by forming an insulating resin layer 15a and an insulating resin layer 15b in a thin layer on one side of the support base material 13, respectively. The insulating resin layer 15a and the insulating resin layer 15b can be formed on one side of the support base 13 with a predetermined thickness.
 第一キャリア材料5aおよび第二キャリア材料5bの製造方法としては、とくに限定されないが、例えばコンマコーター、ナイフコーター、ダイコーターなど各種コーター装置を用いて、樹脂組成物を支持基材13に塗工する方法、噴霧ノズルなどの各種スプレー装置を用いて、樹脂組成物を支持基材13に塗工する方法、などが挙げられる。
 これらの中でも、各種コーター装置を用いて、樹脂組成物を支持基材13に塗工する方法が好ましい。これにより、簡易な装置で厚み精度に優れた絶縁樹脂層15a、15bを形成することができる。
The production method of the first carrier material 5a and the second carrier material 5b is not particularly limited. For example, the resin composition is coated on the support base 13 using various coaters such as a comma coater, a knife coater, and a die coater. And a method of applying the resin composition to the support substrate 13 using various spray devices such as a spray nozzle.
Among these, the method of applying the resin composition to the support substrate 13 using various coater apparatuses is preferable. Thereby, the insulating resin layers 15a and 15b excellent in thickness accuracy can be formed with a simple apparatus.
 支持基材13に樹脂組成物を塗工後、必要に応じて、常温または加温下で乾燥させることができる。これにより、樹脂組成物を調製する際に有機溶媒や分散媒体などを用いた場合は、これらを実質的に除去して、絶縁樹脂層表面のタック性をなくし、取り扱い性に優れた第一キャリア材料5a、第二キャリア材料5bとすることができる。
 また、熱硬化性樹脂の硬化反応を中途まで進め、後述する(B)工程または(C)工程における絶縁樹脂層15a、15bの流動性を調整することもできる。
 上記加温下で乾燥させる方法としては、とくに限定されないが、熱風乾燥装置、赤外線加熱装置などを用いて連続的に処理する方法を好ましく適用することができる。
After applying the resin composition to the support substrate 13, it can be dried at room temperature or under heating as necessary. Thus, when an organic solvent or a dispersion medium is used when preparing the resin composition, these are substantially removed, the tackiness of the surface of the insulating resin layer is eliminated, and the first carrier excellent in handleability. The material 5a and the second carrier material 5b can be used.
Further, the curing reaction of the thermosetting resin can be advanced halfway, and the fluidity of the insulating resin layers 15a and 15b in the step (B) or the step (C) described later can be adjusted.
Although it does not specifically limit as a method to dry under the said heating, The method of processing continuously using a hot air drying apparatus, an infrared heating apparatus, etc. can be applied preferably.
 本実施形態における第一キャリア材料5a、第二キャリア材料5bにおいて、絶縁樹脂層15a、15bの厚みは、用いる繊維基材11の厚みなどに応じて適宜設定することができる。例えば1μm以上100μm以下とすることができる。
 なお、この絶縁樹脂層15a、15bは、同じ熱硬化性樹脂を用いて一回または複数回数の塗工で形成してもよいし、異なる熱硬化性樹脂を用いて複数回数の塗工で形成してもよい。
In the first carrier material 5a and the second carrier material 5b in the present embodiment, the thicknesses of the insulating resin layers 15a and 15b can be appropriately set according to the thickness of the fiber base 11 used. For example, it can be 1 μm or more and 100 μm or less.
The insulating resin layers 15a and 15b may be formed by one or more coatings using the same thermosetting resin, or may be formed by multiple coatings using different thermosetting resins. May be.
 このようにして第一キャリア材料5a、第二キャリア材料5bを製造後、絶縁樹脂層15a、15bを形成した上面側、すなわち、支持基材13と反対面側に、絶縁樹脂層表面の保護のために、保護フィルムを重ね合わせてもよい。 After manufacturing the first carrier material 5a and the second carrier material 5b in this way, the surface of the insulating resin layer is protected on the upper surface side where the insulating resin layers 15a and 15b are formed, that is, on the side opposite to the support base material 13. Therefore, a protective film may be overlaid.
 支持基材13としては、例えば、長尺状のシート形態のものを好適に用いることができる。支持基材13の材質としてはとくに限定されないが、例えば、ポリエチレンテレフタレート、ポリエチレン、ポリイミドなどの熱可塑性樹脂から形成される熱可塑性樹脂フィルム、銅、銅合金、アルミ、アルミ合金、銀、銀合金などの金属から形成される金属箔などを好適に用いることができる。
 これらの中でも、熱可塑性樹脂フィルムを形成する熱可塑性樹脂としては、耐熱性に優れ、安価であることから、ポリエチレンテレフタレートが好ましい。
 また、金属箔を形成する金属としては、導電性に優れ、エッチングによる回路形成が容易であり、また安価であることから銅または銅合金が好ましい。
As the support substrate 13, for example, a long sheet can be suitably used. Although it does not specifically limit as a material of the support base material 13, For example, the thermoplastic resin film formed from thermoplastic resins, such as a polyethylene terephthalate, polyethylene, a polyimide, copper, a copper alloy, aluminum, an aluminum alloy, silver, a silver alloy, etc. A metal foil formed from any of these metals can be suitably used.
Among these, as the thermoplastic resin for forming the thermoplastic resin film, polyethylene terephthalate is preferable because it is excellent in heat resistance and inexpensive.
Moreover, as a metal which forms metal foil, it is excellent in electroconductivity, the circuit formation by an etching is easy, and since it is cheap, copper or a copper alloy is preferable.
 上記支持基材13として熱可塑性樹脂フィルムシートを用いる場合は、絶縁樹脂層15a、15bが形成される面に剥離可能な処理が施されたものであることが好ましい。これにより、プリプレグの製造時または製造後に、絶縁樹脂層15a、15bと支持基材13とを容易に分離することができる。 When using a thermoplastic resin film sheet as the support substrate 13, it is preferable that the surface on which the insulating resin layers 15a and 15b are formed is subjected to a detachable treatment. Thereby, the insulating resin layers 15a and 15b and the support base material 13 can be easily separated at the time of manufacturing the prepreg or after manufacturing.
 この熱可塑性樹脂フィルムシートの厚みとしては、例えば、15μm以上75μm以下のものを用いることができる。この場合、第一キャリア材料5a、第二キャリア材料5bを製造する際の作業性を良好なものとすることができる。
 熱可塑性樹脂フィルムの厚みが上記下限値以上であると、第一キャリア材料5a、第二キャリア材料5bを製造する際の機械的強度を充分に確保することができる。また、上記上限値以下であると、第一キャリア材料5a、第二キャリア材料5bの生産性が向上することがある。
As the thickness of the thermoplastic resin film sheet, for example, a thickness of 15 μm or more and 75 μm or less can be used. In this case, workability at the time of manufacturing the first carrier material 5a and the second carrier material 5b can be improved.
When the thickness of the thermoplastic resin film is not less than the above lower limit value, it is possible to sufficiently secure the mechanical strength when the first carrier material 5a and the second carrier material 5b are manufactured. Moreover, productivity below 1st carrier material 5a and 2nd carrier material 5b may be improved as it is below the said upper limit.
 支持基材13として金属箔を用いる場合は、絶縁樹脂層15a、15bが形成される面に剥離可能な処理が施されたものを用いてもよいし、このような処理が施されていないか、絶縁樹脂層15a、15bとの密着性を向上させる処理が施されたものを用いてもよい。 When using a metal foil as the support substrate 13, a surface on which the insulating resin layers 15a and 15b are formed may be subjected to a detachable process, or is such a process not performed? Alternatively, a material subjected to a treatment for improving the adhesion with the insulating resin layers 15a and 15b may be used.
 支持基材13として、絶縁樹脂層15a、15bが形成される面に剥離可能な処理が施された金属箔を用いた場合は、上記熱可塑性樹脂フィルムを用いた場合と同様の効果を発現させることができる。
 この金属箔の厚みは、例えば、1μm以上70μm以下である。これにより、第一キャリア材料5a、第二キャリア材料5bを製造する際の作業性を良好なものとすることができる。
 金属箔の厚みが上記下限値以上であると、第一キャリア材料5a、第二キャリア材料5bを製造する際の機械的強度を充分に確保することができる。また、厚みが上記上限値以下であると、第一キャリア材料5a、第二キャリア材料5bの生産性が向上することがある。
When a metal foil having a peelable treatment applied to the surface on which the insulating resin layers 15a and 15b are formed is used as the support substrate 13, the same effect as that obtained when the thermoplastic resin film is used is exhibited. be able to.
The thickness of this metal foil is, for example, 1 μm or more and 70 μm or less. Thereby, workability | operativity at the time of manufacturing the 1st carrier material 5a and the 2nd carrier material 5b can be made favorable.
When the thickness of the metal foil is equal to or more than the above lower limit value, it is possible to sufficiently ensure the mechanical strength when manufacturing the first carrier material 5a and the second carrier material 5b. Further, when the thickness is not more than the above upper limit value, the productivity of the first carrier material 5a and the second carrier material 5b may be improved.
 なお、支持基材として、熱可塑性樹脂フィルム、あるいは絶縁樹脂層15a、15bが形成される面に剥離可能な処理が施された金属箔を用いる場合、絶縁樹脂層15a、15bが形成される側の支持基材13表面の凹凸は、極力小さいものであることが好ましい。これにより、金属張積層板100を製造した場合に、絶縁層101の表面平滑性を高めることができるので、絶縁層101表面を粗化処理した後に金属メッキなどにより新たな導体層を形成する際に、微細な回路をより容易に加工形成することができる。 In addition, when using the metal foil by which the process which can peel in the surface in which a thermoplastic resin film or insulating resin layer 15a, 15b is formed is used as a support base material, the side in which insulating resin layer 15a, 15b is formed The unevenness on the surface of the support substrate 13 is preferably as small as possible. Thereby, when the metal-clad laminate 100 is manufactured, the surface smoothness of the insulating layer 101 can be improved. Therefore, when the surface of the insulating layer 101 is roughened, a new conductor layer is formed by metal plating or the like. In addition, a fine circuit can be processed and formed more easily.
 一方、支持基材として、剥離可能な処理が施されていないか、絶縁樹脂層15a、15bとの密着性を向上させる処理が施された金属箔を用いる場合は、金属張積層板100の製造時に、この金属箔を回路形成のための導体層(図1での金属箔103)としてそのまま用いることができる。
 このとき、絶縁樹脂層15a、15bが形成される側の支持基材表面の凹凸としては、とくに限定されないが、例えばRa:0.1μm以上1.5μm以下であるものを用いることができる。
On the other hand, when a metal foil that has not been subjected to a detachable treatment or has been subjected to a treatment that improves the adhesion to the insulating resin layers 15a and 15b is used as the support substrate, the metal-clad laminate 100 is manufactured. Sometimes this metal foil can be used as it is as a conductor layer (metal foil 103 in FIG. 1) for circuit formation.
At this time, the unevenness of the surface of the support base on the side where the insulating resin layers 15a and 15b are formed is not particularly limited, but for example, Ra: 0.1 μm or more and 1.5 μm or less can be used.
 この場合は、絶縁層101と金属箔103との密着性を充分に確保できるとともに、この金属箔103をエッチング処理などを行うことにより、微細な回路を容易に加工形成することができる。
 また、この金属箔103の厚みとしては、例えば、1μm以上35μm以下であるものを好適に用いることができる。この金属箔103の厚みが上記下限値以上であると、第一キャリア材料5a、第二キャリア材料5bを製造する際の機械的強度を充分に確保することができる。また、厚みが上記上限値以下であると、微細な回路を加工形成しやすくなる。
 この金属箔103は、プリプレグを製造するのに用いる第一キャリア材料5a、第二キャリア材料5bのうちの少なくとも一方の支持基材13に用いて、プリプレグを製造することができる。
 なお、この用途で用いる金属箔103としては、1つの層から形成される金属箔103を用いることもできるし、金属箔103どうしが剥離可能な2つ以上の層から構成される金属箔103を用いることもできる。例えば、絶縁層に密着させる側の第1の金属箔103と、絶縁層に密着させる側と反対側に第1の金属箔103を支持できるような第2の金属箔103とを、剥離可能に接合した2層構造の金属箔を用いることができる。
In this case, sufficient adhesion between the insulating layer 101 and the metal foil 103 can be secured, and a fine circuit can be easily processed and formed by performing an etching process or the like on the metal foil 103.
Moreover, as thickness of this metal foil 103, what is 1 micrometer or more and 35 micrometers or less can be used suitably, for example. When the thickness of the metal foil 103 is not less than the above lower limit value, the mechanical strength when the first carrier material 5a and the second carrier material 5b are manufactured can be sufficiently secured. Further, when the thickness is not more than the above upper limit value, it becomes easy to process and form a fine circuit.
This metal foil 103 can be used to manufacture a prepreg by using at least one support base material 13 of the first carrier material 5a and the second carrier material 5b used for manufacturing the prepreg.
As the metal foil 103 used in this application, a metal foil 103 formed from one layer can be used, or a metal foil 103 formed of two or more layers from which the metal foil 103 can be peeled off is used. It can also be used. For example, the first metal foil 103 on the side to be in close contact with the insulating layer and the second metal foil 103 that can support the first metal foil 103 on the side opposite to the side to be in close contact with the insulating layer can be peeled off. A bonded metal foil having a two-layer structure can be used.
 つぎに、上記(B)工程について説明する。
 上記(B)工程においては、絶縁樹脂層が支持基材の片面に形成された第一キャリア材料5a、第二キャリア材料5bの絶縁樹脂層側を、繊維基材11の両面にそれぞれ重ね合わせ、減圧条件下でこれらをラミネートする。図2は、第一キャリア材料5a、第二キャリア材料5bと繊維基材11を重ね合わせる際の一例を示したものである。
Next, the step (B) will be described.
In the step (B), the insulating resin layer is formed on one side of the support base material, the first carrier material 5a and the insulating resin layer side of the second carrier material 5b are overlapped on both sides of the fiber base material 11, respectively. They are laminated under reduced pressure conditions. FIG. 2 shows an example when the first carrier material 5a, the second carrier material 5b, and the fiber base material 11 are overlapped.
 あらかじめ第一樹脂組成物を基材に塗布した第一キャリア材料5aと、第二樹脂組成物を基材に塗布した第二キャリア材料5bを製造する。つぎに、真空ラミネート装置60を用いて、減圧下で繊維基材11の両面から第一キャリア材料5aおよび5bを重ね合わせて、必要により樹脂組成物が溶融する温度以上に加熱したラミネートロール61で接合し、基材上に塗布した樹脂組成物を繊維基材11に含浸させる。
 ここで、減圧下で接合することにより、第一キャリア材料5a、第二キャリア材料5bの絶縁樹脂層と繊維基材11とを接合する際に、繊維基材11の内部、あるいは、第一キャリア材料5a、第二キャリア材料5bの絶縁樹脂層と繊維基材11との接合部位に非充填部分が存在しても、これを減圧ボイドあるいは実質的な真空ボイドとすることができる。この減圧下での接合は、7000Pa以下で実施することが好ましい。さらに好ましくは3000Pa以下である。これにより、上記効果を高く発現させることができる。
 このような減圧下で繊維基材11と第一キャリア材料5a、第二キャリア材料5bとを接合する他の装置としては、例えば、真空ボックス装置、真空ベクレル装置などが挙げられる。
First carrier material 5a in which the first resin composition is applied to the base material in advance and second carrier material 5b in which the second resin composition is applied to the base material are manufactured. Next, using a vacuum laminator 60, the first carrier materials 5a and 5b are overlapped from both sides of the fiber base material 11 under reduced pressure, and if necessary, the laminating roll 61 is heated above the temperature at which the resin composition melts. The fiber base material 11 is impregnated with the resin composition bonded and coated on the base material.
Here, when the insulating resin layers of the first carrier material 5a and the second carrier material 5b and the fiber substrate 11 are bonded by bonding under reduced pressure, the inside of the fiber substrate 11 or the first carrier. Even if there is an unfilled portion at the joint portion between the insulating resin layer of the material 5a and the second carrier material 5b and the fiber base material 11, it can be a reduced-pressure void or a substantial vacuum void. The joining under reduced pressure is preferably performed at 7000 Pa or less. More preferably, it is 3000 Pa or less. Thereby, the said effect can be expressed highly.
Examples of other devices for joining the fiber base material 11 with the first carrier material 5a and the second carrier material 5b under such reduced pressure include a vacuum box device and a vacuum becquerel device.
 繊維基材11は、第一キャリア材料5a、第二キャリア材料5bの搬送方向と同じ方向に連続的に供給・搬送することができるものであり、幅方向に寸法を有している。ここで、幅方向の寸法とは、繊維基材11の搬送方向と直交方向における繊維基材11の寸法を指す。このような繊維基材11としては、例えば、長尺状のシート形態のものを好適に用いることができる。 The fiber base material 11 can be continuously supplied and transported in the same direction as the transport direction of the first carrier material 5a and the second carrier material 5b, and has dimensions in the width direction. Here, the dimension in the width direction refers to the dimension of the fiber base material 11 in the direction orthogonal to the transport direction of the fiber base material 11. As such a fiber base material 11, the thing of a long sheet form can be used suitably, for example.
 第一キャリア材料5a、第二キャリア材料5bと繊維基材11をラミネートする際に、絶縁樹脂層が溶融可能な温度に加温することが好ましい。これにより、第一キャリア材料5a、第二キャリア材料5bと繊維基材11とを容易に接合することができる。また、絶縁樹脂層の少なくとも一部が溶融して繊維基材11内部に含浸することにより、含浸性の良好なプリプレグを得やすくなる。
 ここで、加温する方法としてはとくに限定されないが、例えば、接合する際に所定温度に加熱したラミネートロールを用いる方法などを好適に用いることができる。
 ここで、加温する温度( 以下、「ラミネート温度」ともいう)としては、絶縁樹脂層を形成する樹脂の種類や配合により異なるためとくに限定されないが、絶縁樹脂層を形成する樹脂の軟化点+10℃以上の温度が好ましく、軟化点+30℃ 以上がより好ましい。これにより、繊維基材11と絶縁樹脂層とを容易に接合することができる。また、ラミネート速度を上昇させて、金属張積層板100の生産性をより向上させることができる。例えば、60℃以上150℃以下で実施することができる。軟化点は、例えば、動的粘弾性試験における、G'/G"のピーク温度で規定することができる。
When laminating the first carrier material 5a, the second carrier material 5b, and the fiber base material 11, it is preferable to heat to a temperature at which the insulating resin layer can be melted. Thereby, the 1st carrier material 5a, the 2nd carrier material 5b, and the fiber base material 11 can be joined easily. Moreover, when at least a part of the insulating resin layer is melted and impregnated into the fiber base material 11, it becomes easy to obtain a prepreg with good impregnation properties.
Here, the heating method is not particularly limited, but for example, a method using a laminate roll heated to a predetermined temperature when joining can be suitably used.
Here, the heating temperature (hereinafter, also referred to as “laminate temperature”) is not particularly limited because it varies depending on the type and composition of the resin forming the insulating resin layer, but the softening point of the resin forming the insulating resin layer +10 A temperature of at least ° C is preferred, and a softening point of + 30 ° C or more is more preferred. Thereby, the fiber base material 11 and the insulating resin layer can be easily joined. Further, the productivity of the metal-clad laminate 100 can be further improved by increasing the lamination speed. For example, it can be carried out at 60 ° C. or higher and 150 ° C. or lower. The softening point can be defined by a peak temperature of G ′ / G ″ in a dynamic viscoelasticity test, for example.
 また、ラミネート時におけるラミネート速度は、0.5m/分以上10m/分以下であることが好ましく、1.0m/分以上10m/分以下であることがより好ましい。0.5m/分以上であれば、十分なラミネートが可能になり、さらに、1.0m/分以上であれば、生産性をより一層向上することができる。 The laminating speed at the time of laminating is preferably from 0.5 m / min to 10 m / min, and more preferably from 1.0 m / min to 10 m / min. If it is 0.5 m / min or more, sufficient lamination becomes possible, and if it is 1.0 m / min or more, productivity can be further improved.
 また、ラミネート時における加圧する他の方法としてはとくに限定されないが、例えば、油圧方式、空気圧方式、ギャップ間圧力方式など、所定の圧力を加えることができる従来公知の方式を採用することができる。
 これらの中でも、上記接合したものに実質的に圧力を作用させることなく実施する方法が好ましい。この方法によれば、(B)工程で樹脂成分を過剰に流動させることがないので、所望とする絶縁層厚みを有し、かつ、この絶縁層厚みにおいて高い均一性を有したプリプレグを効率良く製造することができる。
 また、樹脂成分の流動に伴って繊維基材11に作用する応力を最小限とすることができるので、内部歪みを非常に少ないものとすることができる。さらには、樹脂成分が溶融した際に、実質的に圧力が作用していないので、この工程における打痕不良の発生を実質的になくすことができる。
In addition, other methods for applying pressure during lamination are not particularly limited, and for example, a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, or the like can be employed.
Among these, the method of carrying out without substantially applying pressure to the above-mentioned joined one is preferable. According to this method, since the resin component does not flow excessively in the step (B), a prepreg having a desired insulating layer thickness and high uniformity in the insulating layer thickness can be efficiently obtained. Can be manufactured.
Moreover, since the stress which acts on the fiber base material 11 with the flow of the resin component can be minimized, the internal strain can be extremely reduced. Furthermore, since the pressure is not substantially applied when the resin component is melted, it is possible to substantially eliminate the occurrence of a dent in this step.
 そのため、ラミネート圧力は、とくに限定されないが、15N/cm以上250N/cm以下の範囲内であることが好ましく、20N/cm以上100N/cm以下の範囲内であることがより好ましい。この範囲内であれば、生産性をより一層向上させることができ、上記の寸法変化率の範囲を満たす金属張積層板100をより一層効率良く得ることができる。 Therefore, the lamination pressure is not particularly limited, but is preferably in the range of 15 N / cm 2 or more and 250 N / cm 2 or less, and more preferably in the range of 20 N / cm 2 or more and 100 N / cm 2 or less. Within this range, productivity can be further improved, and the metal-clad laminate 100 that satisfies the above range of dimensional change rate can be obtained more efficiently.
 また、ラミネート時において、繊維基材11にかかる張力はしわ等の外観上の不具合を発生させることがない程度で、可能な限り小さくすることが好ましい。具体的には、25N/m以上350N/m以下の範囲内であることが好ましく、35N/m以上250N/m以下の範囲内であることがより好ましく、55N/m以上150N/m以下の範囲内であることがとくに好ましい。張力を上記範囲内とすることにより、プリプレグ内部に発生する歪みが緩和され、その結果、上記の寸法変化率の範囲を満たす金属張積層板100をより一層効率良く得ることができる。 Also, during the lamination, it is preferable that the tension applied to the fiber base material 11 is as small as possible without causing problems in appearance such as wrinkles. Specifically, it is preferably within a range of 25 N / m to 350 N / m, more preferably within a range of 35 N / m to 250 N / m, and a range of 55 N / m to 150 N / m. Is particularly preferred. By setting the tension within the above range, the strain generated inside the prepreg is relieved, and as a result, the metal-clad laminate 100 that satisfies the range of the dimensional change rate can be obtained more efficiently.
 また、本実施形態においては、ラミネートする工程の前に、繊維基材11にかかる張力の張力カットを行う工程をおこなってもよい。これにより、低張力でラミネートする時に発生するしわ等の外観上不具合を解消することができる。 Moreover, in this embodiment, you may perform the process of performing the tension cut of the tension concerning the fiber base material 11 before the process of laminating. Thereby, it is possible to eliminate defects in appearance such as wrinkles that occur when laminating at a low tension.
 張力カットの方法は、とくに限定されるものではなく、例えば、ニップロール、S字ニップロールなどの既知の張力カット法を用いることができる。また、張力カットは、ラミネート前に、張力カット装置を導入することによって達成することができる。上記例示したような方法で、張力カットを行うことによって、繊維基材11の搬送性を損なわずに、限りなく張力を減少させることができる。それゆえ、ラミネート時に発生し、寸法変化の原因となる歪みの発生をより一層抑制することができる。 The tension cutting method is not particularly limited, and for example, a known tension cutting method such as a nip roll or an S-shaped nip roll can be used. Further, the tension cut can be achieved by introducing a tension cut device before the lamination. By performing the tension cut by the method as exemplified above, the tension can be reduced as much as possible without impairing the transportability of the fiber base material 11. Therefore, it is possible to further suppress the occurrence of distortion that occurs during lamination and causes dimensional changes.
 本実施形態において、ラミネートを実施する手段の具体的な構成はとくに限定されないが、得られる金属張積層板100の外観を良好なものとするために、加圧面と支持基材11との間に保護フィルムを配置してもよい。 In the present embodiment, the specific configuration of the means for carrying out the lamination is not particularly limited, but in order to improve the appearance of the obtained metal-clad laminate 100, it is between the pressing surface and the support substrate 11. A protective film may be arranged.
 つぎに、各々の幅方向寸法の関係について、図3(1)~(3)を用いて説明する。図3は、本実施形態におけるプリプレグの製造方法に用いられる、支持基材、絶縁樹脂層、および繊維基材について、各々の幅方向寸法の形態例を示す概略図である。
 図3(1)~(3)においては、第一キャリア材料5a、第二キャリア材料5bとして、繊維基材11よりも幅方向寸法が大きい支持基材13を有するとともに、繊維基材11よりも幅方向寸法が大きい絶縁樹脂層15を有するものを用いている。ここで、支持基材13、絶縁樹脂層15a、15b、繊維布の各々の幅方向寸法の関係を図3(1)に示す。
 この形態では、上記(B)工程において、繊維基材11の幅方向寸法の内側領域、すなわち、幅方向で繊維基材11が存在する領域においては、第一キャリア材料5aの絶縁樹脂層15aと繊維基材11、および、第二キャリア材料5bの絶縁樹脂層15bと繊維基材11とをそれぞれ接合することができる。
 また、繊維基材11の幅方向寸法の外側領域、すなわち、繊維基材11が存在していない領域においては、第一キャリア材料5aの絶縁樹脂層15a面と、第二キャリア材料5bの絶縁樹脂層15b面とを直接接合することができる。この状態を図3(2)に示す。
 そして、これらの接合を減圧下で実施するため、繊維基材11の内部、あるいは、第一キャリア材料5a、第二キャリア材料5bの絶縁樹脂層15a、15bと繊維基材11との接合面などに非充填部分が残存していても、これらを減圧ボイドあるいは実質的な真空ボイドとすることができるので、(B)工程後の(C)工程で、樹脂の溶融温度以上の温度域で加熱処理した場合、これを容易に消失させることができる。そして、(C)工程において、幅方向の周辺部から空気が侵入して新たなボイドが形成されるのを防ぐことができる。この状態を図3(3)に示す。
Next, the relationship between the dimensions in the width direction will be described with reference to FIGS. FIG. 3 is a schematic diagram showing an example of each width direction dimension of the support base material, the insulating resin layer, and the fiber base material used in the prepreg manufacturing method of the present embodiment.
3 (1) to 3 (3), the first carrier material 5a and the second carrier material 5b have a support base material 13 having a width dimension larger than that of the fiber base material 11, and more than the fiber base material 11. What has the insulating resin layer 15 with a large width direction dimension is used. Here, FIG. 3 (1) shows the relationship among the width direction dimensions of the support base 13, the insulating resin layers 15a and 15b, and the fiber cloth.
In this form, in the step (B), in the inner region of the width direction dimension of the fiber base material 11, that is, in the region where the fiber base material 11 exists in the width direction, the insulating resin layer 15a of the first carrier material 5a and The fiber base material 11, the insulating resin layer 15b of the second carrier material 5b, and the fiber base material 11 can be bonded to each other.
Further, in the outer region of the width direction dimension of the fiber base material 11, that is, the region where the fiber base material 11 does not exist, the insulating resin layer 15a surface of the first carrier material 5a and the insulating resin of the second carrier material 5b. The surface of the layer 15b can be directly joined. This state is shown in FIG.
And since these joining is implemented under pressure reduction, the inside of the fiber base material 11, or the joint surface of the insulating resin layers 15a and 15b of the first carrier material 5a and the second carrier material 5b and the fiber base material 11, etc. Even if unfilled portions remain, they can be made into reduced-pressure voids or substantial vacuum voids, so that they are heated in a temperature range equal to or higher than the melting temperature of the resin in step (C) after step (B). If processed, this can be easily lost. In the step (C), it is possible to prevent air from entering from the peripheral portion in the width direction and forming a new void. This state is shown in FIG.
 また、第一キャリア材料5a、第二キャリア材料5bとして、繊維基材11よりも幅方向寸法が大きい支持基材13を有するとともに、第一キャリア材料5a、第二キャリア材料5bのうちの一方、例えば、第一キャリア材料5aとして、繊維基材11よりも幅方向寸法が大きい絶縁樹脂層15aを有するものを用い、第二キャリア材料5bとして、繊維基材11と幅方向寸法が同じ絶縁樹脂層15bを有するものを用いてもよい。 Moreover, while having the support base material 13 whose width direction dimension is larger than the fiber base material 11 as the 1st carrier material 5a and the 2nd carrier material 5b, one of the 1st carrier material 5a and the 2nd carrier material 5b, For example, as the first carrier material 5a, a material having an insulating resin layer 15a having a width dimension larger than that of the fiber base material 11 is used. As the second carrier material 5b, an insulating resin layer having the same width direction dimension as the fiber base material 11 is used. You may use what has 15b.
 また、第一キャリア材料5a、第二キャリア材料5bとして、繊維基材11と幅方向寸法が同じ絶縁樹脂層15a、15bを有するものを用いてもよい。 Further, as the first carrier material 5a and the second carrier material 5b, those having the insulating resin layers 15a and 15b having the same width direction dimensions as the fiber base 11 may be used.
 上記の(B)工程の後に、(C)熱風乾燥装置62を用いて絶縁樹脂の溶融温度以上の温度で加熱処理する工程をおこなってもよい。これにより、減圧下での接合工程で発生していた減圧ボイドなどをほぼ消し去ることができる。
 加熱処理する他の方法としてはとくに限定されないが、例えば、赤外線加熱装置、加熱ロール装置、平板状の熱盤プレス装置、熱循環加熱装置、誘導加熱装置など所定の温度で加熱しうる従来公知の加熱装置を用いて実施することができる。これらの中でも、上記接合したものに実質的に圧力を作用させることなく実施する方法が好ましい。
 熱風乾燥装置、赤外線加熱装置を用いた場合は、上記接合したものに実質的に圧力を作用させることなく実施することができる。この方法によれば、樹脂成分を過剰に流動させることがないので、所望とする絶縁層厚みを有し、かつ、この絶縁層厚みにおいて高い均一性を有したプリプレグをより一層効率良く製造することができる。
 また、加熱ロール装置、平板状の熱盤プレス装置を用いた場合は、上記接合したものに所定の圧力を作用させることで実施することができる。また、樹脂成分の流動に伴って繊維基材に作用する応力を最小限とすることができるので、内部歪みを非常に少ないものとすることができる。
 さらには、樹脂成分が溶融した際に、実質的に圧力が作用していないので、この工程における打痕不良の発生を実質的になくすことができる。
 加熱温度は、樹脂層を形成する樹脂の種類や配合により異なるためとくに限定されないが、用いる熱硬化性樹脂が溶融し、かつ、熱硬化性樹脂の硬化反応が急速に進行しないような温度域とすることが好ましい。
 また、加熱処理する時間は、用いる熱硬化性樹脂の種類などにより異なるためとくに限定されないが、例えば、1~10分間処理することにより実施することができる。
You may perform the process of heat-processing at the temperature more than the melting temperature of insulating resin using the hot air drying apparatus 62 after said (B) process. Thereby, the decompression void etc. which have occurred in the joining process under reduced pressure can be almost eliminated.
Although it does not specifically limit as another method of heat-processing, For example, it is a conventionally well-known thing which can be heated at predetermined | prescribed temperature, such as an infrared heating apparatus, a heating roll apparatus, a flat platen hot-plate press apparatus, a heat circulation heating apparatus, an induction heating apparatus. It can be carried out using a heating device. Among these, the method of carrying out without substantially applying pressure to the above-mentioned joined one is preferable.
In the case of using a hot air drying device or an infrared heating device, it can be carried out without substantially applying pressure to the joined one. According to this method, since the resin component does not flow excessively, a prepreg having a desired insulating layer thickness and high uniformity in the insulating layer thickness can be manufactured more efficiently. Can do.
Moreover, when using a heating roll apparatus and a flat hot disk press apparatus, it can implement by making a predetermined pressure act on the said joined thing. Further, since the stress acting on the fiber base material along with the flow of the resin component can be minimized, the internal strain can be extremely reduced.
Furthermore, since the pressure is not substantially applied when the resin component is melted, it is possible to substantially eliminate the occurrence of a dent in this step.
The heating temperature is not particularly limited because it varies depending on the type and composition of the resin forming the resin layer, but the temperature range is such that the thermosetting resin used melts and the curing reaction of the thermosetting resin does not proceed rapidly. It is preferable to do.
The time for the heat treatment is not particularly limited because it varies depending on the type of the thermosetting resin to be used, but for example, the heat treatment can be performed by treating for 1 to 10 minutes.
 本実施形態におけるプリプレグの製造方法においては、上記(B)工程または(C)工程の後に、必要に応じて、上記で得られたプリプレグを連続して巻き取る工程をおこなってもよい。これにより、プリプレグを巻物形態とすることができるため、プリプレグを用いて金属張積層板100などを製造する際の取り扱い作業性を向上させることができる。 In the prepreg manufacturing method in the present embodiment, after the step (B) or (C), a step of continuously winding the prepreg obtained above may be performed as necessary. Thereby, since a prepreg can be made into a roll form, the handling workability | operativity at the time of manufacturing the metal-clad laminated board 100 etc. using a prepreg can be improved.
 また、上記の方法以外の本実施形態におけるプリプレグの製造方法には、(2)樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、樹脂ワニスを繊維基材に塗布する方法などが挙げられる。例えば、参考文献1(特開2010-275337号公報)の段落0022~0041に記載された方法である。以下、図4を参照しながら、具体的に説明する。 In addition, the prepreg manufacturing method in the present embodiment other than the above method includes (2) a method of preparing a resin varnish by dissolving the resin composition in a solvent, and applying the resin varnish to a fiber substrate. For example, the method is described in paragraphs 0022 to 0041 of Reference Document 1 (Japanese Patent Laid-Open No. 2010-275337). Hereinafter, a specific description will be given with reference to FIG.
 ダイコーターである第1塗工装置1aと第2塗工装置1bとを備えた塗布機の間を通るように、繊維基材3が搬送されることにより、繊維基材3の両面に片面ずつそれぞれ樹脂ワニス4が塗工される。第1塗工装置1aと第2塗工装置1bは、同一のダイコーターを用いても、異なるダイコーターを用いてもよい。また、図5に示すように、第1塗工装置1aと第2塗工装置1bはロールコーターを用いてもよい。また、塗工間距離Lおよび先端重複距離Dは、図4および図5の示すように一定の距離を有するのが好ましいが、図6に示すように、一定の距離を有さなくてもよい。 The fiber base material 3 is conveyed so that it passes between the coating machines provided with the 1st coating apparatus 1a which is a die coater, and the 2nd coating apparatus 1b, and one side is each on both surfaces of the fiber base material 3 A resin varnish 4 is applied to each. The first coating apparatus 1a and the second coating apparatus 1b may use the same die coater or different die coaters. Moreover, as shown in FIG. 5, the 1st coating apparatus 1a and the 2nd coating apparatus 1b may use a roll coater. Further, the coating distance L and the tip overlap distance D preferably have a constant distance as shown in FIGS. 4 and 5, but may not have a constant distance as shown in FIG. .
 第1塗工装置1aおよび第2塗工装置1bはそれぞれ塗工先端部2を有しており、それぞれの塗工先端部2は、繊維基材3の幅方向に細長く形成されている。そして、第1塗工装置1aの塗工先端部である第1塗工先端部2aは繊維基材3の一方の面に向けて突出し、第2塗工装置1bの塗工先端部である第2塗工先端部2bは繊維基材3の他方の面に向けて突出している。それにより、樹脂ワニス4の塗工の際には、第1塗工先端部2aは繊維基材3の一方の面に樹脂ワニス4を介して接触し、第2塗工先端部2bは繊維基材3の他方の面に樹脂ワニス4を介して接触することとなる。 The first coating device 1 a and the second coating device 1 b each have a coating tip 2, and each coating tip 2 is elongated in the width direction of the fiber base 3. And the 1st coating front-end | tip part 2a which is a coating front-end | tip part of the 1st coating apparatus 1a protrudes toward one surface of the fiber base material 3, and is the coating front-end | tip part of the 2nd coating apparatus 1b. The 2 coating front-end | tip part 2b protrudes toward the other surface of the fiber base material 3. FIG. Thereby, when the resin varnish 4 is applied, the first coating tip 2a is in contact with one surface of the fiber substrate 3 via the resin varnish 4, and the second coating tip 2b is a fiber base. The other surface of the material 3 comes into contact with the resin varnish 4.
 第1塗工装置1aと第2塗工装置1bとから吐出される樹脂ワニス4の単位時間当たりの吐出量は、同じであってもよく、異なっていてもよい。樹脂ワニスの単位時間当たりの吐出量を異ならせることにより、塗工する樹脂ワニス4の厚みを繊維基材3の一方の面と他方の面とで個別に制御することができ、樹脂層の層厚の調整を容易に行うことができる。
 乾燥機で所定の温度で加熱して、塗布された樹脂ワニス4の溶剤を揮発させると共に樹脂組成物を半硬化させてプリプレグを製造する。このように、必要な樹脂量のみを繊維基材11に供給することで、繊維基材11に作用する応力を最小限することができ、プリプレグ内部に発生する歪みが緩和される。
 なお、(2)樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、樹脂ワニスを繊維基材に塗布する方法では、使用する材料や加工条件は上述した(1)支持基材付き絶縁樹脂層をラミネートする方法を用いたプリプレグの製造方法に準じた材料や加工条件を使用することが好ましい。
The discharge amount per unit time of the resin varnish 4 discharged from the first coating device 1a and the second coating device 1b may be the same or different. By varying the discharge amount per unit time of the resin varnish, the thickness of the resin varnish 4 to be applied can be individually controlled on one side and the other side of the fiber base 3, and the layer of the resin layer The thickness can be easily adjusted.
A prepreg is manufactured by heating at a predetermined temperature in a dryer to volatilize the solvent of the applied resin varnish 4 and to semi-cur the resin composition. In this way, by supplying only the necessary resin amount to the fiber base material 11, the stress acting on the fiber base material 11 can be minimized, and the strain generated inside the prepreg is alleviated.
In the method of (2) preparing a resin varnish by dissolving the resin composition in a solvent and applying the resin varnish to the fiber substrate, the materials and processing conditions to be used are described above. (1) Insulating resin layer with supporting substrate It is preferable to use materials and processing conditions in accordance with the prepreg manufacturing method using the method of laminating.
 また、樹脂ワニスに用いられる溶剤は、樹脂組成物中の樹脂成分に対して良好な溶解性を示すことが好ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系などが挙げられる。 The solvent used in the resin varnish preferably exhibits good solubility in the resin component in the resin composition, but a poor solvent may be used as long as it does not have an adverse effect. Examples of the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve and carbitol.
 樹脂ワニスの固形分は、とくに限定されないが、40質量%以上80質量%以下が好ましく、50質量%以上65質量%以下がより好ましい。これにより、樹脂ワニスの繊維基材への含浸性をさらに向上させることができる。繊維基材に樹脂組成物を含浸させ、所定温度、例えば80℃以上200℃以下などで乾燥させることによりプリプレグを得ることができる。 The solid content of the resin varnish is not particularly limited, but is preferably 40% by mass to 80% by mass, and more preferably 50% by mass to 65% by mass. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved. A prepreg can be obtained by impregnating a fiber base material with a resin composition and drying at a predetermined temperature, for example, 80 ° C. or more and 200 ° C. or less.
 つづいて、上記で得られたプリプレグを用いた金属張積層板100の製造方法について説明する。プリプレグを用いた金属張積層板100の製造方法は、とくに限定されないが、例えば以下の通りである。
 得られたプリプレグから支持基材を剥離後、プリプレグの外側の上下両面または片面に金属箔103を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ねる。
 つぎに、プリプレグに金属箔を重ねたものを真空プレス機で加熱、加圧するかあるいは乾燥機で加熱することにより、金属張積層板100を得ることができる。
 金属箔103の厚みは、例えば、1μm以上35μm以下である。この金属箔103の厚みが上記下限値以上であると、第一キャリア材料5a、第二キャリア材料5bを製造する際の機械的強度を充分に確保することができる。また、厚みが上記上限値以下であると、微細な回路を加工形成しやすくなる。
 なお、支持基材として金属箔を使用した場合は、支持基材を剥離せずにそのまま金属張積層板100として使用することができる。
It continues and demonstrates the manufacturing method of the metal-clad laminated board 100 using the prepreg obtained above. Although the manufacturing method of the metal-clad laminated board 100 using a prepreg is not specifically limited, For example, it is as follows.
After peeling the supporting base material from the obtained prepreg, the metal foil 103 is overlapped on the upper and lower sides or one side of the outer side of the prepreg, and these are joined under a high vacuum condition using a laminator device or a becquerel device, or the outer side of the prepreg is left as it is. Put metal foil on the top and bottom or one side.
Next, the metal-clad laminate 100 can be obtained by heating and pressurizing a prepreg with a metal foil on a vacuum press or by heating with a dryer.
The thickness of the metal foil 103 is, for example, not less than 1 μm and not more than 35 μm. When the thickness of the metal foil 103 is not less than the above lower limit value, the mechanical strength when the first carrier material 5a and the second carrier material 5b are manufactured can be sufficiently secured. Further, when the thickness is not more than the above upper limit value, it becomes easy to process and form a fine circuit.
In addition, when metal foil is used as a support base material, it can be used as the metal-clad laminate 100 as it is, without peeling a support base material.
 金属箔103を構成する金属としては、例えば、銅、銅系合金、アルミ、アルミ系合金、銀、銀系合金、金、金系合金、亜鉛、亜鉛系合金、ニッケル、ニッケル系合金、錫、錫系合金、鉄、鉄系合金、コバール(商標名)、42アロイ、インバーまたはスーパーインバーなどのFe-Ni系の合金、タングステン、モリブデンなどが挙げられる。また、キャリア付電解銅箔なども使用することができる。 Examples of the metal constituting the metal foil 103 include copper, a copper alloy, aluminum, an aluminum alloy, silver, a silver alloy, gold, a gold alloy, zinc, a zinc alloy, nickel, a nickel alloy, tin, Examples thereof include tin-based alloys, iron, iron-based alloys, Kovar (trade name), 42 alloys, Fe-Ni alloys such as Invar and Super Invar, tungsten, molybdenum, and the like. Also, an electrolytic copper foil with a carrier can be used.
(金属張積層板の構成材料)
 以下、金属張積層板100を製造する際に使用する各材料について詳細に説明する。
(Constituent material of metal-clad laminate)
Hereinafter, each material used when manufacturing the metal-clad laminate 100 will be described in detail.
(熱硬化性樹脂)
 熱硬化性樹脂としては、とくに限定されないが、低線膨張率および高弾性率を有し、熱衝撃性の信頼性に優れたものであることが好ましい。
 また、熱硬化性樹脂の動的粘弾性測定による周波数1Hzでのガラス転移温度は、好ましくは160℃以上であり、さらに好ましくは200℃以上である。このようなガラス転移温度を有する樹脂組成物を用いることにより、鉛フリー半田リフロー耐熱性がさらに向上するという効果を得ることができる。また、樹脂組成物の動的粘弾性測定による周波数1Hzでのガラス転移温度の上限については、とくに限定するものではないが、350℃以下とすることができる。
(Thermosetting resin)
Although it does not specifically limit as a thermosetting resin, It is preferable that it has a low linear expansion coefficient and a high elasticity modulus, and is excellent in the reliability of thermal shock property.
The glass transition temperature at a frequency of 1 Hz as measured by dynamic viscoelasticity of the thermosetting resin is preferably 160 ° C. or higher, and more preferably 200 ° C. or higher. By using the resin composition having such a glass transition temperature, it is possible to obtain an effect that the lead-free solder reflow heat resistance is further improved. Moreover, although it does not specifically limit about the upper limit of the glass transition temperature in frequency 1Hz by the dynamic viscoelasticity measurement of a resin composition, It can be 350 degrees C or less.
 具体的な熱硬化性樹脂として、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などのエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂などのトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ベンゾシクロブテン樹脂などが挙げられる。
 これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーを併用して用いてもよい。
As specific thermosetting resins, for example, novolac type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenol resin, oil-modified resole modified with tung oil, linseed oil, walnut oil, etc. Phenol resin such as phenolic resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Bisphenol type epoxy resin such as Z type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, biffe Type epoxy resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene Type epoxy resin, epoxy resin, urea (urea) resin, resin having triazine ring such as melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring, Examples include cyanate resin, polyimide resin, polyamideimide resin, and benzocyclobutene resin.
One of these may be used alone, or two or more having different weight average molecular weights may be used in combination, or one or two or more and those prepolymers may be used in combination. May be.
 これらの中でも、とくにシアネート樹脂(シアネート樹脂のプレポリマーを含む)が好ましい。シアネート樹脂を用いることにより、絶縁層101の線膨張係数を小さくすることができる。さらに、シアネート樹脂を用いることにより、絶縁層101の電気特性(低誘電率、低誘電正接)、機械強度などを向上させることができる。 Among these, cyanate resins (including prepolymers of cyanate resins) are particularly preferable. By using cyanate resin, the linear expansion coefficient of the insulating layer 101 can be reduced. Furthermore, by using cyanate resin, the electrical characteristics (low dielectric constant, low dielectric loss tangent), mechanical strength, and the like of the insulating layer 101 can be improved.
 シアネート樹脂は、例えば、ハロゲン化シアン化合物とフェノール類とを反応させたものや、必要に応じて加熱などの方法でプレポリマー化したものなどを用いることができる。具体的には、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂、ナフトールアラルキル型の多価ナフトール類と、ハロゲン化シアンとの反応で得られるシアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニルアルキル型シアネート樹脂などを挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。ノボラック型シアネート樹脂を用いることにより、絶縁層101の架橋密度が増加し、絶縁層101の耐熱性が向上する。したがって、絶縁層101の難燃性を向上させることができる。 As the cyanate resin, for example, those obtained by reacting a cyanogen halide compound with phenols, or those obtained by prepolymerization by a method such as heating as required can be used. Specifically, bisphenol cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, naphthol aralkyl type polyvalent naphthols, and cyanogen halides Cyanate resin, dicyclopentadiene-type cyanate resin, biphenylalkyl-type cyanate resin, and the like obtained by the above reaction. Among these, novolac type cyanate resin is preferable. By using the novolac type cyanate resin, the crosslink density of the insulating layer 101 is increased, and the heat resistance of the insulating layer 101 is improved. Therefore, the flame retardance of the insulating layer 101 can be improved.
 この理由としては、ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成することが挙げられる。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。さらに、絶縁層101の厚さを0.6mm以下にした場合であっても、ノボラック型シアネート樹脂を硬化させて作製した絶縁層101を含む金属張積層板100は優れた剛性を有する。とくに、このような金属張積層板100は加熱時における剛性に優れるので、半導体素子実装時の信頼性にも優れる。
 ノボラック型シアネート樹脂としては、例えば、下記一般式(I)で示されるものを使用することができる。
The reason for this is that the novolak cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. Furthermore, even when the thickness of the insulating layer 101 is 0.6 mm or less, the metal-clad laminate 100 including the insulating layer 101 produced by curing the novolac-type cyanate resin has excellent rigidity. In particular, since such a metal-clad laminate 100 is excellent in rigidity during heating, it is also excellent in reliability when mounting a semiconductor element.
As a novolak-type cyanate resin, what is shown by the following general formula (I) can be used, for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、2以上がより好ましい。nが上記下限値以上であると、ノボラック型シアネート樹脂の耐熱性が向上し、加熱時に低量体が脱離、揮発することを抑制できる。また、nの上限は、とくに限定されないが、10以下が好ましく、7以下がより好ましい。nが上記上限値以下であると、溶融粘度が高くなるのを抑制でき、絶縁層101の成形性が低下することを抑制することができる。 The average repeating unit n of the novolak cyanate resin represented by the general formula (I) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. When n is not less than the above lower limit, the heat resistance of the novolak-type cyanate resin is improved, and it is possible to suppress desorption and volatilization of the low monomer during heating. The upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 7 or less. It can suppress that melt viscosity becomes it high that n is below the said upper limit, and can suppress that the moldability of the insulating layer 101 falls.
 また、シアネート樹脂としては、下記一般式(II)で表わされるナフトール型シアネート樹脂も好適に用いられる。下記一般式(II)で表わされるナフトール型シアネート樹脂は、例えば、α-ナフトールあるいはβ-ナフトールなどのナフトール類とp-キシリレングリコール、α,α'-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼンなどとの反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものである。一般式(II)のnは10以下であることがより好ましい。nが10以下の場合、樹脂粘度が高くならず、繊維基材への含浸性が良好で、金属張積層板100としての性能を低下させない傾向がある。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる傾向がある。 Also, as the cyanate resin, a naphthol type cyanate resin represented by the following general formula (II) is also preferably used. The naphthol type cyanate resin represented by the following general formula (II) includes, for example, naphthols such as α-naphthol or β-naphthol and p-xylylene glycol, α, α'-dimethoxy-p-xylene, 1,4- It is obtained by condensing naphthol aralkyl resin obtained by reaction with di (2-hydroxy-2-propyl) benzene and cyanic acid. N in the general formula (II) is more preferably 10 or less. When n is 10 or less, the resin viscosity does not increase, the impregnation property to the fiber base material is good, and the performance as the metal-clad laminate 100 does not tend to deteriorate. In addition, intramolecular polymerization hardly occurs at the time of synthesis, the liquid separation property at the time of washing with water tends to be improved, and the decrease in yield tends to be prevented.
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子またはメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
 また、シアネート樹脂としては、下記一般式(III)で表わされるジシクロペンタジエン型シアネート樹脂も好適に用いられる。下記一般式(III)で表わされジシクロペンタジエン型シアネート樹脂は、下記一般式(III)のnが0以上8以下であることが好ましい。nが8以下の場合、樹脂粘度が高くならず、繊維基材への含浸性が良好で、金属張積層板100としての性能の低下を防止できる。また、ジシクロペンタジエン型シアネート樹脂を用いることで、積層板の低吸湿性および耐薬品性を向上させることができる。 As the cyanate resin, a dicyclopentadiene type cyanate resin represented by the following general formula (III) is also preferably used. In the dicyclopentadiene-type cyanate resin represented by the following general formula (III), n in the following general formula (III) is preferably 0 or more and 8 or less. When n is 8 or less, the resin viscosity is not high, the impregnation property to the fiber base material is good, and the performance as the metal-clad laminate 100 can be prevented from being lowered. Moreover, the low hygroscopic property and chemical resistance of a laminated board can be improved by using dicyclopentadiene type cyanate resin.
Figure JPOXMLDOC01-appb-C000003
(nは0以上8以下の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(N represents an integer of 0 or more and 8 or less.)
 シアネート樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、Mw600以上がより好ましい。Mwが上記下限値以上であると、樹脂層を作製した場合にタック性の発生を抑制でき、樹脂層同士が接触したとき互いに付着したり、樹脂の転写が生じたりするのを抑制することができる。また、Mwの上限は、とくに限定されないが、Mw4,500以下が好ましく、Mw3,000以下がより好ましい。また、Mwが上記上限値以下であると、反応が速くなるのを抑制でき、プリント配線基板とした場合に、成形不良が生じたり、層間ピール強度が低下したりするのを抑制することができる。
 シアネート樹脂などのMwは、例えば、GPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
Although the minimum of the weight average molecular weight (Mw) of cyanate resin is not specifically limited, Mw500 or more is preferable and Mw600 or more is more preferable. When Mw is equal to or higher than the lower limit, it is possible to suppress the occurrence of tackiness when the resin layer is produced, and to suppress the adhesion between the resin layers or the transfer of the resin when the resin layers come into contact with each other. it can. The upper limit of Mw is not particularly limited, but is preferably Mw 4,500 or less, and more preferably Mw 3,000 or less. Further, when the Mw is not more than the above upper limit value, it is possible to suppress the reaction from being accelerated, and in the case of a printed wiring board, it is possible to suppress the occurrence of molding defects and the decrease in interlayer peel strength. .
Mw such as cyanate resin can be measured by, for example, GPC (gel permeation chromatography, standard substance: converted to polystyrene).
 また、とくに限定されないが、シアネート樹脂は1種類を単独で用いてもよいし、異なるMwを有するものを2種類以上併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーとを併用して用いてもよい。 Further, although not particularly limited, one kind of cyanate resin may be used alone, or two or more kinds having different Mw may be used in combination, and one kind or two kinds or more and prepolymers thereof. And may be used in combination.
 樹脂組成物中に含まれる熱硬化性樹脂の含有量は、その目的に応じて適宜調整されれば良くとくに限定されないが、樹脂組成物全体に基づいて5質量%以上90質量%以下が好ましく、10質量%以上80質量%以下がより好ましく、20質量%以上50質量%以下がとくに好ましい。熱硬化性樹脂の含有量が上記下限値以上であると、樹脂組成物のハンドリング性が向上し、樹脂層を形成するのが容易となる。熱硬化性樹脂の含有量が上記上限値以下であると、絶縁層101の強度や難燃性が向上したり、絶縁層101の線膨張係数が低下し積層板の反りの低減効果が向上したりする場合がある。 The content of the thermosetting resin contained in the resin composition is not particularly limited as long as it is appropriately adjusted according to the purpose, but is preferably 5% by mass or more and 90% by mass or less based on the entire resin composition, 10 mass% or more and 80 mass% or less are more preferable, and 20 mass% or more and 50 mass% or less are especially preferable. When the content of the thermosetting resin is not less than the above lower limit, the handling property of the resin composition is improved, and it becomes easy to form the resin layer. When the content of the thermosetting resin is not more than the above upper limit value, the strength and flame retardancy of the insulating layer 101 are improved, the linear expansion coefficient of the insulating layer 101 is reduced, and the effect of reducing the warpage of the laminate is improved. Sometimes.
 熱硬化性樹脂としてシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)を用いる以外に、エポキシ樹脂(実質的にハロゲン原子を含まない)を用いてもよいし、併用してもよい。エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などが挙げられる。 In addition to using cyanate resin (particularly novolak-type cyanate resin, naphthol-type cyanate resin, dicyclopentadiene-type cyanate resin) as a thermosetting resin, an epoxy resin (substantially free of halogen atoms) may be used, You may use together. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z type epoxy resin and the like. Type epoxy resin, phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, arylphenyl type epoxy resin such as biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, Naphthalenediol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin Naphthalene-type epoxy resins such as xylene resin, naphthalene-aralkyl-type epoxy resin, anthracene-type epoxy resin, phenoxy-type epoxy resin, dicyclopentadiene-type epoxy resin, norbornene-type epoxy resin, adamantane-type epoxy resin, fluorene-type epoxy resin, etc. .
 エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーとを併用して用いてもよい。 As an epoxy resin, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of these prepolymers and May be used in combination.
 これらエポキシ樹脂の中でもとくにアリールアルキレン型エポキシ樹脂が好ましい。これにより、絶縁層101の吸湿半田耐熱性および難燃性をさらに向上させることができる。 Among these epoxy resins, aryl alkylene type epoxy resins are particularly preferable. Thereby, the moisture absorption solder heat resistance and flame retardance of the insulating layer 101 can be further improved.
 アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂などが挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば下記一般式(IV)で示すことができる。 The arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit. For example, a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned. Among these, a biphenyl dimethylene type epoxy resin is preferable. A biphenyl dimethylene type | mold epoxy resin can be shown, for example with the following general formula (IV).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(IV)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、2以上がより好ましい。nが上記下限値以上であると、ビフェニルジメチレン型エポキシ樹脂の結晶化を抑制でき、汎用溶媒に対する溶解性が向上するため、取り扱いが容易となる。nの上限は、とくに限定されないが、10以下が好ましく、5以下がより好ましい。nが上記上限値以下であると、樹脂の流動性が向上し、絶縁層101の成形不良などの発生を抑制することができる。 The average repeating unit n of the biphenyl dimethylene type epoxy resin represented by the general formula (IV) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. When n is not less than the above lower limit, crystallization of the biphenyldimethylene type epoxy resin can be suppressed and the solubility in a general-purpose solvent is improved, so that handling becomes easy. The upper limit of n is not particularly limited, but is preferably 10 or less, and more preferably 5 or less. When n is not more than the above upper limit value, the fluidity of the resin is improved, and the occurrence of defective molding of the insulating layer 101 can be suppressed.
 上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、絶縁層101の耐熱性、低熱膨張性をさらに向上させることができる。 As the epoxy resin other than the above, a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, the heat resistance and low thermal expansion property of the insulating layer 101 can be further improved.
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、およびテトラフェン、その他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシに比べ難燃性に優れ、シアネート樹脂と組合せることでシアネート樹脂の弱点の脆弱性を改善することができる。したがって、シアネート樹脂と併用して用いることで、樹脂層101のガラス転移温度はさらに高くなるため鉛フリー対応の実装信頼性を向上させることができる。 The novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, and tetraphen or other condensed ring aromatic hydrocarbon structure. . The novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged. Moreover, since the glass transition temperature is also high, it is excellent in heat resistance. Furthermore, since the molecular weight of the repeating structure is large, it is superior in flame retardancy compared to conventional novolak type epoxies, and the weakness of cyanate resin can be improved by combining with cyanate resin. Therefore, when used in combination with a cyanate resin, the glass transition temperature of the resin layer 101 is further increased, so that the mounting reliability corresponding to lead-free can be improved.
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物とホルムアルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化したものである。 The novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is obtained by epoxidizing a novolac-type phenol resin synthesized from a phenol compound, a formaldehyde compound, and a condensed ring aromatic hydrocarbon compound.
 フェノール類化合物は、とくに限定されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾールなどのクレゾール類、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノールなどのキシレノール類、2,3,5トリメチルフェノールなどのトリメチルフェノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノールなどのエチルフェノール類、イソプロピルフェノール、ブチルフェノール、t-ブチルフェノールなどのアルキルフェノール類、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンなどのナフタレンジオール類、レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシンなどの多価フェノール類、アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノンなどのアルキル多価フェノール類が挙げられる。これらの中でも、コスト面および分解反応に与える効果から、フェノールが好ましい。 The phenol compound is not particularly limited, but examples thereof include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, 6-xylenol, 3,4-xylenol, xylenols such as 3,5-xylenol, trimethylphenols such as 2,3,5 trimethylphenol, ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols, alkylphenols such as isopropylphenol, butylphenol, t-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphtha And naphthalenediols such as 2,7-dihydroxynaphthalene, polyphenols such as resorcin, catechol, hydroquinone, pyrogallol, and fluoroglucin, and alkyl polyhydric phenols such as alkylresorcin, alkylcatechol, and alkylhydroquinone. . Among these, phenol is preferable from the viewpoint of cost and the effect on the decomposition reaction.
 アルデヒド類化合物は、とくに限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メトキシアルデヒドパラホルムアルデヒドなどが挙げられる。 The aldehyde compound is not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
 縮合環芳香族炭化水素化合物は、とくに限定されないが、例えば、メトキシナフタレン、ブトキシナフタレンなどのナフタレン誘導体、メトキシアントラセンなどのアントラセン誘導体、メトキシフェナントレンなどのフェナントレン誘導体、その他テトラセン誘導体、クリセン誘導体、ピレン誘導体、誘導体トリフェニレン、テトラフェン誘導体などが挙げられる。 The fused ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene, anthracene derivatives such as methoxyanthracene, phenanthrene derivatives such as methoxyphenanthrene, other tetracene derivatives, chrysene derivatives, pyrene derivatives, Derivatives include triphenylene and tetraphen derivatives.
 縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂はとくに限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂などが挙げられる。これらの中でも、下記式(V)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。 The novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited. For example, methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, methoxynaphthalene-modified novolak epoxy resin, etc. Is mentioned. Among these, a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure represented by the following formula (V) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Arは縮合環芳香族炭化水素基である。Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基、ハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。n、p、およびqは1以上の整数である。p、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。) (In the formula, Ar is a condensed ring aromatic hydrocarbon group. R may be the same or different from each other, and may be a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen element, a phenyl group, A group selected from an aryl group such as a benzyl group and an organic group containing a glycidyl ether, n, p, and q are integers of 1 or more, and the values of p and q may be the same or different for each repeating unit. May be.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(V)中のArは、式(VI)中の(Ar1)~(Ar4)で表される構造である。式(VI)中のRは、互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基、ハロゲン元素、フェニル基、ベンジル基などのアリール基、およびグリシジルエーテルを含む有機基から選ばれる基である。) (Ar in formula (V) is a structure represented by (Ar1) to (Ar4) in formula (VI). R in formula (VI) may be the same or different from each other. It is often a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an aryl group such as a halogen element, a phenyl group and a benzyl group, and an organic group including glycidyl ether.)
 さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂などのナフタレン型エポキシ樹脂が好ましい。これにより、絶縁層101の耐熱性、低熱膨張性をさらに向上させることができる。
 また、ベンゼン環に比べナフタレン環のπ-πスタッキン効果が高いため、特に、低熱膨張性、低熱収縮性に優れる。さらに、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。
 ナフトール型エポキシ樹脂としては、例えば、下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能エポキシ型ナフタレン樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができる。
Further, as the epoxy resin other than the above, naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin and the like are preferable. Thereby, the heat resistance and low thermal expansion property of the insulating layer 101 can be further improved.
In addition, since the naphthalene ring has a higher π-π stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage. Further, since the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
As the naphthol type epoxy resin, for example, the following general formula (VII-1), as the naphthalenediol type epoxy resin, the following formula (VII-2), as the bifunctional or tetrafunctional epoxy type naphthalene resin, the following formula (VII-3) ) (VII-4) (VII-5) and naphthylene ether type epoxy resin can be represented by, for example, the following general formula (VII-6).
Figure JPOXMLDOC01-appb-C000007
(nは平均1以上6以下の数を示す。Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000007
(N represents a number of 1 to 6 on average. R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、Rは水素原子またはメチル基を表す。Rはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、またはグリシジルエーテル基含有ナフタレン基を表す。oおよびmはそれぞれ0~2の整数であって、かつ、oまたはmのいずれか一方は1以上である。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 1 represents a hydrogen atom or a methyl group. R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group. O and m are each an integer of 0 to 2, and either o or m is 1 or more.)
 エポキシ樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1質量%以上が好ましく、2質量%以上がより好ましい。含有量が上記下限値以上であると、シアネート樹脂の反応性が向上し、得られる製品の耐湿性を向上させることができる。エポキシ樹脂の含有量の上限は、とくに限定されないが、55質量%以下が好ましく、40質量%以下がより好ましい。含有量が上記上限値以下であると、絶縁層101の耐熱性をより向上させることができる。 The lower limit of the content of the epoxy resin is not particularly limited, but is preferably 1% by mass or more and more preferably 2% by mass or more in the entire resin composition. When the content is not less than the above lower limit, the reactivity of the cyanate resin is improved, and the moisture resistance of the resulting product can be improved. Although the upper limit of content of an epoxy resin is not specifically limited, 55 mass% or less is preferable and 40 mass% or less is more preferable. When the content is not more than the above upper limit, the heat resistance of the insulating layer 101 can be further improved.
 エポキシ樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、Mw800以上がより好ましい。Mwが上記下限値以上であると、樹脂層にタック性が生じるのを抑制することができる。Mwの上限は、とくに限定されないが、Mw20,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であると、プリプレグ作製時、繊維基材への樹脂組成物の含浸性が向上し、より均一な製品を得ることができる。エポキシ樹脂のMwは、例えばGPCで測定することができる。 The lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 500 or higher, more preferably 800 or higher. It can suppress that tackiness arises in a resin layer as Mw is more than the said lower limit. The upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and more preferably Mw 15,000 or less. When the Mw is not more than the above upper limit, the impregnation property of the resin composition into the fiber base material is improved during prepreg production, and a more uniform product can be obtained. The Mw of the epoxy resin can be measured by GPC, for example.
 熱硬化性樹脂としてシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)やエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂)を用いる場合、さらにフェノール樹脂を用いることが好ましい。
 フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、アリールアルキレン型フェノール樹脂などが挙げられる。フェノール樹脂として、これらの中の1種類を単独で用いてよいし、異なる重量平均分子量を有する2種類以上を併用して用いてもよく、1種類または2種類以上と、それらのプレポリマーとを併用して用いてもよい。これらの中でも、とくにアリールアルキレン型フェノール樹脂が好ましい。これにより、金属張積層板100の吸湿半田耐熱性をさらに向上させることができる。
Cyanate resins (especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins) and epoxy resins (arylalkylene-type epoxy resins, especially biphenyldimethylene-type epoxy resins, condensed ring aromatic hydrocarbons) In the case of using a novolac type epoxy resin or a naphthalene type epoxy resin having a structure, it is preferable to use a phenol resin.
Examples of the phenol resin include novolac type phenol resins, resol type phenol resins, aryl alkylene type phenol resins, and the like. As the phenol resin, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of those prepolymers may be used. You may use together. Among these, aryl alkylene type phenol resins are particularly preferable. Thereby, the moisture absorption solder heat resistance of the metal-clad laminate 100 can be further improved.
 アリールアルキレン型フェノール樹脂としては、例えば、キシリレン型フェノール樹脂、ビフェニルジメチレン型フェノール樹脂などが挙げられる。ビフェニルジメチレン型フェノール樹脂は、例えば、下記一般式(VIII)で示すことができる。 Examples of the aryl alkylene type phenol resin include a xylylene type phenol resin and a biphenyl dimethylene type phenol resin. A biphenyl dimethylene type phenol resin can be shown by the following general formula (VIII), for example.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(VIII)で示されるビフェニルジメチレン型フェノール樹脂の繰り返し単位nは任意の整数である。nの下限は、とくに限定されないが、1以上が好ましく、2以上がより好ましい。nが上記下限値以上であると、絶縁層101の耐熱性をより向上させることができる。また、繰り返し単位nの上限は、とくに限定されないが、12以下が好ましく、とくに8以下が好ましい。また、nが上記上限値以下であると、他の樹脂との相溶性が向上し、樹脂組成物の作業性を向上させることができる。 The repeating unit n of the biphenyldimethylene type phenol resin represented by the general formula (VIII) is an arbitrary integer. Although the minimum of n is not specifically limited, 1 or more are preferable and 2 or more are more preferable. The heat resistance of the insulating layer 101 can be improved more as n is more than the said lower limit. Further, the upper limit of the repeating unit n is not particularly limited, but is preferably 12 or less, particularly preferably 8 or less. Moreover, compatibility with other resin improves that n is below the said upper limit, and the workability | operativity of a resin composition can be improved.
 前述のシアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)やエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂)とアリールアルキレン型フェノール樹脂との組合せにより、樹脂層の架橋密度をコントロールし、樹脂組成物の反応性を容易に制御することができる。 Cyanate resin (especially novolac-type cyanate resin, naphthol-type cyanate resin, dicyclopentadiene-type cyanate resin) and epoxy resin (arylalkylene-type epoxy resin, especially biphenyldimethylene-type epoxy resin, condensed ring aromatic hydrocarbon structure) The crosslink density of the resin layer can be controlled and the reactivity of the resin composition can be easily controlled by a combination of a novolac type epoxy resin or a naphthalene type epoxy resin) and an arylalkylene type phenol resin.
 フェノール樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1質量%以上が好ましく、5質量%以上がより好ましい。フェノール樹脂の含有量が上記下限値以上であると、絶縁層101の耐熱性を向上させることができる。また、フェノール樹脂の含有量の上限は、とくに限定されないが、樹脂組成物全体において55質量%以下が好ましく、40質量%以下がより好ましい。フェノール樹脂の含有量が上記上限値以下であると、絶縁層101の低熱膨張の特性を向上させることができる。 Although the minimum of content of a phenol resin is not specifically limited, 1 mass% or more is preferable in the whole resin composition, and 5 mass% or more is more preferable. The heat resistance of the insulating layer 101 can be improved as content of a phenol resin is more than the said lower limit. Moreover, especially the upper limit of content of a phenol resin is although it is not limited, 55 mass% or less is preferable in the whole resin composition, and 40 mass% or less is more preferable. When the content of the phenol resin is not more than the above upper limit value, the low thermal expansion characteristic of the insulating layer 101 can be improved.
 フェノール樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw400以上が好ましく、Mw500以上がより好ましい。Mwが上記下限以上であると、樹脂層にタック性が生じるのを抑制することができる。また、フェノール樹脂のMwの上限は、とくに限定されないが、Mw18,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限以下であるとプリプレグの作製時、繊維基材への樹脂組成物の含浸性が向上し、より均一な製品を得ることができる。フェノール樹脂のMwは、例えばGPCで測定することができる。 Although the minimum of the weight average molecular weight (Mw) of a phenol resin is not specifically limited, Mw400 or more are preferable and Mw500 or more are more preferable. It can suppress that tackiness arises in a resin layer as Mw is more than the said minimum. Moreover, although the upper limit of Mw of a phenol resin is not specifically limited, Mw18,000 or less is preferable and Mw15,000 or less is more preferable. When Mw is not more than the above upper limit, the impregnation property of the resin composition into the fiber base material is improved during the production of the prepreg, and a more uniform product can be obtained. The Mw of the phenol resin can be measured by GPC, for example.
 さらに、シアネート樹脂(とくにノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂)とフェノール樹脂(アリールアルキレン型フェノール樹脂、とくにビフェニルジメチレン型フェノール樹脂)とエポキシ樹脂(アリールアルキレン型エポキシ樹脂、とくにビフェニルジメチレン型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂)との組合せを用いて基板(とくにプリント配線基板)を作製した場合、とくに優れた寸法安定性を得ることができる。 Furthermore, cyanate resins (especially novolac-type cyanate resins, naphthol-type cyanate resins, dicyclopentadiene-type cyanate resins), phenol resins (arylalkylene-type phenol resins, especially biphenyldimethylene-type phenol resins), and epoxy resins (arylalkylene-type epoxy resins) Especially when a board (especially a printed wiring board) is produced using a combination with a biphenyldimethylene type epoxy resin, a novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure, or a naphthalene type epoxy resin) Stability can be obtained.
 また、樹脂組成物は充填材をさらに含んでいる。これにより、金属張積層板100を薄型化しても、より一層優れた機械的強度を付与することができる。さらに、金属張積層板100の低熱膨張化をより一層向上させることができる。 The resin composition further includes a filler. Thereby, even if the metal-clad laminate 100 is made thinner, even better mechanical strength can be imparted. Furthermore, the low thermal expansion of the metal-clad laminate 100 can be further improved.
(充填材)
 充填材としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。
(Filler)
Examples of the filler include talc, calcined clay, unfired clay, mica, glass and other silicates, titanium oxide, alumina, boehmite, silica, fused silica and other oxides, calcium carbonate, magnesium carbonate, hydrotalcite Carbonates such as, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borates such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate.
 充填材として、これらの中の1種類を単独で用いてもよく、2種類以上を併用して用いてもよい。これらの中でも、シリカが好ましく、溶融シリカ(とくに球状溶融シリカ)が低熱膨張性に優れる点でより好ましい。溶融シリカの形状には破砕状および球状がある。繊維基材への含浸性を確保するためには、樹脂組成物の溶融粘度を下げるため球状シリカを使うなど、その目的にあわせた使用方法を採用することができる。 As the filler, one of these may be used alone, or two or more may be used in combination. Among these, silica is preferable, and fused silica (particularly spherical fused silica) is more preferable in terms of excellent low thermal expansion. The fused silica has a crushed shape and a spherical shape. In order to ensure the impregnation property to the fiber base material, it is possible to adopt a usage method suitable for the purpose, such as using spherical silica to lower the melt viscosity of the resin composition.
 充填材の平均粒子径の下限は、とくに限定されないが、0.01μm以上が好ましく、0.1μm以上がより好ましい。充填材の粒径が上記下限値以上であると、ワニスの粘度が高くなるのを抑制でき、プリプレグ作製時の作業性を向上させることができる。また、平均粒子径の上限は、とくに限定されないが、5.0μm以下が好ましく、2.0μm以下がより好ましい。充填材の粒径が上記上限値以下であると、ワニス中で充填剤の沈降などの現象を抑制でき、より均一な絶縁層101を得ることができる。また、内層基板の導体回路がL/Sが20/20μmを下回る際には、配線間の絶縁性に影響を与えるのを抑制することができる。 The lower limit of the average particle diameter of the filler is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. It can suppress that the viscosity of a varnish becomes high as the particle size of a filler is the said lower limit or more, and the workability | operativity at the time of prepreg preparation can be improved. The upper limit of the average particle diameter is not particularly limited, but is preferably 5.0 μm or less, and more preferably 2.0 μm or less. When the particle size of the filler is not more than the above upper limit value, phenomena such as sedimentation of the filler in the varnish can be suppressed, and a more uniform insulating layer 101 can be obtained. In addition, when the L / S of the conductor circuit of the inner layer substrate is less than 20/20 μm, it is possible to suppress the influence on the insulation between the wirings.
 充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA製、LA-500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とする。 The average particle size of the filler is measured by, for example, a particle size distribution of the particles on a volume basis using a laser diffraction type particle size distribution analyzer (manufactured by HORIBA, LA-500), and the median diameter (D50) is defined as the average particle size. .
 また、充填材は、とくに限定されないが、平均粒子径が単分散の充填材を用いてもよいし、平均粒子径が多分散の充填材を用いてもよい。さらに平均粒子径が単分散および/または多分散の充填材を1種類または2種類以上で併用して用いてもよい。 In addition, the filler is not particularly limited, but a monodispersed filler having an average particle diameter may be used, or a filler having a polydispersed average particle diameter may be used. Furthermore, a monodispersed and / or polydispersed filler having an average particle diameter may be used alone or in combination of two or more.
 また、本実施形態の樹脂組成物は、レーザー回折散乱式粒度分布測定法による体積基準粒度分布におけるメディアン径d50が100nm以下のナノシリカ(とくに球状ナノシリカ)を含むのが好ましい。上記ナノシリカは、粒径の大きい充填材の隙間や繊維基材のストランド中に存在できるため、ナノシリカを含むことにより、充填材の充填性をさらに向上させることができる。 The resin composition of the present embodiment preferably includes a nanosilica median diameter d 50 of less 100 nm (particularly spherical nanosilica) a volume-based particle size distribution by a laser diffraction scattering particle size distribution measuring method. Since the said nano silica can exist in the clearance gap of a filler with a large particle size, or the strand of a fiber base material, the filling property of a filler can further be improved by containing nano silica.
 充填材の含有量は、とくに限定されないが、樹脂組成物全体において20質量%以上80質量%以下が好ましく、30質量%以上75質量%以下がより好ましい。含有量が上記範囲内であると、とくに絶縁層101をより一層低熱膨張、低吸水とすることができる。 The content of the filler is not particularly limited, but is preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 75% by mass or less in the entire resin composition. When the content is within the above range, particularly the insulating layer 101 can be further reduced in thermal expansion and water absorption.
 また、本実施の形態に用いる樹脂組成物は、ゴム成分も配合することができ、例えば、ゴム粒子を用いることができる。ゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子などが挙げられる。 Further, the resin composition used in the present embodiment can also contain a rubber component, for example, rubber particles can be used. Preferable examples of the rubber particles include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles.
 コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成社製)、メタブレンKW-4426(商品名、三菱レイヨン社製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR社製)などが挙げられる。 The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade names, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade names, manufactured by Mitsubishi Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR).
 架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR社製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.2μm)(三菱レイヨン社製)などが挙げられる。 Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle diameter 0.5 μm, manufactured by JSR). Specific examples of the acrylic rubber particles include methabrene W300A (average particle size 0.1 μm), W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
 シリコーン粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であればとくに限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、および二次元架橋主体のシリコーンからなるコア部を三次元架橋型主体のシリコーンで被覆したコアシェル構造粒子などが挙げられる。シリコーンゴム微粒子としては、KMP-605、KMP-600、KMP-597、KMP-594(信越化学社製)、トレフィルE-500、トレフィルE-600(東レ・ダウコーニング社製)などの市販品を用いることができる。 The silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane. For example, fine particles made of silicone rubber (organopolysiloxane crosslinked elastomer) itself and a core portion made of silicone mainly composed of two-dimensional crosslinks. Examples thereof include core-shell structure particles coated with silicone mainly composed of a three-dimensional crosslinking type. As silicone rubber fine particles, commercially available products such as KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning) Can be used.
 ゴム粒子の含有量は、とくに限定されないが、上記の充填材を合わせて、樹脂組成物全体に基づいて20質量%以上80質量%以下が好ましく、とくに30質量%以上75質量%以下が好ましい。含有量が範囲内であると、絶縁層101をより一層低吸水とすることができる。 Although the content of the rubber particles is not particularly limited, it is preferably 20% by mass or more and 80% by mass or less, and particularly preferably 30% by mass or more and 75% by mass or less based on the whole resin composition together with the filler. When the content is within the range, the insulating layer 101 can be further reduced in water absorption.
(その他の添加剤)
 このほか、必要に応じて、樹脂組成物にはカップリング剤、硬化促進剤、硬化剤、熱可塑性樹脂、有機充填材などの添加剤を適宜配合することができる。本実施形態で用いられる樹脂組成物は、上記成分を有機溶剤などにより溶解および/または分散させた液状形態で好適に用いることができる。
(Other additives)
In addition, additives such as a coupling agent, a curing accelerator, a curing agent, a thermoplastic resin, and an organic filler can be appropriately blended in the resin composition as necessary. The resin composition used in the present embodiment can be suitably used in a liquid form in which the above components are dissolved and / or dispersed with an organic solvent or the like.
 カップリング剤の使用により、熱硬化性樹脂と充填材との界面の濡れ性が向上し、繊維基材に対して樹脂組成物を均一に定着させることができる。したがって、カップリング剤を使用することにより、金属張積層板100の耐熱性、とくに吸湿後の半田耐熱性を改良することができる。 By using the coupling agent, the wettability of the interface between the thermosetting resin and the filler is improved, and the resin composition can be uniformly fixed to the fiber substrate. Therefore, by using the coupling agent, the heat resistance of the metal-clad laminate 100, particularly the solder heat resistance after moisture absorption can be improved.
 カップリング剤としては、カップリング剤として通常用いられるものであれば使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、熱硬化性樹脂と充填材との界面の濡れ性を向上させることができ、その結果、絶縁層101の耐熱性をより一層向上させることができる。 As the coupling agent, any of those usually used as a coupling agent can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and silicone. It is preferable to use one or more coupling agents selected from oil-type coupling agents. Thereby, the wettability of the interface of a thermosetting resin and a filler can be improved, As a result, the heat resistance of the insulating layer 101 can be improved further.
 カップリング剤の含有量の下限は、充填材の比表面積に依存するのでとくに限定されないが、充填材100質量部に対して0.05質量部以上が好ましく、0.1質量部以上がより好ましい。カップリング剤の含有量が上記下限値以上であると、充填材を十分に被覆することができるため、熱硬化性樹脂と充填材との界面の濡れ性をより一層向上させることができ、その結果、絶縁層101の耐熱性をより一層向上させることができる。また、カップリング剤の含有量の上限は、とくに限定されないが、3質量部以下が好ましく、2質量部以下がより好ましい。カップリング剤の含有量が上記上限値以下であると、カップリング剤が熱硬化性樹脂の反応に影響を与えるのを抑制でき、得られる金属張積層板100の曲げ強度などの低下を抑制することができる。 The lower limit of the content of the coupling agent is not particularly limited because it depends on the specific surface area of the filler, but is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the filler. . When the content of the coupling agent is not less than the above lower limit value, the filler can be sufficiently covered, so that the wettability of the interface between the thermosetting resin and the filler can be further improved, As a result, the heat resistance of the insulating layer 101 can be further improved. The upper limit of the content of the coupling agent is not particularly limited, but is preferably 3 parts by mass or less, and more preferably 2 parts by mass or less. When the content of the coupling agent is less than or equal to the above upper limit value, the coupling agent can be inhibited from affecting the reaction of the thermosetting resin, and a decrease in bending strength or the like of the resulting metal-clad laminate 100 is inhibited. be able to.
 硬化促進剤としては公知のものを用いることができる。例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸、オニウム塩化合物、またはこれらの混合物などが挙げられる。硬化促進剤として、これらの中の誘導体も含めて1種類を単独で用いてもよいし、これらの誘導体も含めて2種類以上を併用して用いてもよい。
 オニウム塩化合物は、とくに限定されないが、例えば、下記一般式(IX)で表されるオニウム塩化合物を用いることができる。
A well-known thing can be used as a hardening accelerator. For example, organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2, Tertiary amines such as 2,2] octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxy Imidazoles such as imidazole and 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesulfonic acid, onium salt compounds, And mixtures thereof. As the curing accelerator, one kind including these derivatives may be used alone, or two or more kinds including these derivatives may be used in combination.
The onium salt compound is not particularly limited, and for example, an onium salt compound represented by the following general formula (IX) can be used.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (式中、Pはリン原子である。R1、R2、R3およびR4は、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。Aは分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す。) (In the formula, P is a phosphorus atom. R 1 , R 2 , R 3 and R 4 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted aliphatic group. A represents an anion of an n (n ≧ 1) -valent proton donor having at least one proton that can be released outside the molecule, or Indicates a complex anion.)
 硬化促進剤の含有量の下限は、とくに限定されないが、樹脂組成物全体の0.005質量%以上が好ましく、0.01質量%以上がより好ましい。含有量が上記下限値以上であると、硬化を促進する効果を十分に発揮することができる。硬化促進剤の含有量の上限は、とくに限定されないが、樹脂組成物全体の5質量%以下が好ましく、2質量%以下がより好ましい。含有量が上記上限値以下であるとプリプレグの保存性をより向上させることができる。 Although the minimum of content of a hardening accelerator is not specifically limited, 0.005 mass% or more of the whole resin composition is preferable, and 0.01 mass% or more is more preferable. The effect which accelerates | stimulates hardening can fully be demonstrated as content is more than the said lower limit. Although the upper limit of content of a hardening accelerator is not specifically limited, 5 mass% or less of the whole resin composition is preferable, and 2 mass% or less is more preferable. The preservability of a prepreg can be improved more as content is below the said upper limit.
 樹脂組成物では、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマー、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーを併用して用いてもよい。 In the resin composition, phenoxy resin, polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin and other thermoplastic resins, styrene-butadiene copolymer, styrene-isoprene copolymer Combined use of thermoplastic elastomers such as polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyamide-based elastomers, polyester-based elastomers, and diene-based elastomers such as polybutadiene, epoxy-modified polybutadiene, acrylic-modified polybutadiene, and methacryl-modified polybutadiene It may be used.
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂などが挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。 Examples of the phenoxy resin include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having an anthracene skeleton, and a phenoxy resin having a biphenyl skeleton. A phenoxy resin having a structure having a plurality of these skeletons can also be used.
 これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いるのが好ましい。これにより、ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂と金属との密着性を向上させることができる。その結果、金属張積層板100の耐熱性の向上を図ることができるとともに、プリント配線基板を製造する際に、積層板に対する配線層の密着性を向上させることができる。また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いるのも好ましい。これにより、プリント配線基板の製造時に、配線層の積層板への密着性をさらに向上させることができる。
 また、下記一般式(X)で表されるビスフェノールアセトフェノン構造を有するフェノキシ樹脂を用いるのも好ましい。
Among these, it is preferable to use a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin. Thereby, the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton. As a result, the heat resistance of the metal-clad laminate 100 can be improved, and the adhesion of the wiring layer to the laminate can be improved when a printed wiring board is manufactured. It is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin. Thereby, the adhesiveness to the laminated board of a wiring layer can further be improved at the time of manufacture of a printed wiring board.
It is also preferable to use a phenoxy resin having a bisphenolacetophenone structure represented by the following general formula (X).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R1は互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基である。R2は、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基である。R3 は、水素原子または炭素数1以上10以下の炭化水素基であり、mは0以上5以下の整数である。) (In the formula, R 1 may be the same or different and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a group selected from halogen elements. R 2 is a hydrogen atom, carbon It is a group selected from a hydrocarbon group having 1 to 10 carbon atoms or a halogen element, R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer from 0 to 5. )
 ビスフェノールアセトフェノン構造を含むフェノキシ樹脂は、嵩高い構造を持っているため、溶剤溶解性や、配合する熱硬化性樹脂成分との相溶性に優れる。また、ビスフェノールアセトフェノン構造を含むフェノキシ樹脂を含むと、低粗度で均一な粗面を有する絶縁層101を形成することができるため、金属張積層板100の微細配線形成性をより向上させることができる。 Since the phenoxy resin containing a bisphenol acetophenone structure has a bulky structure, it has excellent solvent solubility and compatibility with the thermosetting resin component to be blended. In addition, when the phenoxy resin containing the bisphenolacetophenone structure is included, the insulating layer 101 having a low roughness and a uniform rough surface can be formed, so that the fine wiring formability of the metal-clad laminate 100 can be further improved. it can.
 ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、エポキシ樹脂とフェノール樹脂を触媒で高分子量化させる方法などの公知の方法で合成することができる。 The phenoxy resin having a bisphenolacetophenone structure can be synthesized by a known method such as a method in which an epoxy resin and a phenol resin are polymerized with a catalyst.
 ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、一般式(X)のビスフェノールアセトフェノン構造以外の構造が含まれていても良く、その構造はとくに限定されないが、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビフェニル型、フェノールノボラック型、クレゾールノボラック型の構造などが挙げられる。これらの中でも、ビフェニル型の構造を含むものが、絶縁層101のガラス転移温度をより向上させることができる点から好ましい。 The phenoxy resin having a bisphenol acetophenone structure may contain a structure other than the bisphenol acetophenone structure of the general formula (X), and the structure is not particularly limited, but bisphenol A type, bisphenol F type, bisphenol S type, biphenyl Type, phenol novolac type, cresol novolac type structure and the like. Among these, those containing a biphenyl type structure are preferable because the glass transition temperature of the insulating layer 101 can be further improved.
 ビスフェノールアセトフェノン構造を含むフェノキシ樹脂中の一般式(X)のビスフェノールアセトフェノン構造の含有量はとくに限定されないが、好ましくは5モル%以上95モル%以下であり、より好ましくは10モル%以上85モル%以下であり、さらに好ましくは15モル%以上75モル%以下である。含有量が上記下限値以上であると、絶縁層101の耐熱性およびプリント配線基板の耐湿信頼性を向上させる効果を十分に発揮させることができる。また、含有量が上記上限値以下であると、フェノキシ樹脂の溶剤溶解性を向上させることができる。 The content of the bisphenol acetophenone structure of the general formula (X) in the phenoxy resin containing a bisphenol acetophenone structure is not particularly limited, but is preferably 5 mol% to 95 mol%, more preferably 10 mol% to 85 mol%. Or less, more preferably 15 mol% or more and 75 mol% or less. When the content is at least the above lower limit, the effect of improving the heat resistance of the insulating layer 101 and the moisture resistance reliability of the printed wiring board can be sufficiently exhibited. Moreover, the solvent solubility of a phenoxy resin can be improved as content is below the said upper limit.
 フェノキシ樹脂の重量平均分子量(Mw)は、とくに限定されないが、Mw5,000以上100,000以下が好ましく、10,000以上70,000以下がより好ましく、20,000以上50,000以下がとくに好ましい。Mwが上記上限値以下であると、他の樹脂との相溶性や溶剤への溶解性を向上させることができる。上記下限値以上であると、製膜性が向上し、プリント配線基板の製造に用いる場合に不具合が発生するのを抑制することができる。 The weight average molecular weight (Mw) of the phenoxy resin is not particularly limited, but is preferably from 5,000 to 100,000, more preferably from 10,000 to 70,000, particularly preferably from 20,000 to 50,000. . When Mw is not more than the above upper limit, compatibility with other resins and solubility in a solvent can be improved. When it is at least the above lower limit, the film-forming property is improved, and it is possible to suppress the occurrence of problems when used for the production of a printed wiring board.
 フェノキシ樹脂の含有量は、とくに限定されないが、充填材を除く樹脂組成物の0.5質量%以上40質量%以下が好ましく、とくに1質量%以上20質量%以下が好ましい。含有量が上記下限値以上であると絶縁層101の機械強度の低下や、導体回路とのメッキ密着性の低下を抑制することができる。上記上限値以下であると、絶縁層101の熱膨張率の増加を抑制でき、耐熱性を低下させることができる。 The content of the phenoxy resin is not particularly limited, but is preferably 0.5% by mass or more and 40% by mass or less, and particularly preferably 1% by mass or more and 20% by mass or less of the resin composition excluding the filler. When the content is equal to or higher than the lower limit, it is possible to suppress a decrease in mechanical strength of the insulating layer 101 and a decrease in plating adhesion with a conductor circuit. When it is not more than the above upper limit, an increase in the coefficient of thermal expansion of the insulating layer 101 can be suppressed, and the heat resistance can be lowered.
 さらに、樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤などの上記成分以外の添加物を添加してもよい。 Further, the resin composition may contain additives other than the above components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers as necessary. It may be added.
 顔料としては、カオリン、合成酸化鉄赤、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミ酸コバルト、合成ウルトラマリン青などの無機顔料、フタロシアニンなどの多環顔料、アゾ顔料などが挙げられる。 Examples of pigments include kaolin, synthetic iron oxide red, cadmium yellow, nickel titanium yellow, strontium yellow, hydrous chromium oxide, chromium oxide, cobalt aluminate, synthetic ultramarine blue and other inorganic pigments, phthalocyanine polycyclic pigments, azo pigments, etc. Etc.
 染料としては、イソインドリノン、イソインドリン、キノフタロン、キサンテン 、ジケトピロロピロール、ペリレン、ペリノン 、アントラキノン、インジゴイド 、オキサジン、キナクリドン、ベンツイミダゾロン、ビオランスロン 、フタロシアニン、アゾメチンなどが挙げられる。 Examples of the dye include isoindolinone, isoindoline, quinophthalone, xanthene, diketopyrrolopyrrole, perylene, perinone, anthraquinone, indigoid, oxazine, quinacridone, benzimidazolone, violanthrone, phthalocyanine, and azomethine.
(繊維基材)
 繊維基材としては、とくに限定されないが、ガラスクロスなどのガラス繊維基材、ポリベンゾオキサゾール樹脂繊維、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維などのポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維などのポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維などを主成分として構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙などを主成分とする紙基材などの有機繊維基材などが挙げられる。これらの中でも、強度、吸水率の点からガラス繊維基材がとくに好ましい。また、ガラス繊維基材を用いることにより、絶縁層101の線膨張係数をさらに小さくすることができる。
(Fiber base)
The fiber substrate is not particularly limited, but glass fiber substrate such as glass cloth, polybenzoxazole resin fiber, polyamide resin fiber, aromatic polyamide resin fiber, polyamide resin fiber such as wholly aromatic polyamide resin fiber, polyester Synthetic fiber base material composed mainly of resin fiber, aromatic polyester resin fiber, polyester resin fiber such as wholly aromatic polyester resin fiber, polyimide resin fiber, fluororesin fiber, kraft paper, cotton linter paper, linter And organic fiber base materials such as paper base materials mainly composed of mixed paper of kraft pulp and the like. Among these, a glass fiber substrate is particularly preferable from the viewpoint of strength and water absorption. Moreover, the linear expansion coefficient of the insulating layer 101 can be further reduced by using a glass fiber substrate.
 本実施形態で用いるガラス繊維基材としては、坪量(1mあたりの繊維基材の重量)が4g/m以上150g/m以下のものが好ましく、8g/m以上110g/m以下のものがより好ましく、12g/m以上60g/m以下のものがさらに好ましく、12g/m以上30g/m以下のものがとくに好ましく、12g/m以上24g/m以下のものが最も好ましい。 The glass fiber substrate used in the present embodiment preferably has a basis weight (weight of the fiber substrate per 1 m 2 ) of 4 g / m 2 or more and 150 g / m 2 or less, and 8 g / m 2 or more and 110 g / m 2. The following are more preferred, those of 12 g / m 2 or more and 60 g / m 2 or less are more preferred, those of 12 g / m 2 or more and 30 g / m 2 or less are particularly preferred, and those of 12 g / m 2 or more and 24 g / m 2 or less. Is most preferred.
 坪量が上記上限値以下であると、ガラス繊維基材中の樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマなどのレーザーによるスルーホールの形成を容易にすることができる。また、坪量が上記下限値以上であると、ガラス繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上したり、プリプレグの作製が容易となったり、積層板の反りの低減効果の低下を抑制したりすることができる。 When the basis weight is not more than the above upper limit value, the impregnation property of the resin composition in the glass fiber base material is improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed. In addition, it is possible to easily form a through hole by a laser such as carbon dioxide, UV, or excimer. Moreover, the intensity | strength of a glass fiber base material or a prepreg can be improved as basic weight is more than the said lower limit. As a result, handling properties can be improved, preparation of a prepreg can be facilitated, and reduction in the effect of reducing the warpage of the laminate can be suppressed.
 上記ガラス繊維基材の中でも、とくに、線膨張係数が6ppm以下のガラス繊維基材であることが好ましく、3.5ppm以下のガラス繊維基材であることがより好ましい。このような線膨張係数を有するガラス繊維基材を用いることにより、本実施形態の金属張積層板100の反りをさらに抑制することができる。 Among the glass fiber substrates, a glass fiber substrate having a linear expansion coefficient of 6 ppm or less is particularly preferable, and a glass fiber substrate having 3.5 ppm or less is more preferable. By using a glass fiber base material having such a linear expansion coefficient, warpage of the metal-clad laminate 100 of this embodiment can be further suppressed.
 さらに、本実施形態で用いるガラス繊維基材を構成する材料の引張弾性率が好ましくは60GPa以上100GPa以下であり、より好ましくは65GPa以上92GPa以下であり、とくに好ましくは86GPa以上92GPa以下である。このような引張弾性率を有する繊維基材を用いることにより、例えば半導体実装時のリフロー熱による配線板の変形を効果的に抑制することができるので、電子部品の接続信頼性がさらに向上する。 Furthermore, the tensile elastic modulus of the material constituting the glass fiber substrate used in the present embodiment is preferably 60 GPa or more and 100 GPa or less, more preferably 65 GPa or more and 92 GPa or less, and particularly preferably 86 GPa or more and 92 GPa or less. By using a fiber base material having such a tensile elastic modulus, for example, deformation of the wiring board due to reflow heat during semiconductor mounting can be effectively suppressed, so that the connection reliability of electronic components is further improved.
 また、本実施形態で用いるガラス繊維基材は、1MHzでの誘電率が好ましくは3.8以上7.0以下であり、より好ましくは3.8以上6.8以下であり、とくに好ましくは3.8以上5.5以下である。このような誘電率を有するガラス繊維基材を用いることにより、金属張積層板100の誘電率をさらに低減することができるため、金属張積層板100は高速信号を用いた半導体パッケージに好適に用いることができる。 Further, the glass fiber substrate used in the present embodiment preferably has a dielectric constant at 1 MHz of 3.8 or more and 7.0 or less, more preferably 3.8 or more and 6.8 or less, and particularly preferably 3 .8 or more and 5.5 or less. Since the dielectric constant of the metal-clad laminate 100 can be further reduced by using the glass fiber base material having such a dielectric constant, the metal-clad laminate 100 is preferably used for a semiconductor package using a high-speed signal. be able to.
 上記のような線膨張係数、引張弾性率および誘電率を有するガラス繊維基材として、例えば、Eガラス、Sガラス、Dガラス、Tガラス、NEガラス、石英ガラス、UNガラスからなる群から選ばれる少なくとも一種を含むガラス繊維基材が好適に用いられる。 The glass fiber base material having the above linear expansion coefficient, tensile elastic modulus, and dielectric constant is selected from the group consisting of E glass, S glass, D glass, T glass, NE glass, quartz glass, and UN glass, for example. A glass fiber base material containing at least one kind is preferably used.
 繊維基材の厚みはとくに限定されないが、好ましくは5μm以上150μm以下であり、より好ましくは10μm以上100μm以下であり、さらに好ましくは12μm以上60μm以下である。このような厚みを有する繊維基材を用いることにより、プリプレグ製造時のハンドリング性をさらに向上させることができ、また、金属張積層板100の反り低減効果を向上させることができる。 The thickness of the fiber base material is not particularly limited, but is preferably 5 μm or more and 150 μm or less, more preferably 10 μm or more and 100 μm or less, and further preferably 12 μm or more and 60 μm or less. By using the fiber base material having such a thickness, the handling property at the time of manufacturing the prepreg can be further improved, and the warp reduction effect of the metal-clad laminate 100 can be improved.
 繊維基材の厚みが上記上限値以下であると、繊維基材中の樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマなどのレーザーによるスルーホールの形成を容易にすることができる。また、繊維基材の厚みが上記下限値以上であると、繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上したり、プリプレグの作製が容易となったり、金属張積層板100の反りの低減効果の低下を抑制したりすることができる。 When the thickness of the fiber base material is not more than the above upper limit value, the impregnation property of the resin composition in the fiber base material is improved, and the occurrence of a decrease in strand voids and insulation reliability can be suppressed. In addition, it is possible to easily form a through hole by a laser such as carbon dioxide, UV, or excimer. Moreover, the intensity | strength of a fiber base material or a prepreg can be improved as the thickness of a fiber base material is more than the said lower limit. As a result, handling properties can be improved, production of a prepreg can be facilitated, and a reduction in warpage reduction effect of the metal-clad laminate 100 can be suppressed.
 また、繊維基材の使用枚数は、一枚に限らず、薄い繊維基材を複数枚重ねて使用することも可能である。なお、繊維基材を複数枚重ねて使用する場合は、その合計の厚みが上記の範囲を満たせばよい。  Also, the number of fiber base materials used is not limited to one, and a plurality of thin fiber base materials can be used in a stacked manner. In addition, when using a plurality of fiber base materials in piles, the total thickness only needs to satisfy the above range. *
 また、本実施形態における絶縁層101に含まれる繊維基材と充填材との合計が、55質量%以上90質量%以下であることが好ましく、70質量%以上85質量%以下であることがより好ましい。繊維基材と充填材との合計が上記範囲内であると、繊維基材への樹脂の含浸性、成形性のバランスをとりながら、金属張積層板100の剛性を高めることができるため、実装時の金属張積層板100の反りをより一層低減することができる。 Moreover, it is preferable that the sum total of the fiber base material and filler contained in the insulating layer 101 in this embodiment is 55 mass% or more and 90 mass% or less, and it is more preferable that it is 70 mass% or more and 85 mass% or less. preferable. When the total of the fiber base material and the filler is within the above range, the rigidity of the metal-clad laminate 100 can be increased while balancing the resin impregnation property and moldability into the fiber base material. The warp of the metal-clad laminate 100 at the time can be further reduced.
(プリント配線基板および半導体パッケージ)
 つづいて、本実施形態におけるプリント配線基板および半導体パッケージ200について説明する。
 金属張積層板100は、図7に示すような半導体パッケージ200に用いることができる。プリント配線基板および半導体パッケージ200の製造方法としては、とくに限定されないが、例えば以下のような方法がある。
 金属張積層板100に層間接続用のスルーホールを形成し、サブトラクティブ工法、セミアディティブ工法などにより配線層を作製する。その後、必要に応じてビルドアップ層(図7では図示しない)を積層して、アディティブ工法により層間接続および回路形成する工程を繰り返す。そして、必要に応じてソルダーレジスト層201を積層して、上記に準じた方法で回路形成することにより、プリント配線基板を得ることができる。ここで、一部あるいは全てのビルドアップ層およびソルダーレジスト層201は繊維基材を含んでも構わないし、含まなくても構わない。
(Printed circuit boards and semiconductor packages)
Next, the printed wiring board and the semiconductor package 200 in this embodiment will be described.
The metal-clad laminate 100 can be used in a semiconductor package 200 as shown in FIG. A method for manufacturing the printed wiring board and the semiconductor package 200 is not particularly limited, and examples thereof include the following methods.
Through-holes for interlayer connection are formed in the metal-clad laminate 100, and a wiring layer is produced by a subtractive method, a semi-additive method, or the like. Thereafter, build-up layers (not shown in FIG. 7) are stacked as necessary, and the steps of interlayer connection and circuit formation by the additive method are repeated. And a printed wiring board can be obtained by laminating | stacking the soldering resist layer 201 as needed, and forming a circuit by the method according to the above. Here, some or all of the buildup layers and the solder resist layer 201 may or may not include a fiber base material.
 つぎに、ソルダーレジスト層201全面にフォトレジストを塗布した後に、フォトレジストの一部を除去してソルダーレジスト層201の一部を露出させる。なお、ソルダーレジスト層201には、フォトレジストの機能を持ったレジストを使用することもできる。この場合は、フォトレジストの塗布の工程を省略できる。つぎに、露出したソルダーレジスト層201の除去をおこなって、開口部209を形成する。 Next, after a photoresist is applied to the entire surface of the solder resist layer 201, a part of the photoresist is removed to expose a part of the solder resist layer 201. Note that a resist having a photoresist function may be used for the solder resist layer 201. In this case, the step of applying a photoresist can be omitted. Next, the exposed solder resist layer 201 is removed to form an opening 209.
 つづいて、リフロー処理をおこなうことによって、半導体素子203を配線パターンの一部である接続端子205上に半田バンプ207を介して固着させる。その後、半導体素子203、半田バンプ207などを封止材211で封止することによって、図7に示す様な半導体パッケージ200を得ることができる。 Subsequently, by performing a reflow process, the semiconductor element 203 is fixed to the connection terminal 205 which is a part of the wiring pattern via the solder bump 207. Thereafter, the semiconductor package 203 as shown in FIG. 7 can be obtained by sealing the semiconductor element 203, the solder bump 207, and the like with the sealing material 211.
(半導体装置)
 つづいて、本実施形態における半導体装置300について説明する。
 半導体パッケージ200は、図8に示すような半導体装置300に用いることができる。半導体装置300の製造方法としては、とくに限定されないが、例えば以下のような方法がある。
 はじめに、得られた半導体パッケージ200のソルダーレジスト層201の開口部209に半田ペーストを供給し、リフロー処理を行なうことによって半田バンプ301を形成する。また、半田バンプ301は、あらかじめ作製した半田ボールを開口部209に取り付けることによっても形成できる。
(Semiconductor device)
Next, the semiconductor device 300 in this embodiment will be described.
The semiconductor package 200 can be used in a semiconductor device 300 as shown in FIG. A method for manufacturing the semiconductor device 300 is not particularly limited, and examples thereof include the following methods.
First, the solder bump 301 is formed by supplying a solder paste to the opening 209 of the solder resist layer 201 of the obtained semiconductor package 200 and performing a reflow process. The solder bump 301 can also be formed by attaching a solder ball prepared in advance to the opening 209.
 つぎに、実装基板303の接続端子305と半田バンプ301とを接合することによって半導体パッケージ200を実装基板303に実装し、図8に示した半導体装置300が得られる。 Next, the semiconductor package 200 is mounted on the mounting substrate 303 by joining the connection terminals 305 and the solder bumps 301 of the mounting substrate 303, and the semiconductor device 300 shown in FIG. 8 is obtained.
 以上に説明したように、本実施形態によれば、実装時の反りが低減された金属張積層板100を提供することができる。とくに、厚みが薄い金属張積層板100とした場合でも、反りの発生を効果的に抑制することができる。そして、本実施形態における金属張積層板100を用いたプリント配線基板は、反り、寸法安定性などの機械的特性、成形性に優れたものである。したがって、本実施形態における金属張積層板100は、高密度化、高多層化が要求されるプリント配線板など、信頼性が要求される用途に好適に用いることができる。 As described above, according to this embodiment, it is possible to provide the metal-clad laminate 100 with reduced warpage during mounting. In particular, even when the metal-clad laminate 100 is thin, the occurrence of warpage can be effectively suppressed. And the printed wiring board using the metal-clad laminated board 100 in this embodiment is excellent in mechanical characteristics, such as curvature and dimensional stability, and a moldability. Therefore, the metal-clad laminate 100 in the present embodiment can be suitably used for applications that require reliability, such as printed wiring boards that require higher density and higher multilayer.
 本実施形態における金属張積層板100は、上述の回路加工およびそれ以後の各プロセスにおいても反りの発生が低減される。また、本実施形態における半導体パッケージ200は、反りおよびクラックが発生しにくく、薄型化が可能である。したがって半導体パッケージ200を含む半導体装置300は、接続信頼性を向上させることができる。 In the metal-clad laminate 100 according to this embodiment, the occurrence of warpage is reduced in the above-described circuit processing and the subsequent processes. Further, the semiconductor package 200 in the present embodiment is less likely to warp and crack, and can be thinned. Therefore, the semiconductor device 300 including the semiconductor package 200 can improve connection reliability.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば、本実施形態では、プリプレグが一層の場合を示したが、プリプレグを二層以上積層したものを用いて金属張積層板100を作製してもよい。
 本実施形態における金属張積層板100にビルドアップ層をさらに積層した構成を取ることもできる。
As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable. For example, in this embodiment, although the case where the prepreg is one layer was shown, you may produce the metal-clad laminated board 100 using what laminated | stacked two or more layers of prepregs.
The structure which laminated | stacked the buildup layer further on the metal-clad laminated board 100 in this embodiment can also be taken.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、部はとくに特定しない限り質量部を表す。また、それぞれの厚みは平均膜厚で表わされている。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these. In addition, in an Example, unless otherwise specified, a part represents a mass part. Moreover, each thickness is represented by the average film thickness.
 実施例および比較例では、以下の原料を用いた。
 エポキシ樹脂A:ビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製、NC-3000)
エポキシ樹脂B:ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、NC-3000FH)
エポキシ樹脂C:ナフタレンジオールジグリシジルエーテル(DIC社製、エピクロンHP-4032D)
エポキシ樹脂D:ナフチレンエーテル型エポキシ樹脂(DIC社製、エピクロンHP-6000)
In the examples and comparative examples, the following raw materials were used.
Epoxy resin A: Biphenyl aralkyl type novolak epoxy resin (Nippon Kayaku Co., Ltd., NC-3000)
Epoxy resin B: biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000FH)
Epoxy resin C: naphthalene diol diglycidyl ether (DIC Corporation, Epicron HP-4032D)
Epoxy resin D: naphthylene ether type epoxy resin (manufactured by DIC, Epicron HP-6000)
シアネート樹脂A:ノボラック型シアネート樹脂(ロンザジャパン社製、プリマセットPT-30)
シアネート樹脂B:一般式(II)で表わされるp-キシレン変性ナフトールアラルキル型シアネート樹脂(ナフトールアラルキル型フェノール樹脂(東都化成社製、「SN-485誘導体」)と塩化シアンの反応物)
Cyanate resin A: Novolac-type cyanate resin (Lonza Japan, Primaset PT-30)
Cyanate resin B: p-xylene-modified naphthol aralkyl-type cyanate resin represented by the general formula (II) (reaction product of naphthol aralkyl-type phenol resin (manufactured by Toto Kasei Co., Ltd., “SN-485 derivative”) and cyanogen chloride)
フェノール樹脂A:ビフェニルジメチレン型フェノール樹脂(日本化薬社製、GPH-103)
アミン化合物:4,4'-ジアミノジフェニルメタン
ビスマレイミド化合物(ケイアイ化成工業社製、BMI-70)
Phenol resin A: biphenyl dimethylene type phenol resin (manufactured by Nippon Kayaku Co., Ltd., GPH-103)
Amine compound: 4,4′-diaminodiphenylmethane bismaleimide compound (KMI Kasei Kogyo BMI-70)
フェノキシ樹脂A:ビスフェノールアセトフェノン構造を含むフェノキシ樹脂(三菱化学社製、YX-6954BH30)  Phenoxy resin A: Phenoxy resin containing bisphenolacetophenone structure (Mitsubishi Chemical Co., Ltd., YX-6654BH30)
充填材A:球状シリカ(アドマテックス社製、SO-25R、平均粒径0.5μm)
充填材B:球状シリカ(アドマテックス社製、SO-31R、平均粒径1.0μm)
充填材C:球状シリカ(トクヤマ社製、NSS-5N、平均粒径75nm)
充填材D:ベーマイト(ナバルテック社製、AOH-30)
充填材E:シリコーン粒子(信越化学工業社製、KMP-600、平均粒径5μm)
Filler A: Spherical silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm)
Filler B: Spherical silica (manufactured by Admatechs, SO-31R, average particle size 1.0 μm)
Filler C: Spherical silica (manufactured by Tokuyama, NSS-5N, average particle size 75 nm)
Filler D: Boehmite (Navaltech AOH-30)
Filler E: Silicone particles (manufactured by Shin-Etsu Chemical Co., Ltd., KMP-600, average particle size 5 μm)
カップリング剤A:γ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A-187)
カップリング剤B:N-フェニル-γ-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-573)
硬化促進剤A:上記一般式(IX)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)
硬化促進剤B:オクチル酸亜鉛
Coupling agent A: γ-glycidoxypropyltrimethoxysilane (GE Toshiba Silicone, A-187)
Coupling agent B: N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
Curing accelerator A: Phosphorus catalyst of an onium salt compound corresponding to the above general formula (IX) (C05-MB, manufactured by Sumitomo Bakelite Co., Ltd.)
Curing accelerator B: Zinc octylate
(実施例)
 以下の手順を用いて、本実施形態における金属張積層板を作製した。
 まず、プリプレグの製造について説明する。使用した樹脂ワニスの組成を表1に示し、得られたプリプレグ1~16が有する各層の厚みを表2に示す。なお、表2、3に記載のP1~P16とはプリプレグ1~プリプレグ16を意味し、表2に記載のユニチカとはユニチカグラスファイバー社製、日東紡とは日東紡社製を意味する。
(Example)
The metal-clad laminate in this embodiment was produced using the following procedure.
First, production of a prepreg will be described. The composition of the resin varnish used is shown in Table 1, and the thickness of each layer of the obtained prepregs 1 to 16 is shown in Table 2. In Tables 2 and 3, P1 to P16 mean prepregs 1 to prepreg 16, unitica shown in Table 2 means Unitika Glass Fiber, and Nittobo means Nittobo.
(プリプレグ1)
1.樹脂組成物のワニス1の調製
 エポキシ樹脂Aとしてビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製、NC-3000)11.0質量部、アミン化合物として4,4'-ジアミノジフェニルメタン3.5質量部、ビスマレイミド化合物としてビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン(ケイアイ化成工業社製、BMI-70)20.0質量部、をメチルエチルケトンに溶解、分散させた。さらに、充填材Aとして球状シリカ(アドマテックス社製、SO-25R、平均粒径0.5μm)20.0質量部、充填材Bとしてベーマイト(ナバルテック社製、AOH-30)45.0質量部とカップリング剤Aとしてγ-グリシドキシプロピルトリメトキシシラン(GE東芝シリコーン社製、A-187)0.5質量部を添加し、高速撹拌装置を用いて30分間撹拌して、不揮発分65質量%の樹脂組成物のワニス1(樹脂ワニス1)を調製した。
(Prepreg 1)
1. Preparation of Varnish 1 of Resin Composition 11.0 parts by mass of biphenylaralkyl type novolac epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) as epoxy resin A, 3.5 parts by mass of 4,4′-diaminodiphenylmethane as amine compound As a bismaleimide compound, 20.0 parts by mass of bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane (manufactured by KAI Kasei Kogyo Co., Ltd., BMI-70) was dissolved and dispersed in methyl ethyl ketone. Furthermore, 20.0 parts by mass of spherical silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as filler A, and 45.0 masses of boehmite (manufactured by Navaltech, AOH-30) as filler B And 0.5 part by mass of γ-glycidoxypropyltrimethoxysilane (GE Toshiba Silicone Co., Ltd., A-187) is added as coupling agent A, and the mixture is stirred for 30 minutes using a high-speed stirrer. A varnish 1 (resin varnish 1) of 65% by mass of a resin composition was prepared.
2.キャリア材料の製造
 樹脂ワニス1を、支持基材であるキャリア箔付き極薄銅箔(三井金属鉱業社製、マイクロシンEx、1.5μm)上に、ダイコーター装置を用いて乾燥後の樹脂層の厚さが30μmとなるように塗工した。次いで、これを160℃の乾燥装置で5分間乾燥して、第一樹脂層用の銅箔付き樹脂シート1A(キャリア材料1A)を得た。
2. Manufacture of carrier material Resin varnish 1 is dried on a thin copper foil with carrier foil (Mitsui Metal Mining Co., Ltd., Micro Thin Ex, 1.5 μm) as a support substrate using a die coater device. The thickness of the coating was 30 μm. Subsequently, this was dried for 5 minutes with a 160 degreeC drying apparatus, and resin sheet 1A (carrier material 1A) with a copper foil for 1st resin layers was obtained.
 また、樹脂ワニス1をキャリア箔付き極薄銅箔(三井金属鉱業社製、マイクロシンEx、1.5μm)上に同様に塗工し、乾燥後の樹脂層の厚さが30μmになるように、160℃の乾燥機で5分間乾燥して、第二樹脂層用の銅箔付き樹脂シート1B(キャリア材料1B)を得た。 Also, the resin varnish 1 is applied in the same manner onto an ultrathin copper foil with carrier foil (Mitsui Metal Mining Co., Ltd., Microcin Ex, 1.5 μm), and the thickness of the resin layer after drying is 30 μm. And drying for 5 minutes with a dryer at 160 ° C. to obtain a resin sheet 1B with copper foil (carrier material 1B) for the second resin layer.
3.プリプレグの製造
(プリプレグ1)
 第一樹脂層用のキャリア材料1A、および第二樹脂層用のキャリア材料1Bをガラス繊維基材(厚さ91μm、日東紡社製Tガラス織布、WTX-116E、IPC規格2116T、線膨張係数:2.8ppm/℃)の両面に樹脂層が繊維基材と向き合うように配し、図2に示す真空ラミネート装置および熱風乾燥装置により樹脂組成物を含浸させ、銅箔が積層されたプリプレグ1を得た。
3. Manufacture of prepreg (prepreg 1)
The carrier material 1A for the first resin layer and the carrier material 1B for the second resin layer are made of a glass fiber substrate (thickness 91 μm, T glass woven fabric manufactured by Nittobo, WTX-116E, IPC standard 2116T, linear expansion coefficient : 2.8 ppm / ° C.) prepreg 1 in which the resin layer is disposed so as to face the fiber base material, impregnated with the resin composition by the vacuum laminating apparatus and hot air drying apparatus shown in FIG. Got.
 具体的には、ガラス繊維基材の両面にキャリア材料Aおよびキャリア材料Bがガラス繊維基材の幅方向の中心に位置するように、それぞれ重ね合わせ、常圧より9.999×10Pa(約750Torr)以上減圧した条件下で、ラミネート速度2m/分、ガラス繊維基材にかかる張力140N/mに設定し、100℃のラミネートロールを用いて接合した。 Specifically, the carrier material A and the carrier material B are overlapped on both surfaces of the glass fiber base so that they are positioned at the center in the width direction of the glass fiber base, respectively, and 9.999 × 10 4 Pa (from normal pressure) Under reduced pressure of about 750 Torr) or more, the laminating speed was set to 2 m / min, the tension applied to the glass fiber substrate was set to 140 N / m, and bonding was performed using a laminating roll at 100 ° C.
 ここで、ガラス繊維基材の幅方向寸法の内側領域においては、キャリア材料1Aおよびキャリア材料1Bの樹脂層をガラス繊維基材の両面側にそれぞれ接合するとともに、ガラス繊維基材の幅方向寸法の外側領域においては、キャリア材料1Aおよびキャリア材料1Bの樹脂層同士を接合した。 Here, in the inner region of the width direction dimension of the glass fiber base material, the resin layers of the carrier material 1A and the carrier material 1B are respectively bonded to both sides of the glass fiber base material, and the width direction dimension of the glass fiber base material In the outer region, the resin layers of the carrier material 1A and the carrier material 1B were joined together.
 つぎに、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理してプリプレグ1(P1)を得た。 Next, the bonded material was heat-treated without applying pressure by passing it through a horizontal conveyance type hot air dryer set at 120 ° C. for 2 minutes to obtain prepreg 1 (P1).
(プリプレグ2~7)
 プリプレグ2~7は、樹脂ワニスの種類、第一および第二樹脂層の厚み、用いたガラス繊維基材、ラミネート速度、およびガラス繊維基材にかかる張力を表2のように変えた以外は、プリプレグ1と同様にして製造した。
(Prepreg 2-7)
The prepregs 2 to 7 were the same except that the types of resin varnishes, the thicknesses of the first and second resin layers, the glass fiber substrate used, the lamination speed, and the tension applied to the glass fiber substrate were changed as shown in Table 2. Manufactured in the same manner as prepreg 1.
(プリプレグ8)
 プリプレグ8は、支持基材としてPETフィルム(ポリエチレンテレフタレート、帝人デュポンフィルム社製ピューレックス、厚さ36μm)を用い、樹脂ワニスの種類、第一および第二樹脂層の厚み、用いたガラス繊維基材、ラミネート速度、およびガラス繊維基材にかかる張力を表2のように変えたこと以外は、プリプレグ1と同様にして製造した。
(Prepreg 8)
The prepreg 8 uses a PET film (polyethylene terephthalate, Purex manufactured by Teijin DuPont Films Co., Ltd., thickness 36 μm) as a supporting substrate, the type of resin varnish, the thickness of the first and second resin layers, and the glass fiber substrate used. This was produced in the same manner as in the prepreg 1 except that the lamination speed and the tension applied to the glass fiber substrate were changed as shown in Table 2.
(プリプレグ9)
 プリプレグ9は、樹脂ワニス4を、ガラス繊維基材(厚さ91μm、日東紡社製Tガラス織布、WTX-116E、IPC規格2116T、線膨張係数:2.8ppm/℃)に塗布装置で含浸させ、180℃の加熱炉で2分間乾燥して、厚さ100μmのプリプレグを製造した。なお、塗布速度、ガラス繊維基材にかかる張力を表2の条件で行った。
(Prepreg 9)
The prepreg 9 impregnates the resin varnish 4 into a glass fiber substrate (thickness 91 μm, Nittobo T glass woven fabric, WTX-116E, IPC standard 2116T, linear expansion coefficient: 2.8 ppm / ° C.) with a coating apparatus. And dried in a heating furnace at 180 ° C. for 2 minutes to produce a prepreg having a thickness of 100 μm. In addition, the application | coating speed | rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
(プリプレグ10~11)
 プリプレグ10~11は、樹脂ワニス4を、ガラス繊維基材(厚さ43μm、日東紡社製Tガラス織布、WTX-1078T、IPC規格1078T、線膨張係数:2.8ppm/℃)に塗布装置で含浸させ、180℃の加熱炉で2分間乾燥して、厚さ50μmのプリプレグを製造した。なお、塗布速度、ガラス繊維基材にかかる張力を表2の条件で行った。
(Prepreg 10-11)
The prepregs 10 to 11 apply the resin varnish 4 to a glass fiber substrate (thickness: 43 μm, N glass fiber fabric manufactured by Nittobo, WTX-1078T, IPC standard 1078T, linear expansion coefficient: 2.8 ppm / ° C.) And was dried in a heating furnace at 180 ° C. for 2 minutes to produce a prepreg having a thickness of 50 μm. In addition, the application | coating speed | rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
(プリプレグ12~13)
 プリプレグ12~13は、樹脂ワニス4をPETフィルム(ポリエチレンテレフタレート、帝人デュポンフィルム社製ピューレックス、厚さ36μm)上に塗工し、第一および第二樹脂層の厚み、用いたガラス繊維基材、ラミネート速度、およびガラス繊維基材にかかる張力を表2のように変えたこと以外は、プリプレグ1と同様にして製造した。
(Prepreg 12-13)
The prepregs 12 to 13 were obtained by coating the resin varnish 4 on a PET film (polyethylene terephthalate, Purex manufactured by Teijin DuPont Films, Inc., thickness 36 μm), the thickness of the first and second resin layers, and the glass fiber base used. This was produced in the same manner as in the prepreg 1 except that the lamination speed and the tension applied to the glass fiber substrate were changed as shown in Table 2.
(プリプレグ14)
 プリプレグ14は、樹脂ワニス4をキャリア箔付き極薄銅箔(三井金属鉱業社製、マイクロシンEx、1.5μm)上に同様に塗工し、第一および第二樹脂層の厚み、用いたガラス繊維基材、ラミネート速度、およびガラス繊維基材にかかる張力を表2のように変えたこと以外は、プリプレグ1と同様にして製造した。
(Prepreg 14)
The prepreg 14 was similarly applied to the resin varnish 4 on an ultrathin copper foil with carrier foil (manufactured by Mitsui Kinzoku Mining Co., Ltd., Micro Thin Ex, 1.5 μm), and the thicknesses of the first and second resin layers were used. Manufactured in the same manner as prepreg 1 except that the glass fiber substrate, the lamination speed, and the tension applied to the glass fiber substrate were changed as shown in Table 2.
(プリプレグ15)
 プリプレグ15は、樹脂ワニス4を、ガラス繊維基材(厚さ43μm、ユニチカ社製Eガラス織布、E06E、IPC規格1078、線膨張係数:5.5ppm/℃)に塗布装置で含浸させ、180℃の加熱炉で2分間乾燥して、厚さ50μmのプリプレグを製造した。なお、塗布速度、ガラス繊維基材にかかる張力を表2の条件で行った。
(Prepreg 15)
The prepreg 15 is obtained by impregnating the resin varnish 4 into a glass fiber substrate (thickness: 43 μm, E glass woven fabric manufactured by Unitika, E06E, IPC standard 1078, linear expansion coefficient: 5.5 ppm / ° C.) with a coating apparatus, 180 The prepreg having a thickness of 50 μm was produced by drying in a heating furnace at a temperature of 2 ° C. for 2 minutes. In addition, the application | coating speed | rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
(プリプレグ16)
 プリプレグ16は、樹脂ワニス4を、ガラス繊維基材(厚さ91μm、ユニチカ社製Eガラス織布、E10T、IPC規格2116、線膨張係数:5.5ppm/℃)に塗布装置で含浸させ、180℃の加熱炉で2分間乾燥して、厚さ100μmのプリプレグを製造した。なお、塗布速度、ガラス繊維基材にかかる張力を表2の条件で行った。
(Prepreg 16)
The prepreg 16 impregnates the resin varnish 4 in a glass fiber base material (thickness 91 μm, E glass woven fabric manufactured by Unitika, E10T, IPC standard 2116, linear expansion coefficient: 5.5 ppm / ° C.) with a coating apparatus, 180 A prepreg having a thickness of 100 μm was produced by drying in a heating furnace at 2 ° C. for 2 minutes. In addition, the application | coating speed | rate and the tension concerning a glass fiber base material were performed on the conditions of Table 2.
(実施例1)
1.金属張積層板の製造
 銅箔が積層されたプリプレグ1を平滑な金属板に挟み、220℃、1.5MPaで2時間加熱加圧成形することにより、金属張積層板を得た。得られた金属張積層板のコア層(絶縁層からなる部分)の厚みは、0.10mmであった。 
Example 1
1. Manufacture of metal-clad laminate A metal-clad laminate was obtained by sandwiching a prepreg 1 laminated with a copper foil between smooth metal plates and heating and pressing at 220 ° C. and 1.5 MPa for 2 hours. The thickness of the core layer (part consisting of an insulating layer) of the obtained metal-clad laminate was 0.10 mm.
2.プリント配線基板の製造
 上記で得られた金属張積層板をコア基板として用い、その両面にセミアディティブ法で微細回路パターン形成(残銅率70%、L/S=25/25μm)した内層回路基板を作成した。その両面に、銅箔付き樹脂シート(キャリア材料1A)を真空ラミネートで積層した後、熱風乾燥装置にて220℃で60分間加熱硬化をおこなった。次いで、キャリア箔を剥離後、炭酸レーザーによりブラインドビアホール(非貫通孔)を形成した。つぎにビア内に、60℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)を5分間浸漬させ、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)を10分浸漬させた後、中和して粗化処理をおこなった。
2. Manufacture of printed wiring board Inner layer circuit board using the metal-clad laminate obtained above as a core board and forming a fine circuit pattern on both sides by a semi-additive method (residual copper ratio 70%, L / S = 25/25 μm) It was created. A resin sheet with a copper foil (carrier material 1A) was laminated on both surfaces by vacuum lamination, and then heat-cured at 220 ° C. for 60 minutes with a hot air dryer. Next, after peeling off the carrier foil, blind via holes (non-through holes) were formed by a carbonic acid laser. Next, a 60 ° C. swelling liquid (Atotech Japan Co., Swelling Dip Securigant P) is immersed in the via for 5 minutes, and further an 80 ° C. potassium permanganate aqueous solution (Atotech Japan Co., Concentrate Compact CP). Was immersed for 10 minutes, and then neutralized and roughened.
 脱脂、触媒付与、活性化の工程を経た後、無電解銅めっき皮膜を約0.5μm形成し、めっきレジストを形成した。次いで、無電解銅めっき皮膜を給電層としてパターン電気めっき銅20μm形成させ、L/S=25/25μmの微細回路加工を施した。つぎに、熱風乾燥装置にて、200℃、60分間アニール処理を行った後、フラッシュエッチングで給電層を除去した。 After passing through degreasing, catalyst application, and activation steps, an electroless copper plating film was formed to about 0.5 μm to form a plating resist. Next, 20 μm of pattern electroplated copper was formed using the electroless copper plating film as a power feeding layer, and fine circuit processing of L / S = 25/25 μm was performed. Next, after performing an annealing process at 200 ° C. for 60 minutes with a hot air drying apparatus, the power feeding layer was removed by flash etching.
 つぎに、ソルダーレジスト層を積層し、次いで半導体素子搭載パッドなどが露出するように炭酸レーザーによりブラインドビアホール(非貫通孔)を形成した。 Next, a solder resist layer was laminated, and then blind via holes (non-through holes) were formed by a carbonic acid laser so that the semiconductor element mounting pads and the like were exposed.
 最後に、ソルダーレジスト層から露出した回路層上へ、無電解ニッケルめっき層3μmと、さらにその上へ、無電解金めっき層0.1μmとからなるめっき層を形成し、得られた基板を50mm×50mmサイズに切断し、半導体パッケージ用のプリント配線基板を得た。 Finally, an electroless nickel plating layer of 3 μm is formed on the circuit layer exposed from the solder resist layer, and further, an electroless gold plating layer of 0.1 μm is formed thereon. Cut to a size of × 50 mm to obtain a printed wiring board for a semiconductor package.
3.半導体パッケージの製造
 半導体パッケージ用のプリント配線基板上に、半田バンプを有する半導体素子(TEGチップ、サイズ20mm×20mm、厚み725μm)を、フリップチップボンダー装置により、加熱圧着により搭載した。つぎに、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP-X4800B)を充填し、当該液状封止樹脂を硬化させることで半導体パッケージを得た。なお、液状封止樹脂は、温度150℃、120分の条件で硬化させた。また、半導体素子の半田バンプは、Sn/Ag/Cu組成の鉛フリー半田で形成されたものを用いた。
3. Manufacturing of Semiconductor Package A semiconductor element (TEG chip, size 20 mm × 20 mm, thickness 725 μm) having solder bumps was mounted on a printed wiring board for a semiconductor package by thermocompression bonding using a flip chip bonder device. Next, after solder bumps were melt-bonded in an IR reflow furnace, a liquid sealing resin (CRP-X4800B, manufactured by Sumitomo Bakelite Co., Ltd.) was filled, and the liquid sealing resin was cured to obtain a semiconductor package. The liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes. Moreover, the solder bump of the semiconductor element used what was formed with the lead free solder of Sn / Ag / Cu composition.
(実施例2~7、比較例3)
 プリプレグの種類を変えた以外は実施例1と同様に金属張積層板および半導体パッケージを製造した。
(Examples 2 to 7, Comparative Example 3)
A metal-clad laminate and a semiconductor package were produced in the same manner as in Example 1 except that the type of prepreg was changed.
(実施例8、比較例1,2)
 PETが積層されたプリプレグの両面のPETフィルムを剥離した2枚のプリプレグの両面に、極薄銅箔(三井金属鉱業社製、マイクロシンEx、1.5μm)を重ね合わせ、220℃、3.0MPaで2時間加熱加圧成形することにより、金属張積層板を得た。得られた金属張積層板のコア層(絶縁層からなる部分)の厚みは、0.10mmであった。表2のキャリア材料を用いた以外は、実施例1と同様に半導体パッケージを製造した。
(Example 8, Comparative Examples 1 and 2)
2. Ultra-thin copper foil (Mitsui Metal Mining Co., Ltd., Microcin Ex, 1.5 μm) is superposed on both sides of the two prepregs from which the PET films on both sides of the PET-laminated prepreg are peeled off, and 220 ° C .; A metal-clad laminate was obtained by heat and pressure molding at 0 MPa for 2 hours. The thickness of the core layer (part consisting of an insulating layer) of the obtained metal-clad laminate was 0.10 mm. A semiconductor package was manufactured in the same manner as in Example 1 except that the carrier material shown in Table 2 was used.
(実施例9~11、比較例4および5)
 所定枚数のプリプレグの両面に極薄銅箔(三井金属鉱業社製、マイクロシンEx、1.5μm)を重ね合わせ、220℃、3.0MPaで2時間加熱加圧成形することにより、金属張積層板を得た。得られた金属張積層板のコア層(絶縁層からなる部分)の厚みは、0.10mmであった。表2のキャリア材料を用いた以外は、実施例1と同様に半導体パッケージを製造した。
(Examples 9 to 11, Comparative Examples 4 and 5)
A metal-clad laminate is obtained by superimposing ultrathin copper foils (Mitsui Metal Mining Co., Ltd., Microcin Ex, 1.5 μm) on both sides of a predetermined number of prepregs, and heating and pressing at 220 ° C. and 3.0 MPa for 2 hours. I got a plate. The thickness of the core layer (part consisting of an insulating layer) of the obtained metal-clad laminate was 0.10 mm. A semiconductor package was manufactured in the same manner as in Example 1 except that the carrier material shown in Table 2 was used.
 各実施例および比較例により得られた金属張積層板および半導体パッケージについて、つぎの各評価を行った。各評価を、評価方法と共に以下に示す。得られた結果を表3に示す。 The following evaluations were performed on the metal-clad laminates and semiconductor packages obtained in the examples and comparative examples. Each evaluation is shown below together with the evaluation method. The obtained results are shown in Table 3.
(1)寸法変化率
 実施例および比較例で作製した金属張積層板の中心付近を270mm×350mmサイズで切断し、IPC-TM-650の2.4.39に準拠した室温での初期寸法を測定した。
 つぎに、エッチング液(第二塩化鉄溶液、35℃)で銅箔を除去した。次いで、加熱オーブンを用いて105℃で4時間の予備加熱処理をおこなった後、IPC-TM-650の2.4.39に準拠した室温での予備加熱処理後寸法を測定した。つづいて、エアーリフロー炉(タムラ製作所社製、TAR-30-36LH)を用いて、金属張積層板に260~265℃で5秒のリフロー処理をおこなった。その後、室温まで冷まし、IPC-TM-650の2.4.39に準拠した室温でのリフロー処理後寸法を測定した。下記式(1)~(3)から金属張積層板の縦方向および横方向の寸法変化率を算出した。
 A(%)=(予備加熱処理後寸法-初期寸法)/初期寸法×100   (1)
 B(%)=(リフロー処理後寸法-初期寸法)/初期寸法×100   (2)
 寸法変化率(%)=B-A   (3)
(1) Dimensional change rate The vicinity of the center of the metal-clad laminate produced in the examples and comparative examples was cut at a size of 270 mm × 350 mm, and the initial dimensions at room temperature in accordance with 2.4.39 of IPC-TM-650 were obtained. It was measured.
Next, the copper foil was removed with an etching solution (ferric chloride solution, 35 ° C.). Next, after preheating treatment at 105 ° C. for 4 hours using a heating oven, dimensions after preheating treatment at room temperature in accordance with 2.4.39 of IPC-TM-650 were measured. Subsequently, using an air reflow oven (TAR-30-36LH, manufactured by Tamura Corporation), the metal-clad laminate was subjected to a reflow treatment at 260 to 265 ° C. for 5 seconds. Then, it cooled to room temperature and measured the dimension after the reflow process at room temperature based on 2.4.39 of IPC-TM-650. From the following formulas (1) to (3), the rate of dimensional change in the vertical and horizontal directions of the metal-clad laminate was calculated.
A (%) = (dimension after preheating treatment−initial dimension) / initial dimension × 100 (1)
B (%) = (dimension after reflow treatment-initial dimension) / initial dimension x 100 (2)
Dimensional change rate (%) = BA (3)
(2)基板反り量
 実施例および比較例で作製した金属張積層板の中心付近を270mm×350mmサイズで切断し、エッチング液で金属箔を剥離後、30mm間隔で50mm×50mmサイズに切断し、合計12ピースの基板反り用サンプルを得た。得られたサンプルの基板反りは、温度可変レーザー三次元測定機(LS200-MT100MT50:ティーテック社製)を用いて、常温(25℃)における基板の反りの測定をおこなった。
(2) Substrate warpage amount The vicinity of the center of the metal-clad laminate produced in Examples and Comparative Examples was cut at a size of 270 mm × 350 mm, the metal foil was peeled off with an etching solution, and then cut at a size of 50 mm × 50 mm at intervals of 30 mm. A total of 12 pieces of substrate warping samples were obtained. Substrate warpage of the obtained sample was measured at normal temperature (25 ° C.) using a temperature variable laser three-dimensional measuring machine (LS200-MT100MT50: manufactured by TETECH).
 測定範囲は、48mm×48mmの範囲で、基板の一方の面にレーザーを当てて測定を行い、レーザーヘッドからの距離が、最遠点と最近点の差を各ピースの反り量とし、各ピースの反り量の平均を基板反り量とした。 The measurement range is 48 mm x 48 mm, the measurement is performed by applying a laser to one side of the substrate, the distance from the laser head is the difference between the farthest point and the nearest point, and the warp amount of each piece. The average of the amount of warpage was taken as the amount of substrate warpage.
(3)導通試験
 実施例および比較例で作製した半導体パッケージ3個をフライングチェッカー(1116X-YC ハイテスタ:日置電機社製)を用い、半田バンプを介して半導体素子とプリント配線基板との間を通る回路端子の導通の測定をおこない、初期値とした。つぎに、60℃、60%の吸湿条件下で40時間処理後、IRリフロー炉(ピーク温度:260℃)で3回処理し、同様に導通を測定して初期値より抵抗値が5%以上上昇したものを実装時の断線と判定した。ここで、初期値で断線が生じていた場合は、回路作製上の不具合と判断しカウントしていない。なお、半導体パッケージ1個につき測定箇所は61箇所、計183箇所を測定した。
 各符号は、以下の通りである。
 ◎:断線箇所が無かった。
 ○:断線箇所が1%以上11%未満であった。
 △:断線箇所が11%以上51%未満であった。
 ×:断線箇所が51%以上であった。
(3) Continuity test Three semiconductor packages manufactured in the examples and comparative examples are passed between the semiconductor element and the printed wiring board through solder bumps using a flying checker (1116X-YC Hitester: manufactured by Hioki Electric Co., Ltd.). The continuity of the circuit terminals was measured and used as the initial value. Next, after treatment for 40 hours at 60 ° C. and 60% moisture absorption, treatment was performed three times in an IR reflow furnace (peak temperature: 260 ° C.), and the continuity was measured in the same manner, and the resistance value was 5% or more from the initial value. The rise was determined to be a disconnection during mounting. Here, when the disconnection has occurred at the initial value, it is determined that it is a malfunction in circuit fabrication and is not counted. In addition, the measurement location was 61 locations per semiconductor package, and a total of 183 locations were measured.
Each code is as follows.
(Double-circle): There was no disconnection location.
○: The disconnection portion was 1% or more and less than 11%.
(Triangle | delta): The disconnection location was 11% or more and less than 51%.
X: The disconnection location was 51% or more.
(4)温度サイクル(TC)試験
 実施例および比較例で作製した半導体パッケージ4個を60℃、60%の条件下で40時間処理後、IRリフロー炉(ピーク温度:260℃)で3回処理し、大気中で、-55℃(15分)、125℃(15分)で500サイクル処理した。つぎに、超音波映像装置(日立建機ファインテック社製、FS300)を用いて、半導体素子、半田バンプに異常がないか観察した。
 ◎:半導体素子、半田バンプともに異常なし。
 ○:半導体素子および/または半田バンプの一部にクラックが見られるが実用上問題なし。
 △:半導体素子および/または半田バンプの一部にクラックが見られ実用上問題あり。
 ×:半導体素子、半田バンプともにクラックが見られ使用できない。
(4) Temperature cycle (TC) test Four semiconductor packages produced in the examples and comparative examples were treated for 40 hours under the conditions of 60 ° C and 60%, and then treated three times in an IR reflow furnace (peak temperature: 260 ° C). And 500 cycles at −55 ° C. (15 minutes) and 125 ° C. (15 minutes) in the atmosphere. Next, using an ultrasonic imaging apparatus (manufactured by Hitachi Construction Machinery Finetech Co., Ltd., FS300), the semiconductor element and the solder bump were observed for abnormalities.
A: No abnormality in both semiconductor element and solder bump.
○: Cracks are seen in a part of the semiconductor element and / or solder bump, but there is no practical problem.
(Triangle | delta): A crack is seen in a part of semiconductor element and / or a solder bump, and there is a problem in practical use.
X: Both the semiconductor element and the solder bump are cracked and cannot be used.
 表3からわかるように、実施例1~11は、比較例2~5よりも寸法変化率および基板反り量が減少していた。
 これにより、実施例1~11の積層板は、比較例2~5の積層板に比べて、基板反りが軽減されることが明らかとなった。
As can be seen from Table 3, in Examples 1 to 11, the dimensional change rate and the amount of warpage of the substrate were reduced as compared with Comparative Examples 2 to 5.
As a result, it was clarified that the laminates of Examples 1 to 11 were less warped than the laminates of Comparative Examples 2 to 5.
 また、表3からわかるように、比較例2~5で得られた半導体パッケージは、導通試験での断線箇所が多くなり、また、温度サイクル試験での半導体素子や半田バンプにクラックの発生が増加し、接続信頼性に劣っていた。一方、実施例1~11で得られた半導体パッケージは、導通試験での断線箇所がないまたは少なく、さらに、温度サイクル試験での半導体素子や半田バンプにクラックの発生が無いまたは少なく、接続信頼性に優れていた。 In addition, as can be seen from Table 3, the semiconductor packages obtained in Comparative Examples 2 to 5 have more disconnection points in the continuity test, and more cracks are generated in the semiconductor elements and solder bumps in the temperature cycle test. And connection reliability was inferior. On the other hand, the semiconductor packages obtained in Examples 1 to 11 have no or few disconnections in the continuity test, and further, there are no or few cracks in the semiconductor elements and solder bumps in the temperature cycle test. It was excellent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この出願は、2011年9月29日に出願された日本出願特願2011-214674号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-214664 filed on September 29, 2011, the entire disclosure of which is incorporated herein.

Claims (15)

  1.  熱硬化性樹脂と、充填材と、繊維基材とを含む絶縁層の両面に金属箔を有する金属張積層板であって、
     エッチングにより両面の金属箔を除去後、
     (1)105℃で4時間の予備加熱処理と、
     (2)表面温度が260~265℃で5秒のリフロー処理と
    からなる加熱処理をおこなったとき、
     IPC-TM-650の2.4.39に準拠して測定した室温での当該積層板の寸法において、
     前記エッチング前から前記予備加熱処理後の前記寸法の変化率をAとし、
     前記エッチング前から前記リフロー処理後の前記寸法の変化率をBとしたとき、
     B-Aより算出される寸法変化率が、
     当該金属張積層板の縦方向および横方向ともに、-0.080%以上0%以下である、金属張積層板。
    A metal-clad laminate having metal foil on both sides of an insulating layer including a thermosetting resin, a filler, and a fiber base material,
    After removing the metal foil on both sides by etching,
    (1) preheating treatment at 105 ° C. for 4 hours;
    (2) When a heat treatment comprising a surface temperature of 260 to 265 ° C. and a reflow treatment of 5 seconds is performed,
    In the dimensions of the laminate at room temperature measured according to 2.4.39 of IPC-TM-650,
    A change rate of the dimension after the preliminary heat treatment before the etching is A,
    When the change rate of the dimension after the reflow process from before the etching is B,
    The rate of dimensional change calculated from BA is
    A metal-clad laminate that is from -0.080% to 0% in both the longitudinal and lateral directions of the metal-clad laminate.
  2.  請求項1に記載の金属張積層板において、
     当該金属張積層板の前記縦方向および前記横方向の前記寸法変化率の差の絶対値が、0%以上0.03%以下である、金属張積層板。
    The metal-clad laminate according to claim 1,
    The metal-clad laminate, wherein the absolute value of the difference between the dimensional change rates in the longitudinal direction and the transverse direction of the metal-clad laminate is 0% or more and 0.03% or less.
  3.  請求項1または2に記載の金属張積層板において、
     前記絶縁層に含まれる前記繊維基材と前記充填材との合計が、55質量%以上80質量%以下である、金属張積層板。
    In the metal-clad laminate according to claim 1 or 2,
    The metal-clad laminate in which the total of the fiber base material and the filler contained in the insulating layer is 55% by mass or more and 80% by mass or less.
  4.  請求項1乃至3いずれか一項に記載の金属張積層板において、
     当該金属張積層板の動的粘弾性測定によるガラス転移温度が、200℃以上350℃以下である、金属張積層板。
    In the metal tension laminate sheet according to any one of claims 1 to 3,
    A metal-clad laminate having a glass transition temperature of 200 ° C. or higher and 350 ° C. or lower as measured by dynamic viscoelasticity of the metal-clad laminate.
  5.  請求項1乃至4いずれか一項に記載の金属張積層板において、
     当該積層板の250℃での動的粘弾性測定による貯蔵弾性率E'が、5GPa以上50GPa以下である、金属張積層板。
    The metal-clad laminate according to any one of claims 1 to 4,
    A metal-clad laminate having a storage elastic modulus E ′ measured by dynamic viscoelasticity at 250 ° C. of 5 to 50 GPa.
  6.  請求項1乃至5いずれか一項に記載の金属張積層板において、
     前記繊維基材が、Eガラス、Sガラス、Dガラス、NEガラス、石英ガラスおよびTガラスから選ばれる少なくとも一種のガラスを含むガラス繊維基材である、金属張積層板。
    In the metal tension laminate sheet according to any one of claims 1 to 5,
    A metal-clad laminate, wherein the fiber base material is a glass fiber base material containing at least one glass selected from E glass, S glass, D glass, NE glass, quartz glass, and T glass.
  7.  請求項6に記載の金属張積層板において、
     前記ガラス繊維基材を構成する材料の引張弾性率が60GPa以上100GPa以下である金属張積層板。
    The metal-clad laminate according to claim 6,
    A metal-clad laminate in which the material constituting the glass fiber substrate has a tensile elastic modulus of 60 GPa to 100 GPa.
  8.  請求項6または7に記載の金属張積層板において、
     前記ガラス繊維基材の線膨張係数が、3.5ppm/℃以下である、金属張積層板。
    The metal-clad laminate according to claim 6 or 7,
    A metal-clad laminate, wherein the glass fiber substrate has a linear expansion coefficient of 3.5 ppm / ° C. or less.
  9.  請求項1乃至8いずれか一項に記載の金属張積層板において、
     前記絶縁層の厚みが、0.6mm以下である、金属張積層板。
    In the metal tension laminate sheet according to any one of claims 1 to 8,
    A metal-clad laminate, wherein the insulating layer has a thickness of 0.6 mm or less.
  10.  請求項1乃至9いずれか一項に記載の金属張積層板を回路加工してなる、プリント配線基板。 A printed wiring board obtained by circuit processing the metal-clad laminate according to any one of claims 1 to 9.
  11.  請求項10に記載のプリント配線基板に半導体素子が搭載された、半導体パッケージ。 A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to claim 10.
  12.  請求項11に記載の半導体パッケージを含む、半導体装置。 A semiconductor device including the semiconductor package according to claim 11.
  13.  (A)熱硬化性樹脂と充填材を含む樹脂組成物を繊維基材に含浸させる工程と、
     (B)加熱により前記熱硬化性樹脂を半硬化させ、プリプレグを得る工程と、
     (C)前記プリプレグの両面に金属箔を重ね合わせ、加熱加圧する工程と
    を含み、
     前記(A)工程において、前記繊維基材にかかる張力を25N/m以上350N/m以下とする、金属張積層板の製造方法。
    (A) impregnating a fiber base material with a resin composition containing a thermosetting resin and a filler;
    (B) semi-curing the thermosetting resin by heating to obtain a prepreg;
    (C) superimposing metal foil on both sides of the prepreg and heating and pressurizing,
    The method for producing a metal-clad laminate, wherein in the step (A), the tension applied to the fiber base material is 25 N / m or more and 350 N / m or less.
  14.  請求項13に記載の金属張積層板の製造方法において、
     前記(A)工程は、
    (a1)前記樹脂組成物を含む樹脂層が支持基材の片面に形成された、第一キャリア材料および第二キャリア材料をそれぞれ準備する工程と、
    (a2)前記第一キャリア材料の前記樹脂層側と前記第二キャリア材料の前記樹脂層側とを前記繊維基材の両面にそれぞれ重ね合わせ、減圧条件下で、前記第一キャリア材料、前記繊維基材、および前記第二キャリア材料をラミネートすることにより、前記樹脂層を前記繊維基材に含浸させる工程と、
    を含む、金属張積層板の製造方法。
    In the manufacturing method of the metal tension laminate sheet according to claim 13,
    The step (A)
    (A1) A step of preparing a first carrier material and a second carrier material, respectively, in which a resin layer containing the resin composition is formed on one side of a support substrate;
    (A2) The resin layer side of the first carrier material and the resin layer side of the second carrier material are overlapped on both surfaces of the fiber base material, respectively, and the first carrier material and the fiber under reduced pressure conditions A step of impregnating the fiber substrate with the resin layer by laminating the substrate and the second carrier material;
    A method for producing a metal-clad laminate, comprising:
  15.  前記支持基材が金属箔である、請求項14に記載の金属張積層板の製造方法。 The method for producing a metal-clad laminate according to claim 14, wherein the supporting base material is a metal foil.
PCT/JP2012/006064 2011-09-29 2012-09-24 Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate manufacturing method WO2013046631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011214674 2011-09-29
JP2011-214674 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013046631A1 true WO2013046631A1 (en) 2013-04-04

Family

ID=47994714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006064 WO2013046631A1 (en) 2011-09-29 2012-09-24 Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate manufacturing method

Country Status (3)

Country Link
JP (1) JP6480650B2 (en)
TW (1) TWI562694B (en)
WO (1) WO2013046631A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225334A (en) * 2014-05-30 2015-12-14 住友ベークライト株式会社 Substrate for active matrix type display device, display device and manufacturing method of substrate for active matrix type display device
WO2016088743A1 (en) * 2014-12-01 2016-06-09 三菱瓦斯化学株式会社 Resin sheet and printed wiring board
TWI819300B (en) * 2020-04-30 2023-10-21 大陸商鼎勤科技(深圳)有限公司 Circuit board material layer pre-lamination equipment and process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240456A (en) * 2013-06-11 2014-12-25 住友ベークライト株式会社 Prepreg with primer layer, metal-clad laminate, printed wiring board and semiconductor package
JP6206035B2 (en) * 2013-09-24 2017-10-04 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, and semiconductor device
JP6221620B2 (en) * 2013-10-22 2017-11-01 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, and semiconductor device
US11497117B2 (en) 2016-05-25 2022-11-08 Showa Denko Materials Co., Ltd. Metal-clad laminate, printed wiring board and semiconductor package
CN111800950B (en) * 2019-04-09 2021-12-03 臻鼎科技股份有限公司 Method for manufacturing metal-clad plate
WO2021256798A1 (en) * 2020-06-18 2021-12-23 동우 화인켐 주식회사 Flexible metal laminate, method for manufacturing same, and printed wiring board using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381122A (en) * 1989-08-24 1991-04-05 Shin Kobe Electric Mach Co Ltd Manufacture of thermosetting resin laminated sheet plated with metallic foil
JPH08216335A (en) * 1995-02-09 1996-08-27 Hitachi Chem Co Ltd Manufacture of highly rigid copper-clad laminated plate
JPH09155863A (en) * 1995-12-08 1997-06-17 Shin Kobe Electric Mach Co Ltd Prepreg producing apparatus
JP2000212308A (en) * 1999-01-26 2000-08-02 Hitachi Chem Co Ltd Prepreg, metal foil-clad laminate and multilayered printed wiring board
JP2002069886A (en) * 2000-09-06 2002-03-08 Shin Kobe Electric Mach Co Ltd Nonwoven fabric for electric insulation, prepreg and laminate
JP2003155362A (en) * 2001-11-19 2003-05-27 Hitachi Chem Co Ltd Thermosetting resin prepreg, method for producing the same, laminated board for electrical wiring and multilayer printed wiring board
JP2004307811A (en) * 2003-03-26 2004-11-04 Sumitomo Bakelite Co Ltd Plastic substrate for display element
JP2007050599A (en) * 2005-08-18 2007-03-01 Kaneka Corp Flexible metal-clad laminated plate excellent in dimensional stability and its production method
WO2007040125A1 (en) * 2005-09-30 2007-04-12 Sumitomo Bakelite Co., Ltd. Process for producing prepreg with carrier, prepreg with carrier, process for producing thin-type double sided board, thin-type double sided board, and process for producing multilayered printed wiring board
JP2010229313A (en) * 2009-03-27 2010-10-14 Sekisui Chem Co Ltd Epoxy resin composition, sheet-formed molded article, prepreg, cured product, laminated plate and multilayer laminated plate
JP2010238907A (en) * 2009-03-31 2010-10-21 Sumitomo Bakelite Co Ltd Laminated board, multilayer printed wiring board, and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108314A (en) * 2004-10-04 2006-04-20 Kyocera Chemical Corp Metal plated board, manufacturing method thereof, flexible printed wiring board, and multilayer printed wiring board
JP2011179001A (en) * 2011-03-28 2011-09-15 Sumitomo Bakelite Co Ltd Prepreg, circuit board and semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381122A (en) * 1989-08-24 1991-04-05 Shin Kobe Electric Mach Co Ltd Manufacture of thermosetting resin laminated sheet plated with metallic foil
JPH08216335A (en) * 1995-02-09 1996-08-27 Hitachi Chem Co Ltd Manufacture of highly rigid copper-clad laminated plate
JPH09155863A (en) * 1995-12-08 1997-06-17 Shin Kobe Electric Mach Co Ltd Prepreg producing apparatus
JP2000212308A (en) * 1999-01-26 2000-08-02 Hitachi Chem Co Ltd Prepreg, metal foil-clad laminate and multilayered printed wiring board
JP2002069886A (en) * 2000-09-06 2002-03-08 Shin Kobe Electric Mach Co Ltd Nonwoven fabric for electric insulation, prepreg and laminate
JP2003155362A (en) * 2001-11-19 2003-05-27 Hitachi Chem Co Ltd Thermosetting resin prepreg, method for producing the same, laminated board for electrical wiring and multilayer printed wiring board
JP2004307811A (en) * 2003-03-26 2004-11-04 Sumitomo Bakelite Co Ltd Plastic substrate for display element
JP2007050599A (en) * 2005-08-18 2007-03-01 Kaneka Corp Flexible metal-clad laminated plate excellent in dimensional stability and its production method
WO2007040125A1 (en) * 2005-09-30 2007-04-12 Sumitomo Bakelite Co., Ltd. Process for producing prepreg with carrier, prepreg with carrier, process for producing thin-type double sided board, thin-type double sided board, and process for producing multilayered printed wiring board
JP2010229313A (en) * 2009-03-27 2010-10-14 Sekisui Chem Co Ltd Epoxy resin composition, sheet-formed molded article, prepreg, cured product, laminated plate and multilayer laminated plate
JP2010238907A (en) * 2009-03-31 2010-10-21 Sumitomo Bakelite Co Ltd Laminated board, multilayer printed wiring board, and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225334A (en) * 2014-05-30 2015-12-14 住友ベークライト株式会社 Substrate for active matrix type display device, display device and manufacturing method of substrate for active matrix type display device
WO2016088743A1 (en) * 2014-12-01 2016-06-09 三菱瓦斯化学株式会社 Resin sheet and printed wiring board
JPWO2016088743A1 (en) * 2014-12-01 2017-09-07 三菱瓦斯化学株式会社 Resin sheet and printed wiring board
TWI819300B (en) * 2020-04-30 2023-10-21 大陸商鼎勤科技(深圳)有限公司 Circuit board material layer pre-lamination equipment and process

Also Published As

Publication number Publication date
JP2013082213A (en) 2013-05-09
JP6480650B2 (en) 2019-03-13
TWI562694B (en) 2016-12-11
TW201322854A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
JP6410405B2 (en) Resin substrate, prepreg, printed wiring board, semiconductor device
JP6480650B2 (en) Metal-clad laminate, printed wiring board, semiconductor package, semiconductor device, and metal-clad laminate production method
WO2012140908A1 (en) Laminate sheet, circuit board, and semiconductor package
JP6083127B2 (en) Laminate, laminate with build-up layer, circuit board, semiconductor package, and method for manufacturing laminate
JP7258453B2 (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
KR101524898B1 (en) Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board, and semiconductor device
JPWO2017170643A1 (en) Thermosetting resin composition, resin film with carrier, prepreg, metal-clad laminate, resin substrate, printed wiring board, and semiconductor device
KR20130133199A (en) Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
JP2013180406A (en) Prepreg, substrate, semiconductor device, method of manufacturing prepreg, method of manufacturing substrate, and method of manufacturing semiconductor device
JP6281184B2 (en) Metal-clad laminate, printed wiring board, semiconductor package, and semiconductor device
JP6008104B2 (en) Prepreg and metal-clad laminate
JP6540452B2 (en) Resin composition for circuit board, prepreg, metal-clad laminate, circuit board, and semiconductor package
JP6217069B2 (en) Resin substrate, metal-clad laminate, printed wiring board, and semiconductor device
WO2013021587A1 (en) Prepreg, laminated board, printed wiring board, semiconductor package, and semiconductor device
WO2014192421A1 (en) Printed wiring board and semiconductor device
JP2013006328A (en) Laminate, circuit board, and semiconductor package
JP2020132646A (en) Resin composition, resin film with carrier using the same, prepreg, laminated plate, printed wiring board, and semiconductor device
JP2015159177A (en) Resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
JP7342358B2 (en) Resin compositions, resin films with carriers using the same, prepregs, laminates, printed wiring boards, and semiconductor devices
JP5935314B2 (en) Manufacturing method of semiconductor device
WO2013172008A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2015136849A (en) Resin substrate, metal-clad laminate, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837279

Country of ref document: EP

Kind code of ref document: A1