JP2006315391A - Laminated plate and printed circuit board using the same - Google Patents

Laminated plate and printed circuit board using the same Download PDF

Info

Publication number
JP2006315391A
JP2006315391A JP2005327915A JP2005327915A JP2006315391A JP 2006315391 A JP2006315391 A JP 2006315391A JP 2005327915 A JP2005327915 A JP 2005327915A JP 2005327915 A JP2005327915 A JP 2005327915A JP 2006315391 A JP2006315391 A JP 2006315391A
Authority
JP
Japan
Prior art keywords
metal
laminate
resin composition
clad laminate
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005327915A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujita
広明 藤田
Yoshitoshi Kumakura
俊寿 熊倉
Hiroyuki Fukai
弘之 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005327915A priority Critical patent/JP2006315391A/en
Publication of JP2006315391A publication Critical patent/JP2006315391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a (multilayer) printed circuit board excellent in connection reliability hardly causing cracks such as corner cracks in through-holes and solder cracks after the heat cycle test, and to provide a (metal-clad) laminate for use in manufacturing the printed circuit board. <P>SOLUTION: The laminate comprises an insulating substrate having a flexural modulus at room temperature of ≥24.0 GPa and a thermal expansion coefficient at ≤150°C of ≤20 ppm/°C in the horizontal direction and ≤60 ppm/°C in the vertical direction, and insulating resin composition layers formed on both surfaces of the insulating substrate each having 10-200 μm thickness and ≤3.0 GPa elastic modulus and ≥8.0% tensile elongation at room temperature. The printed circuit board uses this laminate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、安価で、かつ接続信頼性の高いプリント配線板およびそのための積層板に関する。   The present invention relates to a printed wiring board that is inexpensive and has high connection reliability, and a laminated board therefor.

自動車のエンジンルーム等の高温環境下で使用される配線板には、従来、耐熱性の高いセラミック基板を用いた配線板が主に用いられているが、近年の低価格化の要求により、有機プリント配線板への代替が検討されている。しかし、有機プリント配線板における銅配線や実装部品と有機基板との間の熱膨張率差が大きい場合には、ヒートサイクル試験後、その差に起因してスルーホール内クラック、はんだクラック、有機基板表層クラック等のクラックが発生し易く、結果として接続信頼性が低下してしまう。   Conventionally, wiring boards using ceramic substrates with high heat resistance have been mainly used for wiring boards used in high-temperature environments such as automobile engine rooms. Alternatives to printed wiring boards are being considered. However, if the thermal expansion coefficient difference between the copper wiring or mounting component and the organic substrate on the organic printed wiring board is large, after the heat cycle test, due to the difference, cracks in the through-hole, solder crack, organic substrate Cracks such as surface layer cracks are likely to occur, resulting in a decrease in connection reliability.

そこで、安価でかつヒートサイクル試験後にクラックなどの不具合が発生し難い、高い接続信頼性を有する有機プリント配線板の需要が年々増加している。   Thus, there is an increasing demand for organic printed wiring boards that are inexpensive and less susceptible to defects such as cracks after heat cycle testing and have high connection reliability.

有機プリント配線板におけるクラックの発生を予防する方法としては、例えば、有機基板の樹脂組成物中に多量の無機充填材を配合し、有機基板の熱膨張係数を銅配線やICチップ等の実装部品のそれに近づける方法(例えば、特許文献1参照)が挙げられるが、無機充填材を多量に配合した樹脂組成物は、熱膨張係数が小さくなるという利点がある反面、脆くなるという欠点があり、スルーホール内で特にストレスが多くかかる表層コーナー部分において、コーナークラックが発生し易くなってしまう。さらに、無機充填材を多量に配合した樹脂組成物は、その弾性率が高いため、部品と有機基板の熱膨張率差に起因して発生するストレスをより多くはんだ部分にかけることとなり、はんだクラックが発生し易くなってしまう。つまり、有機基板の樹脂組成物中に多量の無機充填材を配合する手法だけでは、年々高まる有機プリント配線板の接続信頼性に対する要求に十分応えることはできない。
特公平2−45348号
As a method for preventing the occurrence of cracks in the organic printed wiring board, for example, a large amount of an inorganic filler is blended in the resin composition of the organic substrate, and the thermal expansion coefficient of the organic substrate is determined as a mounted component such as a copper wiring or an IC chip. However, the resin composition containing a large amount of the inorganic filler has the advantage that the coefficient of thermal expansion is small, but has the disadvantage of becoming brittle. Corner cracks are likely to occur at the surface corner portions where stress is particularly high in the hole. In addition, since the resin composition containing a large amount of inorganic filler has a high elastic modulus, it applies more stress to the solder part due to the difference in thermal expansion coefficient between the component and the organic substrate, resulting in solder cracks. Is likely to occur. In other words, the method of adding a large amount of inorganic filler to the resin composition of the organic substrate cannot sufficiently meet the demand for the connection reliability of the organic printed wiring board that is increasing year by year.
Japanese Patent Publication No. 2-45348

上記を鑑みて、本発明は、ヒートサイクル試験後にスルーホールコーナークラックやはんだクラック等のクラックが発生し難い、接続信頼性に優れた(多層)有機プリント配線板、および該有機プリント配線板を製造するための(金属張)積層板を提供することをその目的とする。   In view of the above, the present invention produces a (multilayer) organic printed wiring board that is unlikely to generate cracks such as through-hole corner cracks and solder cracks after a heat cycle test, and has excellent connection reliability, and the organic printed wiring board It is an object of the present invention to provide a (metal-clad) laminated board.

上記課題を解決するために、鋭意検討した結果、熱膨張係数が低く、かつ弾性率の高い絶縁基板の両面に、弾性率が低く、かつ引張り伸び率の高い樹脂組成物層が形成された積層板を用いて製造された有機プリント配線板は、ヒートサイクル試験後においてもクラックが発生し難く、優れた接続信頼性を示すことを見出し、本発明を為すに至った。   As a result of diligent studies to solve the above problems, a laminate in which a resin composition layer having a low elastic modulus and a high tensile elongation is formed on both surfaces of an insulating substrate having a low thermal expansion coefficient and a high elastic modulus. The organic printed wiring board manufactured using the board has been found to be less susceptible to cracking even after the heat cycle test and exhibits excellent connection reliability, and has led to the present invention.

すなわち、本発明は、下記(1)〜(5)をその特徴とするものである。   That is, the present invention is characterized by the following (1) to (5).

(1)室温での曲げ弾性率が24.0GPa以上で、かつ150℃以下での熱膨張係数が水平方向で20ppm/℃以下、垂直方向で60ppm/℃以下である絶縁基板、および前記絶縁基板の両面に厚み10〜200μmで形成され、室温での弾性率が3.0GPa以下で、かつ引張り伸び率が8.0%以上である絶縁樹脂組成物層、
を有する、積層板。
(1) An insulating substrate having a flexural modulus at room temperature of 24.0 GPa or more and a thermal expansion coefficient at 150 ° C. or less of 20 ppm / ° C. or less in the horizontal direction and 60 ppm / ° C. or less in the vertical direction, and the insulating substrate An insulating resin composition layer having a thickness of 10 to 200 μm on both surfaces, an elastic modulus at room temperature of 3.0 GPa or less, and a tensile elongation of 8.0% or more,
Having a laminate.

(2)前記絶縁基板が内層回路を有する、上記(1)に記載の積層板。   (2) The laminated board according to (1), wherein the insulating substrate has an inner layer circuit.

(3)上記(1)または(2)に記載の積層板の片面または両面に金属層が形成されていることを特徴とする金属張積層板。   (3) A metal-clad laminate, wherein a metal layer is formed on one side or both sides of the laminate according to (1) or (2).

(4)上記(3)に記載の金属張積層板における金属層をエッチングして回路を形成してなる、プリント配線板。   (4) A printed wiring board formed by etching a metal layer in the metal-clad laminate according to (3) to form a circuit.

(5)(A)上記(3)に記載の金属張積層板の金属層をエッチングして回路を形成する工程、(B)前記回路上に、さらに上記(1)もしくは(2)に記載の積層板と金属箔を順次積層した後、または上記(3)に記載の金属張積層板を積層した後、加熱加圧する工程、および(C)最外層となる金属層をエッチングして回路を形成する工程、を有し、必要な積層数に応じて、前記(B)および(C)工程を繰り返すことを特徴とする多層プリント配線板の製造法。   (5) (A) a step of forming a circuit by etching a metal layer of the metal-clad laminate as described in (3) above; (B) a step described in (1) or (2) above on the circuit; After laminating the laminate and metal foil sequentially or after laminating the metal-clad laminate as described in (3) above, (C) forming a circuit by etching the outermost metal layer A process for producing a multilayer printed wiring board, wherein the steps (B) and (C) are repeated according to the required number of layers.

本発明によれば、ヒートサイクル試験後にスルーホールコーナークラックやはんだクラック等のクラックが発生し難い、接続信頼性に優れた(多層)有機プリント配線板および該プリント配線板を製造するための(金属張)積層板を提供することが可能となる。   According to the present invention, a (multilayer) organic printed wiring board that is unlikely to generate cracks such as through-hole corner cracks and solder cracks after a heat cycle test, and has excellent connection reliability (metal for producing the printed wiring board) Zhang) can be provided.

本発明は、室温での曲げ弾性率が24.0GPa以上で、かつ150℃以下での熱膨張係数が水平方向で20ppm/℃以下、垂直方向で60ppm/℃以下である絶縁基板、および該絶縁基板の両面に厚み10〜200μmで形成され、室温での弾性率が3.0GPa以下で、かつ引張り伸び率が8.0%以上である絶縁樹脂組成物層、を有する積層板をその特徴とするものである。なお、上記水平方向と垂直方向は絶縁基板に対する方向である。   The present invention relates to an insulating substrate having a flexural modulus at room temperature of 24.0 GPa or more and a thermal expansion coefficient at 150 ° C. or less of 20 ppm / ° C. or less in the horizontal direction and 60 ppm / ° C. or less in the vertical direction. A laminated board having an insulating resin composition layer formed on both surfaces of a substrate with a thickness of 10 to 200 μm, an elastic modulus at room temperature of 3.0 GPa or less, and a tensile elongation of 8.0% or more, and To do. The horizontal direction and the vertical direction are directions with respect to the insulating substrate.

上記絶縁基板としては、上記曲げ弾性率および熱膨張係数を満たすものであれば、公知のものを使用することができ、特に限定されないが、例えば、ガラスエポキシ銅張積層板であるMCL−E−679やMCL−E−679F(いずれも日立化成工業株式会社製、商品名)等の銅層をエッチング除去したもの、アラミド不織布等の有機基材にエポキシ樹脂等の絶縁樹脂を含む樹脂組成物を含浸、乾燥して得られるものなどを用いることができる。また、内層回路を有するものであってもよい。また、絶縁基板の厚みは、一般的な厚みでよく、特に限定されないが、0.2〜3.2mmの範囲であることが好ましい。   As the insulating substrate, known substrates can be used as long as they satisfy the bending elastic modulus and the thermal expansion coefficient, and are not particularly limited. For example, MCL-E- which is a glass epoxy copper-clad laminate. 679 and MCL-E-679F (both manufactured by Hitachi Chemical Co., Ltd., trade name) and the like, and a resin composition containing an insulating resin such as an epoxy resin on an organic substrate such as an aramid nonwoven fabric What was obtained by impregnation and drying can be used. Moreover, you may have an inner layer circuit. The thickness of the insulating substrate may be a general thickness and is not particularly limited, but is preferably in the range of 0.2 to 3.2 mm.

また、上記絶縁基板の曲げ弾性率が24.0GPa未満であると、両面に低弾性性の絶縁樹脂組成物層を設けた際、複合材(積層板)としての水平方向の熱膨張係数が大きくなる傾向にあり好ましくない。また、上記絶縁基板の150℃以下での熱膨張係数が水平方向で20ppm/℃を越えるか、もしくは垂直方向で60ppm/℃を越えると、銅配線や電子部品等の実装部品の熱膨張係数との差が大きくなり、クラック発生の要因となるため好ましくない。   Further, when the insulating substrate has a flexural modulus of less than 24.0 GPa, when a low-elasticity insulating resin composition layer is provided on both sides, the thermal expansion coefficient in the horizontal direction as a composite material (laminate) is large. This is not preferable. Further, if the thermal expansion coefficient of the insulating substrate at 150 ° C. or lower exceeds 20 ppm / ° C. in the horizontal direction or exceeds 60 ppm / ° C. in the vertical direction, the thermal expansion coefficient of mounted components such as copper wiring and electronic components This is not preferable because the difference between the two increases and causes cracks.

上記絶縁樹脂組成物層は、上記の通り、室温での弾性率が3.0GPa以下で、かつ引張り伸び率が8.0%以上のものである必要がある。この弾性率が3.0GPaを越えると、高温環境下において発生するストレスを十分に緩和することができず、また、引張り伸び率が8.0%未満であるとスルーホールコーナークラック等の発生を十分に防止することが難しくなる。   As described above, the insulating resin composition layer needs to have an elastic modulus at room temperature of 3.0 GPa or less and a tensile elongation of 8.0% or more. If this elastic modulus exceeds 3.0 GPa, the stress generated in a high temperature environment cannot be sufficiently relaxed, and if the tensile elongation is less than 8.0%, through-hole corner cracks and the like are generated. It becomes difficult to prevent enough.

また、上記絶縁樹脂組成物層は、例えば、絶縁樹脂組成物を支持体上に塗布、乾燥し、これを上記絶縁基板に、絶縁樹脂組成物塗布層が該絶縁基板に接するように積層し、支持体を除去し、加熱加圧して形成しても良く、アラミド不織布等の有機基材、ガラスクロス、ガラス不織布などに絶縁樹脂組成物を含浸、乾燥してなる樹脂含浸基材(プリプレグ)を上記絶縁基板に積層し、加熱加圧して形成しても良く、特に限定されない。なお、上記支持体が銅箔などの金属箔である場合には、これを除去せずに金属層として残すことで、本発明の金属張積層板とすることができる。また、上記加熱加圧は、温度150〜180℃、圧力9〜20MPa程度の条件で行うことが好ましいが、積層板の特性や絶縁樹脂組成物の反応性、プレス機の能力、目的の積層板の厚み等を考慮して適宜決定することができ、特に限定されない。   Further, the insulating resin composition layer is, for example, coated and dried on the support, the insulating resin composition is laminated on the insulating substrate so that the insulating resin composition coating layer is in contact with the insulating substrate, It may be formed by removing the support and heating and pressurizing. A resin-impregnated base material (prepreg) formed by impregnating an organic resin base material such as aramid non-woven fabric, glass cloth, glass non-woven fabric with an insulating resin composition and drying. It may be formed by laminating on the insulating substrate and heating and pressing, and is not particularly limited. In addition, when the said support body is metal foils, such as copper foil, it can be set as the metal-clad laminated board of this invention by leaving this as a metal layer, without removing this. The heating and pressurization is preferably performed under conditions of a temperature of 150 to 180 ° C. and a pressure of about 9 to 20 MPa. However, the characteristics of the laminate, the reactivity of the insulating resin composition, the ability of the press, and the desired laminate The thickness can be appropriately determined in consideration of the thickness of the material, and is not particularly limited.

上記絶縁樹脂組成物としては、特に限定されないが、例えば、エポキシ樹脂等の絶縁性樹脂、アクリロニトリルブタジエンゴム等のゴム、フェノール樹脂等の硬化剤、2−エチル−4−メチルイミダゾール等の硬化促進剤、難燃剤、可塑剤、充填剤、溶剤等を含むものを用いることができ、各組成の配合量や溶剤の量を適宜調整することで、絶縁樹脂組成物層の弾性率や引張り伸び率を調整することができる。   The insulating resin composition is not particularly limited. For example, an insulating resin such as an epoxy resin, a rubber such as acrylonitrile butadiene rubber, a curing agent such as a phenol resin, and a curing accelerator such as 2-ethyl-4-methylimidazole. It is possible to use those containing flame retardants, plasticizers, fillers, solvents, etc., and by appropriately adjusting the amount of each composition and the amount of solvent, the elastic modulus and tensile elongation of the insulating resin composition layer can be adjusted. Can be adjusted.

上記充填剤としては、特に限定されないが、例えば、シリカ、溶融シリカ、タルク、アルミナ、水酸化アルミニウム、硫酸バリウム、水酸化カルシウム、炭酸カルシウム、ガラス繊維、石英繊維等を挙げることができ、これらは単独もしくは併用して用いることができる。   Examples of the filler include, but are not limited to, silica, fused silica, talc, alumina, aluminum hydroxide, barium sulfate, calcium hydroxide, calcium carbonate, glass fiber, and quartz fiber. It can be used alone or in combination.

また、上記絶縁樹脂組成物層の厚みは、10〜200μmであることが好ましい。この厚みが10μm未満であると高温環境下において発生するストレスを十分に緩和することができず、200μmを越えると、垂直方向の熱膨張係数が大きくなり過ぎる傾向にある。   Moreover, it is preferable that the thickness of the said insulating resin composition layer is 10-200 micrometers. If the thickness is less than 10 μm, the stress generated in a high temperature environment cannot be sufficiently relaxed, and if it exceeds 200 μm, the thermal expansion coefficient in the vertical direction tends to be too large.

本発明の金属張積層板は、本発明の積層板の片面または両面に金属層が形成されていることをその特徴とするものであり、該金属層は、例えば、銅箔などの金属箔を積層板の片面または両面に配し、加熱加圧することで形成することができる。また、前述のように、金属箔に絶縁樹脂組成物を塗布、乾燥してなるもの(金属箔付き絶縁樹脂フィルム)を絶縁基板に配し、加熱加圧することで、本発明の金属張積層板とすることもできる。なお、上記加熱加圧は、温度150〜180℃、圧力9〜20MPa程度の条件で行うことが好ましいが、積層板の特性や絶縁樹脂組成物の反応性、プレス機の能力、目的の積層板の厚み等を考慮して適宜決定することができ、特に限定されない。   The metal-clad laminate of the present invention is characterized in that a metal layer is formed on one or both sides of the laminate of the present invention, and the metal layer is made of, for example, a metal foil such as a copper foil. It can be formed by placing on one or both sides of the laminate and heating and pressing. Further, as described above, the metal-clad laminate of the present invention is obtained by placing an insulating resin composition on a metal foil and drying it (insulating resin film with metal foil) on an insulating substrate and heating and pressing. It can also be. The heating and pressurization is preferably performed under conditions of a temperature of 150 to 180 ° C. and a pressure of about 9 to 20 MPa. However, the characteristics of the laminated board, the reactivity of the insulating resin composition, the ability of the press, and the desired laminated board The thickness can be appropriately determined in consideration of the thickness of the material, and is not particularly limited.

本発明のプリント配線板は、例えば、本発明の金属張積層板における金属層を公知のエッチング手段によりエッチングして回路を形成することで得ることができる。また、本発明の多層プリント配線板は、例えば、(A)本発明の金属張積層板の金属層をエッチングして回路を形成する工程、(B)前記回路上に、さらに本発明の積層板と金属箔を順次積層した後、または本発明の金属張積層板を積層した後、加熱加圧する工程、および(C)最外層となる金属層をエッチングして回路を形成する工程により製造することができ、該(B)および(C)工程を繰り返すことで、所望層数の多層プリント配線板を得ることができる。もちろん、上記工程以外にもスルーホール形成工程やめっき工程等、多層プリント配線板を製造する上で公知の加工工程を必要に応じて行うことができる。   The printed wiring board of the present invention can be obtained, for example, by forming a circuit by etching the metal layer in the metal-clad laminate of the present invention with a known etching means. In addition, the multilayer printed wiring board of the present invention includes, for example, (A) a step of forming a circuit by etching a metal layer of the metal-clad laminate of the present invention, and (B) a laminate of the present invention on the circuit. And a metal foil sequentially laminated, or after laminating the metal-clad laminate of the present invention, and heating and pressurizing, and (C) forming a circuit by etching the metal layer as the outermost layer. By repeating the steps (B) and (C), a multilayer printed wiring board having a desired number of layers can be obtained. Of course, in addition to the above steps, known processing steps such as a through-hole forming step and a plating step can be performed as necessary in manufacturing the multilayer printed wiring board.

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(実施例1)
<銅張積層板の作製>
下記組成のワニス状の絶縁樹脂組成物を調製し、この樹脂組成物を銅箔(GTS−12:古河サーキットフォイル製、商品名)に乾燥後樹脂膜厚が25μmとなるように塗布・乾燥(150℃、10分)して銅箔付き絶縁樹脂組成物フィルムを作製した。なお、当該銅箔付き絶縁樹脂組成物フィルムを180℃で2時間乾燥後、銅箔を全てエッチング除去し、所定の長さ(長さ80mm、幅10mm)に切り出して得た樹脂組成物フィルムについて、引張り試験によりその室温における弾性率と破断するまでの引張り伸び率を測定したところ(オートグラフ引っ張り試験機(チャック間距離60mm、引っ張り速度5mm/分))、それぞれ2.1GPaおよび12%であった。
・ビフェニル系エポキシ樹脂(商品名:NC−3000H、日本化薬株式会社製)100重量部
・カルボン酸変性アクリロニトリルブタジエンゴム(商品名:PNR−1H、JSR株式会社製)10重量部
・熱硬化剤:フェノールノボラック型樹脂(商品名:HP−850、日立化成工業株式会社製)50重量部
・硬化促進剤:2−エチル−4−メチルイミダゾール(商品名:2E4MZ、四国化成工業株式会社製)0.3重量部
・難燃剤:リン酸エステル(商品名:PX−200、大八化学工業製)25重量部
・溶剤:メチルエチルケトン55重量部
Example 1
<Preparation of copper-clad laminate>
A varnish-like insulating resin composition having the following composition was prepared, and this resin composition was coated and dried on a copper foil (GTS-12: Furukawa Circuit Foil, trade name) so that the resin film thickness was 25 μm ( 150 ° C., 10 minutes) to produce an insulating resin composition film with a copper foil. In addition, after drying the said insulating resin composition film with a copper foil at 180 degreeC for 2 hours, all the copper foil is etched away and it cuts out to predetermined length (length 80mm, width 10mm), and about the resin composition film obtained When the tensile modulus was measured by the tensile test until the elastic modulus at room temperature and the tensile elongation until ruptured (autograph tensile tester (distance between chucks 60 mm, pulling speed 5 mm / min)), they were 2.1 GPa and 12%, respectively. It was.
・ 100 parts by weight of biphenyl epoxy resin (trade name: NC-3000H, manufactured by Nippon Kayaku Co., Ltd.) ・ 10 parts by weight of carboxylic acid-modified acrylonitrile butadiene rubber (trade name: PNR-1H, manufactured by JSR Corporation) : Phenol novolac type resin (trade name: HP-850, manufactured by Hitachi Chemical Co., Ltd.) 50 parts by weight / curing accelerator: 2-ethyl-4-methylimidazole (trade name: 2E4MZ, manufactured by Shikoku Chemical Industry Co., Ltd.) 0 .3 parts by weight-Flame retardant: Phosphate ester (trade name: PX-200, manufactured by Daihachi Chemical Industry) 25 parts by weight-Solvent: 55 parts by weight of methyl ethyl ketone

次に、厚みが1.0mm、室温での曲げ弾性率が29GPaで、かつ150℃以下の熱膨張係数が水平方向で13ppm/℃、垂直方向で24ppm/℃のガラスエポキシ銅張積層板(日立化成工業株式会社製、商品名:MCL−E−679F)の銅箔を全てエッチング除去して、乾燥した後、該積層板に上記で得た銅箔付き絶縁樹脂組成物フィルムを、該樹脂組成物フィルム面と該積層板が接するようにして、真空下、製品圧力3.0MPaで185℃、70分加熱加圧して積層し、評価用銅張積層板を作製した。なお、上記曲げ弾性率は、上記ガラスエポキシ銅張積層板の銅箔をエッチングにより除去したものを試料とし、JIS−C−6481に準拠して測定した。また、上記熱膨張係数は、曲げ弾性率と同様の試料について、熱機械分析装置(TMA)の引張りモードにて30〜100℃までの条件下における平均線膨張係数を算出して求めた。   Next, a glass epoxy copper clad laminate having a thickness of 1.0 mm, a flexural modulus of 29 GPa at room temperature, and a thermal expansion coefficient of 150 ° C. or less at 13 ppm / ° C. in the horizontal direction and 24 ppm / ° C. in the vertical direction (Hitachi All the copper foils manufactured by Kasei Kogyo Co., Ltd., trade name: MCL-E-679F) were removed by etching and dried, and then the insulating resin composition film with copper foil obtained above on the laminate was used as the resin composition. The laminated film was heated and pressed at 185 ° C. for 70 minutes under vacuum at a product pressure of 3.0 MPa so that the physical film surface and the laminate were in contact with each other, to prepare a copper clad laminate for evaluation. The flexural modulus was measured in accordance with JIS-C-6481 using a sample obtained by removing the copper foil of the glass epoxy copper clad laminate by etching. Moreover, the said thermal expansion coefficient calculated | required by calculating the average linear expansion coefficient in the conditions to 30-100 degreeC in the tension mode of a thermomechanical analyzer (TMA) about the sample similar to a bending elastic modulus.

(実施例2)
銅箔付き絶縁樹脂組成物フィルムのフィルム層の厚さ(乾燥後樹脂膜厚)を165μmとした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Example 2)
A copper clad laminate for evaluation was produced in the same manner as in Example 1 except that the thickness (resin film thickness after drying) of the insulating resin composition film with copper foil was 165 μm.

(実施例3)
銅箔付き絶縁樹脂組成物フィルムのフィルム層の厚さ(乾燥後樹脂膜厚)を65μmとし、積層板としてMCL−E−679(日立化成工業株式会社製、商品名、厚み1.0mm、室温での曲げ弾性率25GPa、150℃以下の熱膨張係数が水平方向で16ppm/℃、垂直方向で55ppm/℃のガラスエポキシ銅張り積層板)を用いた以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Example 3)
The film layer thickness of the insulating resin composition film with copper foil (resin film thickness after drying) is 65 μm, and MCL-E-679 (trade name, thickness 1.0 mm, manufactured by Hitachi Chemical Co., Ltd. In the same manner as in Example 1 except that a glass epoxy copper-clad laminate having a flexural modulus of 25 GPa and a thermal expansion coefficient of 150 ppm or lower in the horizontal direction of 16 ppm / ° C. in the horizontal direction and 55 ppm / ° C. in the vertical direction is used. A copper clad laminate for evaluation was produced.

(実施例4)
実施例1と同様の絶縁樹脂組成物ワニスをガラスクロス(IPC規格、品番1080タイプ相当)に含浸し、150℃の乾燥器中で10〜15分間乾燥し、樹脂分62%のB−ステージ状態のプリプレグを作製した。
Example 4
A glass cloth (IPC standard, equivalent to product number 1080 type) is impregnated with the same insulating resin composition varnish as in Example 1, dried in a dryer at 150 ° C. for 10 to 15 minutes, and a B-stage state having a resin content of 62% A prepreg was prepared.

次に、厚みが1.0mm、室温での曲げ弾性率が29GPaで、かつ150℃以下の熱
膨張係数が水平方向で13ppm/℃、垂直方向で24ppm/℃のガラスエポキシ銅張積層板(日立化成工業株式会社製、商品名:MCL−E−679F)の銅箔を全てエッチング除去して、乾燥した後、当該積層板と銅箔(GTS−12:古河サーキットフォイル製商品名)の間に上記プリプレグを挟みこむようにして真空下、製品圧力3.0MPaで185℃、70分加熱加圧して積層し、評価用銅張積層板を作製した。
Next, a glass epoxy copper clad laminate having a thickness of 1.0 mm, a flexural modulus of 29 GPa at room temperature, and a thermal expansion coefficient of 150 ° C. or less at 13 ppm / ° C. in the horizontal direction and 24 ppm / ° C. in the vertical direction (Hitachi All the copper foil of Kasei Kogyo Co., Ltd., trade name: MCL-E-679F) is removed by etching and dried, and then between the laminate and the copper foil (GTS-12: trade name made by Furukawa Circuit Foil) A copper-clad laminate for evaluation was prepared by sandwiching the prepreg sandwiched by heating and pressing at 185 ° C. for 70 minutes at a product pressure of 3.0 MPa under vacuum.

(比較例1)
銅箔付き絶縁樹脂組成物フィルムのフィルム層の厚さ(乾燥後樹脂膜厚)を8μmとした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 1)
A copper clad laminate for evaluation was produced in the same manner as in Example 1 except that the thickness (resin film thickness after drying) of the insulating resin composition film with copper foil was 8 μm.

(比較例2)
銅箔付き絶縁樹脂組成物フィルムのフィルム層の厚さ(乾燥後樹脂膜厚)を215μmとした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 2)
A copper clad laminate for evaluation was produced in the same manner as in Example 1 except that the thickness (resin film thickness after drying) of the insulating resin composition film with copper foil was 215 μm.

(比較例3)
銅箔付き絶縁樹脂組成物フィルムとして、実施例1と同様の絶縁樹脂組成物ワニスにさらに無機充填剤(球状シリカ、アドマテックス社製)を35vol.%添加したワニスを、銅箔(GTS−12:古河サーキットフォイル製、商品名)に乾燥後樹脂膜厚が65μmとなるように塗布・乾燥(150℃、10分)して得た銅箔付き絶縁樹脂組成物フィルムを用いた以外は、実施例1と同様の方法により評価用銅張積層板を作製した。なお、当該銅箔付き絶縁樹脂組成物フィルムを180℃で2時間乾燥後、銅箔を全てエッチング除去して得た樹脂組成物フィルムについて、引張り試験によりその室温における弾性率と破断するまでの引張り伸び率を測定したところ、それぞれ3.3GPaおよび5%であった。
(Comparative Example 3)
As an insulating resin composition film with copper foil, an inorganic filler (spherical silica, manufactured by Admatechs) was further added to the insulating resin composition varnish similar to that in Example 1 to 35 vol. With copper foil obtained by applying and drying (150 ° C., 10 minutes) to a resin film thickness of 65 μm after drying on copper foil (GTS-12: Furukawa Circuit Foil, trade name) A copper clad laminate for evaluation was produced in the same manner as in Example 1 except that the insulating resin composition film was used. The resin composition film obtained by drying the insulating resin composition film with copper foil at 180 ° C. for 2 hours and then removing all the copper foil by etching was subjected to a tensile test until the modulus of elasticity at room temperature and breaking. When the elongation rate was measured, they were 3.3 GPa and 5%, respectively.

(比較例4)
積層板としてMCL−E−67(日立化成工業株式会社製、商品名、厚み1.0mm、室温での曲げ弾性率20GPa、150℃以下の熱膨張係数が水平方向で25ppm/℃、垂直方向で60ppm/℃のガラスエポキシ銅張り積層板)を用いた以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 4)
As a laminate, MCL-E-67 (manufactured by Hitachi Chemical Co., Ltd., trade name, thickness 1.0 mm, bending elastic modulus 20 GPa at room temperature, thermal expansion coefficient of 150 ° C. or less in the horizontal direction is 25 ppm / ° C., in the vertical direction A copper clad laminate for evaluation was prepared in the same manner as in Example 1 except that 60 ppm / ° C. glass epoxy copper clad laminate) was used.

<銅張積層板の評価>
(スルーホールコーナークラック)
各評価用銅張積層板に0.5mmの穴をドリルにより空け、穴内及び該銅張積層板表面に厚み約20μmの銅めっきを施してスルーホールを形成した後、ランド径1.0mmのスルーホール100穴を電気的に接続できるように不要部分の表面銅をエッチングしてデイジーチェーンパターンサンプルを作製した。
<Evaluation of copper clad laminate>
(Through hole corner crack)
A 0.5 mm hole is drilled in each evaluation copper clad laminate, and a through hole is formed in the hole and on the surface of the copper clad laminate by plating with a thickness of about 20 μm. A daisy chain pattern sample was produced by etching the surface copper of unnecessary portions so that the holes 100 could be electrically connected.

ついで、上記で得た各サンプルを温度サイクル試験機に投入し、−65℃、30分と125℃、30分の繰返しを1サイクルとして、500サイクル毎にデイジーチェーンパターンの接続抵抗値を測定し、4000サイクルまでに該接続抵抗値が試験機投入前の初期抵抗値に対し±20%を越えた場合には、断面観察によりスルーホールコーナークラックの有無を確認した。表1には、接続抵抗値が初期抵抗値に対し±20%を越えたときのサイクル数と、その場合におけるスルーホールコーナークラックの有無を示す。   Next, each sample obtained above was put into a temperature cycle tester, and the connection resistance value of the daisy chain pattern was measured every 500 cycles with -65 ° C, 30 minutes and 125 ° C, 30 minutes repeated as one cycle. When the connection resistance value exceeded ± 20% with respect to the initial resistance value before the introduction of the test machine by 4000 cycles, the presence or absence of through-hole corner cracks was confirmed by cross-sectional observation. Table 1 shows the number of cycles when the connection resistance value exceeds ± 20% with respect to the initial resistance value, and the presence or absence of through-hole corner cracks in that case.

(はんだクラック)
各評価用銅張積層板の不要となる部分の銅箔をエッチング除去してチップ搭載用の外部電極を形成し、この外部電極上にはんだペーストを塗布した。ついで、3.2×2.5mmサイズのチップを外部電極上に搭載し、リフロー炉に投入して上記チップを銅張積層板にはんだ付けした。その後、チップが搭載された評価用銅張積層板サンプルを温度サイクル試験機に投入し、−65℃、30分と125℃、30分の繰返しを1サイクルとして、500サイクル毎にサンプルを取り出して、目視によりはんだクラックの有無を確認した(最大4000サイクル)。表1には、はんだクラックが発生したときのサイクル数を示す。

Figure 2006315391
(Solder crack)
An unnecessary portion of the copper foil for each evaluation copper clad laminate was removed by etching to form an external electrode for chip mounting, and a solder paste was applied on the external electrode. Next, a chip of 3.2 × 2.5 mm size was mounted on the external electrode, put into a reflow furnace, and the chip was soldered to a copper clad laminate. Thereafter, the copper-clad laminate sample for evaluation on which the chip was mounted was put into a temperature cycle tester, and the sample was taken out every 500 cycles, with -65 ° C, 30 minutes and 125 ° C, 30 minutes repeated as one cycle. The presence or absence of solder cracks was confirmed visually (maximum 4000 cycles). Table 1 shows the number of cycles when a solder crack occurs.
Figure 2006315391

Claims (5)

室温での曲げ弾性率が24.0GPa以上で、かつ150℃以下での熱膨張係数が水平方向で20ppm/℃以下、垂直方向で60ppm/℃以下である絶縁基板、および
前記絶縁基板の両面に厚み10〜200μmで形成され、室温での弾性率が3.0GPa以下で、かつ引張り伸び率が8.0%以上である絶縁樹脂組成物層、
を有する、積層板。
An insulating substrate having a flexural modulus at room temperature of 24.0 GPa or more and a thermal expansion coefficient at 150 ° C. or less of 20 ppm / ° C. or less in the horizontal direction and 60 ppm / ° C. or less in the vertical direction; An insulating resin composition layer having a thickness of 10 to 200 μm, an elastic modulus at room temperature of 3.0 GPa or less, and a tensile elongation of 8.0% or more;
Having a laminate.
前記絶縁基板が内層回路を有する、請求項1に記載の積層板。   The laminated board according to claim 1, wherein the insulating substrate has an inner layer circuit. 請求項1または2に記載の積層板の片面または両面に金属層が形成されていることを特徴とする金属張積層板。   A metal-clad laminate, wherein a metal layer is formed on one side or both sides of the laminate according to claim 1 or 2. 請求項3に記載の金属張積層板における金属層をエッチングして回路を形成してなる、プリント配線板。   A printed wiring board formed by etching a metal layer in the metal-clad laminate according to claim 3 to form a circuit. (A)請求項3に記載の金属張積層板の金属層をエッチングして回路を形成する工程、
(B)前記回路上に、さらに請求項1もしくは2に記載の積層板と金属箔を順次積層した後、または請求項3に記載の金属張積層板を積層した後、加熱加圧する工程、および
(C)最外層となる金属層をエッチングして回路を形成する工程、
を有し、必要な積層数に応じて、前記(B)および(C)工程を繰り返すことを特徴とする多層プリント配線板の製造法。
(A) a step of etching the metal layer of the metal-clad laminate according to claim 3 to form a circuit;
(B) a step of heating and pressurizing after further laminating the laminate and the metal foil according to claim 1 or 2 on the circuit, or after laminating the metal-clad laminate according to claim 3, and (C) forming a circuit by etching a metal layer as the outermost layer;
And the steps (B) and (C) are repeated according to the required number of laminated layers.
JP2005327915A 2005-04-12 2005-11-11 Laminated plate and printed circuit board using the same Pending JP2006315391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327915A JP2006315391A (en) 2005-04-12 2005-11-11 Laminated plate and printed circuit board using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005114556 2005-04-12
JP2005327915A JP2006315391A (en) 2005-04-12 2005-11-11 Laminated plate and printed circuit board using the same

Publications (1)

Publication Number Publication Date
JP2006315391A true JP2006315391A (en) 2006-11-24

Family

ID=37536461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327915A Pending JP2006315391A (en) 2005-04-12 2005-11-11 Laminated plate and printed circuit board using the same

Country Status (1)

Country Link
JP (1) JP2006315391A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032926A (en) * 2007-07-27 2009-02-12 Hitachi Aic Inc Compound substrate and its printed circuit board
JP2009152300A (en) * 2007-12-19 2009-07-09 Shinko Electric Ind Co Ltd Wiring substrate and its manufacturing method
JP2010238907A (en) * 2009-03-31 2010-10-21 Sumitomo Bakelite Co Ltd Laminated board, multilayer printed wiring board, and semiconductor device
KR101055504B1 (en) * 2009-07-30 2011-08-08 삼성전기주식회사 Printed circuit board and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189997A (en) * 1989-01-18 1990-07-25 Mitsubishi Electric Corp Multilayered printed circuit board
JPH0521955A (en) * 1991-07-11 1993-01-29 Hitachi Chem Co Ltd Manufacture of metal foil clad laminate for multilayer printed circuit board
JPH05229062A (en) * 1992-02-26 1993-09-07 Shin Kobe Electric Mach Co Ltd Metal foil clad laminated plate and printed circuit board
JPH08216340A (en) * 1995-02-09 1996-08-27 Hitachi Chem Co Ltd Highly rigid copper-clad laminated plate and manufacture thereof
JP2000063545A (en) * 1998-08-26 2000-02-29 Matsushita Electric Works Ltd Material for forming multilayer board, and multilayer board
JP2003221509A (en) * 2002-01-30 2003-08-08 Hitachi Chem Co Ltd Thermosetting resin composition, adhesive film, copper- clad laminate and printed-circuit board
JP2004014611A (en) * 2002-06-04 2004-01-15 Hitachi Chem Co Ltd Insulation film with supports, multilayer printed circuit board, and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189997A (en) * 1989-01-18 1990-07-25 Mitsubishi Electric Corp Multilayered printed circuit board
JPH0521955A (en) * 1991-07-11 1993-01-29 Hitachi Chem Co Ltd Manufacture of metal foil clad laminate for multilayer printed circuit board
JPH05229062A (en) * 1992-02-26 1993-09-07 Shin Kobe Electric Mach Co Ltd Metal foil clad laminated plate and printed circuit board
JPH08216340A (en) * 1995-02-09 1996-08-27 Hitachi Chem Co Ltd Highly rigid copper-clad laminated plate and manufacture thereof
JP2000063545A (en) * 1998-08-26 2000-02-29 Matsushita Electric Works Ltd Material for forming multilayer board, and multilayer board
JP2003221509A (en) * 2002-01-30 2003-08-08 Hitachi Chem Co Ltd Thermosetting resin composition, adhesive film, copper- clad laminate and printed-circuit board
JP2004014611A (en) * 2002-06-04 2004-01-15 Hitachi Chem Co Ltd Insulation film with supports, multilayer printed circuit board, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032926A (en) * 2007-07-27 2009-02-12 Hitachi Aic Inc Compound substrate and its printed circuit board
JP2009152300A (en) * 2007-12-19 2009-07-09 Shinko Electric Ind Co Ltd Wiring substrate and its manufacturing method
JP2010238907A (en) * 2009-03-31 2010-10-21 Sumitomo Bakelite Co Ltd Laminated board, multilayer printed wiring board, and semiconductor device
KR101055504B1 (en) * 2009-07-30 2011-08-08 삼성전기주식회사 Printed circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101386373B1 (en) Resin composition, insulating sheet with base, prepreg, multilayer printed wiring board and semiconductor device
JP5344022B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2009246333A (en) Insulating sheet and manufacturing method therefor, and printed circuit board using the sheet, and manufacturing method for the printed circuit board
KR101865286B1 (en) Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board
KR20090071008A (en) Insulating material, printed circuit board having the same and manufacturing method thereof
JP2015114114A (en) Method for evaluating mechanical characteristic of thin-plate material, method for selecting thin-plate material using the same, and selected thin-plate material
JP4924871B2 (en) Composite board and wiring board
JP2006315391A (en) Laminated plate and printed circuit board using the same
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP6015303B2 (en) Prepreg, laminated board and printed wiring board
JP2003334886A (en) Laminated sheet
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP5077661B2 (en) Composite board and printed wiring board
JPH05261861A (en) Laminated sheet
JP4433651B2 (en) High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate
JP4168736B2 (en) Insulating sheet with metal foil and multilayer wiring board for manufacturing multilayer wiring board
JP2005175265A (en) Adhesive sheet for multilayer wiring boards and method for manufacturing multilayer wiring board
KR20120072644A (en) Prepreg, method for preparing prepreg and copper clad laminate using the same
JP2006036936A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JP3596899B2 (en) Low expansion metal foil and laminate for printed circuit
JP5275533B2 (en) Metal foil laminate and prepreg
JP2006203142A (en) Multilayer printed circuit board for semiconductor package
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP3750147B2 (en) Laminate manufacturing method
JP2005023117A (en) Adhesive sheet for multilayered wiring board, multilayered wiring board and electronic part using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405