JP4433651B2 - High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate - Google Patents

High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate Download PDF

Info

Publication number
JP4433651B2
JP4433651B2 JP2001314680A JP2001314680A JP4433651B2 JP 4433651 B2 JP4433651 B2 JP 4433651B2 JP 2001314680 A JP2001314680 A JP 2001314680A JP 2001314680 A JP2001314680 A JP 2001314680A JP 4433651 B2 JP4433651 B2 JP 4433651B2
Authority
JP
Japan
Prior art keywords
metal
high laser
insulating resin
laser processability
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001314680A
Other languages
Japanese (ja)
Other versions
JP2003123539A (en
Inventor
健 斑目
日男 馬場
希 高野
哲也 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001314680A priority Critical patent/JP4433651B2/en
Publication of JP2003123539A publication Critical patent/JP2003123539A/en
Application granted granted Critical
Publication of JP4433651B2 publication Critical patent/JP4433651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

【0001】
【発明に属する技術分野】
本発明は、高レーザ加工性絶縁樹脂材料、高レーザ加工性プリプレグ及び高レーザ加工性金属張積層板に関する。
【0002】
【従来の技術】
近年、主にガラス繊維織物を複数重ねて積層成形して得られる積層板を用いたプリント配線基板は多層化、高密度化が進み、ファインパターン化、ファインピッチ化、スルーホールの縮小化が必要となってきている。従来、積層板の穴あけ加工には機械的なドリル法が用いられているが、0.2mm以下の小径の穴あけ加工は困難であった。また、多層化した基板の場合には、各配線層の層間接続や、表面実装のために、非貫通穴(バイアホール)が必要となってくるが、その非貫通穴の穴あけもまたドリル法では困難であった。
【0003】
また、レーザ加工により穴あけ加工することも行われているが、ガラス繊維織物を用いた基材の場合には、穴壁にガラスが溶けて固まった玉状のガラスが発生し、メッキ工程においてメッキが十分にされない場合や、ガラス繊維織物間やガラス繊維織物自体にクラックが発生することで、メッキ工程においてクラックにメッキが染み込み、絶縁信頼性などに不具合が発生することが多い。
【0004】
特開平11−293561号公報には、ガラス繊維織物をアルコキシシラン類のアルカリ性水溶液で表面処理することにより、ガラス繊維の表面積を増加させることでレーザ加工性に優れるガラス繊維織物を提案している。その他ガラス繊維織物の織密度や繊維径を細くするなどレーザ加工性を良好にする為のガラス繊維織物の工夫がされている。
【0005】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、ガラス繊維の改良とは別のアプローチでレーザ加工性に優れる絶縁樹脂材料を提供することを課題とするものであり、積層板の状態においてレーザ加工性に優れる絶縁樹脂材料、プリプレグ及び金属張積層板を提供するものである。
【0006】
【課題を解決するための手段】
本発明は以下に記載の各事項に関する。
(1) 絶縁樹脂中に無機フィラを含有する高レーザ加工性絶縁樹脂材料。
(2) ガラス布及び絶縁樹脂からなり、絶縁樹脂に無機フィラを含有する高レーザ加工性プリプレグ。
(3) 硬化後の熱伝導率が0.32W/mK以上である高レーザ加工性プリプレグ。
(4) 絶縁層の熱伝導率が0.32W/mK以上である高レーザ加工性金属張積層板。
【0007】
【発明の実施の形態】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、レーザ加工による穴あけ加工を好適に行うには、基材使用絶縁樹脂材料や積層板の熱伝導率を増加させ、レーザ照射のエネルギーを効率良く伝えればよいことを見出し、プリプレグの硬化後の熱伝導率または積層板の絶縁層の熱伝導率を0.32W/mK以上にすることにより、その目的を達成しうるという知見を得て、この知見に基づいて本発明を完成するに至った。
【0008】
熱伝導率は、0.32W/mK以上であれば特に限定されるものではないが、他の特性への影響を考慮すると、0.32W/mK〜0.90W/mKであることが好ましく、0.35W/mK〜0.90W/mKであることが更に好ましく、0.38W/mK〜0.85W/mKであることが特に好ましい。
【0009】
なお、本発明において、熱伝導率とは、熱伝導の大小を規定する量で、熱エネルギーの流束(単位時間中に単位断面積を通過する熱量)と温度こう配との比として表される。熱伝導率の測定に用いる試料は、加熱加圧により作製したプリプレグや金属張積層板の硬化物であり、金属張積層板は表面の金属箔をエッチングにより除去した状態で測定に供する。本発明において、熱伝導率は基板の厚さ方向で測定する。
【0010】
プリプレグや積層板の熱伝導率を調整するためには、無機フィラを絶縁樹脂に配合して調整してもよく、熱伝導率の高い樹脂を用いてもよく、表面を絶縁被覆した金属フィラを用いてもよい。特に、無機フィラを配合する方法は配合量によって熱伝導率を容易に調整できる点で好ましい。
【0011】
また、一般に無機フィラーを含まない絶縁樹脂とガラス布からなる積層板にレーザ加工を施した場合、穴径はレーザの入射側、特に開口部において大きくなる。これによって穴部周辺の回路配線には広い面積が必要とされていた。本発明者らは、無機フィラを絶縁樹脂に配合した本発明の絶縁樹脂材料が、同じレーザ加工条件の場合、従来の絶縁樹脂材料に比べて入射側穴径が小さく、穴径がほぼ均一なスルーホールやビアホールを形成することが可能であり、高密度配線に好適であることを見出した。
【0012】
(無機フィラ)
無機フィラとしてその種類は特に制約はなく、例えば、炭酸カルシウム、アルミナ、酸化チタン、マイカ、炭酸アルミニウム、水酸化アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ、ガラス短繊維、ホウ酸アルミニウムウィスカや炭化ケイ素ウィスカ等の各種ウィスカ等が用いられる。また、これらを数種類併用しても良い。無機フィラの形状、粒径については特に制限はないが、形状としては球状、もしくは塊状のものが好ましい。粒径は通常用いられている0.001〜100μmのものを本発明においても用いることができ、絶縁樹脂材料の薄型化を考慮した場合、好ましくは0.005〜30μmのものが用いられ、更に好ましくは0.01から10μmのものが好適に用いられる。これら無機フィラの配合量は、いずれの無機フィラを用いた場合でも熱硬化性樹脂100重量部に対して3〜1000重量部が好ましく、5〜500重量部がより好ましく、更には10〜100重量部がレーザ加工性の向上と基材や金属箔との接着性を両立させる点から特に好ましい。
【0013】
(絶縁被覆した金属フィラ)
本発明において、熱伝導率を調整するために表面を絶縁被覆した金属フィラを用いることができる。表面を絶縁被覆した金属フィラとしては、一般的なCu、Al等の金属に熱硬化性樹脂、エラストマ、熱可塑性樹脂を被覆したものが使用できる。
【0014】
(絶縁樹脂)
本発明の絶縁樹脂は特に限定するものではないが、一般に絶縁樹脂材料や積層板に使われる熱硬化性樹脂が好ましく、例えばエポキシ樹脂、フェノール樹脂、ポリイミド等が使用できる。熱伝導率の高い熱硬化性樹脂としては、上記樹脂にCu、Al等の金属元素を変性したものも使用できる。
【0015】
(基材)
本発明の基材としては、特に限定されないが、Eガラス,Dガラス,Sガラス又はQガラス等のガラス繊維に例示される無機質繊維を使用したクロスもしくは不織布、アラミド繊維、ナイロン、ポリイミド、ポリエステル又はテトラフルオロエチレン等の有機繊維を使用したクロスもしくは不織布、あるいはクラフト紙、リンター紙等の紙類などが挙げられる。無機質繊維を使用したクロスもしくは不織布が熱伝導率、耐熱性及び耐湿性に優れており、基材として好ましく、ガラス繊維のクロスが特に好ましい。
【0016】
(高レーザ加工性絶縁樹脂材料)
本発明の高レーザ加工性絶縁樹脂材料とは、レーザ加工を用いて配線板を作製するために好適な配線板用絶縁樹脂材料である。配線板用絶縁樹脂材料としては、例えば、樹脂フィルム、樹脂付金属箔、プリプレグ、金属張積層板などの積層板が挙げられる。
【0017】
(樹脂フィルム)
樹脂フィルムは従来、一般的に行われている製造法をそのまま適用して製造することができる。例えば、絶縁樹脂をワニス化し、支持フィルムに塗工して樹脂フィルムとすることができる。支持フィルムとしては各種の樹脂フィルムに用いられている周知のものが使用でき、例えば、ポリエチレン、ポリ塩化ビニルなどのポリオレフィン系フィルム、ポリエチレンテレフタレートなどのポリエステル系フィルムなどが例示される。樹脂フィルムは支持フィルムに樹脂ワニスを塗布し、その後、加熱ならびに乾燥させることにより得られるが、加熱、乾燥条件は、100〜200℃の温度で1〜30分とするのが好適である。これらの支持フィルムには、マット処理、コロナ処理、離型処理などの表面処理が施されてあってもよい。支持フィルムの厚みは10〜150μmが一般的である。また、樹脂組成物の厚みは10〜150μmが一般的である。加熱、乾燥後の樹脂組成物中における残留溶剤量は、0.2〜10%程度が好適である。
【0018】
(樹脂付金属箔)
本発明の樹脂付金属箔は、従来、一般的に行われている製造法をそのまま適用することができる。樹脂付金属箔は絶縁樹脂をワニス化し、金属箔に塗工してなるものである。金属箔としては各種の樹脂付金属箔に用いられている周知のものが使用でき、例えば、銅箔、アルミニウム箔、ニッケル箔、支持金属箔をエッチングや引き剥がしにより除去できる極薄金属箔などが例示される。樹脂付金属箔は金属箔に樹脂ワニスを塗布し、その後、加熱ならびに乾燥させることにより得られるが、加熱、乾燥条件は、100〜200℃の温度で1〜30分とするのが好適である。通常、金属箔の厚みは10〜50μmが一般的であるが、極薄金属箔を用いると、金属箔の厚みが1〜10μmの樹脂付き金属箔が得られる。また、樹脂組成物の厚みは10〜150μmが一般的である。加熱、乾燥後の樹脂組成物中における残留溶剤量は、0.2〜10%程度が好適である。
【0019】
(高レーザ加工性プリプレグ)
本発明のプリプレグの製造には、従来、一般的に行われている製造法をそのまま適用することができる。すなわち、本発明のプリプレグは絶縁樹脂をワニス化し、基材に含浸又は塗工してなる。基材の厚みには特に制限はないが、通常0.03〜0.5mm程度のものを使用する。通常、該基材に対する絶縁樹脂の付着量が、乾燥後のプリプレグの樹脂含有率で20〜90重量%となるように基材に含浸又は塗工した後、通常100〜200℃の温度で1〜30分加熱乾燥し、半硬化状態(Bステージ状態)のプリプレグを得る。
【0020】
(高レーザ加工性金属張積層板)
前述の本発明のプリプレグを用いて積層成形することにより積層板を作製することができる。積層成形は一般的な方法をそのまま適用することができ、例えば本発明のプリプレグを通常1〜20枚重ね、その片面もしくは両面に銅やアルミニウム等の金属箔を配置した構成で加熱加圧により成形することにより金属張積層板とすることができる。金属箔は配線板材料用途で用いられているものであれば特に制限はない。成形条件としては通常の電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、通常、温度100〜250℃、圧力2〜100kg/cm、加熱時間0.1〜5時間の範囲で成形する。
【0021】
(配線板の製造方法の例)
次に前記配線板用絶縁樹脂材料を用いたプリント配線板及びビルドアップ配線板の製造法の一例について説明する。まず、前記金属張積層板の両面を導通させるための貫通穴をレーザ穴あけにより行い形成させる。この際、必要に応じて穴あけ部分の銅箔をエッチング除去したり、全面の銅箔をエッチング除去することも可能である。レーザ穴明け機には炭酸ガスレーザ、YAGレーザ、エキシマレーザなどを用いることができる。この後、サンドブラスト処理、プラズマ処理、過マンガン酸塩や重クロム酸塩などの酸化剤を用いた薬品処理などを行ない表面を粗化する。この工程ではレーザ穴あけを行った際に発生した樹脂残さも同時に除去される。さらに無電解銅めっき、電気銅めっきなどの手法を用いて電気的導通を得た両面板を得る。その後、フォトレジスト等を用いたサブトラクティブ法など、通常のプリント配線板における回路形成方法を用いて、両面プリント配線板を得る。
【0022】
ビルドアップ配線板は例えば以下のようにして作製される。まず、前記両面プリント配線板をコア基板にして、その片面または両面に前記樹脂付金属箔を積層するか、あるいは半硬化状態の前記プリプレグ又は前記樹脂フィルムと銅箔とを重ねて積層し、加熱加圧により一体化する。次に、必要な層間を導通させるための貫通穴又は非貫通穴をレーザ穴あけにより行い形成させる。この際、必要に応じて穴あけ部分の銅箔をエッチング除去したり、全面の銅箔をエッチング除去することも可能である。その後、前述のプリント配線板の製造方法と同様に薬液処理を施し、層間の電気的の導通を得た後、表面に回路形成を行う。
【0023】
【実施例】
以下本発明を実施例によって具体的に説明する。
【0024】
(実施例1)
熱硬化性樹脂組成物として、エポキシ樹脂(エポキシ当量が530である臭素化ビスフェノールA型エポキシ樹脂[ダウケミカル社製、商品名DER513])を100重量部と、硬化剤としてジシアンジアミド[日本カーバイド社製]を4重量部と、硬化促進剤として2−エチル−4−メチルイミダゾール[四国化成社製]を0.5重量部と、無機フィラとして焼成クレー[土屋カオリン社製、商品名:サティントンスペシャル]を60重量部と、粘度調整するために溶剤としてメチルエチルケトンをフラスコ中、室温で2時間撹拌混合することで、エポキシ樹脂系ワニスを得た。
【0025】
上記ワニスにガラスクロス[IPC規格#2116]を浸漬して含浸し、次いで、最高温度150℃で8分間乾燥して半硬化状態のプリプレグを得た。
【0026】
次いで、そのプリプレグ4枚を重ねその両外側に厚み18μmの銅箔を配して積層し、成形プレスに挟んで、最高温度185℃、圧力3MPaで120分加熱・加圧して、絶縁層の厚みが0.4mmの金属張積層板を得た。
【0027】
(実施例2)
実施例1における無機フィラをタルク[浅田製粉社製、商品名:SW−A]を60重量部配合に変えた以外は同様にして金属張積層板を得た。
【0028】
(実施例3)
実施例1における無機フィラをシリカ[電気化学工業社製、商品名:SFP−20X]を15重量部配合に変えた以外は同様にして金属張積層板を得た。
【0029】
(実施例4)
実施例1における無機フィラをシリカ[電気化学工業社製、商品名:SFP−20X]を30重量部配合に変えた以外は同様にして金属張積層板を得た。
【0030】
(実施例5)
実施例1における無機フィラをシリカ[電気化学工業社製、商品名:SFP−20X]を60重量部配合に変えた以外は同様にして金属張積層板を得た。
【0031】
(比較例1)
実施例1の無機フィラである焼成クレーを除いた以外は同様にして、金属張積層板を得た。
【0032】
(評価、結果)
実施例と比較例で得られた基板の熱伝導率は、作製した銅箔張積層の銅箔を全面エッチングにより除去して測定した。測定用試料は、厚さ約0.4mm、直径約10mmの円板状試料片を切り出し、カーボンスプレーを両面各1μm程度塗布して表面を黒化し、測定に供した。熱伝導率λ(Wm−1−1)は式(1)により算出した。
【0033】
【数1】
λ = αρC 式(1)
α:熱拡散率(m−1
ρ:密度(kgm−3
:比熱(Jkg−1−1
熱拡散率αの測定条件
測定方法 : レーザフラッシュ法
測定装置 : 真空理工(株)製 TC−7000
測定温度 : 25℃
照射光 : ルビーレーザ光
雰囲気 : 真空中
密度ρの測定条件
測定方法 : アルキメデス法
測定装置 : 重量 島津製作所製 電子分析天秤 AEL−200
測定温度 : 23℃
浸漬液 : 水
比熱Cの測定方法
測定方法 : DSC法(DSC:示差走査熱量計)
測定装置 : Perkin−Elmer社製 DSC−7
昇温速度 : 10℃min−1
雰囲気 : 乾燥窒素気流
試料量 : 約20mg
【0034】
次に、以下のように実施例と比較例で得られた金属張積層板に、レーザ光を用いて穴あけを行い、入射側穴径とメッキ染込み量を評価した。
【0035】
得られた金属張積層板表面の銅箔をエッチングにより全面除去した後、炭酸ガスレーザ[日立ビアメカニクス社製、商品名:LCO−1B21]を用いて、アパーチャ35,パルス長さ30μs,ショット数15の条件でレーザ光を照射して貫通穴を形成した。炭酸ガスレーザ[日立ビアメカニクス社製、商品名:LCO−1B21]では、アパーチャ35でのビーム径は0.12mmであり、入射側穴径の理論値は0.12mmである。
【0036】
入射側穴径は、その加工穴のレーザ入射側の穴径を実体顕微鏡[OLYMPUS製 商品名:MX50型]及び画像計測装置[MORITEX社製 商品名:MCP−550]を用いて測定した。
【0037】
メッキ染込み量は、レーザ加工後の積層板に貫通穴銅メッキを行った後貫通穴の断面観察し、ガラスクロス/樹脂の界面に染込んだメッキの長さを実体顕微鏡[OLYMPUS製 商品名:MX50型]及び画像計測装置[MORITEX社製 商品名:MCP−550]を用いて測定した。
【0038】
結果を、表1に示した。比較例1の入射側穴径は、レーザー加工条件で設定した理論値0.12mmに対して0.152mmと大きくなった。またメッキ染込み量も17μmと大きくなった。よって、ガラスクロス/樹脂の界面がレーザ加工でダメージを受けていることが明らかである。これに対して、実施例1、2は入射側穴径、メッキ染込み量とも小さく、レーザ加工性が良好である。また、実施例3〜5では、無機フィラの配合量が多くなるにしたがって熱伝導率が高くなり、熱伝導率の増加に伴って入射側穴径、メッキ染込み量とも良好となることが明らかである。いずれの実施例も比較例に比べて優れたレーザ加工性を有していることが確認された。
【0039】
このことから、比較例では入射側穴径が大きいことおよびメッキ染込み量が大きいことから、プリント配線板にした場合、絶縁信頼性を確保するためのには、穴間隔を広くする必要がある。対して、本発明の樹脂組成物を用いた場合、実施例に示したように、入射側穴径もほぼ目標の値で得られ、メッキ染込み量も小さいことから、穴間隔を狭くした場合でも絶縁信頼性が得られ、高密度基板の作製に極めて有効である。
【0040】
【表1】

Figure 0004433651
【0041】
【発明の効果】
本発明により、レーザ加工性に優れる絶縁樹脂材料を提供することが可能である。すなわち、積層板の状態においてレーザ加工性に優れる絶縁樹脂材料、プリプレグ及び金属張積層板を提供することができ、これによって、プリント配線板の高信頼性、高密度配線化が可能となる。[0001]
[Technical field belonging to the invention]
The present invention relates to a high laser processable insulating resin material, a high laser processable prepreg, and a high laser processable metal-clad laminate.
[0002]
[Prior art]
In recent years, printed wiring boards that use laminates obtained by laminating multiple layers of glass fiber fabrics have become increasingly multilayered and denser, requiring fine patterns, fine pitches, and reduced through-holes. It has become. Conventionally, a mechanical drill method has been used for drilling a laminated plate, but drilling a small diameter of 0.2 mm or less has been difficult. In the case of a multilayered board, non-through holes (via holes) are required for interlayer connection of each wiring layer and surface mounting. Drilling of the non-through holes is also a drill method. It was difficult.
[0003]
In addition, drilling is also performed by laser processing, but in the case of a substrate using glass fiber fabric, a glass of glass that melts and hardens in the hole wall is generated and plated in the plating process. In many cases, the cracks are generated between the glass fiber woven fabrics or the glass fiber woven fabrics themselves, and the plating soaks into the cracks in the plating process, which often causes problems in insulation reliability.
[0004]
Japanese Patent Application Laid-Open No. 11-293561 proposes a glass fiber fabric that is excellent in laser processability by surface-treating the glass fiber fabric with an alkaline aqueous solution of alkoxysilanes to increase the surface area of the glass fiber. Other glass fiber fabrics have been devised to improve laser processability, such as by reducing the woven density and fiber diameter of glass fiber fabrics.
[0005]
[Problems to be solved by the invention]
Under such circumstances, an object of the present invention is to provide an insulating resin material excellent in laser processability by an approach different from the improvement of glass fiber, and laser processing in the state of a laminated plate The present invention provides an insulating resin material, a prepreg, and a metal-clad laminate having excellent properties.
[0006]
[Means for Solving the Problems]
The present invention relates to each item described below.
(1) A high laser processable insulating resin material containing an inorganic filler in the insulating resin.
(2) A highly laser processable prepreg comprising a glass cloth and an insulating resin and containing an inorganic filler in the insulating resin.
(3) A high laser workability prepreg having a thermal conductivity after curing of 0.32 W / mK or more.
(4) A highly laser processable metal-clad laminate in which the insulating layer has a thermal conductivity of 0.32 W / mK or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive research to achieve the above object, the present inventors have successfully increased the thermal conductivity of the insulating resin material used for the base material and the laminated plate, in order to suitably perform drilling by laser processing. It is found that the energy of irradiation may be efficiently transmitted, and the purpose can be achieved by setting the thermal conductivity after curing of the prepreg or the thermal conductivity of the insulating layer of the laminated plate to 0.32 W / mK or more. Obtaining knowledge, the present invention has been completed based on this knowledge.
[0008]
The thermal conductivity is not particularly limited as long as it is 0.32 W / mK or more, but considering the influence on other characteristics, it is preferably 0.32 W / mK to 0.90 W / mK, More preferably, it is 0.35 W / mK to 0.90 W / mK, and particularly preferably 0.38 W / mK to 0.85 W / mK.
[0009]
In the present invention, the thermal conductivity is an amount that regulates the magnitude of the thermal conductivity, and is expressed as a ratio between the heat energy flux (the amount of heat that passes through the unit cross section during a unit time) and the temperature gradient. . A sample used for measurement of thermal conductivity is a cured product of a prepreg or a metal-clad laminate produced by heating and pressurization, and the metal-clad laminate is subjected to measurement in a state where the metal foil on the surface is removed by etching. In the present invention, the thermal conductivity is measured in the thickness direction of the substrate.
[0010]
In order to adjust the thermal conductivity of the prepreg or the laminated board, an inorganic filler may be blended and adjusted with an insulating resin, a resin having a high thermal conductivity may be used, or a metal filler whose surface is insulated and coated may be used. It may be used. In particular, the method of blending the inorganic filler is preferable in that the thermal conductivity can be easily adjusted by the blending amount.
[0011]
In general, when laser processing is performed on a laminated plate made of an insulating resin and glass cloth that does not contain an inorganic filler, the hole diameter increases on the laser incident side, particularly on the opening. As a result, a large area is required for the circuit wiring around the hole. When the insulating resin material of the present invention in which the inorganic filler is blended with the insulating resin has the same laser processing conditions, the incident-side hole diameter is smaller than the conventional insulating resin material, and the hole diameter is almost uniform. It has been found that through holes and via holes can be formed and is suitable for high-density wiring.
[0012]
(Inorganic filler)
The type of inorganic filler is not particularly limited. For example, calcium carbonate, alumina, titanium oxide, mica, aluminum carbonate, aluminum hydroxide, magnesium silicate, aluminum silicate, silica, short glass fiber, aluminum borate whisker or carbonized Various whiskers such as silicon whiskers are used. These may be used in combination. There are no particular restrictions on the shape and particle size of the inorganic filler, but the shape is preferably spherical or massive. A particle size of 0.001 to 100 μm that is usually used can also be used in the present invention, and when considering the thinning of the insulating resin material, preferably 0.005 to 30 μm is used. Those having a thickness of 0.01 to 10 μm are preferably used. The blending amount of these inorganic fillers is preferably from 3 to 1000 parts by weight, more preferably from 5 to 500 parts by weight, even more preferably from 10 to 100 parts by weight, based on 100 parts by weight of the thermosetting resin, when any inorganic filler is used. The part is particularly preferable from the viewpoint of achieving both improvement of laser processability and adhesion to the base material and the metal foil.
[0013]
(Insulated metal filler)
In the present invention, a metal filler having an insulating coating on the surface can be used to adjust the thermal conductivity. As the metal filler having an insulating coating on the surface, a general metal such as Cu or Al coated with a thermosetting resin, an elastomer, or a thermoplastic resin can be used.
[0014]
(Insulating resin)
The insulating resin of the present invention is not particularly limited, but in general, a thermosetting resin used for an insulating resin material or a laminate is preferable, and for example, an epoxy resin, a phenol resin, a polyimide, or the like can be used. As the thermosetting resin having a high thermal conductivity, a resin obtained by modifying the above resin with a metal element such as Cu or Al can be used.
[0015]
(Base material)
Although it does not specifically limit as a base material of this invention, The cloth or nonwoven fabric using an inorganic fiber illustrated by glass fibers, such as E glass, D glass, S glass, or Q glass, an aramid fiber, nylon, a polyimide, polyester, or Examples thereof include cloth or nonwoven fabric using organic fibers such as tetrafluoroethylene, and papers such as kraft paper and linter paper. A cloth or non-woven fabric using inorganic fibers is excellent in thermal conductivity, heat resistance and moisture resistance, is preferred as a substrate, and glass fiber cloth is particularly preferred.
[0016]
(Highly laser processable insulating resin material)
The high laser processable insulating resin material of the present invention is an insulating resin material for a wiring board suitable for producing a wiring board using laser processing. Examples of the insulating resin material for wiring boards include laminates such as resin films, metal foils with resin, prepregs, and metal-clad laminates.
[0017]
(Resin film)
The resin film can be produced by applying a conventional production method as it is. For example, the insulating resin can be varnished and applied to a support film to obtain a resin film. Well-known films used for various resin films can be used as the support film, and examples thereof include polyolefin films such as polyethylene and polyvinyl chloride, and polyester films such as polyethylene terephthalate. The resin film is obtained by applying a resin varnish to a support film and then heating and drying. The heating and drying conditions are preferably 100 to 200 ° C. and 1 to 30 minutes. These support films may be subjected to surface treatment such as mat treatment, corona treatment, and mold release treatment. The thickness of the support film is generally 10 to 150 μm. The thickness of the resin composition is generally 10 to 150 μm. The amount of residual solvent in the resin composition after heating and drying is preferably about 0.2 to 10%.
[0018]
(Metal foil with resin)
Conventionally, the manufacturing method generally performed conventionally can be applied as it is to the metal foil with resin of this invention. The metal foil with resin is formed by varnishing an insulating resin and coating the metal foil. As the metal foil, well-known ones used for various metal foils with resin can be used, for example, copper foil, aluminum foil, nickel foil, ultrathin metal foil that can remove the supporting metal foil by etching or peeling, etc. Illustrated. The metal foil with resin is obtained by applying a resin varnish to the metal foil and then heating and drying. The heating and drying conditions are preferably 100 to 200 ° C. and 1 to 30 minutes. . Usually, the thickness of the metal foil is generally 10 to 50 μm, but when an ultrathin metal foil is used, a metal foil with a resin having a thickness of 1 to 10 μm is obtained. The thickness of the resin composition is generally 10 to 150 μm. The amount of residual solvent in the resin composition after heating and drying is preferably about 0.2 to 10%.
[0019]
(High laser processability prepreg)
For the production of the prepreg of the present invention, a conventional production method can be applied as it is. That is, the prepreg of the present invention is obtained by varnishing an insulating resin and impregnating or coating the base material. Although there is no restriction | limiting in particular in the thickness of a base material, The thing of about 0.03-0.5 mm is used normally. Usually, after impregnating or coating the base material so that the amount of the insulating resin attached to the base material is 20 to 90% by weight as the resin content of the prepreg after drying, it is usually 1 at a temperature of 100 to 200 ° C. Heat-dry for ˜30 minutes to obtain a semi-cured (B-stage) prepreg.
[0020]
(Highly laser processable metal-clad laminate)
A laminate can be produced by laminate molding using the prepreg of the present invention described above. Laminate molding can be applied by general methods as it is, for example, usually 1 to 20 prepregs of the present invention are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides by heating and pressing. By doing so, a metal-clad laminate can be obtained. The metal foil is not particularly limited as long as it is used for wiring board material applications. As the molding conditions, conventional laminates for electrical insulating materials and multilayer boards can be applied. For example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, etc. are used. Molding is performed in a range of ˜100 kg / cm 2 and heating time of 0.1 to 5 hours.
[0021]
(Example of wiring board manufacturing method)
Next, an example of a method for manufacturing a printed wiring board and a build-up wiring board using the insulating resin material for wiring boards will be described. First, a through hole for conducting both surfaces of the metal-clad laminate is formed by laser drilling. At this time, if necessary, the copper foil in the holed portion can be removed by etching or the entire surface of the copper foil can be removed by etching. As the laser drilling machine, a carbon dioxide laser, a YAG laser, an excimer laser, or the like can be used. Thereafter, the surface is roughened by sandblasting, plasma treatment, chemical treatment using an oxidizing agent such as permanganate or dichromate. In this step, the resin residue generated when laser drilling is performed is also removed. Furthermore, a double-sided plate having electrical continuity is obtained using a technique such as electroless copper plating or electrolytic copper plating. Thereafter, a double-sided printed wiring board is obtained using a circuit forming method in a normal printed wiring board such as a subtractive method using a photoresist or the like.
[0022]
For example, the build-up wiring board is manufactured as follows. First, the double-sided printed wiring board is used as a core substrate, and the metal foil with resin is laminated on one or both sides thereof, or the semi-cured prepreg or the resin film and a copper foil are laminated and heated. Integrate by pressing. Next, through holes or non-through holes for conducting necessary layers are formed by laser drilling. At this time, if necessary, the copper foil in the holed portion can be removed by etching or the entire surface of the copper foil can be removed by etching. Thereafter, a chemical treatment is performed in the same manner as in the method for manufacturing a printed wiring board described above to obtain electrical conduction between layers, and then a circuit is formed on the surface.
[0023]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0024]
Example 1
As a thermosetting resin composition, epoxy resin (brominated bisphenol A type epoxy resin having an epoxy equivalent of 530 (manufactured by Dow Chemical Company, trade name: DER513)) and 100 parts by weight of dicyandiamide [manufactured by Nippon Carbide Corporation] as a curing agent. ], 4 parts by weight of 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator, and calcined clay (made by Tsuchiya Kaolin Co., Ltd., trade name: Satinton Special) as inorganic filler ] And 60 parts by weight of methyl ethyl ketone as a solvent for adjusting the viscosity was stirred and mixed in a flask at room temperature for 2 hours to obtain an epoxy resin varnish.
[0025]
Glass cloth [IPC standard # 2116] was immersed in the varnish and impregnated, and then dried at a maximum temperature of 150 ° C. for 8 minutes to obtain a semi-cured prepreg.
[0026]
Next, four prepregs are stacked and laminated with 18 μm thick copper foil on both outer sides, sandwiched between molding presses, heated and pressurized at a maximum temperature of 185 ° C. and a pressure of 3 MPa for 120 minutes, and the thickness of the insulating layer A metal-clad laminate with a thickness of 0.4 mm was obtained.
[0027]
(Example 2)
A metal-clad laminate was obtained in the same manner except that the inorganic filler in Example 1 was changed to 60 parts by weight of talc [manufactured by Asada Flour Milling Co., Ltd., trade name: SW-A].
[0028]
(Example 3)
A metal-clad laminate was obtained in the same manner except that the inorganic filler in Example 1 was changed to 15 parts by weight of silica [manufactured by Denki Kagaku Kogyo, trade name: SFP-20X].
[0029]
Example 4
A metal-clad laminate was obtained in the same manner except that the inorganic filler in Example 1 was changed to 30 parts by weight of silica [manufactured by Electrochemical Industry Co., Ltd., trade name: SFP-20X].
[0030]
(Example 5)
A metal-clad laminate was obtained in the same manner except that the inorganic filler in Example 1 was changed to 60 parts by weight of silica [trade name: SFP-20X, manufactured by Denki Kagaku Kogyo Co., Ltd.].
[0031]
(Comparative Example 1)
A metal-clad laminate was obtained in the same manner except that the calcined clay, which was the inorganic filler of Example 1, was removed.
[0032]
(Evaluation results)
The thermal conductivity of the substrates obtained in Examples and Comparative Examples was measured by removing the copper foil of the produced copper foil-clad laminate by etching the entire surface. As a measurement sample, a disk-shaped sample piece having a thickness of about 0.4 mm and a diameter of about 10 mm was cut out, and a carbon spray was applied to each side by about 1 μm to make the surface black and used for measurement. The thermal conductivity λ (Wm −1 K −1 ) was calculated by the formula (1).
[0033]
[Expression 1]
λ = αρC P-type (1)
α: Thermal diffusivity (m 2 s −1 )
ρ: Density (kgm −3 )
C P : Specific heat (Jkg −1 K −1 )
Measurement condition measurement method of thermal diffusivity α: Laser flash method measurement device: TC-7000, manufactured by Vacuum Riko Co., Ltd.
Measurement temperature: 25 ° C
Irradiation light: Ruby laser light atmosphere: Measurement condition measurement method for density ρ in vacuum: Archimedes method measurement device: Weight Electronic analysis balance AEL-200 manufactured by Shimadzu Corporation
Measurement temperature: 23 ° C
Immersion liquid: measuring method the measuring method of water specific heat C P: DSC method (DSC: differential scanning calorimeter)
Measuring device: DSC-7 manufactured by Perkin-Elmer
Temperature increase rate: 10 ° C. min −1
Atmosphere: Amount of dry nitrogen gas sample: Approximately 20mg
[0034]
Next, the metal-clad laminates obtained in the examples and comparative examples were drilled using laser light as follows, and the incident side hole diameter and plating penetration amount were evaluated.
[0035]
After removing the copper foil on the surface of the obtained metal-clad laminate by etching, an aperture 35, a pulse length of 30 μs, and a shot number of 15 were obtained using a carbon dioxide laser [manufactured by Hitachi Via Mechanics, product name: LCO-1B21]. Through holes were formed by irradiating with laser light under the conditions described above. In the carbon dioxide laser [manufactured by Hitachi Via Mechanics, trade name: LCO-1B21], the beam diameter at the aperture 35 is 0.12 mm, and the theoretical value of the incident side hole diameter is 0.12 mm.
[0036]
The diameter of the incident side hole was measured using a stereomicroscope [trade name: MX50 manufactured by OLYMPUS] and an image measuring device [trade name: MCP-550 manufactured by MORITEX] of the processed hole.
[0037]
The amount of plating permeation was determined by observing the cross-section of the through-hole after plating the through-hole copper on the laser-processed laminate, and measuring the length of the plating permeated into the glass cloth / resin interface using a stereomicroscope [made by OLYMPUS. : MX50 type] and an image measurement device [trade name: MCP-550, manufactured by MORITEX, Inc.].
[0038]
The results are shown in Table 1. The incident side hole diameter of Comparative Example 1 was as large as 0.152 mm with respect to the theoretical value of 0.12 mm set under the laser processing conditions. The plating soaking amount was also increased to 17 μm. Therefore, it is clear that the glass cloth / resin interface is damaged by laser processing. On the other hand, in Examples 1 and 2, both the incident side hole diameter and the plating penetration amount are small, and the laser processability is good. Further, in Examples 3 to 5, it is clear that the thermal conductivity increases as the blending amount of the inorganic filler increases, and the incident side hole diameter and the plating penetration amount become better as the thermal conductivity increases. It is. It was confirmed that any of the examples had excellent laser processability as compared with the comparative example.
[0039]
For this reason, in the comparative example, since the incident side hole diameter is large and the plating penetration amount is large, it is necessary to widen the hole interval in order to ensure insulation reliability when using a printed wiring board. . On the other hand, when the resin composition of the present invention is used, as shown in the examples, the incident side hole diameter is also obtained at a substantially target value, and the plating penetration amount is also small. However, insulation reliability can be obtained, and it is extremely effective for manufacturing a high-density substrate.
[0040]
[Table 1]
Figure 0004433651
[0041]
【The invention's effect】
According to the present invention, it is possible to provide an insulating resin material excellent in laser processability. That is, it is possible to provide an insulating resin material, a prepreg, and a metal-clad laminate that are excellent in laser processability in the state of the laminate, thereby enabling high reliability and high-density wiring of the printed wiring board.

Claims (1)

ガラス布及び無機フィラーを含有する絶縁樹脂層と絶縁樹脂層の片面又は両面上に積層された金属箔とからなり、前記無機フィラーが、マイカ、水酸化アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ及び焼成クレーから選ばれる少なくとも1種以上であり、絶縁樹脂層の熱伝導率が0.35W/mK以上であり、メッキ染込み量が10μm以下である金属張積層板。It consists of a glass cloth and an insulating resin layer containing an inorganic filler and a metal foil laminated on one or both sides of the insulating resin layer, and the inorganic filler is mica, aluminum hydroxide, magnesium silicate, aluminum silicate, silica And a metal-clad laminate in which the thermal conductivity of the insulating resin layer is 0.35 W / mK or more and the plating penetration amount is 10 μm or less.
JP2001314680A 2001-10-12 2001-10-12 High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate Expired - Lifetime JP4433651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314680A JP4433651B2 (en) 2001-10-12 2001-10-12 High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314680A JP4433651B2 (en) 2001-10-12 2001-10-12 High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2003123539A JP2003123539A (en) 2003-04-25
JP4433651B2 true JP4433651B2 (en) 2010-03-17

Family

ID=19132951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314680A Expired - Lifetime JP4433651B2 (en) 2001-10-12 2001-10-12 High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate

Country Status (1)

Country Link
JP (1) JP4433651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322588A (en) * 2001-04-25 2002-11-08 Nitto Shinko Kk Method for manufacturing masking material and masking material
US20100096173A1 (en) * 2007-02-23 2010-04-22 Kentaro Fujino Epoxy resin composition, prepreg, and laminate and printed wiring board
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
US8568855B2 (en) * 2011-06-08 2013-10-29 Siemens Energy, Inc. Insulation materials having apertures formed therein

Also Published As

Publication number Publication date
JP2003123539A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
KR100925757B1 (en) Insulating material, printed circuit board having the same and manufacturing method thereof
JP4600359B2 (en) Epoxy resin composition, resin film, prepreg, and multilayer printed wiring board
JP3862770B2 (en) Method for producing metal-clad laminate
JP4433651B2 (en) High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP6015303B2 (en) Prepreg, laminated board and printed wiring board
JP2006315391A (en) Laminated plate and printed circuit board using the same
JP4944483B2 (en) Method for manufacturing printed wiring board
JP5378954B2 (en) Prepreg and multilayer printed wiring boards
JP2001031782A (en) Prepreg and laminate prepared by using the same
JP2003347743A (en) Prepreg, multilayer printed circuit board and method for its manufacture
JP2000013031A (en) Manufacture of multilayered printed wiring board
JP2004179202A (en) Multilayered printed board and insulating sheet with metal foil for manufacturing the same
JP3237315B2 (en) Prepreg and method for producing multilayer laminate using this prepreg
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP3750147B2 (en) Laminate manufacturing method
JP2004188882A (en) Manufacturing process for laminate
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2003188544A (en) High density printed wiring board and manufacturing method therefor
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JP2003124635A (en) Laminate and multilayer printed wiring board
JP2008274002A (en) Resin composition, prepreg by using the same, metal-clad laminate plate, resin-attached metal foil, adhesive film and printed wiring board
JP2002127285A (en) Composite body and method for producing multi-layer printed-wiring board
JP2003309377A (en) Manufacturing method for multilayer wiring board
JPH11238965A (en) Manufacture of multilayered printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R151 Written notification of patent or utility model registration

Ref document number: 4433651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350