JP2008260830A - Heat-conductive resin composition - Google Patents

Heat-conductive resin composition Download PDF

Info

Publication number
JP2008260830A
JP2008260830A JP2007103811A JP2007103811A JP2008260830A JP 2008260830 A JP2008260830 A JP 2008260830A JP 2007103811 A JP2007103811 A JP 2007103811A JP 2007103811 A JP2007103811 A JP 2007103811A JP 2008260830 A JP2008260830 A JP 2008260830A
Authority
JP
Japan
Prior art keywords
resin composition
weight
same manner
conductive resin
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007103811A
Other languages
Japanese (ja)
Inventor
Kazuya Ito
佳寿也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007103811A priority Critical patent/JP2008260830A/en
Publication of JP2008260830A publication Critical patent/JP2008260830A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-conductive resin composition having high heat transfer property and excellent also in insulating properties and toughness. <P>SOLUTION: The heat-conductive resin composition comprises (A) 15-45 wt.% polyarylene sulfide, (B) 15-55 wt.% talc and (C) 15-60 wt.% glass fiber having flat cross section, wherein formulation amount of each component is weight fraction to the total amount of components (A) to (C). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、伝熱性樹脂組成物に関する。さらに詳しくは伝熱性、絶縁性及び靭性に優れ、高放熱性電子部品等として好適な樹脂組成物に関するものである。   The present invention relates to a heat conductive resin composition. More specifically, the present invention relates to a resin composition that is excellent in heat conductivity, insulation, and toughness and that is suitable as a high heat dissipation electronic component.

集積回路の処理速度や実装密度は、年々向上しており、その結果として半導体素子等からの発熱量も増大しつつある。このため、種々の高放熱性電子部品の需要が高まっており、これら高放熱性電子部品に用いる高伝熱性材料の需要も高まっている。また、上記電子部品に加えて、モーターコイル、ハロゲンランプ等においても、高伝熱性材料の需要が高まってきている。   The processing speed and packaging density of integrated circuits are improving year by year, and as a result, the amount of heat generated from semiconductor elements and the like is also increasing. For this reason, the demand for various high heat dissipation electronic components is increasing, and the demand for high heat transfer materials used for these high heat dissipation electronic components is also increasing. In addition to the electronic components described above, there is an increasing demand for highly heat-conductive materials in motor coils, halogen lamps, and the like.

高伝熱性材料としては、銅、アルミニウム等の金属が広く知られている。しかし、電子部品に用いる材料の多くは絶縁性を有する必要があり、これら金属を電子部品の材料として用いるには、絶縁被覆等を施す必要があった。   Metals such as copper and aluminum are widely known as high heat transfer materials. However, many of the materials used for electronic parts need to have insulating properties. In order to use these metals as materials for electronic parts, it is necessary to provide an insulating coating or the like.

この課題に対し、金属の代わりに、高伝熱性及び絶縁性を有するフィラーを樹脂に添加した樹脂組成物を高伝熱性材料として用いる技術が知られている。
例えば、特許文献1では、ポリフェニレンサルファイド樹脂及びフッ化カルシウム粒子からなる複合材料が開示されている。また、特許文献2では、ポリアリーレンサルファイド樹脂、リン含有被覆酸化マグネシウム及びアルコキシシラン化合物を含む樹脂組成物が開示されている。
In order to solve this problem, a technique is known in which a resin composition in which a filler having high heat conductivity and insulating properties is added to a resin instead of metal is used as a high heat transfer material.
For example, Patent Document 1 discloses a composite material made of polyphenylene sulfide resin and calcium fluoride particles. Patent Document 2 discloses a resin composition containing a polyarylene sulfide resin, a phosphorus-containing coated magnesium oxide and an alkoxysilane compound.

しかし、特許文献1及び2に記載の高伝熱性材料は、その伝熱性を十分に高めるためには、フィラーを大量に添加する必要があり、高伝熱性材料の靭性低下及びコスト増加という欠点を有していた。樹脂組成物の靭性を向上させる方法として、樹脂組成物にエラストマー及び/又は繊維状フィラーを添加する方法が知られているが、フィラーを大量に含む樹脂組成物には、十分な効果が得られなかった。
特開2002−188007号公報 特開2006−282783号公報
However, the high heat transfer materials described in Patent Documents 1 and 2 require the addition of a large amount of fillers in order to sufficiently increase the heat transfer properties, and have the disadvantages of reduced toughness and increased cost of the high heat transfer materials. Had. As a method for improving the toughness of the resin composition, a method of adding an elastomer and / or a fibrous filler to the resin composition is known, but a sufficient effect is obtained for a resin composition containing a large amount of filler. There wasn't.
JP 2002-188007 A JP 2006-28283A

本発明は、上記の事情に鑑みなされたものであり、高い伝熱性を有し、絶縁性及び靭性にも優れた伝熱性樹脂組成物を提供することを目的とする。   This invention is made | formed in view of said situation, and it aims at providing the heat-transfer resin composition which has high heat conductivity and was excellent also in insulation and toughness.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ポリアリーレンサルファイド、タルク、及び扁平形状の断面を有するガラス繊維を特定の配合比率で含む樹脂組成物が、高い伝熱性を有し、絶縁性及び靭性にも優れることを見出した。本発明は、かかる知見に基づいて完成したものである。
本発明によれば、以下の伝熱性樹脂組成物等が提供される。
1. 以下の成分(A)〜(C)を含む伝熱性樹脂組成物。
(A)ポリアリーレンサルファイド:15〜45重量%
(B)タルク:15〜55重量%
(C)扁平形状の断面を有するガラス繊維:15〜60重量%
(前記各成分の配合量は、成分(A)〜(C)の合計量に対する重量分率である)
2. 前記成分(A)〜(C)からなる1に記載の伝熱性樹脂組成物。
3. 前記ガラス繊維の扁平率が2〜20である1又は2に記載の伝熱性樹脂組成物。
4. 1〜3のいずれかに記載の伝熱性樹脂組成物からなる伝熱性樹脂成形品。
5. 4に記載の伝熱性樹脂成形品からなる電子部品。
As a result of intensive studies to achieve the above object, the present inventors have found that a resin composition containing polyarylene sulfide, talc, and glass fibers having a flat cross section at a specific blending ratio has high heat conductivity. And have been found to be excellent in insulation and toughness. The present invention has been completed based on such findings.
According to the present invention, the following heat transfer resin composition and the like are provided.
1. The heat conductive resin composition containing the following components (A)-(C).
(A) Polyarylene sulfide: 15 to 45% by weight
(B) Talc: 15-55 wt%
(C) Glass fiber having a flat cross section: 15 to 60% by weight
(The amount of each component is a weight fraction with respect to the total amount of components (A) to (C))
2. 2. The heat conductive resin composition according to 1, comprising the components (A) to (C).
3. The heat transfer resin composition according to 1 or 2, wherein the flatness of the glass fiber is 2 to 20.
4). A heat conductive resin molded article comprising the heat conductive resin composition according to any one of 1 to 3.
5. 4. An electronic component comprising the heat conductive resin molded product according to 4.

本発明によれば、高い伝熱性を有し、絶縁性及び靭性にも優れた伝熱性樹脂組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the heat conductive resin composition which has high heat conductivity and was excellent also in insulation and toughness.

本発明の伝熱性樹脂組成物は下記成分(A)〜(C)を含み、好ましくは成分(A)〜(C)からなる。
(A)ポリアリーレンサルファイド:15〜45重量%
(B)タルク:15〜55重量%
(C)扁平形状の断面を有するガラス繊維:15〜60重量%
(各成分の配合量は、成分(A)〜(C)の合計量に対する重量分率である)
The heat conductive resin composition of the present invention contains the following components (A) to (C), and preferably comprises components (A) to (C).
(A) Polyarylene sulfide: 15 to 45% by weight
(B) Talc: 15-55 wt%
(C) Glass fiber having a flat cross section: 15 to 60% by weight
(The amount of each component is a weight fraction with respect to the total amount of components (A) to (C))

ポリアリーレンサルファイド(成分(A))の配合量は成分(A)〜(C)の合計量に対して15〜45重量%であり、好ましくは20〜45重量%、より好ましくは20〜40重量%である。
成分(A)の配合量が15重量%以上であると、得られる樹脂組成物は実用的な加工性を有する。また、成分(A)の配合量が45重量%以下であると、得られる樹脂組成物は実用的な伝熱性及び靭性を有する。
The blending amount of polyarylene sulfide (component (A)) is 15 to 45% by weight, preferably 20 to 45% by weight, more preferably 20 to 40% by weight based on the total amount of components (A) to (C). %.
When the amount of component (A) is 15% by weight or more, the resulting resin composition has practical processability. Moreover, the resin composition obtained as a compounding quantity of a component (A) is 45 weight% or less has practical heat conductivity and toughness.

タルク(成分(B))の配合量は成分(A)〜(C)の合計量に対して15〜55重量%であり、好ましくは20〜55重量%である。
成分(B)の配合量が15重量%以上であると、得られる樹脂組成物は実用的な伝熱性を有する。また、成分(B)の配合量が55重量%以下であると、得られる樹脂組成物は実用的な靭性を有する。
The blending amount of talc (component (B)) is 15 to 55% by weight, preferably 20 to 55% by weight, based on the total amount of components (A) to (C).
When the blending amount of the component (B) is 15% by weight or more, the obtained resin composition has practical heat conductivity. Moreover, the resin composition obtained as a compounding quantity of a component (B) is 55 weight% or less has practical toughness.

扁平形状の断面を有するガラス繊維(成分(C))の配合量は、成分(A)〜(C)の合計量に対して15〜60重量%であり、好ましくは20〜60重量%である。
成分(C)の配合量が15重量%以上であると、得られる樹脂組成物は実用的な靭性を有する。また、成分(C)の配合量が60重量%以下であると、得られる樹脂組成物は実用的な加工性を有する。
The compounding quantity of the glass fiber (component (C)) which has a flat cross section is 15-60 weight% with respect to the total amount of a component (A)-(C), Preferably it is 20-60 weight%. .
When the blending amount of component (C) is 15% by weight or more, the resulting resin composition has practical toughness. Moreover, the resin composition obtained as a compounding quantity of a component (C) is 60 weight% or less has practical workability.

本発明で用いられるポリアリーレンサルファイドは、繰り返し単位が下記式
−(Ar−S)−
(式中、Arはアリーレン基、Sは硫黄を示す。)
で示される重合体である。
The polyarylene sulfide used in the present invention has a repeating unit represented by the following formula:
-(Ar-S)-
(In the formula, Ar represents an arylene group, and S represents sulfur.)
It is a polymer shown by.

上記式において、アリーレン基としては、下記式で表されるアリーレン基が挙げられる。これらのアリーレン基からなるポリアリーレンサルファイドは、同一の繰り返し単位からなるホモポリマー、2種以上の異なるアリーレン基からなるコポリマー及びこれらの混合物のいずれでもよい。

Figure 2008260830
In the above formula, the arylene group includes an arylene group represented by the following formula. The polyarylene sulfide composed of these arylene groups may be either a homopolymer composed of the same repeating unit, a copolymer composed of two or more different arylene groups, or a mixture thereof.
Figure 2008260830

また、本発明のポリアリーレンサルファイドは、本発明の効果を損なわない範囲で、そのポリマー鎖の一部が他のポリマーで置換されていてもよい。
置換するポリマーとしては、ポリアミド系ポリマー、ポリエステル系ポリマー、ポリアリーレンエーテル系ポリマー、ポリスチレン系ポリマー、ポリオレフィン系ポリマー、含フッ素ポリマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、シリコーン系エラストマー等が挙げられる。
In addition, in the polyarylene sulfide of the present invention, a part of the polymer chain may be substituted with another polymer as long as the effects of the present invention are not impaired.
Examples of the polymer to be substituted include polyamide polymers, polyester polymers, polyarylene ether polymers, polystyrene polymers, polyolefin polymers, fluorine-containing polymers, polyolefin elastomers, polyamide elastomers, and silicone elastomers.

本発明のポリアリーレンサルファイドは、例えば特公昭45−3368号公報、特公昭52−12240号公報等に記載の方法で製造することができる。
尚、本発明のポリアリーレンサルファイドは、空気中で加熱して高分子量化してもよく、また、酸無水物等の化合物を用いて化学修飾してもよい。
The polyarylene sulfide of the present invention can be produced by the method described in, for example, Japanese Patent Publication No. 45-3368 and Japanese Patent Publication No. 52-12240.
The polyarylene sulfide of the present invention may be heated to increase the molecular weight in air, or may be chemically modified with a compound such as an acid anhydride.

本発明で用いられるタルクとは、天然鉱物の一種であり、その化学式は3MgO・4SiO・HOで表される。タルクは、通常、産地等に応じた不純物を含むが、本発明のタルクは、産地、不純物の種類及びその量について特に制限は無い。 Talc used in the present invention is a kind of natural mineral, and its chemical formula is represented by 3MgO.4SiO 2 .H 2 O. Talc usually contains impurities according to the production area, etc., but the talc of the present invention is not particularly limited with respect to the production area, the type of impurities and the amount thereof.

本発明のタルクはそのサイズについて特に制限はないが、製造上の利便性の観点から、好ましくは重量メジアン粒子径が1μm〜50μmであり、より好ましくは3〜30μmである。
上記重量メジアン粒子径は、一般にD50と表され、例えばレーザー回折法等で測定することができる。
The size of the talc of the present invention is not particularly limited, but from the viewpoint of convenience in production, the weight median particle diameter is preferably 1 μm to 50 μm, more preferably 3 to 30 μm.
The weight median particle diameter is generally expressed as D50, and can be measured by, for example, a laser diffraction method.

本発明のタルクは、ポリアリーレンサルファイドとの接着強度を高める目的等で、その表面を有機化合物でコーティングする等の処理を施してもよい。   The talc of the present invention may be subjected to a treatment such as coating its surface with an organic compound for the purpose of increasing the adhesive strength with polyarylene sulfide.

本発明の伝熱性樹脂組成物は、本発明の効果を損なわない範囲で、タルクの他に非繊維状のフィラーを含んでもよい。非繊維状フィラーとしては、例えばマイカ、カオリン、パイロフィライト、ベントナイト、珪藻土、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、シリカ、酸化チタン、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、窒化アルミニウム、炭化珪素、ガラスビーズ、ガラスフレーク、黒鉛、カーボンブラック、アルミニウム、銅等が挙げられる。   The heat conductive resin composition of the present invention may contain a non-fibrous filler in addition to talc as long as the effects of the present invention are not impaired. Non-fibrous fillers include, for example, mica, kaolin, pyrophyllite, bentonite, diatomaceous earth, magnesium oxide, aluminum oxide, zinc oxide, silica, titanium oxide, calcium carbonate, magnesium carbonate, boron nitride, aluminum nitride, silicon carbide, glass Examples include beads, glass flakes, graphite, carbon black, aluminum, and copper.

本発明で用いられるガラス繊維は扁平形状の断面を有し、好ましくは扁平率が2〜20である。
扁平率とは、図1に示すように、ガラス繊維の断面の短径をD1、断面の長径をD2としたとき、D2/D1で表される。
The glass fiber used in the present invention has a flat cross section, and preferably has a flatness ratio of 2-20.
As shown in FIG. 1, the flatness ratio is expressed by D2 / D1, where D1 is the minor axis of the cross section of the glass fiber and D2 is the major axis of the cross section.

本発明のガラス繊維は、その繊維長について特に制限はないが、製造上の利便性の観点から、好ましくは繊維長が1mm〜5mmである。   The fiber length of the glass fiber of the present invention is not particularly limited, but the fiber length is preferably 1 mm to 5 mm from the viewpoint of manufacturing convenience.

本発明のガラス繊維は、ポリアリーレンサルファイドとの接着強度を高める目的等で、その表面を有機化合物でコーティングする、多数のガラス繊維を有機化合物で収束する等の処理を施してもよい。   The glass fiber of the present invention may be subjected to a treatment such as coating the surface with an organic compound or converging a number of glass fibers with an organic compound for the purpose of increasing the adhesive strength with polyarylene sulfide.

本発明の伝熱性樹脂組成物は、本発明の効果を損なわない範囲で、扁平形状の断面を有するガラス繊維の他に繊維状フィラーを含んでもよい。繊維状フィラーとしては、例えば扁平ガラス繊維でないガラス繊維、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、アラミド繊維、酸化アルミニウム繊維、炭素繊維、銅繊維等が挙げられる。   The heat conductive resin composition of the present invention may contain a fibrous filler in addition to the glass fiber having a flat cross section within a range not impairing the effects of the present invention. Examples of the fibrous filler include glass fibers that are not flat glass fibers, potassium titanate whiskers, aluminum borate whiskers, aramid fibers, aluminum oxide fibers, carbon fibers, and copper fibers.

また、本発明の伝熱性樹脂組成物は、本発明の効果を損なわない範囲で常用の樹脂添加剤を加えることができる。樹脂添加剤としては、例えば離型剤、可塑剤、難燃剤、酸化防止剤、金属不活性化剤、相容化剤等が挙げられる。   Moreover, the heat-transfer resin composition of this invention can add a usual resin additive in the range which does not impair the effect of this invention. Examples of the resin additive include a mold release agent, a plasticizer, a flame retardant, an antioxidant, a metal deactivator, and a compatibilizer.

本発明の伝熱性樹脂組成物は、公知の溶融混練法によって製造できる。
例えば成分(A)及び(B)を所定の割合でドライブレンドした後、市販の二軸混練押出機にトップフィードし、成分(C)をサイドフィードする方法が挙げられる。
The heat conductive resin composition of the present invention can be produced by a known melt-kneading method.
For example, there is a method in which components (A) and (B) are dry blended at a predetermined ratio, then top-fed to a commercially available twin-screw kneading extruder, and component (C) is side-fed.

本発明の伝熱性樹脂組成物は、高い伝熱性を有し、絶縁性及び靭性にも優れる。このため、高放熱性を必要とする電子部品に好適である。
上記電子部品の具体例としては、基板封止材、コイル封止材、基板ケース、電池ケース、抵抗素子ケース、HIDランプの電子バラストケース、コイルボビン、ヒートシンク、ソレノイド、モーターファン、イオン発生デバイスの誘電体、ランプリフレクター、ランプソケット、ランプホルダー、LEDパッケージ、LEDスペーサー、LEDソケット、LED台座コネクタ及びLED素子フレーム等が挙げられる。
The heat transfer resin composition of the present invention has high heat transfer properties and is excellent in insulation and toughness. For this reason, it is suitable for the electronic component which requires high heat dissipation.
Specific examples of the electronic components include a substrate sealing material, a coil sealing material, a substrate case, a battery case, a resistance element case, an electronic ballast case for a HID lamp, a coil bobbin, a heat sink, a solenoid, a motor fan, and a dielectric for an ion generating device. Examples include a body, a lamp reflector, a lamp socket, a lamp holder, an LED package, an LED spacer, an LED socket, an LED base connector, and an LED element frame.

以下、本発明を実施例によって、さらに具体的に説明する。
本発明の実施例及び比較例において、成分(A)〜(C)として下記(A1)、(B1)及び(C1)を用い、その他の成分として下記(D)〜(H)を用いた。
(A1):C−201(ポリフェニレンサルファイド樹脂、大日本インキ化学工業株式会社製)
(B1):SW−AC(タルク、重量メジアン粒子径15μm、浅田製粉株式会社製)
(C1):CSG 3PA−830(扁平形状の断面を有するガラス繊維、扁平率4、日東紡績株式会社製)
(D):03JAFT591(ガラス繊維、扁平率1、オーウェンス・コーニング社製)
(E):♯500(酸化マグネシウム粉、タテホ化学工業株式会社製)
(F):酸化亜鉛1種(酸化亜鉛粉、堺化学工業株式会社製)
(G):SC20H(シリカ粉、株式会社マイクロン製)
(H):ホワイトンP−30(炭酸カルシウム粉、白石カルシウム株式会社製)
Hereinafter, the present invention will be described more specifically with reference to examples.
In Examples and Comparative Examples of the present invention, the following (A1), (B1) and (C1) were used as the components (A) to (C), and the following (D) to (H) were used as the other components.
(A1): C-201 (polyphenylene sulfide resin, manufactured by Dainippon Ink & Chemicals, Inc.)
(B1): SW-AC (talc, weight median particle diameter 15 μm, manufactured by Asada Flour Milling Co., Ltd.)
(C1): CSG 3PA-830 (glass fiber having a flat cross section, flatness ratio 4, manufactured by Nitto Boseki Co., Ltd.)
(D): 03JAFT591 (glass fiber, flatness ratio 1, manufactured by Owens Corning)
(E): # 500 (magnesium oxide powder, manufactured by Tateho Chemical Co., Ltd.)
(F): 1 type of zinc oxide (zinc oxide powder, manufactured by Sakai Chemical Industry Co., Ltd.)
(G): SC20H (silica powder, manufactured by Micron Corporation)
(H): Whiten P-30 (calcium carbonate powder, manufactured by Shiroishi Calcium Co., Ltd.)

実施例1
(A1)及び(B1)を、重量比が20対40となるようにそれぞれ量りとった。この原料をドライブレンドし、二軸混練押出機TEM37BS(東芝機械株式会社製)のトップフィーダーに投入し、また適量の(C1)をサイドフィーダーに投入した。(A1)及び(B1)の混合物を6.0kg/hrのフィード速度で供給し、(C1)を4.0kg/hrのフィード速度で供給し、混練した。尚、混練の際にバレルとダイスの設定温度は320℃とした。ダイスから出た組成物のストランドを水冷し、ペレット状にカットした。得られた組成物は、成分の凝集等は見られず良好であった。得られた組成物を分析した結果、成分(A)〜(C)の合計量に対する各成分の重量分率が、(A1)が20重量%、(B1)が40重量%、(C1)が40重量%であった。尚、各成分の配合量の測定方法としては、得られた組成物を坩堝に入れ、600℃の炉で6時間燃焼し、燃焼前の組成物及び燃焼残渣の重量減少率から樹脂の割合を求めた。さらに、燃焼残渣についてX線回折法を用いてタルクの割合を求めた。
得られた樹脂組成物のペレットについて、ASTM D256に準拠してノッチ付Izod強度を測定した。結果を表1に示す。
Example 1
(A1) and (B1) were weighed so that the weight ratio was 20:40. This raw material was dry blended and charged into a top feeder of a twin screw kneading extruder TEM37BS (manufactured by Toshiba Machine Co., Ltd.), and an appropriate amount of (C1) was charged into a side feeder. The mixture of (A1) and (B1) was supplied at a feed rate of 6.0 kg / hr, and (C1) was supplied at a feed rate of 4.0 kg / hr and kneaded. The kneading temperature was set to 320 ° C. for the barrel and the die. The strand of the composition coming out of the die was cooled with water and cut into pellets. The obtained composition was good with no aggregation of components or the like. As a result of analyzing the obtained composition, the weight fraction of each component with respect to the total amount of the components (A) to (C) is (A1) is 20% by weight, (B1) is 40% by weight, and (C1) is It was 40% by weight. In addition, as a measuring method of the compounding amount of each component, the obtained composition is put into a crucible and burned in a furnace at 600 ° C. for 6 hours, and the ratio of the resin is determined from the weight reduction rate of the composition and combustion residue before combustion. Asked. Furthermore, the ratio of talc was calculated | required about the combustion residue using the X ray diffraction method.
About the pellet of the obtained resin composition, Izod intensity | strength with a notch was measured based on ASTMD256. The results are shown in Table 1.

得られた樹脂組成物のペレットを用いて、80mm角×3mm厚の平板を射出成形した。この平板成形品について、TPA−501(京都電子工業株式会社製)を用いて熱伝導率を測定した。測定条件はセンサー直径を20mm、測定モードを“Slab Sheets”とした。また、この平板成形品について、ASTM D257に準拠して体積抵抗率を測定した。結果を表1に示す。   A 80 mm square × 3 mm thick flat plate was injection molded using the pellets of the obtained resin composition. About this flat plate molded product, thermal conductivity was measured using TPA-501 (made by Kyoto Electronics Industry Co., Ltd.). The measurement conditions were a sensor diameter of 20 mm and a measurement mode of “Slab Sheets”. Moreover, about this flat plate molded article, the volume resistivity was measured based on ASTMD257. The results are shown in Table 1.

比較例1
(C1)の代わりに(D)を用いた他は、実施例1と同様にして樹脂組成物及び成形品を製造し、同様の評価を行った。結果を表1に示す。
Comparative Example 1
A resin composition and a molded product were produced in the same manner as in Example 1 except that (D) was used instead of (C1), and the same evaluation was performed. The results are shown in Table 1.

実施例1の樹脂組成物は比較例1に比べて、ノッチ付Izod強度が62%高くなっており、靭性が著しく向上していることが確認された。また、実施例1の樹脂組成物からなる成形品は、実用に耐えうる十分な伝熱性及び絶縁性を有することが確認された。   The resin composition of Example 1 had a notched Izod strength of 62% higher than that of Comparative Example 1, and it was confirmed that the toughness was remarkably improved. Moreover, it was confirmed that the molded article which consists of a resin composition of Example 1 has sufficient heat conductivity and insulation which can be practically used.

実施例2
(A1)及び(B1)を、重量比が25対20となるようにそれぞれ量りとった。この原料をドライブレンドし、二軸混練押出機TEM37BS(東芝機械株式会社製)のトップフィーダーに投入し、また適量の(C1)をサイドフィーダーに投入した。(A1)及び(B1)の混合物を4.5kg/hrのフィード速度で供給し、(C1)を5.5kg/hrのフィード速度で供給し、混練した。尚、混練の際にバレルとダイスの設定温度は320℃とした。ダイスから出た組成物のストランドを水冷し、ペレット状にカットした。得られた組成物は、成分の凝集等は見られず良好であった。得られた組成物を分析した結果、成分(A)〜(C)の合計量に対する各成分の重量分率が、(A1)が25重量%、(B1)が20重量%、(C1)が55重量%であった。
Example 2
(A1) and (B1) were weighed so that the weight ratio was 25:20. This raw material was dry blended and charged into a top feeder of a twin screw kneading extruder TEM37BS (manufactured by Toshiba Machine Co., Ltd.), and an appropriate amount of (C1) was charged into a side feeder. The mixture of (A1) and (B1) was supplied at a feed rate of 4.5 kg / hr, and (C1) was supplied at a feed rate of 5.5 kg / hr and kneaded. The kneading temperature was set to 320 ° C. for the barrel and the die. The strand of the composition coming out of the die was cooled with water and cut into pellets. The obtained composition was good with no aggregation of components or the like. As a result of analyzing the obtained composition, the weight fraction of each component with respect to the total amount of components (A) to (C) is (A1) is 25% by weight, (B1) is 20% by weight, and (C1) is It was 55% by weight.

得られた樹脂組成物のペレットについて、実施例1と同様の評価を行った。また、得られた樹脂組成物のペレットを用いて実施例1と同様にして成形品を製造し、実施例1と同様にして評価した。結果を表1に示す。   About the pellet of the obtained resin composition, evaluation similar to Example 1 was performed. Further, a molded product was produced in the same manner as in Example 1 using the obtained pellets of the resin composition, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例2
(C1)の代わりに(D)を用いた他は、実施例2と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 2
A resin composition and a molded product were produced in the same manner as in Example 2 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

実施例2の樹脂組成物は比較例2に比べて、ノッチ付Izod強度が71%高くなっており、靭性が著しく向上していることが確認された。また、実施例2の樹脂組成物からなる成形品は、実用に耐えうる十分な伝熱性及び絶縁性を有することが確認された。   The resin composition of Example 2 had a notched Izod strength of 71% higher than that of Comparative Example 2, and it was confirmed that the toughness was remarkably improved. Moreover, it was confirmed that the molded article which consists of a resin composition of Example 2 has sufficient heat conductivity and insulation which can be practically used.

実施例3
(A1)及び(B1)を、重量比が25対50となるようにそれぞれ量りとった。この原料をドライブレンドし、二軸混練押出機TEM37BS(東芝機械株式会社製)のトップフィーダーに投入し、また適量の(C1)をサイドフィーダーに投入した。(A1)及び(B1)の混合物を7.5kg/hrのフィード速度で供給し、(C1)を2.5kg/hrのフィード速度で供給し、混練した。尚、混練の際にバレルとダイスの設定温度は320℃とした。ダイスから出た組成物のストランドを水冷し、ペレット状にカットした。得られた組成物は、成分の凝集等は見られず良好であった。得られた組成物を分析した結果、成分(A)〜(C)の合計量に対する各成分の重量分率が、(A1)が25重量%、(B1)が50重量%、(C1)が25重量%であった。
Example 3
(A1) and (B1) were weighed so that the weight ratio was 25:50. This raw material was dry blended and charged into a top feeder of a twin screw kneading extruder TEM37BS (manufactured by Toshiba Machine Co., Ltd.), and an appropriate amount of (C1) was charged into a side feeder. The mixture of (A1) and (B1) was supplied at a feed rate of 7.5 kg / hr, and (C1) was supplied at a feed rate of 2.5 kg / hr and kneaded. The kneading temperature was set to 320 ° C. for the barrel and the die. The strand of the composition coming out of the die was cooled with water and cut into pellets. The obtained composition was good with no aggregation of components or the like. As a result of analyzing the obtained composition, the weight fraction of each component with respect to the total amount of components (A) to (C) is (A1) is 25% by weight, (B1) is 50% by weight, and (C1) is It was 25% by weight.

得られた樹脂組成物のペレットについて、実施例1と同様の評価を行った。また、得られた樹脂組成物のペレットを用いて実施例1と同様にして成形品を製造し、実施例1と同様にして評価した。結果を表1に示す。   About the pellet of the obtained resin composition, evaluation similar to Example 1 was performed. Further, a molded product was produced in the same manner as in Example 1 using the obtained pellets of the resin composition, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例3
(C1)の代わりに(D)を用いた他は、実施例3と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 3
A resin composition and a molded product were produced in the same manner as in Example 3 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

実施例3の樹脂組成物は比較例3に比べて、ノッチ付Izod強度が52%高くなっており、靭性が著しく向上していることが確認された。また、実施例3の樹脂組成物からなる成形品は、実用に耐えうる十分な伝熱性及び絶縁性を有することが確認された。   The resin composition of Example 3 had a notched Izod strength of 52% higher than that of Comparative Example 3, and it was confirmed that the toughness was remarkably improved. Moreover, it was confirmed that the molded article which consists of a resin composition of Example 3 has sufficient heat conductivity and insulation which can be practically used.

実施例4
(A1)及び(B1)を、重量比が40対30となるようにそれぞれ量りとった。この原料をドライブレンドし、二軸混練押出機TEM37BS(東芝機械株式会社製)のトップフィーダーに投入し、また適量の(C1)をサイドフィーダーに投入した。(A1)及び(B1)の混合物を7.0kg/hrのフィード速度で供給し、(C1)を3.0kg/hrのフィード速度で供給し、混練した。尚、混練の際にバレルとダイスの設定温度は320℃とした。ダイスから出た組成物のストランドを水冷し、ペレット状にカットした。得られた組成物は、成分の凝集等は見られず良好であった。得られた組成物を分析した結果、成分(A)〜(C)の合計量に対する各成分の重量分率が、(A1)が40重量%、(B1)が30重量%、(C1)が30重量%であった。
Example 4
(A1) and (B1) were weighed so that the weight ratio was 40:30. This raw material was dry blended and charged into a top feeder of a twin screw kneading extruder TEM37BS (manufactured by Toshiba Machine Co., Ltd.), and an appropriate amount of (C1) was charged into a side feeder. The mixture of (A1) and (B1) was supplied at a feed rate of 7.0 kg / hr, and (C1) was supplied at a feed rate of 3.0 kg / hr and kneaded. The kneading temperature was set to 320 ° C. for the barrel and the die. The strand of the composition coming out of the die was cooled with water and cut into pellets. The obtained composition was good with no aggregation of components or the like. As a result of analyzing the obtained composition, the weight fraction of each component with respect to the total amount of the components (A) to (C) is (A1) is 40% by weight, (B1) is 30% by weight, and (C1) is It was 30% by weight.

得られた樹脂組成物のペレットについて、実施例1と同様の評価を行った。また、得られた樹脂組成物のペレットを用いて実施例1と同様にして成形品を製造し、実施例1と同様にして評価した。結果を表1に示す。   About the pellet of the obtained resin composition, evaluation similar to Example 1 was performed. Further, a molded product was produced in the same manner as in Example 1 using the obtained pellets of the resin composition, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例4
(C1)の代わりに(D)を用いた他は、実施例4と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 4
A resin composition and a molded product were produced in the same manner as in Example 4 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

実施例4の樹脂組成物は比較例4に比べて、ノッチ付Izod強度が67%高くなっており、靭性が著しく向上していることが確認された。また、実施例4の樹脂組成物からなる成形品は、実用に耐えうる十分な伝熱性及び絶縁性を有することが確認された。   The resin composition of Example 4 had a notched Izod strength of 67% higher than that of Comparative Example 4, and it was confirmed that the toughness was remarkably improved. Moreover, it was confirmed that the molded article which consists of a resin composition of Example 4 has sufficient heat conductivity and insulation which can be practically used.

比較例5
(A1)及び(B1)を、重量比が40対50となるようにそれぞれ量りとった。この原料をドライブレンドし、二軸混練押出機TEM37BS(東芝機械株式会社製)のトップフィーダーに投入し、また適量の(C1)をサイドフィーダーに投入した。(A1)及び(B1)の混合物を9.0kg/hrのフィード速度で供給し、(C1)を1.0kg/hrのフィード速度で供給し、混練した。尚、混練の際にバレルとダイスの設定温度は320℃とした。ダイスから出た組成物のストランドを水冷し、ペレット状にカットした。得られた組成物は、成分の凝集等は見られず良好であった。得られた組成物を分析した結果、成分(A)〜(C)の合計量に対する各成分の重量分率が、(A1)が40重量%、(B1)が50重量%、(C1)が10重量%であった。
Comparative Example 5
(A1) and (B1) were weighed so that the weight ratio was 40:50. This raw material was dry blended and charged into a top feeder of a twin screw kneading extruder TEM37BS (manufactured by Toshiba Machine Co., Ltd.), and an appropriate amount of (C1) was charged into a side feeder. The mixture of (A1) and (B1) was supplied at a feed rate of 9.0 kg / hr, and (C1) was supplied at a feed rate of 1.0 kg / hr and kneaded. The kneading temperature was set to 320 ° C. for the barrel and the die. The strand of the composition coming out of the die was cooled with water and cut into pellets. The obtained composition was good with no aggregation of components or the like. As a result of analyzing the obtained composition, the weight fraction of each component with respect to the total amount of the components (A) to (C) was (A1) 40% by weight, (B1) 50% by weight, and (C1) It was 10% by weight.

得られた樹脂組成物のペレットについて、実施例1と同様の評価を行った。また、得られた樹脂組成物のペレットを用いて実施例1と同様にして成形品を製造し、実施例1と同様にして評価した。結果を表1に示す。   About the pellet of the obtained resin composition, evaluation similar to Example 1 was performed. Further, a molded product was produced in the same manner as in Example 1 using the obtained pellets of the resin composition, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例6
(C1)の代わりに(D)を用いた他は、比較例5と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 6
A resin composition and a molded product were produced in the same manner as in Comparative Example 5 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例5の樹脂組成物は比較例6に比べて、ノッチ付Izod強度が23%高くなっているものの、その靭性は不十分であった。   Although the resin composition of Comparative Example 5 had a notched Izod strength of 23% higher than that of Comparative Example 6, its toughness was insufficient.

比較例7
(A1)及び(B1)を、重量比が10対40となるようにそれぞれ量りとった。この原料をドライブレンドし、二軸混練押出機TEM37BS(東芝機械株式会社製)のトップフィーダーに投入し、また適量の(C1)をサイドフィーダーに投入した。(A1)及び(B1)の混合物を5.0kg/hrのフィード速度で供給し、(C1)を5.0kg/hrのフィード速度で供給し、混練した。尚、混練の際にバレルとダイスの設定温度は320℃とした。しかし、供給物がバレル内に詰まり、樹脂組成物を得ることができなかった。このため、実施例1で行った評価が実施できなかった。
良好なペレットが得られなかった理由としては、マトリックスとなる成分(A)が少なすぎることが考えられる。
Comparative Example 7
(A1) and (B1) were weighed so that the weight ratio was 10:40. This raw material was dry blended and charged into a top feeder of a twin screw kneading extruder TEM37BS (manufactured by Toshiba Machine Co., Ltd.), and an appropriate amount of (C1) was charged into a side feeder. The mixture of (A1) and (B1) was supplied at a feed rate of 5.0 kg / hr, and (C1) was supplied at a feed rate of 5.0 kg / hr and kneaded. The kneading temperature was set to 320 ° C. for the barrel and the die. However, the supply was clogged in the barrel, and a resin composition could not be obtained. For this reason, the evaluation performed in Example 1 could not be performed.
The reason why a good pellet could not be obtained may be that the component (A) serving as a matrix is too small.

比較例8
(B1)の代わりに(E)を用いた他は、実施例1と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 8
A resin composition and a molded product were produced in the same manner as in Example 1 except that (E) was used instead of (B1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例9
(C1)の代わりに(D)を用いた他は、比較例8と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 9
A resin composition and a molded product were produced in the same manner as in Comparative Example 8, except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例8の樹脂組成物は比較例9に比べて、ノッチ付Izod強度が19%高くなっているものの、その靭性は不十分であった。   The resin composition of Comparative Example 8 had a notched Izod strength of 19% higher than that of Comparative Example 9, but its toughness was insufficient.

比較例10
(B1)の代わりに(F)を用いた他は、実施例1と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 10
A resin composition and a molded product were produced in the same manner as in Example 1 except that (F) was used instead of (B1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例11
(C1)の代わりに(D)を用いた他は、比較例10と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 11
A resin composition and a molded product were produced in the same manner as in Comparative Example 10 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例10の樹脂組成物は比較例11に比べて、ノッチ付Izod強度が24%高くなっているものの、その伝熱性は不十分であった。   The resin composition of Comparative Example 10 had a notched Izod strength of 24% higher than that of Comparative Example 11, but its heat transfer was insufficient.

比較例12
(B1)の代わりに(G)を用いた他は、実施例1と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 12
A resin composition and a molded product were produced in the same manner as in Example 1 except that (G) was used instead of (B1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例13
(C1)の代わりに(D)を用いた他は、比較例12と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 13
A resin composition and a molded product were produced in the same manner as in Comparative Example 12 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例12の樹脂組成物は比較例13に比べて、ノッチ付Izod強度が18%高くなっているものの、その靭性は不十分であった。   Although the resin composition of Comparative Example 12 had a notched Izod strength of 18% higher than that of Comparative Example 13, its toughness was insufficient.

比較例14
(B1)の代わりに(H)を用いた他は、実施例1と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 14
A resin composition and a molded product were produced in the same manner as in Example 1 except that (H) was used instead of (B1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例15
(C1)の代わりに(D)を用いた他は、比較例14と同様にして樹脂組成物及び成形品を製造し、実施例1と同様にして評価を行った。結果を表1に示す。
Comparative Example 15
A resin composition and a molded product were produced in the same manner as in Comparative Example 14 except that (D) was used instead of (C1), and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

比較例14の樹脂組成物は比較例15に比べて、ノッチ付Izod強度が12%高くなっているものの、その靭性は不十分であった。また、比較例14及び15の樹脂組成物からなる成形品は、実用に耐えうる伝熱性を有していなかった。   Although the resin composition of Comparative Example 14 had a notched Izod strength of 12% higher than that of Comparative Example 15, its toughness was insufficient. Moreover, the molded article which consists of a resin composition of the comparative examples 14 and 15 did not have heat conductivity which can endure practical use.

Figure 2008260830
Figure 2008260830

本発明の伝熱性樹脂組成物は、高い伝熱性を有し、絶縁性及び靭性にも優れるため、高放熱性が求められる各種電子部品の材料として好適に用いることができる。   Since the heat conductive resin composition of the present invention has high heat conductivity and is excellent in insulation and toughness, it can be suitably used as a material for various electronic components that require high heat dissipation.

本発明で用いるガラス繊維の扁平率を示す図である。It is a figure which shows the flatness of the glass fiber used by this invention.

Claims (5)

以下の成分(A)〜(C)を含む伝熱性樹脂組成物。
(A)ポリアリーレンサルファイド:15〜45重量%
(B)タルク:15〜55重量%
(C)扁平形状の断面を有するガラス繊維:15〜60重量%
(前記各成分の配合量は、成分(A)〜(C)の合計量に対する重量分率である)
The heat conductive resin composition containing the following components (A)-(C).
(A) Polyarylene sulfide: 15 to 45% by weight
(B) Talc: 15-55 wt%
(C) Glass fiber having a flat cross section: 15 to 60% by weight
(The amount of each component is a weight fraction with respect to the total amount of components (A) to (C))
前記成分(A)〜(C)からなる請求項1に記載の伝熱性樹脂組成物。   The heat-transfer resin composition according to claim 1, comprising the components (A) to (C). 前記ガラス繊維の扁平率が2〜20である請求項1又は2に記載の伝熱性樹脂組成物。   The heat transfer resin composition according to claim 1 or 2, wherein the flatness of the glass fiber is 2 to 20. 請求項1〜3のいずれかに記載の伝熱性樹脂組成物からなる伝熱性樹脂成形品。   The heat conductive resin molded article which consists of a heat conductive resin composition in any one of Claims 1-3. 請求項4に記載の伝熱性樹脂成形品からなる電子部品。   An electronic component comprising the thermally conductive resin molded product according to claim 4.
JP2007103811A 2007-04-11 2007-04-11 Heat-conductive resin composition Pending JP2008260830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103811A JP2008260830A (en) 2007-04-11 2007-04-11 Heat-conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103811A JP2008260830A (en) 2007-04-11 2007-04-11 Heat-conductive resin composition

Publications (1)

Publication Number Publication Date
JP2008260830A true JP2008260830A (en) 2008-10-30

Family

ID=39983554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103811A Pending JP2008260830A (en) 2007-04-11 2007-04-11 Heat-conductive resin composition

Country Status (1)

Country Link
JP (1) JP2008260830A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043229A (en) * 2008-08-18 2010-02-25 Idemitsu Kosan Co Ltd Thermally conductive resin composition and resin molding of the composition
JP2010285581A (en) * 2009-06-15 2010-12-24 Toyota Motor Corp Insulating resin composition
JP2013075996A (en) * 2011-09-30 2013-04-25 Dic Corp High heat radiation polyarylene sulfide resin composition and molded product
WO2013191207A1 (en) * 2012-06-21 2013-12-27 Dic株式会社 Highly heat dissipating polyarylene sulfide resin composition and molded body
JP2014145006A (en) * 2013-01-28 2014-08-14 Tosoh Corp High-strength polyarylenesulfide-based composition
CN104275751A (en) * 2013-07-12 2015-01-14 株式会社捷太格特 Method of manufacturing electrical insulating resin material and rolling bearing
WO2015150140A1 (en) * 2014-04-01 2015-10-08 Dsm Ip Assets B.V. Thermoconductive composition
US10450461B2 (en) 2015-12-11 2019-10-22 Ticona Llc Crosslinkable polyarylene sulfide composition
US10590273B2 (en) 2015-12-11 2020-03-17 Ticona Llc Polyarylene sulfide composition
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
CN113423775A (en) * 2019-02-27 2021-09-21 索尔维特殊聚合物美国有限责任公司 Poly (arylene sulfide) compositions having high dielectric properties
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721844A (en) * 1980-07-16 1982-02-04 Shin Etsu Chem Co Ltd Resin composition for sealing electronic parts
JPS59131653A (en) * 1982-10-15 1984-07-28 フイリツプス・ペトロリユ−ム・コンパニ− Composition containing poly(arylene sulfide) and talc
JPH0264158A (en) * 1988-08-30 1990-03-05 Ube Ind Ltd Polyarylene sulfide resin composition
JPH0710591A (en) * 1993-06-24 1995-01-13 Nitto Boseki Co Ltd Powder of glass fiber having flat cross-sectional shape and production thereof
JPH0718186A (en) * 1993-06-29 1995-01-20 Nitto Boseki Co Ltd Thermoplastic resin composition reinforced with powder of glass fiber having flat cross-sectional shape
JPH07126033A (en) * 1993-09-10 1995-05-16 Nitto Boseki Co Ltd Orifice plate and glass fiber of noncircular cross section
JPH07133132A (en) * 1993-09-16 1995-05-23 Nitto Boseki Co Ltd Glass fiber having noncircular section and its production
JP2001152003A (en) * 1999-11-24 2001-06-05 Hitachi Chem Co Ltd Resin composition for electric insulation
JP2003123539A (en) * 2001-10-12 2003-04-25 Hitachi Chem Co Ltd High laser machinable insulating resin material, high laser machinable prepreg and high laser machinable metal-lined laminate
JP2004231697A (en) * 2003-01-28 2004-08-19 Asahi Kasei Chemicals Corp Resin chassis for projector
JP2005161693A (en) * 2003-12-03 2005-06-23 Polyplastics Co Insert molded product
JP2006045390A (en) * 2004-08-05 2006-02-16 Nitto Boseki Co Ltd Flat glass fiber-containing pellet, molded object of flat glass fiber-containing thermoplastic resin and manufacturing method thereof
JP2006328291A (en) * 2005-05-30 2006-12-07 Polyplastics Co Polyarylene sulfide resin composition and injection molding

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721844A (en) * 1980-07-16 1982-02-04 Shin Etsu Chem Co Ltd Resin composition for sealing electronic parts
JPS59131653A (en) * 1982-10-15 1984-07-28 フイリツプス・ペトロリユ−ム・コンパニ− Composition containing poly(arylene sulfide) and talc
JPH0264158A (en) * 1988-08-30 1990-03-05 Ube Ind Ltd Polyarylene sulfide resin composition
JPH0710591A (en) * 1993-06-24 1995-01-13 Nitto Boseki Co Ltd Powder of glass fiber having flat cross-sectional shape and production thereof
JPH0718186A (en) * 1993-06-29 1995-01-20 Nitto Boseki Co Ltd Thermoplastic resin composition reinforced with powder of glass fiber having flat cross-sectional shape
JPH07126033A (en) * 1993-09-10 1995-05-16 Nitto Boseki Co Ltd Orifice plate and glass fiber of noncircular cross section
JPH07133132A (en) * 1993-09-16 1995-05-23 Nitto Boseki Co Ltd Glass fiber having noncircular section and its production
JP2001152003A (en) * 1999-11-24 2001-06-05 Hitachi Chem Co Ltd Resin composition for electric insulation
JP2003123539A (en) * 2001-10-12 2003-04-25 Hitachi Chem Co Ltd High laser machinable insulating resin material, high laser machinable prepreg and high laser machinable metal-lined laminate
JP2004231697A (en) * 2003-01-28 2004-08-19 Asahi Kasei Chemicals Corp Resin chassis for projector
JP2005161693A (en) * 2003-12-03 2005-06-23 Polyplastics Co Insert molded product
JP2006045390A (en) * 2004-08-05 2006-02-16 Nitto Boseki Co Ltd Flat glass fiber-containing pellet, molded object of flat glass fiber-containing thermoplastic resin and manufacturing method thereof
JP2006328291A (en) * 2005-05-30 2006-12-07 Polyplastics Co Polyarylene sulfide resin composition and injection molding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043229A (en) * 2008-08-18 2010-02-25 Idemitsu Kosan Co Ltd Thermally conductive resin composition and resin molding of the composition
JP2010285581A (en) * 2009-06-15 2010-12-24 Toyota Motor Corp Insulating resin composition
JP2013075996A (en) * 2011-09-30 2013-04-25 Dic Corp High heat radiation polyarylene sulfide resin composition and molded product
JPWO2013191207A1 (en) * 2012-06-21 2016-05-26 Dic株式会社 High heat dissipation polyarylene sulfide resin composition and molded article
WO2013191207A1 (en) * 2012-06-21 2013-12-27 Dic株式会社 Highly heat dissipating polyarylene sulfide resin composition and molded body
JP2014145006A (en) * 2013-01-28 2014-08-14 Tosoh Corp High-strength polyarylenesulfide-based composition
EP2823947A1 (en) * 2013-07-12 2015-01-14 JTEKT Corporation Method of manufacturing electrical insulating resin material and rolling bearing
CN104275751A (en) * 2013-07-12 2015-01-14 株式会社捷太格特 Method of manufacturing electrical insulating resin material and rolling bearing
WO2015150140A1 (en) * 2014-04-01 2015-10-08 Dsm Ip Assets B.V. Thermoconductive composition
US10450461B2 (en) 2015-12-11 2019-10-22 Ticona Llc Crosslinkable polyarylene sulfide composition
US10590273B2 (en) 2015-12-11 2020-03-17 Ticona Llc Polyarylene sulfide composition
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure
US11919273B2 (en) 2016-03-24 2024-03-05 Ticona Llc Composite structure
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
CN113423775A (en) * 2019-02-27 2021-09-21 索尔维特殊聚合物美国有限责任公司 Poly (arylene sulfide) compositions having high dielectric properties
JP2022521549A (en) * 2019-02-27 2022-04-08 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Poly (allylene sulfide) composition with high dielectric performance

Similar Documents

Publication Publication Date Title
JP2008260830A (en) Heat-conductive resin composition
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
US8487042B2 (en) Polyarylene sulfide resin composition and a molded article formed therefrom
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP5016548B2 (en) Thermoplastic resin composition for light emitting device, molded product comprising the same, and light emitting device using the same
JP2010053350A (en) Polyarylene sulfide resin composition, tablet of polyarylene sulfide resin composition and molded article of the same
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
TWI540180B (en) Polyphenylene sulfide resin composition with improved thermal conductivity and surface appearance and articles thereof
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2006282783A (en) Highly heat-conductive resin composition
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JP2006342192A (en) Molding resin having electrical insulating property and excellent thermal conductivity
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
JP5962967B2 (en) Thermoplastic resin composition and molded article thereof
JP2009185150A (en) Heat conductive resin composition and its resin molded article
JP7122491B2 (en) Method for suppressing burrs in polyarylene sulfide resin composition
JPH04198266A (en) Polyphenylene sulfide resin composition
JP2009185151A (en) Heat conductive resin composition
JP2009185152A (en) Heat conductive resin composition
KR102644628B1 (en) Polyarylene sulfide resin composition
JP2878921B2 (en) Polyarylene sulfide resin composition
JP2007106854A (en) Thermally conductive resin composition
WO2013161844A1 (en) Resin composition having high thermal conductivity
JPH11148007A (en) Thermoplastic resin composition
KR101688278B1 (en) Thermal conductivity resin composition comprising noncarbon based filler, method for preparing extrusion molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313