JP2010285581A - Insulating resin composition - Google Patents

Insulating resin composition Download PDF

Info

Publication number
JP2010285581A
JP2010285581A JP2009142529A JP2009142529A JP2010285581A JP 2010285581 A JP2010285581 A JP 2010285581A JP 2009142529 A JP2009142529 A JP 2009142529A JP 2009142529 A JP2009142529 A JP 2009142529A JP 2010285581 A JP2010285581 A JP 2010285581A
Authority
JP
Japan
Prior art keywords
talc
vol
resin composition
resin
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142529A
Other languages
Japanese (ja)
Inventor
Takahiro Saito
孝博 濟藤
Toru Kimishima
徹 君島
Kanae Kawato
香苗子 川東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009142529A priority Critical patent/JP2010285581A/en
Publication of JP2010285581A publication Critical patent/JP2010285581A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive polyphenylene sulfide resin composition having high heat conductivity while maintaining good physical properties such as insulating properties, fluidity, and low linear expansion possessed by the polyphenylene sulfide resin. <P>SOLUTION: The resin composition includes the polyphenylene sulfide resin; talc which is a platy particle having a 50% particle diameter (D<SB>50</SB>) based on the volume distribution of ≥10 μm; and glass fibers so that, based on the sum of volumes of each component, the volume of the talc is 5-45 vol.%; the volume of the glass fibers is 0-30 vol.%; and the sum of the volumes of the talc and glass fibers is 30-55 vol.%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、板状タルク粒子をフィラーとして配合することにより高い熱伝導性が付与された、ポリフェニレンスルフィド樹脂組成物及び該樹脂組成物から形成される樹脂成形体に関する。   The present invention relates to a polyphenylene sulfide resin composition imparted with high thermal conductivity by blending plate-like talc particles as a filler and a resin molded body formed from the resin composition.

高分子化合物は成形性に優れた絶縁材料であることから、電子回路基板用基材、モータ絶縁材、絶縁接着剤等の様々な電子部品に用いられる。特に、ポリフェニレンスルフィドは、結晶性耐熱性高分子であり、強度、剛性が高く、難燃性、耐油性、寸法安定性に優れていることから電子部品に広く用いられる。   Since the polymer compound is an insulating material excellent in moldability, it is used for various electronic parts such as a base for an electronic circuit board, a motor insulating material, and an insulating adhesive. In particular, polyphenylene sulfide is a crystalline heat-resistant polymer, has high strength and rigidity, is excellent in flame retardancy, oil resistance, and dimensional stability, and is widely used in electronic parts.

近年、電子部品の高密度化・高出力化に伴い、電子部品からの発熱量が増大している。このため電子部品の熱を放出させるための対策が強く求められている。
従来から、ポリフェニレンスルフィド等の高温耐熱性樹脂に高放熱フィラー(充填材)を混合して熱導電性を付与した樹脂材料が開発されている。
In recent years, with the increase in density and output of electronic components, the amount of heat generated from the electronic components has increased. For this reason, measures for releasing heat of electronic components are strongly demanded.
2. Description of the Related Art Conventionally, resin materials have been developed in which a high heat dissipation filler (filler) is mixed with a high-temperature heat-resistant resin such as polyphenylene sulfide to impart thermal conductivity.

高放熱フィラーとしては、炭素繊維、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、マグネシア等が知られている。このような高放熱フィラーを配合した樹脂材料は高い放熱性を有するものの、絶縁性がない、材料が高価である、耐熱性が低い、硬いため成形機が劣化しやすい等の問題があった。そのため、高放熱フィラーを配合した樹脂材料は材料を使用する環境や条件に限度があった。高放熱フィラーを配合した樹脂材料の例としては特許文献1及び2が挙げられる。   Carbon fiber, silica, alumina, boron nitride, aluminum nitride, magnesia and the like are known as the high heat dissipation filler. Although the resin material containing such a high heat dissipation filler has high heat dissipation, there are problems such as lack of insulation, expensive material, low heat resistance, and hardness, which easily deteriorates the molding machine. Therefore, the resin material containing the high heat dissipation filler has a limit in the environment and conditions in which the material is used. Patent documents 1 and 2 are mentioned as an example of a resin material which blended a high heat dissipation filler.

特許文献1には、耐熱性熱可塑性樹脂組成物に熱伝導性を付与すること等を目的として、酸化マグネシウム、酸化アルミニウム、酸化ベリリウム等の塩基性酸化物や磁性体粉末を充填材として付与することが記載されている。しかしながら、この耐熱性熱可塑性樹脂組成物は導電性を有するため、絶縁材料としての利用には適していない。   In Patent Document 1, a basic oxide such as magnesium oxide, aluminum oxide, beryllium oxide, or magnetic powder is provided as a filler for the purpose of imparting thermal conductivity to a heat-resistant thermoplastic resin composition. It is described. However, since this heat resistant thermoplastic resin composition has conductivity, it is not suitable for use as an insulating material.

特許文献2には、ポリアリーレンサルファイド樹脂組成物に充填材として窒化ホウ素を添加することにより熱伝導性を付与することが開示されている。しかしながら、窒化ホウ素は高価であるという問題があった。   Patent Document 2 discloses that thermal conductivity is imparted by adding boron nitride as a filler to a polyarylene sulfide resin composition. However, there is a problem that boron nitride is expensive.

一方、炭酸マグネシウム等の安価なフィラーを配合した既存材料では、高い熱伝導性を実現することは困難であった。例えば、特許文献3には、ポリフェニレンスルフィド樹脂100重量部に対し、炭酸マグネシウム50〜300重量部と、ガラス繊維10〜100重量部を配合したポリフェニレンスルフィド樹脂組成物が、絶縁性等の物性と熱伝導性を両立させた材料として開示されている。しかしながら、炭酸マグネシウムは熱伝導性が低くいため、当該樹脂組成物の熱伝導性は満足できるものではなかった。   On the other hand, it has been difficult to achieve high thermal conductivity with existing materials blended with inexpensive fillers such as magnesium carbonate. For example, Patent Document 3 discloses a polyphenylene sulfide resin composition in which 50 to 300 parts by weight of magnesium carbonate and 10 to 100 parts by weight of glass fiber are blended with 100 parts by weight of polyphenylene sulfide resin. It is disclosed as a material having both conductivity. However, since magnesium carbonate has low thermal conductivity, the thermal conductivity of the resin composition was not satisfactory.

特公平4−9185号公報Japanese Patent Publication No. 4-9185 特開2008−248048号公報JP 2008-248048 A 特開2007−246883号公報JP 2007-246883 A

上記のとおり、絶縁性、高流動性、低線膨張等の物性を有し、且つ安価な高熱伝導性の樹脂材料として満足のできるものは従来提供されていない。
そこで本発明は、ポリフェニレンスルフィド樹脂が有する絶縁性、流動性、低線膨張等の良好な物性を維持しつつ、熱伝導性が高く、安価なポリフェニレンスルフィド樹脂組成物を提供することを解決すべき課題とする。
As described above, no satisfactory high thermal conductivity resin material having physical properties such as insulation, high fluidity, and low linear expansion has been conventionally provided.
Therefore, the present invention should solve the problem of providing an inexpensive polyphenylene sulfide resin composition having high thermal conductivity while maintaining good physical properties such as insulation, fluidity, and low linear expansion of the polyphenylene sulfide resin. Let it be an issue.

本発明者は、驚くべきことに、ポリフェニレンスルフィド樹脂と、体積分布基準の50%粒径(以下、「D50」と表示する)が10μm以上の板状粒子であるタルクと、ガラス繊維とを、前記ポリフェニレンスルフィド樹脂、タルク及びガラス繊維の体積の和に対して、前記タルクの体積が5〜45vol%であり、前記ガラス繊維の体積が0〜30vol%であり、前記タルクと前記ガラス繊維との体積の和が30〜55vol%となるように含有する樹脂組成物が、高い熱伝導性を有し、絶縁性と流動性に優れ、線膨張率が低いことを見出した。
本発明はまた、当該樹脂組成物を成形して得られる樹脂成形体に関する。
Surprisingly, the inventor of the present invention includes a polyphenylene sulfide resin, a talc that is a plate-like particle having a 50% particle size (hereinafter referred to as “D 50 ”) based on volume distribution of 10 μm or more, and glass fiber. The volume of the talc is 5 to 45 vol%, the volume of the glass fiber is 0 to 30 vol% with respect to the sum of the volumes of the polyphenylene sulfide resin, talc and glass fiber, and the talc and the glass fiber It has been found that the resin composition contained so that the sum of the volumes of 30 to 55 vol% has high thermal conductivity, excellent insulation and fluidity, and a low coefficient of linear expansion.
The present invention also relates to a resin molded body obtained by molding the resin composition.

本発明の樹脂組成物及び樹脂成形体は、高い熱伝導性を有し、絶縁性と流動性に優れ、線膨張率が低い。本発明の樹脂組成物及び樹脂成形体は、高放熱フィラーを用いた従来の熱伝導性樹脂材料と比較して、安価に製造することが可能である。   The resin composition and resin molded body of the present invention have high thermal conductivity, excellent insulation and fluidity, and a low linear expansion coefficient. The resin composition and the resin molded body of the present invention can be manufactured at a lower cost than a conventional heat conductive resin material using a high heat dissipation filler.

図1は、フィーダー合計充填率を横軸に、熱伝導率を縦軸にし、表2に示す各データをプロットしたグラフである。FIG. 1 is a graph in which each data shown in Table 2 is plotted with the feeder total filling rate on the horizontal axis and the thermal conductivity on the vertical axis. 図2は、フィーダー合計充填率を横軸に、線膨張率を縦軸にし、表2に示す各データをプロットしたグラフである。FIG. 2 is a graph in which the data shown in Table 2 are plotted with the feeder total filling rate on the horizontal axis and the linear expansion rate on the vertical axis. 図3は、フィーダー合計充填率を横軸に、0.3mmスパイラル長を縦軸にし、表2に示す各データをプロットしたグラフである。FIG. 3 is a graph in which each data shown in Table 2 is plotted with the feeder total filling rate on the horizontal axis and the 0.3 mm spiral length on the vertical axis.

1.材料
ポリフェニレンスルフィド樹脂(以下「PPS樹脂」と呼ぶことがある)は

Figure 2010285581
で表される繰り返し単位を主成分として(例えば70モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上)含有する熱可塑性の耐熱高分子化合物である。PPS樹脂の分子量は特に限定されず、種々の分子量のものを使用することができる。また、高分子鎖末端に種々の修飾基が導入されたPPS樹脂も使用することができる。PPS樹脂としては電子部品の用途において一般に使用されているものであれば特に限定なく使用することができる。 1. The material polyphenylene sulfide resin (hereinafter sometimes referred to as “PPS resin”) is
Figure 2010285581
Is a thermoplastic heat-resistant polymer compound containing as a main component (for example, 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more). The molecular weight of the PPS resin is not particularly limited, and various molecular weights can be used. Also, PPS resins having various modifying groups introduced at the ends of the polymer chain can be used. Any PPS resin can be used without particular limitation as long as it is generally used in applications of electronic components.

タルクは板状粒子の形状を有する天然鉱物である。板状タルク粒子のD50が10μm以上である場合に樹脂組成物を成形してなる樹脂成形体の熱伝導率が高まる。また、D50が10μm以上の板状タルク粒子は、より小粒径の粒子よりも安価である。板状タルク粒子のD50の上限は特に限定されないが、典型的には30μm以下である。このような板状タルク粒子を充填材として含む本発明の樹脂組成物を成形した樹脂成形体の内部では、板状タルク粒子が連なって熱伝導路を形成し、効率的に熱伝導を行うことが可能となると推定される。本発明において、板状タルク粒子のD50は、レーザー回折散乱式粒度分布測定装置(例えばマイクロトラック9220FRA(Leeds & Northrup社製))により測定した体積分布基準の50%粒径を指す。 Talc is a natural mineral having a plate-like particle shape. Platy talc D 50 of the particles increases the thermal conductivity of the formed by molding a resin composition molded resin when it is 10μm or more. Further, D 50 is 10μm or more platy talc particles is less expensive than a particle of a small particle size. The upper limit of D 50 of the plate-like talc particles is not particularly limited, but is typically 30 μm or less. Inside the resin molded body obtained by molding the resin composition of the present invention containing such plate-like talc particles as a filler, the plate-like talc particles are connected to form a heat conduction path to efficiently conduct heat. Is estimated to be possible. In the present invention, D 50 of the plate-like talc particles refers to a 50% particle size based on a volume distribution measured by a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrack 9220FRA (Leeds & Northrup)).

ガラス繊維は、一般的にPPS樹脂に配合されるものであれば特に限定されず使用することができる。ガラス繊維は通常、5〜15μm径の横断面を有し、0.1〜30mm程度の長さを有する。横断面の形状は特に限定されない。   The glass fiber is not particularly limited and can be used as long as it is generally blended with the PPS resin. The glass fiber usually has a cross section with a diameter of 5 to 15 μm and a length of about 0.1 to 30 mm. The shape of the cross section is not particularly limited.

本発明の樹脂組成物には他の成分が更に配合されていてもよい。例えば本発明の樹脂組成物に、本発明の効果を損なわない範囲において、各種表面改質剤、カップリング剤、可塑剤、離型剤、顔料などの通常の添加剤を配合してもよい。   The resin composition of the present invention may further contain other components. For example, usual additives such as various surface modifiers, coupling agents, plasticizers, mold release agents, and pigments may be blended in the resin composition of the present invention within a range not impairing the effects of the present invention.

2.組成
本発明の樹脂組成物は、前記のポリフェニレンスルフィド樹脂と、タルクと、ガラス繊維とを、これらの成分の体積の和に対して、前記タルクの体積が5〜45vol%であり、前記ガラス繊維の体積が0〜30vol%であり、前記タルクと前記ガラス繊維との体積の和が30〜55vol%となるように含有することを特徴とする。以下、ポリフェニレンスルフィド樹脂とタルクとガラス繊維との体積の和に対する、タルク及び/又はガラス繊維の体積の割合を「充填率」という。
2. Composition The resin composition of the present invention comprises the polyphenylene sulfide resin, talc, and glass fiber, wherein the volume of the talc is 5 to 45 vol% with respect to the sum of the volumes of these components, and the glass fiber The volume is 0-30 vol%, and the total volume of the talc and the glass fiber is 30-55 vol%. Hereinafter, the ratio of the volume of talc and / or glass fiber to the sum of the volumes of polyphenylene sulfide resin, talc and glass fiber is referred to as “filling rate”.

タルクの充填率が5〜45vol%であり、ガラス繊維の充填率が0〜30vol%である場合、樹脂組成物の高い流動性が維持される。ガラス繊維を全く含まない、即ちガラス繊維の充填率が0vol%である樹脂組成物も本発明に包含される。この場合、タルクの充填率が30〜45vol%であればよい。   When the filling rate of talc is 5-45 vol% and the filling rate of glass fiber is 0-30 vol%, the high fluidity of the resin composition is maintained. A resin composition containing no glass fiber, that is, a glass fiber filling rate of 0 vol% is also included in the present invention. In this case, the filling rate of talc may be 30 to 45 vol%.

タルクとガラス繊維の充填率の合計が30vol%未満であると、樹脂組成物を成形して得られる成形体の熱伝導率が0.6W/mK未満となる。一方、タルクとガラス繊維の充填率の合計が55vol%を超えると樹脂組成物の流動性が悪化する。タルクとガラス繊維の充填率の合計を30〜55vol%である場合には、樹脂組成物は高い流動性を有し、かつ形成された成形体の熱伝導率が高い(0.6W/mKを超える)ため好ましい。   When the total filling rate of talc and glass fiber is less than 30 vol%, the thermal conductivity of the molded product obtained by molding the resin composition is less than 0.6 W / mK. On the other hand, if the total filling rate of talc and glass fiber exceeds 55 vol%, the fluidity of the resin composition is deteriorated. When the total filling rate of talc and glass fiber is 30 to 55 vol%, the resin composition has high fluidity, and the formed molded article has high thermal conductivity (0.6 W / mK). This is preferable.

なお、通常のPPS樹脂成形体(ガラス繊維を約30vol%、或いは、ガラス繊維と炭酸カルシウムとを合計で約60vol%含有する)の熱伝導率は0.25〜0.4W/mK程度である。   In addition, the thermal conductivity of a normal PPS resin molded body (containing about 30 vol% of glass fibers or about 60 vol% of glass fibers and calcium carbonate in total) is about 0.25 to 0.4 W / mK. .

充填率の値は、各成分(ポリフェニレンスルフィド樹脂、タルク、ガラス繊維)の重量(単位の例:g)を、各成分の真密度(空隙を控除した固体としての密度)(単位の例:g/cm)で割って算出される真の体積(単位の例:cm)を基準に算出する。 The value of the filling rate is the weight of each component (polyphenylene sulfide resin, talc, glass fiber) (example of unit: g), and the true density of each component (density as a solid excluding voids) (example of unit: g). / Cm 3 ) to calculate based on the true volume (unit example: cm 3 ) calculated by dividing by.

3.製造方法
本発明の樹脂組成物は、一軸押出機、二軸押出機、バンバリーミキサー、熱ロールなどの混練機を用いて製造することができる。各成分の混練機への添加、混合は同時に行なってもよいし、分割して行なってもよい。混練処理は、ポリフェニレンスルフィド樹脂の融点を超える温度において行うことが通常である。
本発明の樹脂成形体は、上記樹脂組成物を射出成形、押出成形、射出圧縮成形等の方法により成形することにより形成することができる。
3. Production Method The resin composition of the present invention can be produced using a kneader such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, or a hot roll. Addition and mixing of each component to the kneader may be performed simultaneously or in divided portions. The kneading treatment is usually performed at a temperature exceeding the melting point of the polyphenylene sulfide resin.
The resin molded body of the present invention can be formed by molding the resin composition by a method such as injection molding, extrusion molding, injection compression molding or the like.

4.用途
本発明の樹脂組成物により形成される樹脂成形体は、熱伝導性が求められる電子部品等の材料として好適に利用することができる。
4). Application The resin molded body formed from the resin composition of the present invention can be suitably used as a material for electronic parts and the like that are required to have thermal conductivity.

[実施例]
本発明者らは4種類の天然鉱物フィラーと、ガラス繊維を、熱可塑性のポリフェニレンスルフィド(PPS)樹脂に充填し、樹脂成形体を作製した。天然鉱物フィラーの種類・粒径(D50)、及び天然鉱物フィラーとガラス繊維の充填率が異なる試料(実施例1〜6及び比較例1〜23)を作製し、熱伝導率、線膨張率、流動性(0.3mmスパイラル長)を測定した。
[Example]
The present inventors filled a thermoplastic polyphenylene sulfide (PPS) resin with four kinds of natural mineral fillers and glass fibers to produce a resin molded body. Samples (Examples 1 to 6 and Comparative Examples 1 to 23) having different types and particle sizes (D 50 ) of natural mineral fillers and filling rates of natural mineral fillers and glass fibers were prepared, and thermal conductivity and linear expansion coefficient were obtained. The fluidity (0.3 mm spiral length) was measured.

1.材料
本実施例において用いた材料の詳細を表1にまとめた。
1. Materials Details of the materials used in this example are summarized in Table 1.

Figure 2010285581
Figure 2010285581

2.樹脂成形体作製手順
表2に示す配合割合の原料成分を、同方向回転二軸押出機により混練し、得られたコンパウンドを成形してペレット状物を得た。ペレット状物を射出成形してダンベル形状の樹脂成形体試験片を作成した。
2. Resin molded body preparation procedure The raw material components in the blending ratio shown in Table 2 were kneaded by a co-rotating twin screw extruder, and the resulting compound was molded to obtain a pellet. A pellet-shaped material was injection-molded to prepare a dumbbell-shaped resin molded body test piece.

ペレット状物を得るまでの条件は次の通り:
押出機:同方向回転二軸押出機
設定速度:310℃
スクリュー回転数:100rpm
フィード量:15kg/h
ペレタイザー速度:26m/min
The conditions for obtaining pellets are as follows:
Extruder: Co-rotating twin screw extruder Setting speed: 310 ° C
Screw rotation speed: 100rpm
Feed rate: 15kg / h
Pelletizer speed: 26m / min

3.測定方法
3.1.熱伝導率の測定
熱伝導率はJIS R1611に準拠して測定した。なおサンプル厚さは1mmとした。
3. Measuring method
3.1. Measurement of thermal conductivity The thermal conductivity was measured in accordance with JIS R1611. The sample thickness was 1 mm.

3.2.線膨張率の測定
線膨張率はISO 11359−2に準拠して測定した。なお測定温度は−40〜160℃とした。
3.2. Measurement of linear expansion coefficient The linear expansion coefficient was measured in accordance with ISO 11359-2. The measurement temperature was −40 to 160 ° C.

3.3.流動性(0.3mmスパイラル長)の測定
幅10mm、厚さ0.3mm、長さ600mmのスパイラル成形型を用い、射出成形にて成形し、得られた成形品の長さを測定した。(流動性の良い材料ほど成形品の長さが長い。)
なお成形時の樹脂温度は310℃、型温度は150℃、射出速度は200mm/sとした。
3.3. Measurement of fluidity (0.3 mm spiral length) Using a spiral mold having a width of 10 mm, a thickness of 0.3 mm, and a length of 600 mm, molding was performed by injection molding, and the length of the obtained molded product was measured. (The longer the material, the longer the length of the molded product.)
The resin temperature during molding was 310 ° C., the mold temperature was 150 ° C., and the injection speed was 200 mm / s.

4.結果
結果を表2に示す。熱伝導率が0.6W/mK以上である場合に、熱伝導率が良好であると評価した。スパイラル長が30mm以上である場合に、流動性が良好であると評価した。線膨張率については閾値を設定しなかったが、値が小さいほど優れた材料であるといえる。
4). The results are shown in Table 2. When the thermal conductivity was 0.6 W / mK or more, it was evaluated that the thermal conductivity was good. When the spiral length was 30 mm or more, it was evaluated that the fluidity was good. Although no threshold was set for the linear expansion coefficient, it can be said that the smaller the value, the better the material.

Figure 2010285581
Figure 2010285581

図1には、フィーダー合計充填率を横軸に、熱伝導率を縦軸にし、表2に示す各データをプロットした。
図2には、フィーダー合計充填率を横軸に、線膨張率を縦軸にし、表2に示す各データをプロットした。
図3には、フィーダー合計充填率を横軸に、0.3mmスパイラル長を縦軸にし、表2に示す各データをプロットした。
FIG. 1 plots the data shown in Table 2 with the feeder total filling factor on the horizontal axis and the thermal conductivity on the vertical axis.
In FIG. 2, each data shown in Table 2 is plotted with the feeder total filling rate on the horizontal axis and the linear expansion rate on the vertical axis.
In FIG. 3, each data shown in Table 2 is plotted with the feeder total filling rate on the horizontal axis and the 0.3 mm spiral length on the vertical axis.

5.考察
天然鉱物フィラーとして、マイカ、カオリン、炭酸カルシウムを使用した樹脂成形体では熱伝導率が0.6W/mK未満であった。また、D50が10μm未満であるタルクを使用した樹脂成形体の多くが、熱伝導率が0.6W/mK未満であった。一方、D50が10μm以上であるタルクを使用した樹脂成形体では、D50が大きいほど熱伝導率が高まる傾向がある。また、D50が10μm未満のタルクは、D50が10μm以上のタルクと比較して高価である。したがって、高い熱伝導率を安価に実現するためには、天然鉱物フィラーとしてはD50が10μm以上の板状タルクを使用することが好ましいといえる。
5. Discussion As a natural mineral filler, a resin molded body using mica, kaolin, or calcium carbonate had a thermal conductivity of less than 0.6 W / mK. Moreover, many of the resin moldings using talc having a D 50 of less than 10 μm had a thermal conductivity of less than 0.6 W / mK. On the other hand, in the resin molded body using talc having D 50 of 10 μm or more, the thermal conductivity tends to increase as D 50 increases. Further, talc is less than D 50 of 10μm is more expensive than D 50 of the 10μm or talc. Therefore, in order to realize high thermal conductivity at low cost, it can be said that it is preferable to use plate-like talc having a D 50 of 10 μm or more as the natural mineral filler.

実施例1〜6において、20〜40 vol%の範囲内でタルクの充填率が増すとスパイラル長(流動性)が低下する傾向が認められ、50 vol%のタルクを用いる比較例8ではスパイラル長が23mmという低い値を示した。したがって、樹脂組成物の流動性を維持するためには、タルクの充填率は5〜45 vol%であることが好ましいことがわかる。   In Examples 1-6, when the filling rate of talc increases in the range of 20-40 vol%, a tendency to decrease the spiral length (fluidity) is recognized, and in Comparative Example 8 using 50 vol% talc, the spiral length Showed a low value of 23 mm. Therefore, in order to maintain the fluidity | liquidity of a resin composition, it turns out that it is preferable that the filling rate of talc is 5-45 vol%.

ガラス繊維の充填率をそれぞれ10、20、30 vol%とした実施例1、5、6の比較から、ガラス繊維の充填率が高いほど、スパイラル長(流動性)は低下し、ガラス繊維の充填率が30 vol%を超えるとスパイラル長(流動性)が30mm未満となることが示唆される。また、ガラス繊維を0 vol%としても、良好な熱伝導率は維持されると推定される。したがって、ガラス繊維の充填率は0〜30 vol%であることが好ましい。   From the comparison of Examples 1, 5, and 6 in which the glass fiber filling rate was 10, 20, and 30 vol%, respectively, the higher the glass fiber filling rate, the lower the spiral length (fluidity). If the rate exceeds 30 vol%, it is suggested that the spiral length (fluidity) is less than 30 mm. Moreover, it is estimated that a favorable thermal conductivity is maintained even if the glass fiber is 0 vol%. Therefore, it is preferable that the filling rate of glass fiber is 0-30 vol%.

タルクとガラス繊維の充填率の合計(表2における「フィラー合計充填率」)が30 vol%未満である樹脂成形体(比較例1〜5及び9)は熱伝導率が低い。一方、実施例1〜6の配合では、タルクとガラス繊維の充填率の合計が30〜50 vol%の範囲内で値が大きくなるほどスパイラル長(流動性)が低下することがわかる。そしてタルクとガラス繊維の充填率の合計が60 vol%である場合(比較例8)にはスパイラル長が23mmという非常に低い値であった。したがって、熱伝導度の向上と、流動性の維持の観点から、タルクとガラス繊維の充填率の合計は30〜55 vol%であることが好ましい。   Resin molded bodies (Comparative Examples 1 to 5 and 9) in which the total filling rate of talc and glass fibers (“filler total filling rate” in Table 2) is less than 30 vol% have low thermal conductivity. On the other hand, in the formulations of Examples 1 to 6, it can be seen that the spiral length (fluidity) decreases as the value increases within the range of 30 to 50 vol% of the total filling rate of talc and glass fiber. When the total filling rate of talc and glass fiber was 60 vol% (Comparative Example 8), the spiral length was a very low value of 23 mm. Therefore, from the viewpoint of improving thermal conductivity and maintaining fluidity, the total filling rate of talc and glass fiber is preferably 30 to 55 vol%.

以上の通りであるから、タルクと、ガラス繊維と、PPS樹脂との合計体積に対して、D50が10μm以上の板状タルク粒子を5〜45 vol%、ガラス繊維を0〜30vol %、タルクとガラス繊維とを合計で30〜55 vol%含有する、PPS樹脂組成物を用いることにより、高い熱伝導率(0.6W/mK以上)、低い線膨張率、高い流動性(スパイラル法の長さが30mm以上)を備え、なおかつ低コストである絶縁部材を製造することができると結論付けることができる。 Since as described above, talc and the glass fibers, relative to the total volume of the PPS resin, D 50 is more than the plate-like talc particles 10μm 5~45 vol%, 0~30vol% glass fibers, talc And glass fiber in a total content of 30 to 55 vol%, a high thermal conductivity (0.6 W / mK or more), a low linear expansion coefficient, a high fluidity (the length of the spiral method) It can be concluded that an insulating member having a thickness of 30 mm or more can be manufactured at a low cost.

Claims (2)

ポリフェニレンスルフィド樹脂と、体積分布基準の50%粒径(D50)が10μm以上の板状粒子であるタルクと、ガラス繊維とを、前記ポリフェニレンスルフィド樹脂、タルク及びガラス繊維の体積の和に対して、前記タルクの体積が5〜45vol%であり、前記ガラス繊維の体積が0〜30vol%であり、前記タルクと前記ガラス繊維との体積の和が30〜55vol%となるように含有する樹脂組成物。 A polyphenylene sulfide resin, a talc which is a plate-like particle having a 50% particle size (D 50 ) of 10 μm or more based on volume distribution, and a glass fiber are added to the sum of the volumes of the polyphenylene sulfide resin, the talc and the glass fiber. The resin composition is contained so that the volume of the talc is 5 to 45 vol%, the volume of the glass fiber is 0 to 30 vol%, and the sum of the volumes of the talc and the glass fiber is 30 to 55 vol%. object. 請求項1の樹脂組成物を成形して得られる樹脂成形体。   A resin molded product obtained by molding the resin composition of claim 1.
JP2009142529A 2009-06-15 2009-06-15 Insulating resin composition Pending JP2010285581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142529A JP2010285581A (en) 2009-06-15 2009-06-15 Insulating resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142529A JP2010285581A (en) 2009-06-15 2009-06-15 Insulating resin composition

Publications (1)

Publication Number Publication Date
JP2010285581A true JP2010285581A (en) 2010-12-24

Family

ID=43541529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142529A Pending JP2010285581A (en) 2009-06-15 2009-06-15 Insulating resin composition

Country Status (1)

Country Link
JP (1) JP2010285581A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075996A (en) * 2011-09-30 2013-04-25 Dic Corp High heat radiation polyarylene sulfide resin composition and molded product
JP2013153115A (en) * 2012-01-26 2013-08-08 Toyota Motor Corp Metalization film capacitor
EP2823947A1 (en) * 2013-07-12 2015-01-14 JTEKT Corporation Method of manufacturing electrical insulating resin material and rolling bearing
WO2015150140A1 (en) * 2014-04-01 2015-10-08 Dsm Ip Assets B.V. Thermoconductive composition
JP2019189786A (en) * 2018-04-27 2019-10-31 三菱ケミカル株式会社 Methacrylic resin, molded article, member for vehicle and manufacturing method of methacrylic resin

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131653A (en) * 1982-10-15 1984-07-28 フイリツプス・ペトロリユ−ム・コンパニ− Composition containing poly(arylene sulfide) and talc
JPS62151461A (en) * 1985-12-26 1987-07-06 Toyo Soda Mfg Co Ltd Polyphenylele sulfide resin composition
JPH01268756A (en) * 1988-02-05 1989-10-26 Bayer Ag Polyarylene sulfide reduced in radial formation and its utilization in production of molded product
JPH04304264A (en) * 1991-04-02 1992-10-27 Polyplastics Co Polyarylene sulfide resin composition improved in adhesion to epoxy resin and composite epoxy resin molding
JPH10256654A (en) * 1997-02-10 1998-09-25 Motorola Inc Vertical cavity face emission laser for high output operation and fabrication thereof
JPH10310699A (en) * 1997-05-12 1998-11-24 Kureha Chem Ind Co Ltd Production of polyarylene sulfide molding
JP2000086892A (en) * 1998-09-09 2000-03-28 Toray Ind Inc Polyphenylene sulfide resin composition and molded product thereof
JP2003128915A (en) * 2001-10-19 2003-05-08 Toray Ind Inc Polyarylene sulfide resin composition
JP2004182983A (en) * 2002-11-22 2004-07-02 Toray Ind Inc Tablet for heat sink, heat sink obtained from the same, and method for preparation of the same
JP2005169830A (en) * 2003-12-11 2005-06-30 Polyplastics Co Molding method of heat radiating polyarylene sulfide resin composition and heat radiating molded product
JP2007302822A (en) * 2006-05-12 2007-11-22 Toray Ind Inc Polyphenylene sulfide resin composition
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2009263640A (en) * 2008-04-04 2009-11-12 Sumitomo Chemical Co Ltd Thermally conductive resin composition and use of the same
JP2010053350A (en) * 2008-07-30 2010-03-11 Toray Ind Inc Polyarylene sulfide resin composition, tablet of polyarylene sulfide resin composition and molded article of the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131653A (en) * 1982-10-15 1984-07-28 フイリツプス・ペトロリユ−ム・コンパニ− Composition containing poly(arylene sulfide) and talc
JPS62151461A (en) * 1985-12-26 1987-07-06 Toyo Soda Mfg Co Ltd Polyphenylele sulfide resin composition
JPH01268756A (en) * 1988-02-05 1989-10-26 Bayer Ag Polyarylene sulfide reduced in radial formation and its utilization in production of molded product
JPH04304264A (en) * 1991-04-02 1992-10-27 Polyplastics Co Polyarylene sulfide resin composition improved in adhesion to epoxy resin and composite epoxy resin molding
JPH10256654A (en) * 1997-02-10 1998-09-25 Motorola Inc Vertical cavity face emission laser for high output operation and fabrication thereof
JPH10310699A (en) * 1997-05-12 1998-11-24 Kureha Chem Ind Co Ltd Production of polyarylene sulfide molding
JP2000086892A (en) * 1998-09-09 2000-03-28 Toray Ind Inc Polyphenylene sulfide resin composition and molded product thereof
JP2003128915A (en) * 2001-10-19 2003-05-08 Toray Ind Inc Polyarylene sulfide resin composition
JP2004182983A (en) * 2002-11-22 2004-07-02 Toray Ind Inc Tablet for heat sink, heat sink obtained from the same, and method for preparation of the same
JP2005169830A (en) * 2003-12-11 2005-06-30 Polyplastics Co Molding method of heat radiating polyarylene sulfide resin composition and heat radiating molded product
JP2007302822A (en) * 2006-05-12 2007-11-22 Toray Ind Inc Polyphenylene sulfide resin composition
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2009263640A (en) * 2008-04-04 2009-11-12 Sumitomo Chemical Co Ltd Thermally conductive resin composition and use of the same
JP2010053350A (en) * 2008-07-30 2010-03-11 Toray Ind Inc Polyarylene sulfide resin composition, tablet of polyarylene sulfide resin composition and molded article of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075996A (en) * 2011-09-30 2013-04-25 Dic Corp High heat radiation polyarylene sulfide resin composition and molded product
JP2013153115A (en) * 2012-01-26 2013-08-08 Toyota Motor Corp Metalization film capacitor
EP2823947A1 (en) * 2013-07-12 2015-01-14 JTEKT Corporation Method of manufacturing electrical insulating resin material and rolling bearing
WO2015150140A1 (en) * 2014-04-01 2015-10-08 Dsm Ip Assets B.V. Thermoconductive composition
JP2019189786A (en) * 2018-04-27 2019-10-31 三菱ケミカル株式会社 Methacrylic resin, molded article, member for vehicle and manufacturing method of methacrylic resin
JP7326703B2 (en) 2018-04-27 2023-08-16 三菱ケミカル株式会社 Method for producing methacrylic resin

Similar Documents

Publication Publication Date Title
JPWO2011070968A1 (en) Polyarylene sulfide-based resin composition and insert molded product
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2008260830A (en) Heat-conductive resin composition
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2010285581A (en) Insulating resin composition
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
KR100855367B1 (en) Modified polyphenyleneether for ic tray, preparing method of the same, and ic tray having the same
KR101380841B1 (en) Method for preparing the molded parts of heat resistant and thermally conductive polymer compositions and the molded parts of heat resistant and thermally conductive polymer compositions prepared by the same method
JP7122491B2 (en) Method for suppressing burrs in polyarylene sulfide resin composition
JP5200789B2 (en) Resin composition
WO2012086673A1 (en) Thermally conductive resin composition
JP5834725B2 (en) High heat dissipation polyarylene sulfide resin composition and molded article
KR101428985B1 (en) Thermal conductive polyphenylene sulfide resin composition and article using the same
KR102644628B1 (en) Polyarylene sulfide resin composition
WO2013161844A1 (en) Resin composition having high thermal conductivity
JP2007106854A (en) Thermally conductive resin composition
JPS5822056B2 (en) Heat resistant rubber composition
JP4265328B2 (en) Polyarylene sulfide resin composition and molded article using the same
JP6237618B2 (en) Thermally conductive resin composition
JP5286863B2 (en) Phenolic resin molding material
JP2005162918A (en) Polyphenylene sulfide resin composition for precision molding and its molded article
KR20090066598A (en) High thermally conductive polymer composition
JP2008179807A (en) Electroconductive polyamide resin composition
KR101405264B1 (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and warpage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A02