WO2013161844A1 - Resin composition having high thermal conductivity - Google Patents

Resin composition having high thermal conductivity Download PDF

Info

Publication number
WO2013161844A1
WO2013161844A1 PCT/JP2013/061977 JP2013061977W WO2013161844A1 WO 2013161844 A1 WO2013161844 A1 WO 2013161844A1 JP 2013061977 W JP2013061977 W JP 2013061977W WO 2013161844 A1 WO2013161844 A1 WO 2013161844A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
mass
resin composition
parts
treated
Prior art date
Application number
PCT/JP2013/061977
Other languages
French (fr)
Japanese (ja)
Inventor
紫野 堀尾
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2013161844A1 publication Critical patent/WO2013161844A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond

Definitions

  • the present invention relates to a highly thermally conductive resin composition using a polyarylene sulfide resin.
  • Polyarylene sulfide resin represented by polyphenylene sulfide resin (hereinafter sometimes referred to as “PPS resin”) has high heat resistance, mechanical properties, chemical resistance, Since it has dimensional stability and flame retardancy, it is widely used in electrical and electronic equipment component materials, automotive equipment component materials, chemical equipment component materials, and the like.
  • a highly thermally conductive resin composition in which a PAS resin and a thermally conductive filler are blended is known by taking advantage of the heat resistance of such a PAS resin and the thermal conductivity of the thermally conductive filler.
  • thermally conductive filler examples include metal fillers made of metals such as copper, silver, iron, aluminum or alloys thereof, carbon fillers such as carbon and graphite, alumina, magnesium oxide, beryllium oxide, and zinc oxide.
  • a filler made of a metal oxide such as titanium oxide is used.
  • magnesium oxide is useful because it has a relatively high thermal conductivity and appropriate hardness and insulation, and the present applicant consists of surface-treated magnesium oxide, that is, a magnesium phosphate compound.
  • Patent Document 1 A highly thermally conductive resin composition containing magnesium oxide having a coating layer and the like, and a PAS resin has been proposed (Patent Document 1). This high heat conductive resin composition solved the problem of improving moldability and heat and humidity resistance.
  • examples of the resin composition using the PAS resin and the surface-treated magnesium oxide include the resin compositions described in Patent Document 2 and Patent Document 3.
  • Patent Document 2 describes a resin composition containing a PAS resin and magnesium oxide surface-treated with an alkoxysilane compound.
  • the purpose of using the surface-treated magnesium oxide is to impart corrosion resistance.
  • the compounding quantity of the said magnesium oxide is a small quantity, and is not the quantity which can exhibit high thermal conductivity by the resin composition. That is, the resin composition is not a resin composition having high thermal conductivity.
  • Patent Document 3 describes a resin composition (molding material for electrical insulation / heat radiation component) containing a PAS resin and magnesium oxide obtained by surface treatment after baking at 800 ° C. or higher.
  • the purpose of using the surface-treated magnesium oxide is to impart high thermal conductivity and wet heat resistance.
  • the feature of the said surface-treated magnesium oxide is in performing surface treatment after baking at 800 degreeC or more.
  • the surface treatment agent used for the surface treatment include silane coupling agents and titanate coupling agents.
  • the present invention is to provide a highly heat conductive resin composition having excellent thin wall fluidity while maintaining high heat conductivity.
  • the present invention for solving the above problems is as follows. (1) (A) 100 parts by mass of polyarylene sulfide resin; (B) 80 to 600 parts by mass of magnesium oxide surface-treated in advance with a vinylalkoxysilane compound; A highly thermally conductive resin composition comprising:
  • 4 is a graph showing the relationship between the blending amount of magnesium oxide (AC) with respect to 100 parts by mass of PPS resin and 0.5 mmtBF. 4 is a graph showing the relationship between the blending amount of magnesium oxide (F to H) with respect to 100 parts by mass of PPS resin and 0.5 mmtBF. It is a graph which shows the relationship between the compounding quantity of magnesium oxide (D and E) with respect to 100 mass parts of PPS resins, and 0.5 mmtBF.
  • the highly thermally conductive resin composition of the present invention comprises (A) 100 parts by mass of a polyarylene sulfide resin and (B) 80 to 600 parts by mass of magnesium oxide that has been surface-treated with a vinylalkoxysilane compound in advance. It is characterized by that.
  • each component of the highly heat conductive resin composition of this invention is explained in full detail.
  • the polyarylene sulfide resin as the component (A) is a polymer compound mainly composed of — (Ar—S) — (wherein Ar is an arylene group) as a repeating unit, and is generally known in the present invention.
  • PAS resins having the molecular structure shown can be used.
  • arylene group examples include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p′-.
  • a diphenylene ether group, p, p'-diphenylenecarbonyl group, naphthalene group and the like can be mentioned.
  • the PAS resin may be a homopolymer consisting only of the above repeating units, or a copolymer containing the following different types of repeating units may be preferable from the viewpoint of processability and the like.
  • PPS using a p-phenylene sulfide group as an arylene group and a p-phenylene sulfide group as a repeating unit is preferably used.
  • the copolymer among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done.
  • PAS resins those containing p-phenylene sulfide groups of 70 mol% or more, preferably 80 mol% or more are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.
  • PAS resins a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used.
  • the (A) PAS resin used in the present invention may be a mixture of two or more different molecular weight PAS resins.
  • a partially branched or crosslinked structure is formed by using a small amount of a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents when performing condensation polymerization.
  • a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents
  • examples thereof include polymers obtained by heating a polymer having a low molecular weight and a linear structure polymer having a low molecular weight at a high temperature in the presence of oxygen or the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking, thereby improving molding processability.
  • a polymer having a branched structure or a crosslinked structure has a decreased fluidity as the amount of the branched structure or the crosslinked structure is increased, it needs to be used with care.
  • the melt viscosity (310 ° C., shear rate 1216 sec ⁇ 1 ) of the PAS resin as the base resin used in the present invention is preferably 200 Pa ⁇ s or less, including the above mixed system, and more preferably in the range of 8 to 150 Pa ⁇ s. Those having a good balance between mechanical properties and fluidity are particularly preferred. When the melt viscosity exceeds 200 Pa ⁇ s, it becomes difficult to improve fluidity, and problems may occur.
  • (B) magnesium oxide pre-treated with a vinylalkoxysilane compound provides high thermal conductivity and high thin-wall fluidity. Blended.
  • a vinyl alkoxysilane compound is used as a surface treatment agent of magnesium oxide, only when a vinyl alkoxysilane compound is used among alkoxysilane compounds, remarkable thin-walled fluidity is exhibited.
  • magnesium oxide pre-treated with an alkoxysilane compound other than a vinylalkoxysilane compound is used, no remarkable thin-walled fluidity is exhibited. Processing is essential.
  • the vinyl alkoxysilane compound used for the surface treatment is preferably a silane compound having one or more vinyl groups and two or three alkoxy groups in one molecule.
  • a methoxysilane hydrolyzate, a vinyltriethoxysilane hydrolyzate, a vinyltris ( ⁇ -methoxyethoxy) silane hydrolyzate and the like can be mentioned. Among them, a vinyltrimethoxysilane hydrolyzate is preferable.
  • the adhesion amount of the vinylalkoxysilane compound to magnesium oxide on the surface of the (B) surface-treated magnesium oxide is preferably 0.3 to 1.5% by mass, and preferably 0.5 to 1% by mass. Is more preferable.
  • the adhesion amount of the vinyl alkoxysilane compound is 0.3 to 1.5% by mass, remarkable thin-wall fluidity is exhibited.
  • the average particle diameter (hereinafter, simply referred to as “average particle diameter”) of the surface-treated magnesium oxide measured by the laser diffraction / scattering method is more than 10 ⁇ m and not more than 100 ⁇ m from the viewpoint of further improving the thin-wall fluidity.
  • the thickness is 15 ⁇ m or more and 60 ⁇ m or less, and more preferably 25 ⁇ m or more and 50 ⁇ m or less.
  • the “average particle diameter measured by the laser diffraction / scattering method” means a particle diameter having an integrated value of 50% in the particle size distribution measured by the laser diffraction / scattering method.
  • (B) surface-treated magnesium oxide is blended in an amount of 80 to 600 parts by mass with respect to 100 parts by mass of (A) PAS resin.
  • the blending amount is less than 80 parts by mass, the thermal conductivity decreases, and when it exceeds 600 parts by mass, the fluidity decreases and the moldability deteriorates.
  • the amount of surface-treated magnesium oxide is preferably 110 to 450 parts by mass, more preferably 120 to 450 parts by mass.
  • (C) alkoxysilane compound in order to improve mechanical properties, (C) an alkoxysilane compound may be blended. However, when the (C) alkoxysilane compound is blended, the fluidity is lowered, so that the fluidity is sacrificed when attempting to obtain mechanical properties. Therefore, as will be described later, the amount when blended is small.
  • the alkoxysilane compound is not particularly limited, and examples thereof include alkoxysilanes such as epoxyalkoxysilanes, aminoalkoxysilanes, vinylalkoxysilanes, mercaptoalkoxysilanes, and one or more of these. Is used.
  • the alkoxy group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms.
  • epoxyalkoxysilane examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and the like.
  • aminoalkoxysilanes include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, N- ( ⁇ -aminoethyl)- Examples thereof include ⁇ -aminopropyltrimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -diallylaminopropyltrimethoxysilane, and ⁇ -diallylaminopropyltriethoxysilane.
  • vinylalkoxysilane examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, and the like.
  • mercaptoalkoxysilanes examples include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, and the like.
  • epoxyalkoxysilane and aminoalkoxysilane are preferable, and ⁇ -aminopropyltriethoxysilane is particularly preferable.
  • the (C) alkoxysilane compound is preferably blended in an amount of 0.1 to 2 parts by weight, more preferably 0.2 to 0.8 parts by weight, based on 100 parts by weight of the (A) PAS resin. preferable.
  • the production of the high thermal conductive resin composition of the present invention includes (1) a method in which all raw materials are mixed and kneaded, and (2) an alkoxysilane compound is blended with the PAS resin, and after melt-kneading, surface-treated magnesium oxide is blended.
  • the effect of the present invention is exhibited by any method such as a method of adding a filler in which an alkoxysilane compound is blended with surface-treated magnesium oxide, but the PAS resin and the alkoxysilane Since the mechanical strength is improved by the reaction of the compound, the alkoxysilane compound of (2) is blended with the PAS resin so that the PAS resin and the alkoxysilane compound react more efficiently, and after melt kneading, surface treatment oxidation is performed. It is preferable to manufacture by the method of mix
  • the high thermal conductive resin composition of the present invention is filled with an inorganic or organic filler within the object range of the present invention to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties.
  • an inorganic or organic filler within the object range of the present invention to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties.
  • a fibrous, powdery, or plate-like filler is used depending on the purpose.
  • fibrous filler examples include inorganic fibrous materials such as glass fiber, boron fiber, and potassium titanate fiber.
  • a particularly typical fibrous filler is glass fiber.
  • High melting point organic fiber materials such as polyamide, fluororesin, and acrylic resin can also be used.
  • the granular fillers include quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, silicates such as wollastonite, iron oxide, titanium oxide, and zinc oxide.
  • silicates such as wollastonite, iron oxide, titanium oxide, and zinc oxide.
  • metal carbonates such as oxides, calcium carbonate, and magnesium carbonate
  • metal sulfates such as calcium sulfate and barium sulfate.
  • the plate-like filler include mica and glass flakes.
  • the above inorganic fillers can be used alone or in combination of two or more.
  • the highly thermally conductive resin composition of the present invention is a known substance generally added to a thermoplastic resin, that is, a colorant such as a flame retardant, a dye or a pigment, an antioxidant or an ultraviolet ray, as long as the effects of the present invention are not hindered.
  • Stabilizers such as absorbents, lubricants, crystallization accelerators, crystal nucleating agents, other polymers such as resins, additives, and the like can be appropriately added according to the required performance.
  • the high thermal conductivity resin composition of the present invention obtained as described above is excellent in thin-wall fluidity, and thus maintains high thermal conductivity even if it is a small and complicated part or a thin-walled part. However, it can be molded easily.
  • molded products obtained by injection molding, extrusion molding, blow molding, etc. using the high thermal conductive resin composition of the present invention have high wet heat resistance, chemical resistance, dimensional stability, flame resistance, and excellent Shows heat dissipation. Taking advantage of this advantage, it can be suitably used for components that radiate internally generated heat, such as heat exchangers, heat sinks, and optical pickups.
  • LEDs for example, LEDs, sensors, connectors, sockets, terminal blocks, printed circuit boards, motor parts, ECU cases and other electrical / electronic parts, lighting parts, TV parts, rice cooker parts, microwave oven parts, iron parts, etc. It can be used for household and office electrical product parts such as copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts.
  • Tables 1 to 4 Each raw material component shown in Tables 1 to 4 was dry-blended and then charged into a twin-screw extruder having a cylinder temperature of 320 ° C. (magnesium oxide was added separately from the side feed portion of the extruder), melt-kneaded, and pelletized. Various test pieces (depending on the evaluation items) were produced from the pellets by an injection molding machine and evaluated. The results are shown in Tables 1 to 4. Examples 1 to 10 and Comparative Examples 1 to 8 shown in Tables 1 and 2 are examples in which the component (B) has an average particle diameter of 50 ⁇ m, and Examples 11 to 16 and Tables 3 and 4 shown in Table 3 are used.
  • Comparative Examples 9 to 11 are examples using the component (B) having an average particle size of 10 ⁇ m, and Examples 17 to 19 and Comparative Examples 12 to 14 shown in Table 4 are average particles as the component (B). In this example, a diameter of 30 ⁇ m is used. Moreover, the detail of each raw material component used is shown below.
  • PPS resin (A) component (PAS resin)
  • PPS resin 1 manufactured by Kureha Co., Ltd., Fortron KPS W202A (melt viscosity: 20 Pa ⁇ s (shear rate: 1216 sec ⁇ 1 , 310 ° C.))
  • PPS resin 2 manufactured by Kureha Co., Ltd., Fortron KPS W214A (melt viscosity: 130 Pa ⁇ s (shear rate: 1216 sec ⁇ 1 , 310 ° C.))
  • PPS resin 3 manufactured by Kureha Co., Ltd., Fortron KPS W220A (melt viscosity: 220 Pa ⁇ s (shear rate: 1216 sec ⁇ 1 , 310 ° C.))
  • (B) component surface-treated magnesium oxide
  • Magnesium oxide A RF-50-SC (surface treatment: 0.5% by mass of vinylalkoxysilane) manufactured by Ube Materials Co., Ltd. (average particle size 50 ⁇ m)
  • Magnesium oxide B RF-50-AC (surface treatment: aminoalkoxysilane 0.5% by mass) (average particle size 50 ⁇ m) manufactured by Ube Materials Co., Ltd.
  • Magnesium oxide C RF-98 manufactured by Ube Materials Co., Ltd. (non-surface treatment) (average particle size 50 ⁇ m)
  • Magnesium oxide D RF-50-SC improved product (surface treatment: vinylalkoxysilane 0.5% by mass) manufactured by Ube Materials Co., Ltd.
  • Magnesium oxide E CF2-100B (phosphorus-containing coated magnesium oxide) manufactured by Tateho Chemical Industry Co., Ltd. (average particle size 27 ⁇ m)
  • Magnesium oxide F RF-10C-SC (surface treatment: vinylalkoxysilane 0.5% by mass) (average particle size 10 ⁇ m) manufactured by Ube Materials Co., Ltd.
  • Magnesium oxide G RF-10C-SC (surface treatment: vinylalkoxysilane 1.5% by mass) manufactured by Ube Materials Co., Ltd. (average particle diameter 10 ⁇ m)
  • Magnesium oxide H RF-10C-EC (surface treatment: epoxy 0.5 mass%) manufactured by Ube Materials Co., Ltd. (average particle size 10 ⁇ m)
  • Component (C) (alkoxysilane compound) Alkoxysilane compound: ⁇ -aminopropyltriethoxysilane: Shin-Etsu Chemical Co., Ltd., KBE-903P
  • test pieces were prepared and evaluated.
  • (1) Thermal conductivity A disk-shaped molded product having a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C. and a diameter of 30 mm and a thickness of 2 mm was produced by injection molding. Using a sample in which four test pieces were stacked, the thermal conductivity was measured with a hot disk method thermophysical property measuring apparatus (TPA-501, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • TPA-501 hot disk method thermophysical property measuring apparatus
  • FIGS. 1 to 3 are graphs showing the relationship between the blending amount of magnesium oxide (A to H) and 0.5 mmtBF with respect to 100 parts by mass of the PPS resin. Each plot of magnesium oxides A to H in the graphs of FIGS. 1 to 3 is based on data of the following examples and comparative examples. i) Graph of FIG. 1 Magnesium oxide A: Examples 4, 7, 5, 9, 6 Magnesium oxide B: Comparative examples 1, 2, 3 Magnesium oxide C: Comparative examples 4, 5, 6, 7 ii) Graph of FIG.
  • Magnesium oxide F Examples 11, 12, and 15 Magnesium oxide G: Examples 13, 14, and 16 Magnesium oxide H: Comparative examples 9, 10, and 11 iii) Graph of FIG. 3 Magnesium oxide D: Examples 17, 18, and 19 Magnesium oxide E: Comparative examples 12, 13, and 14
  • Tables 1 and 2 are examples in which those having an average particle size of 50 ⁇ m are used as the component (B).
  • Table 1 and Table 2 show the following. That is, Example 5, Comparative Example 3, and Comparative Example 6 are all examples using 236 parts by mass of the component (B), but the surface-treated magnesium oxide according to the present invention was used as the component (B). In Example 5, all the evaluation results were good, whereas Comparative Example 3 using magnesium oxide surface-treated with aminoalkoxysilane and Comparative Example 6 using unsurface-treated magnesium oxide were: It was inferior at 0.5 mm tBF. In other words, it can be seen that excellent thin-wall fluidity was not exhibited.
  • Example 8 the thermal conductivity decreased, whereas in Example 6, the thermal conductivity and 0.5 mmtBF had good results.
  • Table 3 is an example in which the average particle size is 10 ⁇ m as the component (B) as described above. Table 3 shows the following. That is, Examples 11 and 13 and Comparative Example 9 are examples in which the blending amount of component (B) was 101 parts by mass, but Examples 11 and 13 were vinyl alkoxy of surface-treated magnesium oxide as component (B). In this example, the adhesion amount of silane was varied, and all the evaluation results were good. On the other hand, Comparative Example 9 using magnesium oxide surface-treated with epoxy as component (B) was inferior in 0.5 mm tBF. It can be seen that the thin-wall fluidity has decreased. Further, from FIG.
  • the example in which the adhesion amount of vinyl alkoxysilane of the surface-treated magnesium oxide as the component (B) is 0.5 mass% is significantly longer than the example in which the mass is 1.5 mass%. It can be seen that better results were obtained in thin-wall fluidity.
  • Example 18 and Comparative Example 13 are examples in which 236 parts by mass of Component (B) were blended.
  • Component (B) used the surface-treated magnesium oxide according to the present invention
  • Comparative Example 13 Is an example using phosphorus-containing coated magnesium oxide.
  • Example 18 shows that 0.5 mmtBF is remarkably long and has excellent thin-wall fluidity.
  • Example 19 and Comparative Example 14 differ from Example 18 and Comparative Example 13 in that the blending amount of component (B) was 305 parts by mass, respectively. Also in these examples, Example 19 shows that 0.5 mmtBF is much longer than Comparative Example 14 and is excellent in thin-wall fluidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition having high thermal conductivity which has an excellent thin-wall fluidity while maintaining a high thermal conductivity. The resin composition having high thermal conductivity comprises: 100 parts by mass of a polyarylene sulfide resin (A); and 80 to 600 parts by mass of magnesium oxide (B) that has been surface-treated with a vinyl alkoxy silane compound. It is preferred that the surface-treated magnesium oxide (B) has an average particle diameter, that is determined by the laser diffraction scattering method, of greater than 10 μm and not greater than 100 μm. It is preferred that the vinyl alkoxy silane sticks to the surface of the surface-treated magnesium oxide (B) at a ratio of 0.3-1.5 mass% relative to the magnesium oxide.

Description

高熱伝導性樹脂組成物High thermal conductive resin composition
 本発明は、ポリアリーレンサルファイド樹脂を用いた高熱伝導性樹脂組成物に関する。 The present invention relates to a highly thermally conductive resin composition using a polyarylene sulfide resin.
 ポリフェニレンサルファイド樹脂(以下「PPS樹脂」と呼ぶ場合がある)に代表されるポリアリーレンサルファイド樹脂(以下「PAS樹脂」と呼ぶ場合がある)は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。このようなPAS樹脂の耐熱性と、熱伝導性フィラーの熱伝導性を活かし、PAS樹脂と熱伝導性フィラーとを配合した高熱伝導性樹脂組成物が知られている。熱伝導性フィラーとしては、例えば、銅、銀、鉄、アルミニウム等の金属又はこれらの合金からなる金属系フィラーや、カーボン、グラファイト等の炭素系フィラーや、アルミナ、酸化マグネシウム、酸化ベリリウム、酸化亜鉛、酸化チタン等の金属酸化物からなるフィラー等が用いられる。
 中でも、酸化マグネシウムは、熱伝導率が比較的高い上に、適度な硬度や絶縁性を有することから有用であり、本出願人は、表面処理された酸化マグネシウム、すなわちリン酸マグネシウム系化合物よりなる被覆層等を有する酸化マグネシウム、及びPAS樹脂等を含む高熱伝導性樹脂組成物を提案した(特許文献1)。この高熱伝導性樹脂組成物により、成形性や耐湿熱性を向上させるという課題を解決した。
Polyarylene sulfide resin (hereinafter sometimes referred to as “PAS resin”) represented by polyphenylene sulfide resin (hereinafter sometimes referred to as “PPS resin”) has high heat resistance, mechanical properties, chemical resistance, Since it has dimensional stability and flame retardancy, it is widely used in electrical and electronic equipment component materials, automotive equipment component materials, chemical equipment component materials, and the like. A highly thermally conductive resin composition in which a PAS resin and a thermally conductive filler are blended is known by taking advantage of the heat resistance of such a PAS resin and the thermal conductivity of the thermally conductive filler. Examples of the thermally conductive filler include metal fillers made of metals such as copper, silver, iron, aluminum or alloys thereof, carbon fillers such as carbon and graphite, alumina, magnesium oxide, beryllium oxide, and zinc oxide. A filler made of a metal oxide such as titanium oxide is used.
Among these, magnesium oxide is useful because it has a relatively high thermal conductivity and appropriate hardness and insulation, and the present applicant consists of surface-treated magnesium oxide, that is, a magnesium phosphate compound. A highly thermally conductive resin composition containing magnesium oxide having a coating layer and the like, and a PAS resin has been proposed (Patent Document 1). This high heat conductive resin composition solved the problem of improving moldability and heat and humidity resistance.
 その他、PAS樹脂と、表面処理された酸化マグネシウムとを用いた樹脂組成物としては、特許文献2や特許文献3に記載された樹脂組成物が挙げられる。
 特許文献2には、PAS樹脂、及びアルコキシシラン化合物で表面処理された酸化マグネシウム等を含む樹脂組成物が記載されている。この樹脂組成物において、表面処理された酸化マグネシウムを使用する目的は耐蝕性の付与である。また、当該酸化マグネシウムの配合量は少量であり、樹脂組成物が高熱伝導性を発揮し得る量ではない。つまり、当該樹脂組成物は、高熱伝導性を有する樹脂組成物ではない。
 特許文献3には、PAS樹脂、及び800℃以上で焼成後表面処理してなる酸化マグネシウム等を含む樹脂組成物(電気絶縁・放熱部品用成形材料)が記載されている。この樹脂組成物において、表面処理した酸化マグネシウムを使用する目的は高熱伝導性及び耐湿熱性の付与である。そして、当該表面処理された酸化マグネシウムの特徴は、800℃以上で焼成後に表面処理を行うことにある。また、表面処理に用いる表面処理剤としては、シラン系カップリング剤、チタネート系カップリング剤等が例示されている。
In addition, examples of the resin composition using the PAS resin and the surface-treated magnesium oxide include the resin compositions described in Patent Document 2 and Patent Document 3.
Patent Document 2 describes a resin composition containing a PAS resin and magnesium oxide surface-treated with an alkoxysilane compound. In this resin composition, the purpose of using the surface-treated magnesium oxide is to impart corrosion resistance. Moreover, the compounding quantity of the said magnesium oxide is a small quantity, and is not the quantity which can exhibit high thermal conductivity by the resin composition. That is, the resin composition is not a resin composition having high thermal conductivity.
Patent Document 3 describes a resin composition (molding material for electrical insulation / heat radiation component) containing a PAS resin and magnesium oxide obtained by surface treatment after baking at 800 ° C. or higher. In this resin composition, the purpose of using the surface-treated magnesium oxide is to impart high thermal conductivity and wet heat resistance. And the feature of the said surface-treated magnesium oxide is in performing surface treatment after baking at 800 degreeC or more. Examples of the surface treatment agent used for the surface treatment include silane coupling agents and titanate coupling agents.
 近年、電気製品等の各種製品の部品において、小型化、薄肉化が進み、高熱伝導性や、優れた機械的特性を維持したまま、薄肉流動性(Thin-Walled Flowability)に優れる樹脂組成物が要求されている。
 上記特許文献1に記載の高熱伝導性樹脂組成物は、高い流動性を示すものの、薄肉流動性に優れると言える程の流動性を有するものではない。その他の特許文献に記載の樹脂組成物も、薄肉流動性を有するものではない。
In recent years, parts of various products such as electric products have been reduced in size and thickness, and resin compositions with excellent thin-walled flowability while maintaining high thermal conductivity and excellent mechanical properties. It is requested.
Although the high thermal conductive resin composition described in Patent Document 1 exhibits high fluidity, it does not have fluidity that can be said to be excellent in thin-walled fluidity. The resin compositions described in other patent documents do not have thin-wall fluidity.
特開2006-282783号公報JP 2006-282784 A 特開平8-12886号公報JP-A-8-12886 特開2002-38010号公報JP 2002-38010 A
 本発明は、高熱伝導性を維持しつつ、薄肉流動性に優れた高熱伝導性樹脂組成物を提供することにある。 The present invention is to provide a highly heat conductive resin composition having excellent thin wall fluidity while maintaining high heat conductivity.
 前記課題を解決する本発明は以下の通りである。
(1)(A)ポリアリーレンサルファイド樹脂100質量部と、
 (B)ビニルアルコキシシラン化合物で予め表面処理された酸化マグネシウム80~600質量部と、
を配合してなる高熱伝導性樹脂組成物。
The present invention for solving the above problems is as follows.
(1) (A) 100 parts by mass of polyarylene sulfide resin;
(B) 80 to 600 parts by mass of magnesium oxide surface-treated in advance with a vinylalkoxysilane compound;
A highly thermally conductive resin composition comprising:
(2)前記(B)表面処理酸化マグネシウムのレーザー回折・散乱法により測定した平均粒径が10μm超100μm以下である前記(1)に記載の高熱伝導性樹脂組成物。 (2) The high thermal conductive resin composition according to (1), wherein the average particle diameter of the (B) surface-treated magnesium oxide measured by a laser diffraction / scattering method is more than 10 μm and 100 μm or less.
(3)前記(B)表面処理酸化マグネシウム表面において、酸化マグネシウムに対するビニルアルコキシシランの付着量が0.3~1.5質量%である前記(1)又は(2)に記載の高熱伝導性樹脂組成物。 (3) The high thermal conductive resin according to (1) or (2), wherein the adhesion amount of vinylalkoxysilane to magnesium oxide is 0.3 to 1.5% by mass on the surface of the surface-treated magnesium oxide (B). Composition.
(4)更に、(C)アルコキシシラン化合物0.1~2質量部を配合してなる前記(1)~(3)のいずれかに記載の高熱伝導性樹脂組成物。 (4) The high thermal conductive resin composition according to any one of (1) to (3), further comprising (C) 0.1 to 2 parts by mass of an alkoxysilane compound.
 本発明によれば、高熱伝導性を維持しつつ、薄肉流動性に優れた高熱伝導性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a highly heat conductive resin composition having excellent thin wall fluidity while maintaining high heat conductivity.
PPS樹脂100質量部に対する酸化マグネシウム(A~C)の配合量と、0.5mmtBFとの関係を示すグラフである。4 is a graph showing the relationship between the blending amount of magnesium oxide (AC) with respect to 100 parts by mass of PPS resin and 0.5 mmtBF. PPS樹脂100質量部に対する酸化マグネシウム(F~H)の配合量と、0.5mmtBFとの関係を示すグラフである。4 is a graph showing the relationship between the blending amount of magnesium oxide (F to H) with respect to 100 parts by mass of PPS resin and 0.5 mmtBF. PPS樹脂100質量部に対する酸化マグネシウム(D及びE)の配合量と、0.5mmtBFとの関係を示すグラフである。It is a graph which shows the relationship between the compounding quantity of magnesium oxide (D and E) with respect to 100 mass parts of PPS resins, and 0.5 mmtBF.
 本発明の高熱伝導性樹脂組成物は、(A)ポリアリーレンサルファイド樹脂100質量部と、(B)ビニルアルコキシシラン化合物で予め表面処理された酸化マグネシウム80~600質量部と、を配合してなることを特徴としている。
 以下、本発明の高熱伝導性樹脂組成物の各成分について詳述する。
The highly thermally conductive resin composition of the present invention comprises (A) 100 parts by mass of a polyarylene sulfide resin and (B) 80 to 600 parts by mass of magnesium oxide that has been surface-treated with a vinylalkoxysilane compound in advance. It is characterized by that.
Hereinafter, each component of the highly heat conductive resin composition of this invention is explained in full detail.
[(A)ポリアリーレンサルファイド樹脂]
 (A)成分としてのポリアリーレンスルフィド樹脂は、主として、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本発明では一般的に知られている分子構造のPAS樹脂を使用することができる。
[(A) Polyarylene sulfide resin]
The polyarylene sulfide resin as the component (A) is a polymer compound mainly composed of — (Ar—S) — (wherein Ar is an arylene group) as a repeating unit, and is generally known in the present invention. PAS resins having the molecular structure shown can be used.
 上記アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等が挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでもよいし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。 Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p′-. A diphenylene ether group, p, p'-diphenylenecarbonyl group, naphthalene group and the like can be mentioned. The PAS resin may be a homopolymer consisting only of the above repeating units, or a copolymer containing the following different types of repeating units may be preferable from the viewpoint of processability and the like.
 ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いた、p-フェニレンサルファイド基を繰返し単位とするPPSが好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp-フェニレンサルファイド基とm-フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p-フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。尚、本発明に用いる(A)PAS樹脂は、異なる2種類以上の分子量のPAS樹脂を混合して用いてもよい。 As the homopolymer, PPS using a p-phenylene sulfide group as an arylene group and a p-phenylene sulfide group as a repeating unit is preferably used. As the copolymer, among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done. Among these, those containing p-phenylene sulfide groups of 70 mol% or more, preferably 80 mol% or more are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties. Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used. The (A) PAS resin used in the present invention may be a mixture of two or more different molecular weight PAS resins.
 尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造または架橋構造を形成させたポリマーや、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋または熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも挙げられる。しかし、分岐構造や架橋構造を形成させたポリマーは、分岐構造や架橋構造の形成量が多くなるほど流動性が低下するため、使用するに当たり注意する必要がある。 In addition to the linear PAS resin, a partially branched or crosslinked structure is formed by using a small amount of a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents when performing condensation polymerization. Examples thereof include polymers obtained by heating a polymer having a low molecular weight and a linear structure polymer having a low molecular weight at a high temperature in the presence of oxygen or the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking, thereby improving molding processability. However, since a polymer having a branched structure or a crosslinked structure has a decreased fluidity as the amount of the branched structure or the crosslinked structure is increased, it needs to be used with care.
 本発明に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・せん断速度1216sec-1)は、上記混合系の場合も含め200Pa・s以下が好ましく、中でも8~150Pa・sの範囲にあるものは、機械的物性と流動性のバランスが優れており、特に好ましい。溶融粘度が200Pa・sを超えると流動性を良好とすることが困難となり、不具合が生じることがある。 The melt viscosity (310 ° C., shear rate 1216 sec −1 ) of the PAS resin as the base resin used in the present invention is preferably 200 Pa · s or less, including the above mixed system, and more preferably in the range of 8 to 150 Pa · s. Those having a good balance between mechanical properties and fluidity are particularly preferred. When the melt viscosity exceeds 200 Pa · s, it becomes difficult to improve fluidity, and problems may occur.
[(B)ビニルアルコキシシラン化合物で予め表面処理された酸化マグネシウム]
 本発明において、(B)ビニルアルコキシシラン化合物で予め表面処理された酸化マグネシウム(以下、「表面処理酸化マグネシウム」と呼ぶ場合がある。)は、高熱伝導性及び高薄肉流動性を付与するために配合される。このように、本発明においては、酸化マグネシウムの表面処理剤としてビニルアルコキシシラン化合物を用いるのであるが、アルコキシシラン化合物の中でも、ビニルアルコキシシラン化合物を用いた場合のみが顕著な薄肉流動性を示す。逆に言えば、ビニルアルコキシシラン化合物以外のアルコキシシラン化合物で予め表面処理した酸化マグネシウムを用いても顕著な薄肉流動性は示さず、顕著な薄肉流動性を発揮させるにはビニルアルコキシシラン化合物による表面処理が必要不可欠である。
[(B) Magnesium oxide previously surface-treated with vinylalkoxysilane compound]
In the present invention, (B) magnesium oxide pre-treated with a vinylalkoxysilane compound (hereinafter sometimes referred to as “surface-treated magnesium oxide”) provides high thermal conductivity and high thin-wall fluidity. Blended. Thus, in this invention, although a vinyl alkoxysilane compound is used as a surface treatment agent of magnesium oxide, only when a vinyl alkoxysilane compound is used among alkoxysilane compounds, remarkable thin-walled fluidity is exhibited. In other words, even if magnesium oxide pre-treated with an alkoxysilane compound other than a vinylalkoxysilane compound is used, no remarkable thin-walled fluidity is exhibited. Processing is essential.
 (B)表面処理酸化マグネシウムにおいて、表面処理に用いるビニルアルコキシシラン化合物としては、1分子中にビニル基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物が好ましく、例えばビニルトリメトキシシラン加水分解物、ビニルトリエトキシシラン加水分解物、ビニルトリス(β-メトキシエトキシ)シラン加水分解物等が挙げられ、中でも、ビニルトリメトキシシラン加水分解物が好ましい。 (B) In the surface-treated magnesium oxide, the vinyl alkoxysilane compound used for the surface treatment is preferably a silane compound having one or more vinyl groups and two or three alkoxy groups in one molecule. A methoxysilane hydrolyzate, a vinyltriethoxysilane hydrolyzate, a vinyltris (β-methoxyethoxy) silane hydrolyzate and the like can be mentioned. Among them, a vinyltrimethoxysilane hydrolyzate is preferable.
 本発明において、(B)表面処理酸化マグネシウム表面における、酸化マグネシウムに対するビニルアルコキシシラン化合物の付着量は0.3~1.5質量%であることが好ましく、0.5~1質量%であることがより好ましい。当該ビニルアルコキシシラン化合物の付着量が0.3~1.5質量%であることで、顕著な薄肉流動性を示す。 In the present invention, the adhesion amount of the vinylalkoxysilane compound to magnesium oxide on the surface of the (B) surface-treated magnesium oxide is preferably 0.3 to 1.5% by mass, and preferably 0.5 to 1% by mass. Is more preferable. When the adhesion amount of the vinyl alkoxysilane compound is 0.3 to 1.5% by mass, remarkable thin-wall fluidity is exhibited.
 (B)表面処理酸化マグネシウムのレーザー回折・散乱法により測定した平均粒径(以下、単に「平均粒径」と呼ぶ場合ある。)は、薄肉流動性をより向上させる観点から、10μm超100μm以下であることが好ましく、15μm以上60μm以下であることがより好ましく、25μm以上50μm以下であることがさらに好ましい。
 なお、本発明において、「レーザー回折・散乱法により測定した平均粒径」とは、レーザー回折・散乱法により測定した粒度分布における積算値50%の粒径を意味する。
(B) The average particle diameter (hereinafter, simply referred to as “average particle diameter”) of the surface-treated magnesium oxide measured by the laser diffraction / scattering method is more than 10 μm and not more than 100 μm from the viewpoint of further improving the thin-wall fluidity. Preferably, the thickness is 15 μm or more and 60 μm or less, and more preferably 25 μm or more and 50 μm or less.
In the present invention, the “average particle diameter measured by the laser diffraction / scattering method” means a particle diameter having an integrated value of 50% in the particle size distribution measured by the laser diffraction / scattering method.
 本発明において、(B)表面処理酸化マグネシウムは、(A)PAS樹脂100質量部に対して80~600質量部配合する。当該配合量が80質量部未満では熱伝導率が低下し、600質量部を超えると流動性が低下して成形性が悪化する。(B)表面処理酸化マグネシウムの配合量は、好ましくは110~450質量部であり、より好ましくは120~450質量部である。 In the present invention, (B) surface-treated magnesium oxide is blended in an amount of 80 to 600 parts by mass with respect to 100 parts by mass of (A) PAS resin. When the blending amount is less than 80 parts by mass, the thermal conductivity decreases, and when it exceeds 600 parts by mass, the fluidity decreases and the moldability deteriorates. (B) The amount of surface-treated magnesium oxide is preferably 110 to 450 parts by mass, more preferably 120 to 450 parts by mass.
[(C)アルコキシシラン化合物]
 本発明において、機械的物性の向上のためには、(C)アルコキシシラン化合物を配合してもよい。ただし、(C)アルコキシシラン化合物を配合すると流動性が低下するため、機械的特性を得ようとすると流動性が犠牲となる。従って、後述するように、配合する場合におけるその量は少量である。
 (C)アルコキシシラン化合物としては、特に限定されるものではなく、例えば、エポキシアルコキシシラン、アミノアルコキシシラン、ビニルアルコキシシラン、メルカプトアルコキシシラン等のアルコキシシランが挙げられ、これらの1種または2種以上が用いられる。尚、アルコキシ基の炭素数は1~10が好ましく、特に好ましくは1~4である。
[(C) alkoxysilane compound]
In the present invention, in order to improve mechanical properties, (C) an alkoxysilane compound may be blended. However, when the (C) alkoxysilane compound is blended, the fluidity is lowered, so that the fluidity is sacrificed when attempting to obtain mechanical properties. Therefore, as will be described later, the amount when blended is small.
(C) The alkoxysilane compound is not particularly limited, and examples thereof include alkoxysilanes such as epoxyalkoxysilanes, aminoalkoxysilanes, vinylalkoxysilanes, mercaptoalkoxysilanes, and one or more of these. Is used. The alkoxy group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms.
 エポキシアルコキシシランの例としては、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Examples of the epoxyalkoxysilane include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like.
 アミノアルコキシシランの例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ジアリルアミノプロピルトリメトキシシラン、γ-ジアリルアミノプロピルトリエトキシシラン等が挙げられる。 Examples of aminoalkoxysilanes include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl)- Examples thereof include γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-diallylaminopropyltrimethoxysilane, and γ-diallylaminopropyltriethoxysilane.
 ビニルアルコキシシランの例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン等が挙げられる。 Examples of vinylalkoxysilane include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and the like.
 メルカプトアルコキシシランの例としては、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等が挙げられる。 Examples of mercaptoalkoxysilanes include γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, and the like.
 これらの内、エポキシアルコキシシランとアミノアルコキシシランが好ましく、特に好ましいものはγ-アミノプロピルトリエトキシシランである。 Of these, epoxyalkoxysilane and aminoalkoxysilane are preferable, and γ-aminopropyltriethoxysilane is particularly preferable.
 本発明において、(C)アルコキシシラン化合物は、(A)PAS樹脂100質量部に対して0.1~2質量部配合することが好ましく、0.2~0.8質量部配合することがより好ましい。 In the present invention, the (C) alkoxysilane compound is preferably blended in an amount of 0.1 to 2 parts by weight, more preferably 0.2 to 0.8 parts by weight, based on 100 parts by weight of the (A) PAS resin. preferable.
 本発明の高熱伝導性樹脂組成物の製造は、(1)全ての原料を混ぜて混練する方法、(2)アルコキシシラン化合物をPAS樹脂に配合し、溶融混練後、表面処理酸化マグネシウムを配合する方法、(3)PAS樹脂を溶融させた後、表面処理酸化マグネシウムにアルコキシシラン化合物を配合したフィラーとして添加する方法等、何れの方法でも本発明の効果は発揮されるが、PAS樹脂とアルコキシシラン化合物が反応することにより機械的強度が向上するため、より効率良くPAS樹脂とアルコキシシラン化合物が反応するように、(2)のアルコキシシラン化合物をPAS樹脂に配合し、溶融混練後、表面処理酸化マグネシウムを配合する方法にて製造することが好ましい。 The production of the high thermal conductive resin composition of the present invention includes (1) a method in which all raw materials are mixed and kneaded, and (2) an alkoxysilane compound is blended with the PAS resin, and after melt-kneading, surface-treated magnesium oxide is blended. Method, (3) After melting the PAS resin, the effect of the present invention is exhibited by any method such as a method of adding a filler in which an alkoxysilane compound is blended with surface-treated magnesium oxide, but the PAS resin and the alkoxysilane Since the mechanical strength is improved by the reaction of the compound, the alkoxysilane compound of (2) is blended with the PAS resin so that the PAS resin and the alkoxysilane compound react more efficiently, and after melt kneading, surface treatment oxidation is performed. It is preferable to manufacture by the method of mix | blending magnesium.
[充填材]
 本発明の高熱伝導性樹脂組成物は、本発明の目的範囲内で、機械的強度、耐熱性、寸法安定性(耐変形、そり)、電気的性質等の性能の改良のため無機又は有機充填剤を配合したものでもよく、これには目的に応じて繊維状、粉粒状、板状の充填剤が用いられる。
[Filler]
The high thermal conductive resin composition of the present invention is filled with an inorganic or organic filler within the object range of the present invention to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties. In this case, a fibrous, powdery, or plate-like filler is used depending on the purpose.
 繊維状充填剤としては、ガラス繊維、硼素繊維、チタン酸カリウム繊維等の無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。尚、ポリアミド、フッ素樹脂、アクリル樹脂等の高融点有機質繊維物質も使用することができる。 Examples of the fibrous filler include inorganic fibrous materials such as glass fiber, boron fiber, and potassium titanate fiber. A particularly typical fibrous filler is glass fiber. High melting point organic fiber materials such as polyamide, fluororesin, and acrylic resin can also be used.
 粉粒状充填剤としては、石英粉末、ガラスビーズ、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラストナイトのごとき珪酸塩、酸化鉄、酸化チタン、酸化亜鉛のごとき金属の酸化物、炭酸カルシウム、炭酸マグネシウムのごとき金属の炭酸塩、硫酸カルシウム、硫酸バリウムのごとき金属の硫酸塩が挙げられる。
 また、板状充填剤としてはマイカ、ガラスフレークが挙げられる。
 以上の無機充填剤は1種又は2種以上併用することができる。
The granular fillers include quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, silicates such as wollastonite, iron oxide, titanium oxide, and zinc oxide. Examples thereof include metal carbonates such as oxides, calcium carbonate, and magnesium carbonate, and metal sulfates such as calcium sulfate and barium sulfate.
Examples of the plate-like filler include mica and glass flakes.
The above inorganic fillers can be used alone or in combination of two or more.
[他の成分]
 本発明の高熱伝導性樹脂組成物は、本発明の効果を妨げない範囲で、一般に熱可塑性樹脂に添加される公知の物質、すなわち難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、潤滑剤、結晶化促進剤、結晶核剤、その他の樹脂等の高分子や、添加剤等も要求性能に応じ適宜添加することができる。
[Other ingredients]
The highly thermally conductive resin composition of the present invention is a known substance generally added to a thermoplastic resin, that is, a colorant such as a flame retardant, a dye or a pigment, an antioxidant or an ultraviolet ray, as long as the effects of the present invention are not hindered. Stabilizers such as absorbents, lubricants, crystallization accelerators, crystal nucleating agents, other polymers such as resins, additives, and the like can be appropriately added according to the required performance.
 以上のようにして得られる本発明の高熱伝導性樹脂組成物は、薄肉流動性に優れるため、小型で複雑な形状の部品や、薄肉化されたものであっても、高い熱伝導性を維持しつつ容易に成形することができる。また、本発明の高熱伝導性樹脂組成物を用い、射出成形や押出成形、ブロー成形等で得られた成形品は、高い耐湿熱性、耐化学薬品性、寸法安定性、難燃性、優れた放熱性を示す。この利点を活かして熱交換器、放熱板、光ピックアップ等といった内部で発生した熱を外部に放熱する部品に好適に用いることができる。 The high thermal conductivity resin composition of the present invention obtained as described above is excellent in thin-wall fluidity, and thus maintains high thermal conductivity even if it is a small and complicated part or a thin-walled part. However, it can be molded easily. In addition, molded products obtained by injection molding, extrusion molding, blow molding, etc. using the high thermal conductive resin composition of the present invention have high wet heat resistance, chemical resistance, dimensional stability, flame resistance, and excellent Shows heat dissipation. Taking advantage of this advantage, it can be suitably used for components that radiate internally generated heat, such as heat exchangers, heat sinks, and optical pickups.
 また、その他の用途として、例えばLED、センサー、コネクター、ソケット、端子台、プリント基板、モーター部品、ECUケース等の電気・電子部品、照明部品、テレビ部品、炊飯器部品、電子レンジ部品、アイロン部品、複写機関連部品、プリンター関連部品、ファクシミリ関連部品、ヒーター、エアコン用部品等の家庭・事務電気製品部品に用いることができる。 Other applications include, for example, LEDs, sensors, connectors, sockets, terminal blocks, printed circuit boards, motor parts, ECU cases and other electrical / electronic parts, lighting parts, TV parts, rice cooker parts, microwave oven parts, iron parts, etc. It can be used for household and office electrical product parts such as copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts.
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 表1~4に示す各原料成分をドライブレンドした後、シリンダー温度320℃の二軸押出機に投入し(酸化マグネシウムは押出機のサイドフィード部より別添加)、溶融混練し、ペレット化した。
 このペレットから射出成形機により各種試験片(評価項目により異なる。)を作製し、評価を行った。結果を表1~4に示す。
 なお、表1~2に示す実施例1~10及び比較例1~8は、(B)成分として平均粒径が50μmのものを使用した例であり、表3に示す実施例11~16及び比較例9~11は、(B)成分として平均粒径が10μmのものを使用した例であり、表4に示す実施例17~19及び比較例12~14は、(B)成分として平均粒径が30μmのものを使用した例である。
 また、使用した各原料成分の詳細を以下に示す。
Each raw material component shown in Tables 1 to 4 was dry-blended and then charged into a twin-screw extruder having a cylinder temperature of 320 ° C. (magnesium oxide was added separately from the side feed portion of the extruder), melt-kneaded, and pelletized.
Various test pieces (depending on the evaluation items) were produced from the pellets by an injection molding machine and evaluated. The results are shown in Tables 1 to 4.
Examples 1 to 10 and Comparative Examples 1 to 8 shown in Tables 1 and 2 are examples in which the component (B) has an average particle diameter of 50 μm, and Examples 11 to 16 and Tables 3 and 4 shown in Table 3 are used. Comparative Examples 9 to 11 are examples using the component (B) having an average particle size of 10 μm, and Examples 17 to 19 and Comparative Examples 12 to 14 shown in Table 4 are average particles as the component (B). In this example, a diameter of 30 μm is used.
Moreover, the detail of each raw material component used is shown below.
(A)成分(PAS樹脂)
 PPS樹脂1:(株)クレハ製、フォートロンKPS W202A (溶融粘度:20Pa・s(せん断速度:1216sec-1、310℃))
 PPS樹脂2:(株)クレハ製、フォートロンKPS W214A (溶融粘度:130Pa・s(せん断速度:1216sec-1、310℃))
 PPS樹脂3:(株)クレハ製、フォートロンKPS W220A(溶融粘度:220Pa・s(せん断速度:1216sec-1、310℃))
(A) component (PAS resin)
PPS resin 1: manufactured by Kureha Co., Ltd., Fortron KPS W202A (melt viscosity: 20 Pa · s (shear rate: 1216 sec −1 , 310 ° C.))
PPS resin 2: manufactured by Kureha Co., Ltd., Fortron KPS W214A (melt viscosity: 130 Pa · s (shear rate: 1216 sec −1 , 310 ° C.))
PPS resin 3: manufactured by Kureha Co., Ltd., Fortron KPS W220A (melt viscosity: 220 Pa · s (shear rate: 1216 sec −1 , 310 ° C.))
(B)成分(表面処理酸化マグネシウム)
 酸化マグネシウムA:宇部マテリアルズ(株)製 RF-50-SC(表面処理:ビニルアルコキシシラン0.5質量%) (平均粒径50μm)
 酸化マグネシウムB:宇部マテリアルズ(株)製 RF-50-AC(表面処理:アミノアルコキシシラン0.5質量%)(平均粒径50μm)
 酸化マグネシウムC:宇部マテリアルズ(株)製 RF-98(未表面処理)(平均粒径50μm)
 酸化マグネシウムD:宇部マテリアルズ(株)製 RF-50-SC改良品(表面処理:ビニルアルコキシシラン0.5質量%)(平均粒径30μm)
 酸化マグネシウムE:タテホ化学工業(株)製 CF2-100B(リン含有被覆酸化マグネシウム)(平均粒径27μm)
 酸化マグネシウムF:宇部マテリアルズ(株)製 RF-10C-SC(表面処理:ビニルアルコキシシラン0.5質量%)(平均粒径10μm)
 酸化マグネシウムG:宇部マテリアルズ(株)製 RF-10C-SC(表面処理:ビニルアルコキシシラン1.5質量%)(平均粒径10μm)
 酸化マグネシウムH:宇部マテリアルズ(株)製 RF-10C-EC(表面処理:エポキシ0.5質量%)(平均粒径10μm)
(B) component (surface-treated magnesium oxide)
Magnesium oxide A: RF-50-SC (surface treatment: 0.5% by mass of vinylalkoxysilane) manufactured by Ube Materials Co., Ltd. (average particle size 50 μm)
Magnesium oxide B: RF-50-AC (surface treatment: aminoalkoxysilane 0.5% by mass) (average particle size 50 μm) manufactured by Ube Materials Co., Ltd.
Magnesium oxide C: RF-98 manufactured by Ube Materials Co., Ltd. (non-surface treatment) (average particle size 50 μm)
Magnesium oxide D: RF-50-SC improved product (surface treatment: vinylalkoxysilane 0.5% by mass) manufactured by Ube Materials Co., Ltd. (average particle size 30 μm)
Magnesium oxide E: CF2-100B (phosphorus-containing coated magnesium oxide) manufactured by Tateho Chemical Industry Co., Ltd. (average particle size 27 μm)
Magnesium oxide F: RF-10C-SC (surface treatment: vinylalkoxysilane 0.5% by mass) (average particle size 10 μm) manufactured by Ube Materials Co., Ltd.
Magnesium oxide G: RF-10C-SC (surface treatment: vinylalkoxysilane 1.5% by mass) manufactured by Ube Materials Co., Ltd. (average particle diameter 10 μm)
Magnesium oxide H: RF-10C-EC (surface treatment: epoxy 0.5 mass%) manufactured by Ube Materials Co., Ltd. (average particle size 10 μm)
(C)成分(アルコキシシラン化合物)
 アルコキシシラン化合物:γ-アミノプロピルトリエトキシシラン:信越化学工業(株)製、KBE-903P
Component (C) (alkoxysilane compound)
Alkoxysilane compound: γ-aminopropyltriethoxysilane: Shin-Etsu Chemical Co., Ltd., KBE-903P
 各実施例・比較例において、以下に示す試験片を作製し各評価を行った。
(1)熱伝導率
 射出成形にてシリンダー温度320℃、金型温度150℃で直径30mm、厚さ2mmの円板状成形品を作製した。試験片を4枚重ねたサンプルを用い、ホットディスク法熱物性測定装置(京都電子工業(株)製 TPA-501)で熱伝導率を測定した。
(2)曲げ試験
 射出成形にて、シリンダー温度320℃、金型温度150℃でISO3167に準じた試験片(幅10mm、厚み4mmt)を作製し、ISO178に準じて曲げ強度(FS)及び曲げ弾性率(FM)を測定した。
(3)溶融粘度
 (A)成分(PPS樹脂)については、東洋精機(株)製キャピログラフを用い、キャピラリーとして1mmφ×20mmL/フラットダイを使用し、バレル温度310℃、せん断速度1216sec-1での溶融粘度を測定した。
 調製した樹脂組成物(上記ペレット)については、東洋精機(株)製キャピログラフを用い、キャピラリーとして1mmφ×20mmL/フラットダイを使用し、バレル温度310℃、せん断速度1000sec-1での溶融粘度を測定した。
(4)薄肉流動性(厚み0.5mmtバーフロー:0.5mmtBF)
 射出成形にて、シリンダー温度320℃、射出圧力100MPa、金型温度150℃での条件で、幅5mm、厚さ0.5mmの棒状成形品を成形し、流動距離を測定した。5回の試験における平均値を流動距離とした。図1~3に、PPS樹脂100質量部に対する酸化マグネシウム(A~H)の配合量と、0.5mmtBFとの関係をグラフ示す。なお、図1~3のグラフ中の酸化マグネシウムA~Hにおける各プロットは、以下の実施例・比較例のデータに基づく。
i)図1のグラフ
 酸化マグネシウムA:実施例4、7、5、9、6
 酸化マグネシウムB:比較例1、2、3
 酸化マグネシウムC:比較例4、5、6、7
ii)図2のグラフ
 酸化マグネシウムF:実施例11、12、15
 酸化マグネシウムG:実施例13、14、16
 酸化マグネシウムH:比較例9、10、11
iii)図3のグラフ
 酸化マグネシウムD:実施例17、18、19
 酸化マグネシウムE:比較例12、13、14
In each of the examples and comparative examples, the following test pieces were prepared and evaluated.
(1) Thermal conductivity A disk-shaped molded product having a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C. and a diameter of 30 mm and a thickness of 2 mm was produced by injection molding. Using a sample in which four test pieces were stacked, the thermal conductivity was measured with a hot disk method thermophysical property measuring apparatus (TPA-501, manufactured by Kyoto Electronics Industry Co., Ltd.).
(2) Bending test By injection molding, a test piece (width 10 mm, thickness 4 mmt) according to ISO 3167 was prepared at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C., bending strength (FS) and bending elasticity according to ISO 178. The rate (FM) was measured.
(3) Melt viscosity (A) About component (PPS resin), using a Capillograph manufactured by Toyo Seiki Co., Ltd., using a 1 mmφ × 20 mmL / flat die as a capillary, a barrel temperature of 310 ° C., and a shear rate of 1216 sec −1 The melt viscosity was measured.
About the prepared resin composition (the above-mentioned pellet), using a capillograph manufactured by Toyo Seiki Co., Ltd., using a 1 mmφ × 20 mmL / flat die as a capillary, measuring melt viscosity at a barrel temperature of 310 ° C. and a shear rate of 1000 sec −1 did.
(4) Thin wall fluidity (thickness 0.5 mmt bar flow: 0.5 mmtBF)
A rod-shaped molded product having a width of 5 mm and a thickness of 0.5 mm was molded by injection molding under the conditions of a cylinder temperature of 320 ° C., an injection pressure of 100 MPa, and a mold temperature of 150 ° C., and the flow distance was measured. The average value in five tests was taken as the flow distance. 1 to 3 are graphs showing the relationship between the blending amount of magnesium oxide (A to H) and 0.5 mmtBF with respect to 100 parts by mass of the PPS resin. Each plot of magnesium oxides A to H in the graphs of FIGS. 1 to 3 is based on data of the following examples and comparative examples.
i) Graph of FIG. 1 Magnesium oxide A: Examples 4, 7, 5, 9, 6
Magnesium oxide B: Comparative examples 1, 2, 3
Magnesium oxide C: Comparative examples 4, 5, 6, 7
ii) Graph of FIG. 2 Magnesium oxide F: Examples 11, 12, and 15
Magnesium oxide G: Examples 13, 14, and 16
Magnesium oxide H: Comparative examples 9, 10, and 11
iii) Graph of FIG. 3 Magnesium oxide D: Examples 17, 18, and 19
Magnesium oxide E: Comparative examples 12, 13, and 14
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2は、上述の通り、いずれも(B)成分として平均粒径が50μmのものを使用した例である。表1及び表2より以下のことが分かる。すなわち、実施例5、比較例3、及び比較例6はいずれも(B)成分を236質量部用いた例であるが、当該(B)成分として、本発明に係る表面処理酸化マグネシウムを使用した実施例5においては、いずれの評価結果も良好であったのに対し、アミノアルコキシシランで表面処理した酸化マグネシウムを用いた比較例3、及び未表面処理の酸化マグネシウムを用いた比較例6は、0.5mmtBFにおいて劣っていた。つまり、優れた薄肉流動性を示さなかったことが分かる。そして、(B)成分として同じ表面処理酸化マグネシウムを用い、それぞれ溶融粘度の異なるPPS樹脂を配合した実施例1~3の比較により、機械的物性と薄肉流動性のバランスの点から、溶融粘度が200Pa・s以下のPPS樹脂を配合することがより好ましいことが分かる。
 また、(B)成分として同じ表面処理酸化マグネシウムを用い、配合量を異ならせた、実施例6と比較例8との比較により、(B)成分が本発明に規定する範囲の下限未満の比較例8では熱伝導率が低下しているのに対し、実施例6では熱伝導率も0.5mmtBFも良好な結果が得られた。これより、(B)成分の配合量が本発明の範囲内であると、高熱伝導率と、優れた薄肉流動性とを両立できることが分かる。
 さらに、(C)成分の配合の有無において異なる実施例7及び8、並びに実施例9及び10の比較から、(C)成分を配合すると、流動性はやや低下するが、機械的強度(曲げ強度、曲げ弾性率)が向上することが分かる。
 また、図1より、本発明に係る表面処理酸化マグネシウム(酸化マグネシウムA)を使用した場合は、いずれの配合量においても、優れた薄肉流動性を示すことが分かる。
As described above, Tables 1 and 2 are examples in which those having an average particle size of 50 μm are used as the component (B). Table 1 and Table 2 show the following. That is, Example 5, Comparative Example 3, and Comparative Example 6 are all examples using 236 parts by mass of the component (B), but the surface-treated magnesium oxide according to the present invention was used as the component (B). In Example 5, all the evaluation results were good, whereas Comparative Example 3 using magnesium oxide surface-treated with aminoalkoxysilane and Comparative Example 6 using unsurface-treated magnesium oxide were: It was inferior at 0.5 mm tBF. In other words, it can be seen that excellent thin-wall fluidity was not exhibited. Then, by comparing the examples 1 to 3 using the same surface-treated magnesium oxide as the component (B) and blending PPS resins having different melt viscosities, the melt viscosity is from the point of balance between mechanical properties and thin-wall fluidity. It turns out that it is more preferable to mix | blend PPS resin of 200 Pa * s or less.
In addition, by using the same surface-treated magnesium oxide as the component (B), the amount of blending was different, and the comparison between Example 6 and Comparative Example 8 made a comparison that the component (B) was less than the lower limit of the range defined in the present invention. In Example 8, the thermal conductivity decreased, whereas in Example 6, the thermal conductivity and 0.5 mmtBF had good results. From this, it can be seen that when the blending amount of the component (B) is within the range of the present invention, both high thermal conductivity and excellent thin-wall fluidity can be achieved.
Furthermore, from the comparison of Examples 7 and 8 and Examples 9 and 10 that differ depending on the presence or absence of the component (C), when the component (C) is added, the fluidity is slightly lowered, but the mechanical strength (bending strength) It can be seen that the flexural modulus is improved.
Moreover, when the surface treatment magnesium oxide (magnesium oxide A) which concerns on this invention is used from FIG. 1, it turns out that the outstanding thin-wall fluidity | liquidity is shown in any compounding quantity.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3は、上述の通り、いずれも(B)成分として平均粒径が10μmのものを使用した例である。表3より以下のことが分かる。すなわち、実施例11及び13と、比較例9とは(B)成分の配合量を101質量部とした例であるが、実施例11及び13は(B)成分たる表面処理酸化マグネシウムのビニルアルコキシシランの付着量を異ならせた例であり、いずれの評価結果も良好であったのに対し、(B)成分として、エポキシにより表面処理した酸化マグネシウムを用いた比較例9は0.5mmtBFが劣り、薄肉流動性が低下したことが分かる。
 また、図2より、(B)成分たる表面処理酸化マグネシウムのビニルアルコキシシランの付着量を0.5質量%とした例は、1.5質量%とした例よりも0.5mmtBFが有意に長く、薄肉流動性においてより優れた結果が得られたことが分かる。
Table 3 is an example in which the average particle size is 10 μm as the component (B) as described above. Table 3 shows the following. That is, Examples 11 and 13 and Comparative Example 9 are examples in which the blending amount of component (B) was 101 parts by mass, but Examples 11 and 13 were vinyl alkoxy of surface-treated magnesium oxide as component (B). In this example, the adhesion amount of silane was varied, and all the evaluation results were good. On the other hand, Comparative Example 9 using magnesium oxide surface-treated with epoxy as component (B) was inferior in 0.5 mm tBF. It can be seen that the thin-wall fluidity has decreased.
Further, from FIG. 2, the example in which the adhesion amount of vinyl alkoxysilane of the surface-treated magnesium oxide as the component (B) is 0.5 mass% is significantly longer than the example in which the mass is 1.5 mass%. It can be seen that better results were obtained in thin-wall fluidity.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4は、上述の通り、いずれも(B)成分として平均粒径が30μmのものを使用した例である。表4及び図3より以下のことが分かる。すなわち、実施例18及び比較例13は(B)成分を236質量部配合した例であり、(B)成分として、実施例18は、本発明に係る表面処理酸化マグネシウムを使用し、比較例13はリン含有被覆酸化マグネシウムを使用した例である。実施例18は比較例13と比較して、0.5mmtBFが格段に長く、薄肉流動性に優れているのが分かる。
 また、実施例19及び比較例14は、(B)成分の配合量を305質量部とした点において、それぞれ実施例18及び比較例13と異なる。これらの例においても、実施例19は、比較例14よりも0.5mmtBFが格段に長く、薄肉流動性に優れているのが分かる。
Table 4 is an example in which the average particle size is 30 μm as the component (B) as described above. The following can be understood from Table 4 and FIG. That is, Example 18 and Comparative Example 13 are examples in which 236 parts by mass of Component (B) were blended. As Component (B), Example 18 used the surface-treated magnesium oxide according to the present invention, and Comparative Example 13 Is an example using phosphorus-containing coated magnesium oxide. As compared with Comparative Example 13, Example 18 shows that 0.5 mmtBF is remarkably long and has excellent thin-wall fluidity.
Moreover, Example 19 and Comparative Example 14 differ from Example 18 and Comparative Example 13 in that the blending amount of component (B) was 305 parts by mass, respectively. Also in these examples, Example 19 shows that 0.5 mmtBF is much longer than Comparative Example 14 and is excellent in thin-wall fluidity.

Claims (4)

  1.  (A)ポリアリーレンサルファイド樹脂100質量部と、
     (B)ビニルアルコキシシラン化合物で予め表面処理された酸化マグネシウム(以下、「表面処理酸化マグネシウム」と呼ぶ。)80~600質量部と、
    を配合してなる高熱伝導性樹脂組成物。
    (A) 100 parts by mass of polyarylene sulfide resin;
    (B) Magnesium oxide surface-treated with a vinylalkoxysilane compound (hereinafter referred to as “surface-treated magnesium oxide”) in an amount of 80 to 600 parts by mass;
    A highly thermally conductive resin composition comprising:
  2.  前記(B)表面処理酸化マグネシウムのレーザー回折・散乱法により測定した平均粒径が10μm超100μm以下である請求項1に記載の高熱伝導性樹脂組成物。 The high thermal conductive resin composition according to claim 1, wherein the average particle diameter of the (B) surface-treated magnesium oxide measured by a laser diffraction / scattering method is more than 10 μm and 100 μm or less.
  3.  前記(B)表面処理酸化マグネシウム表面において、酸化マグネシウムに対するビニルアルコキシシランの付着量が0.3~1.5質量%である請求項1又は2に記載の高熱伝導性樹脂組成物。 The highly thermally conductive resin composition according to claim 1 or 2, wherein the adhesion amount of vinylalkoxysilane to magnesium oxide is 0.3 to 1.5 mass% on the surface of (B) surface-treated magnesium oxide.
  4.  更に、(C)アルコキシシラン化合物0.1~2質量部を配合してなる請求項1~3のいずれか1項に記載の高熱伝導性樹脂組成物。 The high thermal conductive resin composition according to any one of claims 1 to 3, further comprising (C) 0.1 to 2 parts by mass of an alkoxysilane compound.
PCT/JP2013/061977 2012-04-27 2013-04-24 Resin composition having high thermal conductivity WO2013161844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012102949 2012-04-27
JP2012-102949 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161844A1 true WO2013161844A1 (en) 2013-10-31

Family

ID=49483152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061977 WO2013161844A1 (en) 2012-04-27 2013-04-24 Resin composition having high thermal conductivity

Country Status (3)

Country Link
JP (1) JPWO2013161844A1 (en)
TW (1) TW201410763A (en)
WO (1) WO2013161844A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083632A (en) * 2013-10-25 2015-04-30 ポリプラスチックス株式会社 Electrical insulation high heat conductive resin composition
JP2015209473A (en) * 2014-04-25 2015-11-24 住友理工株式会社 Silicone rubber composition and silicone rubber crosslinked body

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH07292251A (en) * 1994-03-03 1995-11-07 Shin Etsu Chem Co Ltd Heat-conductive silicone rubber composition
JPH0812886A (en) * 1994-07-04 1996-01-16 Polyplastics Co Polyarylene sulfide resin composition
JP2001214065A (en) * 1999-11-22 2001-08-07 Kyowa Chem Ind Co Ltd Material for semiconductor sealing use and resin composition containing the same and molded product made from the composition
JP2002038010A (en) * 2000-07-26 2002-02-06 Idemitsu Petrochem Co Ltd Molding material for electric insulation and radiator parts and parts for image-forming apparatus using the same
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
WO2005033216A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
WO2005033215A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2012136684A (en) * 2010-05-17 2012-07-19 Shin Kobe Electric Mach Co Ltd Thermoplastic resin composition and resin molded article
JP2012153552A (en) * 2011-01-25 2012-08-16 Ube Material Industries Ltd Magnesium oxide powder
JP2013035950A (en) * 2011-08-09 2013-02-21 Tosoh Corp Polyarylene sulfide resin composition, and composite composed thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH07292251A (en) * 1994-03-03 1995-11-07 Shin Etsu Chem Co Ltd Heat-conductive silicone rubber composition
JPH0812886A (en) * 1994-07-04 1996-01-16 Polyplastics Co Polyarylene sulfide resin composition
JP2001214065A (en) * 1999-11-22 2001-08-07 Kyowa Chem Ind Co Ltd Material for semiconductor sealing use and resin composition containing the same and molded product made from the composition
JP2002038010A (en) * 2000-07-26 2002-02-06 Idemitsu Petrochem Co Ltd Molding material for electric insulation and radiator parts and parts for image-forming apparatus using the same
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
WO2005033216A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
WO2005033215A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2012136684A (en) * 2010-05-17 2012-07-19 Shin Kobe Electric Mach Co Ltd Thermoplastic resin composition and resin molded article
JP2012153552A (en) * 2011-01-25 2012-08-16 Ube Material Industries Ltd Magnesium oxide powder
JP2013035950A (en) * 2011-08-09 2013-02-21 Tosoh Corp Polyarylene sulfide resin composition, and composite composed thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083632A (en) * 2013-10-25 2015-04-30 ポリプラスチックス株式会社 Electrical insulation high heat conductive resin composition
JP2015209473A (en) * 2014-04-25 2015-11-24 住友理工株式会社 Silicone rubber composition and silicone rubber crosslinked body

Also Published As

Publication number Publication date
TW201410763A (en) 2014-03-16
JPWO2013161844A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
US20090152491A1 (en) Thermally conductive resin compositions
US20090130471A1 (en) Thermally conductive plastic resin composition
JP4744911B2 (en) High thermal conductive resin composition
JP2008260830A (en) Heat-conductive resin composition
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
WO2013161844A1 (en) Resin composition having high thermal conductivity
JP7122491B2 (en) Method for suppressing burrs in polyarylene sulfide resin composition
JP2010285581A (en) Insulating resin composition
JP2007106854A (en) Thermally conductive resin composition
JP6976366B2 (en) Polyarylene sulfide resin composition
JP4004741B2 (en) Reinforced polyarylene sulfide resin composition with good tracking resistance
JP2878921B2 (en) Polyarylene sulfide resin composition
CN114644830A (en) Polyarylene sulfide resin composition
WO2007135749A1 (en) Resin composition of high heat conduction
JP2005306955A (en) Method for producing highly heat-conductive resin composition
JP6167011B2 (en) Electrically insulating high thermal conductive resin composition
JP7309790B2 (en) Method for producing polyarylene sulfide resin composition
JPH0759666B2 (en) Polyarylene sulfide resin composition
JP7382541B2 (en) Polyarylene sulfide resin composition and insert molded products
CN115066459B (en) Method for producing polyarylene sulfide resin composition
JPH0657792B2 (en) Polyarylene sulfide resin composition
JP6387211B1 (en) Polyarylene sulfide resin composition
WO2021161995A1 (en) Polyarylene sulfide resin composition production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782126

Country of ref document: EP

Kind code of ref document: A1