WO2005033216A1 - Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder - Google Patents

Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder Download PDF

Info

Publication number
WO2005033216A1
WO2005033216A1 PCT/JP2003/015954 JP0315954W WO2005033216A1 WO 2005033216 A1 WO2005033216 A1 WO 2005033216A1 JP 0315954 W JP0315954 W JP 0315954W WO 2005033216 A1 WO2005033216 A1 WO 2005033216A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
powder
oxide powder
resin composition
resin
Prior art date
Application number
PCT/JP2003/015954
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Kiyokawa
Kaori Yamamoto
Masaaki Kunishige
Original Assignee
Tateho Chemical Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co., Ltd. filed Critical Tateho Chemical Industries Co., Ltd.
Priority to AU2003289060A priority Critical patent/AU2003289060A1/en
Priority to JP2005509330A priority patent/JP4237182B2/en
Publication of WO2005033216A1 publication Critical patent/WO2005033216A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a highly-filled coated magnesium oxide powder and a resin composition containing the powder.
  • the present invention relates to a coated magnesium oxide powder excellent in moisture resistance and excellent in filling when used as a filler, and a resin composition excellent in fluidity containing the coated magnesium oxide powder.
  • Electronic devices are composed of electronic components such as laminates, printed wiring boards, and multilayer wiring boards.
  • a resin composition is usually used for a pre-preda, a spacer, a sealant, an adhesive sheet, and the like, and a resin composition is required to have various performances or characteristics.
  • recent trends include the mounting of high-capacity power elements and high-density mounting in electronic devices, and as a result, the resin composition and its applied products are required to have better heat dissipation and moisture resistance than before. ing.
  • silica silicon dioxide
  • alumina aluminum oxide
  • magnesium oxide which has an order of magnitude higher thermal conductivity than silica and about the same thermal conductivity as alumina, is being studied as a material for resin fillers for semiconductor encapsulation.
  • magnesium oxide powder has higher hygroscopicity than silica powder. Therefore, when magnesium oxide powder is used as a resin filler for semiconductor encapsulation, problems such as generation of cracks due to volume expansion of the filler and reduction of thermal conductivity due to hydration of the absorbed water and magnesium oxide. Had occurred. Therefore, it is necessary to provide moisture resistance to magnesium oxide powder used as a resin filler for semiconductor encapsulation. Has been a major issue in guaranteeing long-term stable operation of the.
  • JP-A-2003-34522 and JP-A-2003-34525 disclose aluminum salt or cake.
  • the magnesium compound powder is mixed with the magnesium oxide powder, the solid content is filtered off, dried, and calcined, so that the surface of the magnesium oxide powder is coated with a coating layer containing aluminum or a double oxide of silicon and magnesium.
  • a method for producing a coated magnesium oxide powder is disclosed.
  • the coated magnesium oxide powder obtained by these methods has improved moisture resistance, since the powder particles have an angular shape, the filling property of the resin is low, and the flow of the obtained resin composition is further reduced. There is a problem that the property is low.
  • Japanese Patent No. 2590491 discloses that alumina and / or sily particles are added to magnesium oxide powder, and this is granulated using a spray drier to obtain spherical granules. Thereafter, a method for producing a magnesium oxide-based material is disclosed in which at least a part of the granulated material is melted without breaking a strong granulated state, and then the granulated material is rapidly cooled.
  • This method aims at improving the moisture resistance of the magnesium oxide particles.However, since the particles are granulated using a spray drier, the obtained spherical granules are aggregates of particles, that is, porous materials, and are formed into resin. High filling is expected to be difficult.
  • An object of the present invention is to provide a coated magnesium oxide powder that solves the above-mentioned problems, has excellent moisture resistance, and has excellent filling properties when used as a filler, and can be highly filled into a resin.
  • Another object of the present invention is to provide a resin composition containing the coated magnesium oxide powder and having excellent moisture resistance, thermal conductivity and fluidity, and an electronic device using the resin composition. Disclosure of the invention
  • the present inventor focused on the angle of repose as a parameter indicating the fluidity of the powder, and the tap density as a parameter indicating the filling property, while conducting various studies. Excellent flowability and filling when within a certain range It has been found that a powder having excellent flowability can be obtained by using the powder.
  • the surface is covered with the double oxide, oxide coated magnetic Shiumu powder repose angle of 5 5 degrees or less, and the tap density is equal to or is 1. 6 5 g / m 1 or more Is provided.
  • the coated magnesium oxide powder in the present invention has a surface coated with a double oxide, an angle of repose of 55 degrees or less, and a tap density of 1.65 g Zm 1 or more.
  • the angle of repose is one of the characteristic values for calculating the fluidity index of so-called Carr, which is an index for comprehensively evaluating the fluidity of powder proposed by R.L.Carr.
  • the fluidity of the powder can be evaluated by the angle of repose. Specifically, it refers to the angle between the generatrix and the horizontal plane of the cone formed when the powder is gently dropped on a horizontal surface using a funnel.
  • This angle of repose is preferably 50 degrees or less.
  • the tap density is an index for evaluating the filling property of powder, and refers to the mass of powder per unit volume when a powder sample is placed in a container of known volume and tapped a specified number of times from a certain height.
  • the tapping density is 1.65 g 1 or more, and more preferably 1.80 g / m 1 or more.
  • the surface of the coated magnesium oxide powder of the present invention is coated with a double oxide.
  • the composite oxide covering the surface of the magnesium oxide powder preferably contains magnesium and one or more elements selected from the group consisting of aluminum, iron, silicon and titanium.
  • the content of the double oxide used in the present invention is preferably from 5 to 50 mass%, more preferably from 10 to 40 mass%.
  • the content of the double oxide is within the above range, the surface of the magnesium oxide powder is completely covered with the double oxide, so that the moisture resistance is greatly improved, and the thermal conductivity of the resin composition after filling is further improved. It is also high, and can exhibit sufficient effects as a thermal conductive filler.
  • the average particle diameter of the coated magnesium oxide powder of the present invention is preferably 5 X 1 0- 6 ⁇ 5 0 0 X 10- 6 m, 10 X 10-6 ⁇ : I 00 X 10 one 6 m is more preferable. Further, the BET specific surface area is preferably 5.0 X 10 3 m 2 / kg or less, more preferably 1 X 10 3 m 2 // kg or less.
  • the coated magnesium oxide powder having a repose angle of 55 degrees or less and a tap density of 1.65 gZm 1 or more according to the present invention has a high temperature in the presence of a compound forming a double oxide on the surface of the magnesium oxide powder.
  • a compound forming a double oxide on the surface of the magnesium oxide powder By melting the coated magnesium oxide powder, it can be produced by spheroidizing the coated magnesium oxide powder. For example, powder is melted by passing it through a high-temperature flame, and spheroidized by surface tension.
  • the coated magnesium oxide powder obtained by this method is not always spherical, a powder satisfying the fluidity index and oil absorption of the present invention at the same time is produced by mixing powders having different particle diameters.
  • the compound used to form the double oxide is preferably at least one compound selected from the group consisting of an aluminum compound, an iron compound, a silicon compound and a titanium compound.
  • the form of the compound is not limited, but nitrates, sulfates, chlorides, oxynitrates, oxysulfates, oxychlorides, hydroxides and oxides are used.
  • the amount of these compounds in the magnesium oxide powder is finally obtained.
  • the content of the double oxide in the coated magnesium oxide powder is preferably determined to be 5 to 50 mass%.
  • Crystallite size of the magnesium oxide powder used in the present invention is preferably 5 0 X 1 0- 9 m or more. Crystallite diameter 5 0 X 1 0- 9 m or more oxidation Maguneshiu. Beam powder finer powder has low reactivity compared to, to uniformly adsorb Kei-containing compound or the like on the surface of the magnesium oxide powder Therefore, the composite oxide covering the surface of the magnesium oxide powder becomes uniform, and the water resistance is improved.
  • the crystallite diameter used in the present invention is a value calculated by the Scherrerr formula using the X-ray diffraction method.
  • one particle is a polycrystal composed of a plurality of single crystals, and the crystallite diameter indicates an average value of the size of the single crystal in the polycrystal.
  • the purity of the magnesium oxide powder is not particularly limited, and is preferably determined according to the application. For example, in order to satisfy the insulation properties of the electronic component, the purity is preferably 90% or more, and more preferably 95% or more.
  • the magnesium oxide powder having the characteristics of the present invention can be produced by a known method, for example, an electrofusion method or a sintering method. Resin composition containing coated magnesium oxide powder
  • a coated magnesium oxide powder having a high resin filling property can be easily obtained at low cost while maintaining moisture resistance and thermal conductivity. Further, the resin composition filled with the coated magnesium oxide powder thus obtained has good fluidity and improves moldability.
  • the resin composition of the present invention is obtained by adding the above-mentioned coated magnesium oxide powder to a resin.
  • the coated magnesium oxide powder of the present invention can be surface-treated with a silane-based coupling agent, a titanate-based coupling agent, or an aluminate-based coupling agent, if necessary, to further improve the filling property.
  • a silane-based coupling agent e.g., silane-based coupling agent, a titanate-based coupling agent, or an aluminate-based coupling agent, if necessary, to further improve the filling property.
  • silane coupling agent examples include vinyl trichlorosilane, vinyl oxysilane, glycidoxypropyl trialkoxysilane, methacryloxypropylmethyldialkoxysilane, and the like.
  • titanate-based coupling agents include isopropyltriisostearoyl titanate, tetraoctylbis (ditridecylphosphate) titanate, and bis (dioctylpyrophosphate).
  • the resin used in the resin composition of the present invention is not particularly limited, and is a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, or a silicone resin, a polycarbonate resin, an acrylic resin, or a polyphenylene sulfide resin. And thermoplastic resins such as fluororesins. Of these, epoxy resins, silicone resins, and polyphenylene sulfide resins are preferred. If necessary, a curing agent and a curing accelerator can be added.
  • a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, or a silicone resin, a polycarbonate resin, an acrylic resin, or a polyphenylene sulfide resin.
  • thermoplastic resins such as fluororesins.
  • epoxy resins, silicone resins, and polyphenylene sulfide resins are preferred. If necessary, a curing agent and a curing accelerator can be added.
  • Epoxy resins include bisphenol A epoxy resin, novolak epoxy resin, bisphenol F epoxy resin, brominated epoxy resin, orthocresol novolak epoxy resin, glycidyl ester resin, glycidylamine resin, and heterocyclic epoxy. Resins and the like.
  • phenol resin examples include novolak phenol resin and resole phenol resin.
  • silicone resin examples include a millable silicone rubber, a condensation type liquid silicone rubber, an addition type liquid silicone rubber, and a UV curing type silicone rubber, and the addition type liquid silicone rubber is preferable. Further, either one-pack type or two-pack type silicone rubber may be used, but two-pack type silicone rubber is preferable.
  • the resin composition of the present invention may contain a filler in addition to the above coated magnesium oxide powder.
  • the filler is not particularly limited, and examples thereof include fused silica and crystalline silica. If necessary, a release agent, a flame retardant, a coloring agent, a low stress imparting agent, and the like can be appropriately compounded.
  • the electronic device of the present invention uses the above resin composition for a part thereof, and has excellent heat dissipation and moisture resistance.
  • the electronic device include a resin circuit board, a metal base circuit board, a metal-clad laminate, and a metal-clad laminate with an inner circuit.
  • the resin composition of the present invention for the above electronic device include a semiconductor encapsulant, an adhesive or an adhesive sheet, a heat dissipation sheet, a heat dissipation spacer or a heat dissipation grease.
  • a paper base / glass substrate is immersed in the resin composition of the present invention, dried by heating and cured to a B stage, Resin cloth, resin paper, etc.
  • a resin circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, and the like can be manufactured using this pre-preda.
  • a pre-preda is stacked according to the substrate thickness, a metal foil is placed, sandwiched between molds, inserted between hot plates of a press machine, and subjected to predetermined heating and pressing to form a laminate. Then, the four sides of the formed laminated board are cut, and the appearance is inspected to manufacture.
  • the resin composition of the present invention can be mixed with another base material and used as a base material in the form of a composite material such as glass epoxy or Teflon epoxy.
  • the resin composition of the present invention can be used as a sealing material.
  • the sealing resin is a resin material used for packaging for protecting the semiconductor chip from external factors such as mechanical, thermal stress and humidity. The performance of the formed package is indicated by the thermal conductivity and weather resistance of the cured resin.
  • the resin composition of the present invention can be used as an adhesive.
  • the adhesive refers to a substance used for bonding two objects, and the material of the adherend is not particularly limited.
  • the adhesive is temporarily given fluidity when applied or engaged on the surface of the adherend, and loses fluidity and solidifies after bonding.
  • a heat-sensitive adhesive such as a solvent adhesive, a pressure-sensitive adhesive, or an adhesive sheet, or a reactive adhesive can be used.
  • the resin composition of the present invention is used as an adhesive, the thermal conductivity and weather resistance after bonding are indicated by the thermal conductivity and weather resistance of the cured resin. -.
  • a metal-based circuit board can be manufactured by using the resin composition of the present invention as an adhesive.
  • the metal-based circuit board is manufactured by applying an adhesive on a metal plate, laminating metal foils when the adhesive is in the B-stage state, performing predetermined heating and pressing, and integrating them.
  • the resin composition of the present invention can be used as a heat dissipating material.
  • the heat dissipating material include a heat dissipating sheet, a heat dissipating spacer, and a heat dissipating grease.
  • the heat dissipation sheet is used to remove heat generated from heat-generating electronic components and electronic devices.
  • Air-insulating heat conductive sheet manufactured by filling silicone rubber with a heat conductive filler, and used mainly by attaching to heat radiating fins or metal plates.
  • the heat dissipation grease is the same as the heat dissipation sheet except that silicone oil is used instead of silicone rubber.
  • the heat-dissipating spacer is a thickness that fills the space between the heat-generating electronic components, the electronic device, and the case to directly transfer the heat generated from the heat-generating electronic components, the electronic device to the case of the electronic device.
  • Crystallite diameter 58. 3 X 1 0_ 9 assembly a is magnesium oxide Powder of single crystals of m to (Tateho Chemical Industries Co., Ltd. KMAO- H), using an impact-type dust ⁇ , particle size 100 X 1 It was ground to below 0- 6 m. Fumed silica (purity: 99.9% or more, specific surface area: 200 ⁇ 20 m 2 / g) is wet added to magnesium oxide so that the mixing ratio becomes 10 mass%, and the mixture is stirred at 400 to 500 rpm for 600 s. Mixed. After stirring and mixing, the cake obtained by filtration and dehydration was dried at 423 K using a dryer. The dried cake was crushed by a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder, to obtain a coated magnesium oxide powder.
  • X 1 0- 9 assembly a is magnesium oxide Powder of single crystals of m to (Tateho Chemical Industries Co., Ltd. KMAO- H), using an impact-type dust ⁇ , particle size 7 X 10-ground to less than 6 m. Fumed silica (purity: 99.9% or more, specific surface area: 200 ⁇ 2 Om 2 Zg) is wet added to magnesium oxide so that the mixing ratio becomes 10 mass%, and 600 at 400 to 500 rpm. The mixture was stirred and mixed. After stirring and mixing, the cake obtained by filtration and dehydration was dried at 423 K using a dryer. The dried cake was crushed by a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder, to obtain a coated magnesium oxide powder. Synthesis example 3
  • a coated magnesium oxide powder was obtained in the same manner as in Synthesis Example 1 except that the mixing ratio of the fumed silica force was 3 mass%.
  • a coated magnesium oxide powder was obtained in the same manner as in Synthesis Example 1 except that the mixing ratio of the fumed silica was 30 mAss%.
  • Crystallite diameter 58. 3 X 1 0- 9 assembly a is magnesium oxide Powder of single crystals of m to (Tateho Chemical Industries Co., Ltd. KMAO- H), using an impact-type dust ⁇ , particle size 1 00 X 10-ground to less than 6 m. 4% aqueous aluminum nitrate solution (manufactured by Kanto Chemical Co., Ltd. Ltd. special grade reagent), in terms of A 1 2 0 3, wet-added to the mixing ratio to magnesium oxide is 10 mass%, 400 to 500 rp For 600 s with stirring. After stirring and mixing, the mixture was filtered to form a cake.
  • the cake was sufficiently washed with water and dehydrated, and dried at 423 K using a dryer. Dried. The dried cake was crushed with a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder, to obtain a coated magnesium oxide powder.
  • iron nitrate aqueous solution in terms of F e 2 ⁇ 3, except that the mixing ratio against oxidation Ma Guneshiumu were blended so that 15 m ass%, in the same manner as in Synthesis Example 4 A coated magnesium oxide powder was obtained.
  • the powder prepared in Synthesis Example 1 was fed to a high temperature flame formed by burning of liquefied propane gas and oxygen, was melt-spheroidizing treatment was coated with false Terai Doo (Mg 2 S i 0 4) Spherical To obtain a coated magnesium oxide powder.
  • the powder produced in Synthesis Example 1 was calcined in air at 1723 K for 3600 s, and then re-crushed in a sample mill to adjust the particle size to the same level as the raw material magnesium oxide powder. (Mg 2 Si 0 4 ) coated magnesium oxide powder I got the end.
  • the powder prepared in Synthesis Example 2 was treated in the same manner as above to adjust the particle size to the same level as the raw material magnesium oxide powder, and coated with forsterite (Mg 2 Si 4 ). A coated magnesium oxide powder was obtained.
  • Example 3 The coated magnesium oxide powder obtained from Synthesis Example 1 and the coated magnesium oxide powder obtained from Synthesis Example 2 were mixed at a mass ratio of 7: 3.
  • Example 3 The coated magnesium oxide powder obtained from Synthesis Example 1 and the coated magnesium oxide powder obtained from Synthesis Example 2 were mixed at a mass ratio of 7: 3.
  • Example 5 Except for using the powder prepared in Synthesis Example 5 performs molten-spheroidizing treatment in the same manner as in Example 1 to obtain a coated oxide Maguneshiumu powder spherical coated with spinel (A 1 2 Mg 0 4) Was.
  • the powder obtained in Synthesis Example 1 was calcined in air at 1723 K for 3600 s, and then crushed again with a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder. (Mg 2 Si 4 ) to obtain a coated magnesium oxide powder.
  • Magnesium oxide powder is formed by combustion of liquefied propane gas and oxygen. The powder was supplied into a warm flame to obtain a magnesium oxide powder having an uncoated surface.
  • Angle of repose Using a powder property measurement device “Powder Tester PT-N” (manufactured by Hosokawa Micron Corporation), vibrating a standard sieve (opening 7 10 ⁇ ⁇ ) and dropping the powder sample through a funnel, using the injection method. The angle of repose (degree) was measured.
  • Tap density Using a powder property measurement device "Powder Tester I-II" (manufactured by Hosokawa Micron Corporation), put a powder sample in a 100 ml container, tap it 180 times from a certain height, and harden it with the impact of tapping. After that, the tapping density (g / ml) was measured.
  • Powder Tester I-II manufactured by Hosokawa Micron Corporation
  • BET specific surface area The specific surface area of the powder sample was measured by a gas adsorption method using a flow-type specific surface area measurement device “Flow Soap 1 1300” (manufactured by Shimadzu Corporation).
  • Average particle size Laser diffraction and scattering method
  • Example 3 Mg 2 Si0 4 6.56 50.7 1.747 20.24 0.54 4.12
  • Example 4 Mg 2 Si0 4 48.52 48.1 1.994 21.77 0.83 1.37
  • Example 5 Al 2 Mg0 4 21.76 47.4 1.701 20.45 0.78 2.77
  • Example 6 Fe 2 Mg0 4 21.00 48.2 1.840 20.21 0.31 1.08
  • Comparative Example 1 Mg 2 Si0 4 18.45 54.5 1.611 20.45 0.48 3.19 Comparative Example 2 ⁇ 1 46.4 1.930 21.09 0.81 7.34
  • Example 2 To the sample powder prepared in Example 1, 1.0 mass% of epoxysilane was added, and the powder was subjected to surface treatment by stirring and mixing for 600 s, and then dried at 420 K for 720 s. The obtained sample (560 parts by weight) was mixed with an ortho-cresol novolak epoxy resin.
  • the pellet was transfer molding with a 4 4 8 K in 1 8 0 s, 7 MP a , then performs a 1 8 X 1 0 3 s between Posutokiyua at 4 5 3 K, ⁇ 5 0 mm X t 3 mm Was obtained.
  • Example 7 Spiral flow was measured in the same manner as in Example 7 except that a mixed powder of coated magnesium oxide powders having different particle sizes prepared in Example 2 was used, and a molded product was obtained.
  • Example 6 Spiral flow was measured in the same manner as in Example 6 except that the spherical coated magnesium oxide powder produced in Example 5 was used, and a molded product was obtained.
  • Example 6 Except that the spherical coated magnesium oxide powder prepared in Example 6 was used Spiral flow was measured in the same manner as in Example 6 to obtain a molded body.
  • the spiral flow was measured in the same manner as in Example 7 except that the sample prepared in Comparative Example 1 was used, and a molded product was obtained.
  • Example 2 To the sample powder prepared in Example 1 was added 1.0% of butyltrimethoxysilane, and the mixture was stirred and mixed for 600 s to perform a surface treatment of the powder.
  • the viscosity was measured in the same manner as in Example 13 except that the mixed sample powder produced in Example 2 was used, and a molded product was obtained.
  • the viscosity was measured in the same manner as in Example 13 except that the sample powder produced in Comparative Example 1 was used, and a molded product was obtained.
  • the viscosity was measured in the same manner as in Example 13 except that the alumina powder was used instead of the magnesium oxide powder, to obtain a molded body.
  • Viscosity The viscosity was measured using a rheometer "VAR-50" (manufactured by REOLOG ICA), and the value of S hearrate was set to 1 s- 1 .
  • Thermal conductivity The thermal conductivity of the molded body was measured by a laser flash method using a thermal constant measuring device “TC 3000” (manufactured by Vacuum Riko Co., Ltd.).
  • Moisture resistance test The molded body was stored in a thermo-hygrostat set at a temperature of 358 K and a humidity of 85% for 7 days, and the moisture absorption was measured. The appearance was visually observed.
  • the coated magnesium oxide powder of the present invention that satisfies both the angle of repose and the tap density was subjected to a spheroidizing treatment (Table 1, Examples 1, 3 to 6) and fired. Both of those obtained by mixing the obtained powders (Table 1, Example 2) have excellent moisture resistance.
  • the resin composition filled with these powders (Table 2, Examples 7 to 14) has excellent fluidity, and the molded body has high thermal conductivity and moisture resistance. It was confirmed that it was excellent.
  • Comparative Example 1 was excellent in the moisture resistance, but the tap density was lower than the range of the present invention.
  • the fluidity was low when filled with epoxy resin (Table 2, Comparative Example 3) and when filled with silicone rubber (Table 2, Comparative Example 5).
  • the resin composition obtained by filling the conventional alumina powder in place of the magnesium oxide powder (Table 2, Comparative Examples 4 and 6) is excellent in fluidity and moisture resistance, but has poor thermal conductivity. Was inferior. Industrial applicability
  • the coated magnesium oxide powder of the present invention has excellent moisture resistance, and when used as a filler, has excellent filling properties, can be highly filled into a resin, and can be used as a heat conductive filler. Useful.
  • the resin composition obtained by filling the coated magnesium oxide powder has excellent fluidity, and the molded body has high heat dissipation and moisture resistance. It is very useful as a component material of a substrate, an adhesive or an adhesive sheet, a resin circuit board, a metal base circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, etc., and its industrial value is extremely high. high.

Abstract

A spherical coated magnesium oxide powder, characterized in that it is surface-coated with a double oxide and has an angle of repose of 55 degree or less and a tap density of 1.65 g/ml or more; a resin composition comprising the powder; and an electronic device using the resin composition. The spherical coated magnesium oxide powder is excellent in the resistance to moisture and also is excellent in fluidity and in the capability of being filled in a high proportion when used as a filler into a resin.

Description

明 細 書  Specification
高充填性被覆酸化マグネシゥム粉末及びその粉末を含む樹脂組成物 技術分野 TECHNICAL FIELD The present invention relates to a highly-filled coated magnesium oxide powder and a resin composition containing the powder.
本発明は、 耐湿性に優れ、 かつ充填材として用いるとき、 充填性に優れた被覆 酸化マグネシゥム粉末及ぴ該被覆酸化マグネシゥム粉末を含む流動性に優れた樹 脂組成物に関する。 ' 背景技術  The present invention relates to a coated magnesium oxide powder excellent in moisture resistance and excellent in filling when used as a filler, and a resin composition excellent in fluidity containing the coated magnesium oxide powder. '' Background technology
電子デバイスは、 積層体、 プリント配線板、 多層配線板等の電子部品により構 成されている。 電子部品には、 通常、 樹脂組成物がプリプレダ、 スぺーサ一、 封 止剤、 接着性シート等に用いられており、 樹脂組成物には、 様々な性能又は特性 が要求されている。 例えば、 最近の傾向として、 電子デバイスにおける大容量パ ヮー素子搭載、 高密度な実装が見られ、 それに伴い樹脂組成物及びその適用品に 対し従来よりも更に優れた放熱性、 耐湿性が要求されている。  Electronic devices are composed of electronic components such as laminates, printed wiring boards, and multilayer wiring boards. In electronic components, a resin composition is usually used for a pre-preda, a spacer, a sealant, an adhesive sheet, and the like, and a resin composition is required to have various performances or characteristics. For example, recent trends include the mounting of high-capacity power elements and high-density mounting in electronic devices, and as a result, the resin composition and its applied products are required to have better heat dissipation and moisture resistance than before. ing.
半導体封止用の樹脂組成物に用いるフイラ一は、 従来、 二酸化ケイ素 (以下、 シリカという)、 酸化アルミニウム (以下、 アルミナとレヽう) が用いられてきた。 し力、し、 シリカの熱伝導性は低く、 高集積化、 高電力化、 高速化等による発熱量 の増大に対応する放熱が充分ではないため、 半導体の安定動作等に問題が生じて いた。 一方、 シリカより熱伝導性が高いアルミナを使用すると、 放熱性は改善さ れるが、 アルミナは硬度が高いために、 混練機や成型機及ぴ金型の摩耗が激しく なるという問題点があった。  Conventionally, as a filler used for a resin composition for semiconductor encapsulation, silicon dioxide (hereinafter, referred to as silica) and aluminum oxide (hereinafter, referred to as alumina) have been used. The thermal conductivity of silica is low, and the heat dissipation is not enough to cope with the increase in the amount of heat generated by high integration, high power, high speed, etc., causing problems in the stable operation of semiconductors, etc. . On the other hand, the use of alumina, which has higher thermal conductivity than silica, improves heat dissipation, but alumina has a high hardness, which causes a problem in that kneaders, molding machines, and molds will be severely worn. .
そこで、 シリカに比べて熱伝導率が 1桁高く、 アルミナと約同等の熱伝導率を 有する酸化マグネシウムが半導体封止用榭脂フイラ一の材料として検討されてい る。 しかし、 酸化マグネシウム粉末は、 シリカ粉末に比べ、 吸湿性が大きい。 そ のため、 半導体の封止用樹脂フィラーとして酸化マグネシウム粉末を用いた場合、 吸湿した水と酸化マグネシゥムが水和して、 フィラーの体積膨張によるクラック の発生、 熱伝導性の低下等の問題が発生していた。 このため半導体封止用樹脂 フイラ一として用いる酸化マグネシゥム粉末に耐湿性を付与することが、 半導体 の長期的な安定動作を保証する上で大きな課題となっていた。 Therefore, magnesium oxide, which has an order of magnitude higher thermal conductivity than silica and about the same thermal conductivity as alumina, is being studied as a material for resin fillers for semiconductor encapsulation. However, magnesium oxide powder has higher hygroscopicity than silica powder. Therefore, when magnesium oxide powder is used as a resin filler for semiconductor encapsulation, problems such as generation of cracks due to volume expansion of the filler and reduction of thermal conductivity due to hydration of the absorbed water and magnesium oxide. Had occurred. Therefore, it is necessary to provide moisture resistance to magnesium oxide powder used as a resin filler for semiconductor encapsulation. Has been a major issue in guaranteeing long-term stable operation of the.
酸化マグネシウム粉末の耐湿性を改善させる方法として、 特開 2 0 0 3— 3 4 5 2 2号公報及ぴ特開 2 0 0 3— 3 4 5 2 3号公報には、 アルミニゥム塩又 はケィ素化合物と酸化マグネシウム粉末を混合し、 固体分をろ別し、 乾燥させて、 焼成することにより、 該酸化マグネシウム粉末の表面を、 アルミニウム又はケィ 素とマグネシゥムの複酸化物を含む被覆層で被覆することを特徴とする被覆酸化 マグネシゥム粉末の製造方法が開示されている。  As methods for improving the moisture resistance of magnesium oxide powder, JP-A-2003-34522 and JP-A-2003-34525 disclose aluminum salt or cake. The magnesium compound powder is mixed with the magnesium oxide powder, the solid content is filtered off, dried, and calcined, so that the surface of the magnesium oxide powder is coated with a coating layer containing aluminum or a double oxide of silicon and magnesium. A method for producing a coated magnesium oxide powder is disclosed.
これらの方法により得られた被覆酸化マグネシゥム粉末は耐湿性が改善された ものの、 粉末粒子は角張った形状をしているため、 樹脂への充填性が低く、 さら に得られた樹脂組成物の流動性が低レ、という問題がある。  Although the coated magnesium oxide powder obtained by these methods has improved moisture resistance, since the powder particles have an angular shape, the filling property of the resin is low, and the flow of the obtained resin composition is further reduced. There is a problem that the property is low.
—方、 特許第 2 5 9 0 4 9 1号公報には、 酸化マグネシウム粉末に対し、 アル ミナ及び/又はシリ力粒子を添加し、 これをスプレードライヤーを用いて粒状化 して球形顆粒物を得たのち、 力かる粒状化状態を崩すことなく、 前記造粒物の少 なくとも一部を溶融し、 次いでこれを急速に冷却する酸化マグネシウム系物質の 製造方法も開示されている。  On the other hand, Japanese Patent No. 2590491 discloses that alumina and / or sily particles are added to magnesium oxide powder, and this is granulated using a spray drier to obtain spherical granules. Thereafter, a method for producing a magnesium oxide-based material is disclosed in which at least a part of the granulated material is melted without breaking a strong granulated state, and then the granulated material is rapidly cooled.
この方法は、 酸化マグネシゥム粒子の耐湿性を向上させることを目的としてい るが、 スプレードライヤーを用いて粒状化するため、 得られた球形顆粒物は粒子 の集合体すなわち多孔質体であり、 樹脂へ高充填することは困難であると予測で さる。  This method aims at improving the moisture resistance of the magnesium oxide particles.However, since the particles are granulated using a spray drier, the obtained spherical granules are aggregates of particles, that is, porous materials, and are formed into resin. High filling is expected to be difficult.
本発明の目的は、 上記の課題を解消し、 耐湿性に優れ、 かつ充填材として用い るとき、 充填性に優れ、 樹脂へ高充填することができる被覆酸化マグネシウム粉 末を提供することである。 本発明の他の目的は、 この被覆酸化マグネシウム粉末 を含む、 耐湿性、 熱伝導性及び流動性に優れた樹脂組成物、 ならびにこの樹脂組 成物を用いた電子デバイスを提供することである。 発明の開示  An object of the present invention is to provide a coated magnesium oxide powder that solves the above-mentioned problems, has excellent moisture resistance, and has excellent filling properties when used as a filler, and can be highly filled into a resin. . Another object of the present invention is to provide a resin composition containing the coated magnesium oxide powder and having excellent moisture resistance, thermal conductivity and fluidity, and an electronic device using the resin composition. Disclosure of the invention
本発明者は、 上記目的を達成すべく、 種々検討を重ねる中で、 粉体の流動性を 示すパラメータとして安息角、 並びに、 充填性を示すパラメータとしてタップ密 度に着目し、 それぞれの値が特定の範囲内にあるときに、 流動性及び充填性に優 れた粉末を得ることができ、 さらにその粉末を使用して流動性に優れた樹脂組成 物を得ることができることを見出した。 In order to achieve the above object, the present inventor focused on the angle of repose as a parameter indicating the fluidity of the powder, and the tap density as a parameter indicating the filling property, while conducting various studies. Excellent flowability and filling when within a certain range It has been found that a powder having excellent flowability can be obtained by using the powder.
すなわち、 本発明によれば、 表面が複酸化物で被覆され、 安息角が5 5度以下、 かつタップ密度が 1 . 6 5 g /m 1以上であることを特徴とする被覆酸化マグネ シゥム粉末が提供される。 That is, according to the present invention, the surface is covered with the double oxide, oxide coated magnetic Shiumu powder repose angle of 5 5 degrees or less, and the tap density is equal to or is 1. 6 5 g / m 1 or more Is provided.
また、 本発明によれば、 充填材として、 上記の被覆酸化マグネシウム粉末を含 む樹脂組成物、 及びその樹脂組成物を使用した電子デバイスが提供される。 発明を実施するための最良の形態  Further, according to the present invention, there are provided a resin composition containing the above-mentioned coated magnesium oxide powder as a filler, and an electronic device using the resin composition. BEST MODE FOR CARRYING OUT THE INVENTION
被覆酸化マグネシゥム粉末 Coated magnesium oxide powder
本発明における被覆酸化マグネシウム粉末は、 その表面が複酸化物により被覆 され、 安息角が 5 5度以下、 かつタップ密度が 1 . 6 5 g Zm 1以上であるもの である。  The coated magnesium oxide powder in the present invention has a surface coated with a double oxide, an angle of repose of 55 degrees or less, and a tap density of 1.65 g Zm 1 or more.
ここで、 安息角は、 R . L . C a r rが提唱する粉体の流動性を総合的に評価 する指標、 いわゆる C a r rの流動性指数を算出するための特性値の一つであり、 この安息角により粉体の流動性を評価することができる。 具体的には、 粉体を漏 斗を使用して水平な面に静かに落下させた時に形成される円錐体の母線と水平面 のなす角度をいう。  Here, the angle of repose is one of the characteristic values for calculating the fluidity index of so-called Carr, which is an index for comprehensively evaluating the fluidity of powder proposed by R.L.Carr. The fluidity of the powder can be evaluated by the angle of repose. Specifically, it refers to the angle between the generatrix and the horizontal plane of the cone formed when the powder is gently dropped on a horizontal surface using a funnel.
この安息角を 5 5度以下とすることにより、 粉末の流動性が良好となり、 その 結果、 この粉末を含有する樹脂組成物の流動性を向上することができる。 この安 息角は、 5 0度以下であることが好ましい。  By setting the angle of repose to 55 degrees or less, the flowability of the powder is improved, and as a result, the flowability of the resin composition containing the powder can be improved. This angle of repose is preferably 50 degrees or less.
タップ密度は、 粉末の充填性を評価する指標であり、 粉末試料を体積が既知の 容器に入れ、 一定の高さから規定の回数タッピングした時の単位体積当たりの粉 体質量をいう。 このタッピング密度は、 1 . 6 5 g 1以上であり、 1 . 8 0 g /m 1以上であることがより好ましい。  The tap density is an index for evaluating the filling property of powder, and refers to the mass of powder per unit volume when a powder sample is placed in a container of known volume and tapped a specified number of times from a certain height. The tapping density is 1.65 g 1 or more, and more preferably 1.80 g / m 1 or more.
本発明の被覆酸化マグネシウム粉末はその表面が複酸化物で被覆されている。 この酸化マグネシウム粉末の表面を被覆する複酸化物は、 アルミニウム、 鉄、 ケ ィ素及びチタンからなる群から選択される 1以上の元素とマグネシウムとを含む ものであることが好ましい。 この複酸化物により表面を被覆することにより、 酸 化マグネシゥム粉末の耐湿性が大幅に向上する。 The surface of the coated magnesium oxide powder of the present invention is coated with a double oxide. The composite oxide covering the surface of the magnesium oxide powder preferably contains magnesium and one or more elements selected from the group consisting of aluminum, iron, silicon and titanium. By coating the surface with this double oxide, acid Moisture resistance of magnesium fluoride powder is greatly improved.
複酸化物として、 フォルステライ ト (Mg2S i 04)、 スピネル (A l 2Mg 04 マグネシウムフェライ ト (F e 2Mg04)、 チタン酸マグネシウム (Mg T i〇3) などをあげることができる。 As double oxides, false Terai Doo (Mg 2 S i 0 4) , spinel (A l 2 Mg 0 4 Magnesium Blow wells (F e 2 Mg0 4), magnesium titanate (Mg T I_〇 3) and the like Can be.
本発明で用いる複酸化物の含有量、 すなわち、 1個の粒子に対する表面の複酸 化物の割合は、 5〜 50 m a s s %が好ましく、 10〜 40 m a s s %がより好 ましい。 複酸化物の含有量が上記の範囲にあると、 酸化マグネシウム粉末の表面 が複酸化物により完全に被覆されて耐湿性が大幅に向上し、 さらには、 充填後の 樹脂組成物の熱伝導率も高く、 熱伝導性フイラ一として十分な効果を発揮するこ とができる。  The content of the double oxide used in the present invention, that is, the ratio of the double oxide on the surface to one particle is preferably from 5 to 50 mass%, more preferably from 10 to 40 mass%. When the content of the double oxide is within the above range, the surface of the magnesium oxide powder is completely covered with the double oxide, so that the moisture resistance is greatly improved, and the thermal conductivity of the resin composition after filling is further improved. It is also high, and can exhibit sufficient effects as a thermal conductive filler.
本発明の被覆酸化マグネシウム粉末の平均粒径は、 5 X 1 0— 6〜5 0 0 X 10— 6mが好ましく、 10 X 10-6〜: I 00 X 10一6 mがより好ましい。 また BET比表面積は、 5. 0 X 1 03m2/k g以下が好ましく、 1 X 1 03m2// k g以下がより好ましい。 The average particle diameter of the coated magnesium oxide powder of the present invention is preferably 5 X 1 0- 6 ~5 0 0 X 10- 6 m, 10 X 10-6~: I 00 X 10 one 6 m is more preferable. Further, the BET specific surface area is preferably 5.0 X 10 3 m 2 / kg or less, more preferably 1 X 10 3 m 2 // kg or less.
本発明の安息角が 55度以下、 かつタップ密度が 1. 65 gZm 1以上の被覆 酸化マグネシウム粉末は、 酸化マグネシウム粉末の表面に複酸化物を形成する化 合物を存在させた状態で、 高温で溶融することにより、 被覆酸化マグネシウム粉 末を球状化することにより製造することができる。 例えば粉末を高温火炎中を通 過させて溶融し、 表面張力により球状化する。  The coated magnesium oxide powder having a repose angle of 55 degrees or less and a tap density of 1.65 gZm 1 or more according to the present invention has a high temperature in the presence of a compound forming a double oxide on the surface of the magnesium oxide powder. By melting the coated magnesium oxide powder, it can be produced by spheroidizing the coated magnesium oxide powder. For example, powder is melted by passing it through a high-temperature flame, and spheroidized by surface tension.
また、 酸化マグネシウム粉末の表面に、 複酸化物を形成する化合物を存在させ だ状態で、 被覆材の融点以下の焼成温度で焼成することにより製造することも可 能である。 この方法により得られた被覆酸化マグネシウム粉末は必ずしも球状で あるとは限らないため、 異なる粒径の粉末を混合することにより本発明の流動性 指数及び吸油量を同時に満足する粉末を製造する。  Further, it is also possible to manufacture by sintering at a sintering temperature equal to or lower than the melting point of the coating material in a state where the compound forming the complex oxide is present on the surface of the magnesium oxide powder. Since the coated magnesium oxide powder obtained by this method is not always spherical, a powder satisfying the fluidity index and oil absorption of the present invention at the same time is produced by mixing powders having different particle diameters.
複酸化物を形成するために使用される化合物は、 アルミニウム化合物、 鉄化合 物、 ケィ素化合物及びチタン化合物からなる群から選択される 1以上の化合物で あることが好ましい。 化合物の形態は限定されないが、 硝酸塩、 硫酸塩、 塩化物、 ォキシ硝酸塩、 ォキシ硫酸塩、 ォキシ塩化物、 水酸化物、'酸化物が用いられる。 酸化マグネシゥム粉末に対するこれらの化合物の配合量は、 最終的に得られる 被覆酸化マグネシゥム粉末の複酸化物の含有量が 5〜5 0 m a s s %となるよう に決定することが好ましい。 The compound used to form the double oxide is preferably at least one compound selected from the group consisting of an aluminum compound, an iron compound, a silicon compound and a titanium compound. The form of the compound is not limited, but nitrates, sulfates, chlorides, oxynitrates, oxysulfates, oxychlorides, hydroxides and oxides are used. The amount of these compounds in the magnesium oxide powder is finally obtained The content of the double oxide in the coated magnesium oxide powder is preferably determined to be 5 to 50 mass%.
本発明で用いる酸化マグネシウム粉末の結晶子径は、 5 0 X 1 0— 9 m以上で あることが好ましい。 結晶子径が 5 0 X 1 0—9 m以上の酸化マグネシゥ.ム粉末 は、 より微細な粉末に比して反応性が低く、 酸化マグネシウム粉末の表面にケィ 素化合物等を均一に吸着させることができるため、 酸化マグネシゥム粉末の表面 を被覆する複酸化物が均一になり、 耐水性が向上する。 Crystallite size of the magnesium oxide powder used in the present invention is preferably 5 0 X 1 0- 9 m or more. Crystallite diameter 5 0 X 1 0- 9 m or more oxidation Maguneshiu. Beam powder finer powder has low reactivity compared to, to uniformly adsorb Kei-containing compound or the like on the surface of the magnesium oxide powder Therefore, the composite oxide covering the surface of the magnesium oxide powder becomes uniform, and the water resistance is improved.
本発明で使用する結晶子径は、 X線回折法を用いて、 S c h e r r e r式で算 出した値である。 一般に、 一つの粒子は複数の単結晶で構成された多結晶体であ り、 結晶子径は多結晶体中の単結晶の大きさの平均値を示している。  The crystallite diameter used in the present invention is a value calculated by the Scherrerr formula using the X-ray diffraction method. In general, one particle is a polycrystal composed of a plurality of single crystals, and the crystallite diameter indicates an average value of the size of the single crystal in the polycrystal.
酸化マグネシウム粉末の純度は、 特に限定されず、 用途に応じて決定すること が好ましい。 例えば、 電子部品の絶縁特性を満足するためには、 純度 9 0 %以上 であることが好ましく、 純度 9 5 %以上であることがより好ましい。 なお、 本発 明の特性を有する酸化マグネシウム粉末は、 公知の方法、 例えば、 電融法、 焼結 法等を用いて製造することができる。 被覆酸化マグネシゥム粉末を含む樹脂組成物  The purity of the magnesium oxide powder is not particularly limited, and is preferably determined according to the application. For example, in order to satisfy the insulation properties of the electronic component, the purity is preferably 90% or more, and more preferably 95% or more. The magnesium oxide powder having the characteristics of the present invention can be produced by a known method, for example, an electrofusion method or a sintering method. Resin composition containing coated magnesium oxide powder
上記の製造方法により、 耐湿性、 熱伝導性を維持しながら、 樹脂への高い充填 性を有する被覆酸ィ匕マグネシウム粉末を低コストかつ容易に得ることができる。 また、 このようにして得られた被覆酸化マグネシゥム粉末を充填した樹脂組成物 は、 良好な流動性を有し、 成型性が改善される。  According to the above-described production method, a coated magnesium oxide powder having a high resin filling property can be easily obtained at low cost while maintaining moisture resistance and thermal conductivity. Further, the resin composition filled with the coated magnesium oxide powder thus obtained has good fluidity and improves moldability.
本発明の樹脂組成物は、 樹脂に上記の被覆酸化マグネシゥム粉末を含有させて 得られたものである。  The resin composition of the present invention is obtained by adding the above-mentioned coated magnesium oxide powder to a resin.
その場合、 本発明の被覆酸化マグネシウム粉末は、 必要に応じてシラン系カツ プリング剤、 チタネート系カップリング剤、 アルミネート系カップリング剤で表 面処理することができ、 さらに充填性を向上することができる。  In that case, the coated magnesium oxide powder of the present invention can be surface-treated with a silane-based coupling agent, a titanate-based coupling agent, or an aluminate-based coupling agent, if necessary, to further improve the filling property. Can be.
シラン系カップリング剤としては、 ビニルトリクロルシラン、 ビュルトリアル コキシシラン、 グリシドキシプロピルトリアルコキシシラン、 メタクロキシプロ ピルメチルジアルコキシシラン等があげられる。 チタネート系カツプリング剤としては、 ィソプロピルトリイソステアロイルチ タネート、 テトラオクチルビス (ジトリデシルホスフアイ ト) チタネート、 ビス (ジォクチルパイロホスフエ一ト) 才キシァセテ一トチタネート等があげられる。 本発明の樹脂組成物に用いる樹脂は、 特に限定されず、 エポキシ樹脂、 フ ノール樹脂、 ポリイミド樹脂、 ポリエステル樹脂、 シリコーン樹脂等の熱硬化性 樹脂やポリカーボネート樹脂、 アクリル樹脂、 ポリフエ二レンサルファイ ド樹脂、 フッ素樹脂等の熱可塑性樹脂等があげられる。 これらのうち、 エポキシ樹脂、 シ リコーン樹脂、 ポリフエ二レンサルファイド樹脂が好ましい。 また、 必要に応じ て、 硬化剤、 硬化促進剤を配合することができる。 Examples of the silane coupling agent include vinyl trichlorosilane, vinyl oxysilane, glycidoxypropyl trialkoxysilane, methacryloxypropylmethyldialkoxysilane, and the like. Examples of titanate-based coupling agents include isopropyltriisostearoyl titanate, tetraoctylbis (ditridecylphosphate) titanate, and bis (dioctylpyrophosphate). The resin used in the resin composition of the present invention is not particularly limited, and is a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, or a silicone resin, a polycarbonate resin, an acrylic resin, or a polyphenylene sulfide resin. And thermoplastic resins such as fluororesins. Of these, epoxy resins, silicone resins, and polyphenylene sulfide resins are preferred. If necessary, a curing agent and a curing accelerator can be added.
エポキシ樹脂としては、 ビスフエノール Aエポキシ樹脂、 ノボラック型ェポキ シ樹脂、 ビスフエノール Fエポキシ樹脂、 臭素化エポキシ樹脂、 オルソクレゾー ルノボラック型エポキシ樹脂、 グリシジルエステル系樹脂、 グリシジルァミン系 '樹脂、 複素環式エポキシ樹脂等があげられる。  Epoxy resins include bisphenol A epoxy resin, novolak epoxy resin, bisphenol F epoxy resin, brominated epoxy resin, orthocresol novolak epoxy resin, glycidyl ester resin, glycidylamine resin, and heterocyclic epoxy. Resins and the like.
フエノール榭脂としては、 ノボラック型フエノール樹脂、 レゾール型フエノー ル樹脂等があげられる。  Examples of the phenol resin include novolak phenol resin and resole phenol resin.
シリコーン樹脂としては、 ミラブル型シリコーンゴム、 縮合型液状シリコーン ゴム、 付加型液状シリコーンゴム、 UV硬化型シリコーンゴム等があげられ、 付 加型液状シリコーンゴムが好ましい。 また、 1液型及び 2液型のシリコーンゴム のいずれでもよいが、 2液型のシリコーンゴムが好ましい。  Examples of the silicone resin include a millable silicone rubber, a condensation type liquid silicone rubber, an addition type liquid silicone rubber, and a UV curing type silicone rubber, and the addition type liquid silicone rubber is preferable. Further, either one-pack type or two-pack type silicone rubber may be used, but two-pack type silicone rubber is preferable.
本発明の樹脂組成物には、 上記の被覆酸化マグネシウム粉末の他に、 充填材を 配合することができる。 充填材としては、 特に限定されるものではなく、 例えば、 溶融シリカ、 結晶シリカ等があげられる。 また必要に応じて離型剤、 難燃剤、 着 色剤、 低応力付与剤等を適宜配合することができる。  The resin composition of the present invention may contain a filler in addition to the above coated magnesium oxide powder. The filler is not particularly limited, and examples thereof include fused silica and crystalline silica. If necessary, a release agent, a flame retardant, a coloring agent, a low stress imparting agent, and the like can be appropriately compounded.
本発明の電子デバイスは、 上記樹脂組成物をその一部に用いたもので、 優れた 放熱性、 耐湿性を有する。 電子デバイスとしては、 例えば、 樹脂回路基板、 金属 ベース回路基板、 金属張積層板、 内層回路入り金属張積層板等があげられる。 本発明の樹脂組成物の上記の電子デバイスに対する用途としては、 半導体封止 剤、 接着剤もしくは接着性シート、 又は放熱シート、 放熱スぺーサーもしくは放 熱グリース等があげられる。 本発明の樹脂組成物を用いて上記の基板等を製造するには、 紙基材ゃガラス基 材を本発明の樹脂組成物に浸漬し、 加熱乾燥させて Bステージまで硬化させて、 プリプレダ (レジンクロス、 レジンペーパー等) を製造する。 The electronic device of the present invention uses the above resin composition for a part thereof, and has excellent heat dissipation and moisture resistance. Examples of the electronic device include a resin circuit board, a metal base circuit board, a metal-clad laminate, and a metal-clad laminate with an inner circuit. Examples of the use of the resin composition of the present invention for the above electronic device include a semiconductor encapsulant, an adhesive or an adhesive sheet, a heat dissipation sheet, a heat dissipation spacer or a heat dissipation grease. In order to manufacture the above-mentioned substrate or the like using the resin composition of the present invention, a paper base / glass substrate is immersed in the resin composition of the present invention, dried by heating and cured to a B stage, Resin cloth, resin paper, etc.)
また、 このプリプレダを用いて、 樹脂回路基板、 金属張積層板、 内層回路入り 金属張積層板等を製造することができる。 例えば、 金属張積層板は、 プリプレダ を基板厚さに応じて積み重ね、 金属箔を置き、 金型に挟みプレス機の熱盤間に揷 入し、 所定の加熱'加圧を行い積層板を成形し、 更に成形した積層板の四辺を切 断し、 外観検査を行って製造する。  Also, a resin circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, and the like can be manufactured using this pre-preda. For example, for a metal-clad laminate, a pre-preda is stacked according to the substrate thickness, a metal foil is placed, sandwiched between molds, inserted between hot plates of a press machine, and subjected to predetermined heating and pressing to form a laminate. Then, the four sides of the formed laminated board are cut, and the appearance is inspected to manufacture.
また、 本発明の樹脂組成物を他の基材材料と混合して、 ガラスエポキシ、 テフ ロンエポキシ等のような複合材料の形態で、 基材として用いることもできる。 本発明の樹脂組成物は、 封止材として用いることができる。 封止用樹脂とは、 半導体チップを機械的、 熱的ス トレス、 湿度などの外的要因から保護するための パッケージングに用いられる樹脂材料のことであり、 本発明の樹脂糸且成物により 形成されたパッケージの性能は、 樹脂硬化物の熱伝導率及ぴ耐候性により示され る。  Further, the resin composition of the present invention can be mixed with another base material and used as a base material in the form of a composite material such as glass epoxy or Teflon epoxy. The resin composition of the present invention can be used as a sealing material. The sealing resin is a resin material used for packaging for protecting the semiconductor chip from external factors such as mechanical, thermal stress and humidity. The performance of the formed package is indicated by the thermal conductivity and weather resistance of the cured resin.
本発明の樹脂組成物は、 接着剤として用いることができる。 接着剤は、 二つの 物体を張り合わせるために使用される物質をいい、 被接着体の材質は特に限定さ れるものではない。 接着剤は、 被接着体の表面に塗布又は係合されたとき、 一時 的に流動性を付与され、 接着後は流動性を失って固化するものである。 例えば、 溶剤接着剤、 圧感接着剤、 接着性シートのような熱感接着剤、 反応接着剤があげ られる。 本発明の樹脂組成物を接着剤として用いた場合における接着後の熱伝導 率及び耐候性は、 樹脂硬化物の熱伝導率及び耐候性により示される。 -.  The resin composition of the present invention can be used as an adhesive. The adhesive refers to a substance used for bonding two objects, and the material of the adherend is not particularly limited. The adhesive is temporarily given fluidity when applied or engaged on the surface of the adherend, and loses fluidity and solidifies after bonding. For example, a heat-sensitive adhesive such as a solvent adhesive, a pressure-sensitive adhesive, or an adhesive sheet, or a reactive adhesive can be used. When the resin composition of the present invention is used as an adhesive, the thermal conductivity and weather resistance after bonding are indicated by the thermal conductivity and weather resistance of the cured resin. -.
また、 本発明の樹脂組成物を接着剤として用い、 金属ベース回路基板を製造す ることができる。 金属ベース回路基板は、 接着剤を金属板上に塗布し、 接着剤が Bステージ状態にあるときに金属箔を積層して、 所定の加熱 ·加圧を行い、 一体 化して製造する。  Further, a metal-based circuit board can be manufactured by using the resin composition of the present invention as an adhesive. The metal-based circuit board is manufactured by applying an adhesive on a metal plate, laminating metal foils when the adhesive is in the B-stage state, performing predetermined heating and pressing, and integrating them.
また、 本発明の樹脂組成物は、 放熱材として用いることができる。 放熱材とし ては、 例えば、 放熱シート、 放熱スぺーサ一、 放熱グリース等があげられる。 放 熱シートは、 発熱性電子部品、 電子デバイスから発生した熱を除去するための電 気絶縁性の熱伝導性シートであり、 シリコーンゴムに熱伝導性フイラ一を充填し て製造され、 主として放熱フィン又は金属板に取り付けて用いられる。 放熱グ リースは、 シリコーンゴムの代わりにシリコーンオイルを用いた以外は放熱シー トと同じである。 放熱スぺーサ一は、 発熱性電子部品、 電子デバイスから発生し た熱を電子機器のケース等に直接伝熱するための、 発熱性電子部品、 電子デパイ スとケースの間のスペースを埋める厚みを有したシリコーン固化物である。 実施例 Further, the resin composition of the present invention can be used as a heat dissipating material. Examples of the heat dissipating material include a heat dissipating sheet, a heat dissipating spacer, and a heat dissipating grease. The heat dissipation sheet is used to remove heat generated from heat-generating electronic components and electronic devices. Air-insulating heat conductive sheet, manufactured by filling silicone rubber with a heat conductive filler, and used mainly by attaching to heat radiating fins or metal plates. The heat dissipation grease is the same as the heat dissipation sheet except that silicone oil is used instead of silicone rubber. The heat-dissipating spacer is a thickness that fills the space between the heat-generating electronic components, the electronic device, and the case to directly transfer the heat generated from the heat-generating electronic components, the electronic device to the case of the electronic device. Is a solidified silicone having Example
本発明を実施例により具体的に説明するが、 本発明は以下の実施例に限定され るものではない。  EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
1. 被覆酸化マグネシウム粉末  1. coated magnesium oxide powder
合成例 1 Synthesis example 1
結晶子径が 58. 3 X 1 0_9mの単結晶の集合体である酸化マグネシウム粉 末 (タテホ化学工業株式会社製 KMAO— H) を、 衝撃式粉碎機を用いて、 粒径 100 X 1 0—6 m以下に粉砕した。 ヒュームドシリカ (純度 9 9. 9%以上、 比表面積 200 ± 20m2/g) を、 酸化マグネシウムに対して混合比が 10m a s s %になるように湿式添加し、 400〜500 r p mで 600 s撹拌混合し た。 撹拌混合後、 ろ過、 脱水して得られたケーキを、 乾燥機を用いて、 423K でー晚乾燥した。 乾燥したケーキをサンプルミルで解砕して、 原料の酸化マグネ シゥム粉末と同程度の粒径に調整し、 被覆酸化マグネシウム粉末を得た。 Crystallite diameter 58. 3 X 1 0_ 9 assembly a is magnesium oxide Powder of single crystals of m to (Tateho Chemical Industries Co., Ltd. KMAO- H), using an impact-type dust碎機, particle size 100 X 1 It was ground to below 0- 6 m. Fumed silica (purity: 99.9% or more, specific surface area: 200 ± 20 m 2 / g) is wet added to magnesium oxide so that the mixing ratio becomes 10 mass%, and the mixture is stirred at 400 to 500 rpm for 600 s. Mixed. After stirring and mixing, the cake obtained by filtration and dehydration was dried at 423 K using a dryer. The dried cake was crushed by a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder, to obtain a coated magnesium oxide powder.
合成例 2 Synthesis example 2
'結晶子径が 58. 3 X 1 0-9mの単結晶の集合体である酸化マグネシウム粉 末 (タテホ化学工業株式会社製 KMAO— H) を、 衝撃式粉碎機を用いて、 粒径 7 X 1 0— 6m以下に粉砕した。 ヒュームドシリカ (純度 99. 9 %以上、 比表 面積 200 ± 2 Om2Zg) を、 酸化マグネシウムに対して混合比が 1 0 m a s s %になるように湿式添加し、 400〜500 r pmで 600 s撹拌混合した。 撹拌混合後、 ろ過、 脱水して得られたケーキを、 乾燥機を用いて、 423Kで一 晚乾燥した。 乾燥したケーキをサンプルミルで解砕して、 原料の酸化マグネシゥ ム粉末と同程度の粒径に調整し、 被覆酸化マグネシウム粉末を得た。 合成例 3 'Crystallite diameter 58. 3 X 1 0- 9 assembly a is magnesium oxide Powder of single crystals of m to (Tateho Chemical Industries Co., Ltd. KMAO- H), using an impact-type dust碎機, particle size 7 X 10-ground to less than 6 m. Fumed silica (purity: 99.9% or more, specific surface area: 200 ± 2 Om 2 Zg) is wet added to magnesium oxide so that the mixing ratio becomes 10 mass%, and 600 at 400 to 500 rpm. The mixture was stirred and mixed. After stirring and mixing, the cake obtained by filtration and dehydration was dried at 423 K using a dryer. The dried cake was crushed by a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder, to obtain a coated magnesium oxide powder. Synthesis example 3
ヒュームドシリ力の混合比を 3 m a s s %とした以外は上記合成例 1と同様に して被覆酸化マグネシゥム粉末を得た。  A coated magnesium oxide powder was obtained in the same manner as in Synthesis Example 1 except that the mixing ratio of the fumed silica force was 3 mass%.
合成例 4 Synthesis example 4
ヒュームドシリカの混合比を 30 m a s s %とした以外は上記合成例 1と同様 にして被覆酸化マグネシゥム粉末を得た。  A coated magnesium oxide powder was obtained in the same manner as in Synthesis Example 1 except that the mixing ratio of the fumed silica was 30 mAss%.
合成例 5 Synthesis example 5
結晶子径が 58. 3 X 1 0— 9mの単結晶の集合体である酸化マグネシウム粉 末 (タテホ化学工業株式会社製 KMAO— H) を、 衝撃式粉碎機を用いて、 粒径 1 00 X 1 0— 6 m以下に粉砕した。 4%硝酸アルミニウム水溶液 (関東化学株 式会社製特級試薬) を、 A 1203に換算して、 酸化マグネシウムに対して混合 比が 10 m a s s %になるように湿式添加し、 400〜500 r p で 600 s 撹拌混合した。 撹拌混合後、 ろ過し、 ケーキができ始めたところで、 残留硝酸ァ ルミ二ゥムを除去するため、 十分に水洗し、 脱水して得られたケーキを、 乾燥機 を用いて、 423Kでー晚乾燥した。 乾燥したケーキをサンプルミルで解砕して、 原料の酸化マグネシゥム粉末と同程度の粒径に調整し、 被覆酸化マグネシゥム粉 末を得た。 Crystallite diameter 58. 3 X 1 0- 9 assembly a is magnesium oxide Powder of single crystals of m to (Tateho Chemical Industries Co., Ltd. KMAO- H), using an impact-type dust碎機, particle size 1 00 X 10-ground to less than 6 m. 4% aqueous aluminum nitrate solution (manufactured by Kanto Chemical Co., Ltd. Ltd. special grade reagent), in terms of A 1 2 0 3, wet-added to the mixing ratio to magnesium oxide is 10 mass%, 400 to 500 rp For 600 s with stirring. After stirring and mixing, the mixture was filtered to form a cake. After removing residual aluminum nitrate, the cake was sufficiently washed with water and dehydrated, and dried at 423 K using a dryer. Dried. The dried cake was crushed with a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder, to obtain a coated magnesium oxide powder.
合成例 6 Synthesis Example 6
硝酸アルミニウムに代えて、 硝酸鉄水溶液を、 F e 23に換算して、 酸化マ グネシゥムに対して混合比が 15m a s s %となるように配合した以外は、 上記 合成例 4と同様にして、 被覆酸化マグネシウム粉末を得た。 Instead of aluminum nitrate, iron nitrate aqueous solution, in terms of F e 23, except that the mixing ratio against oxidation Ma Guneshiumu were blended so that 15 m ass%, in the same manner as in Synthesis Example 4 A coated magnesium oxide powder was obtained.
実施例 1 Example 1
合成例 1で作製した粉末を、 液化プロパンガスと酸素との燃焼により形成した 高温火炎中に供給し、 溶融 ·球状化処理を行い、 フォルステライ ト (Mg2S i 04) で被覆した球状の被覆酸化マグネシウム粉末を得た。 The powder prepared in Synthesis Example 1 was fed to a high temperature flame formed by burning of liquefied propane gas and oxygen, was melt-spheroidizing treatment was coated with false Terai Doo (Mg 2 S i 0 4) Spherical To obtain a coated magnesium oxide powder.
実施例 2 Example 2
合成例 1で作製した粉末を、 空気中で 1 723 Kで 3600 s焼成した後、 再 度サンプルミルにて解碎して、 原料の酸化マグネシゥム粉末と同程度の粒径に調 整し、 フォルステラィ ト (Mg2S i 04) で被覆した被覆酸化マグネシウム粉 末を得た。 The powder produced in Synthesis Example 1 was calcined in air at 1723 K for 3600 s, and then re-crushed in a sample mill to adjust the particle size to the same level as the raw material magnesium oxide powder. (Mg 2 Si 0 4 ) coated magnesium oxide powder I got the end.
一方、 合成例 2で作製した粉末を、 上記と同様の処理を行って、 原料の酸化マ グ シゥム粉末と同程度の粒径に調整し、 フォルステライト (Mg 2S i〇4) で被覆した被覆酸化マグネシゥム粉末を得た。 On the other hand, the powder prepared in Synthesis Example 2 was treated in the same manner as above to adjust the particle size to the same level as the raw material magnesium oxide powder, and coated with forsterite (Mg 2 Si 4 ). A coated magnesium oxide powder was obtained.
上記合成例 1から得られた被覆酸化マグネシウム粉末と、 合成例 2から得られ た被覆酸化マグネシゥム粉末とを質量比で、 7 : 3となるように混合しだ。 実施例 3  The coated magnesium oxide powder obtained from Synthesis Example 1 and the coated magnesium oxide powder obtained from Synthesis Example 2 were mixed at a mass ratio of 7: 3. Example 3
合成例 3で作製した粉末を使用したこと以外は上記実施例 1と同様にして溶 融 '球状化処理を行い、 フォルステライト (Mg 2S i〇4) で被覆した球状の 被覆酸化マグネシゥム粉末を得た。 Except that the powder prepared in Synthesis Example 3 was used, a melting process was performed in the same manner as in Example 1 above, and a spherical coated magnesium oxide powder coated with forsterite (Mg 2 Si 4 ) was obtained. Obtained.
実施例 4 Example 4
合成例 4で作製した粉丰を使用したこと以外は上記実施例 1と同様にして溶 融 '球状化処理を行い、 フォルステラィト (Mg 2S i〇4) で被覆した球状の 被覆酸化マグネシゥム粉末を得た。 Except that the powder prepared in Synthesis Example 4 was used, a melting and spheroidizing treatment was performed in the same manner as in Example 1 above, and a spherical coated magnesium oxide coated with forsterite (Mg 2 Si 4 ) was used. A powder was obtained.
実施例 5 Example 5
合成例 5で作製した粉末を使用したこと以外は上記実施例 1と同様にして溶 融 ·球状化処理を行い、 スピネル (A 12Mg 04) で被覆した球状の被覆酸化 マグネシゥム粉末を得た。 Except for using the powder prepared in Synthesis Example 5 performs molten-spheroidizing treatment in the same manner as in Example 1 to obtain a coated oxide Maguneshiumu powder spherical coated with spinel (A 1 2 Mg 0 4) Was.
実施例 6 Example 6
合成例 6で作製した粉末を使用したこと以外は上記実施例 1と同様にして溶 融 '球状化処理を行い、 マグネシウムフェライ ト (F e 2Mg〇4) で被覆した 球状の被覆酸化マグネシゥム粉末を得た。 Except for using the powder prepared in Synthesis Example 6 performs molten 'spheroidizing treatment in the same manner as in Example 1, magnesium Blow wells (F e 2 Mg_〇 4) coated oxide Maguneshiumu powder coated spherical Got.
比較例 1 Comparative Example 1
合成例 1で得られた粉末を、 空気中で 1 723Kで 3600 s焼成した後、 再 度、 サンプルミルにて解砕して、 原料の酸化マグネシウム粉末と同程度の粒径に 調整し、 フオルステライ ト (Mg 2S i〇4) で被覆した被覆酸化マグネシウム 粉末を得た。 The powder obtained in Synthesis Example 1 was calcined in air at 1723 K for 3600 s, and then crushed again with a sample mill to adjust the particle size to about the same as the raw material magnesium oxide powder. (Mg 2 Si 4 ) to obtain a coated magnesium oxide powder.
比較例 2 Comparative Example 2
酸化マグネシゥム粉末を、 液化プロパンガスと酸素との燃焼により形成した高 温火炎中に供給し、 表面が被覆されていない酸化マグネシゥム粉末を得た。 Magnesium oxide powder is formed by combustion of liquefied propane gas and oxygen. The powder was supplied into a warm flame to obtain a magnesium oxide powder having an uncoated surface.
評価試験 Evaluation test
上記各実施例 1〜 6及び比較例 1、 2で得られた被覆酸化マグネシゥム粉末試 料の被覆複酸化物の含有量、 安息角、 タップ密度、 BET比表面積、 平均粒径及 び耐湿性の各項目を測定し、 結果を表 1に示した。 なお、 各項目の測定方法を下 記に示す。  The content of coated double oxide, angle of repose, tap density, BET specific surface area, average particle size, and moisture resistance of the coated magnesium oxide powder samples obtained in Examples 1 to 6 and Comparative Examples 1 and 2 described above. Each item was measured and the results are shown in Table 1. The measurement method for each item is shown below.
粉末表面の複酸化物の含有量:走査型蛍光 X線分析装置 「Z S X— 100 e」 (理学電機工業株式会社製) を用いて、 粉末試料に含まれる元素の含有量を測定 し、 複酸化物の含有量に換算した。  Content of double oxide on powder surface: Using a scanning X-ray fluorescence spectrometer “ZSX-100e” (manufactured by Rigaku Denki Kogyo Co., Ltd.), measure the content of elements contained in the powder sample and perform double oxidation. Was converted to the content of the substance.
安息角 :粉体物性測定装置 「パウダテスタ PT— N」 (ホソカワミクロン株式 会社製) を用いて、 標準篩 (目開き 7 10 μ Πχ) を振動させ、 粉末試料をロート を通じ落下させる、 注入法により安息角 (度). を測定した。 Angle of repose: Using a powder property measurement device “Powder Tester PT-N” (manufactured by Hosokawa Micron Corporation), vibrating a standard sieve (opening 7 10 μΠ Π ) and dropping the powder sample through a funnel, using the injection method. The angle of repose (degree) was measured.
タップ密度:粉体物性測定装置 「パウダテスタ ΡΤ— Ν」 (ホソカワミクロン 株式会社製) を用いて、 1 00m lの容器に粉末試料を入れ、 一定の高さから 180回タッピングさせ、 タッピングの衝撃で固めた後、 タッピング密度 (g/ ml) を測定した。  Tap density: Using a powder property measurement device "Powder Tester I-II" (manufactured by Hosokawa Micron Corporation), put a powder sample in a 100 ml container, tap it 180 times from a certain height, and harden it with the impact of tapping. After that, the tapping density (g / ml) was measured.
BET比表面積:ガス吸着法により、 流動式比表面積測定装置 「フローソープ 1 1 2300」 (島津製作所株式会社製) を用いて、 粉末試料の比表面積を測定 した。  BET specific surface area: The specific surface area of the powder sample was measured by a gas adsorption method using a flow-type specific surface area measurement device “Flow Soap 1 1300” (manufactured by Shimadzu Corporation).
平均粒径: レーザー回折 ·散乱法により粒度分布測定装置 「マイクロトラック Average particle size: Laser diffraction and scattering method
HRA」 (日機装株式会社製) を用いて、 粉末試料の体積平均粒径を測定した。 耐湿性試験:得られた試料 5 X 10 3 kg を、 温度 373K の沸騰水 100 X 10_6m3中で 2時間攪拌し、 質量増加率を測定して、 耐湿性を評価した。 複酸化物 被覆酸化マグネシウム Using HRA (manufactured by Nikkiso Co., Ltd.), the volume average particle size of the powder sample was measured. Moisture resistance test: A sample 5 X 10 3 kg obtained was stirred for 2 hours in boiling water 100 X 10_ 6 m 3 temperature 373 K, by measuring the mass increase rate was evaluated moisture resistance. Double oxide Coated magnesium oxide
含有量 安息角 夕ップ密度 平均粒径 BET比表面積 質量増加率 種類  Content Repose angle Evening density Average particle size BET specific surface area Mass increase rate Type
(mass%) (度) (g/ml) (10- ¾) (103mVkg) (mass¾) 実施例 1 Mg2Si04 17.49 52.1 1.863 21.01 0.75 2.97 (mass%) (degree) (g / ml) (10-¾) (10 3 mVkg) (mass¾) Example 1 Mg 2 Si0 4 17.49 52.1 1.863 21.01 0.75 2.97
Mg2Si04 Mg 2 Si0 4
実施例 2 18.14 48.5 2.006 17.00 1.10 3.39 Example 2 18.14 48.5 2.006 17.00 1.10 3.39
(混合粉末)  (Mixed powder)
実施例 3 Mg2Si04 6.56 50.7 1.747 20.24 0.54 4.12 実施例 4 Mg2Si04 48.52 48.1 1.994 21.77 0.83 1.37 実施例 5 Al2Mg04 21.76 47.4 1.701 20.45 0.78 2.77 実施例 6 Fe2Mg04 21.00 48.2 1.840 20.21 0.31 1.08 比較例 1 Mg2Si04 18.45 54.5 1.611 20.45 0.48 3.19 比較例 2 ― 一 46.4 1.930 21.09 0.81 7.34 Example 3 Mg 2 Si0 4 6.56 50.7 1.747 20.24 0.54 4.12 Example 4 Mg 2 Si0 4 48.52 48.1 1.994 21.77 0.83 1.37 Example 5 Al 2 Mg0 4 21.76 47.4 1.701 20.45 0.78 2.77 Example 6 Fe 2 Mg0 4 21.00 48.2 1.840 20.21 0.31 1.08 Comparative Example 1 Mg 2 Si0 4 18.45 54.5 1.611 20.45 0.48 3.19 Comparative Example 2 ― 1 46.4 1.930 21.09 0.81 7.34
2 . 樹脂組成物 2. Resin composition
実施例 7 Example 7
実施例 1で作製した試料粉末に、 エポキシシランを 1 . 0 m a s s %添加し、 6 0 0 s撹拌混合して粉末を表面処理し、 次いで 4 2 3 Kで 7 2 0 0 s乾燥させ た。 得られた試料 5 6 0重量部を、 オルソクレゾールノボラック型エポキシ樹脂 To the sample powder prepared in Example 1, 1.0 mass% of epoxysilane was added, and the powder was subjected to surface treatment by stirring and mixing for 600 s, and then dried at 420 K for 720 s. The obtained sample (560 parts by weight) was mixed with an ortho-cresol novolak epoxy resin.
6 3重量部、 ノポラック型フエノール樹脂 3 4重量部、 トリフエ-ルホスフィン 1重量部及びカルナパワックス 2重量部と、 擂潰機を用いて、 6 0 0 s混合粉砕 した。 その後、 混合物を二本ロールを用いて、 3 7 3 Kで 3 0 0 s混練し、 次い でこの混練物を 1 0メッシュ以下に更に粉砕し、 φ 3 8 mm X t 1 5 mmのぺ レッ トを作製した。 このペレッ トを、 7 M P a、 4 4 8 Kで 1 8 0 s間、 トラン スファー成型し、 スパイラルフローを測定した。 63 parts by weight, 34 parts by weight of nopolak phenol resin, 1 part by weight of triphenylphosphine and 2 parts by weight of carnapa wax were mixed and pulverized for 600 s using a crusher. Thereafter, the mixture was kneaded using a two-roll mill at 3773 K for 300 s, and then the kneaded material was further pulverized to a size of 10 mesh or less. A wret was made. This pellet was transfer-molded at 7 MPa, 448 K for 180 s, and the spiral flow was measured.
また、 このペレッ トを 4 4 8 Kで 1 8 0 s、 7 M P aでトランスファー成型し、 次いで 4 5 3 Kで 1 8 X 1 0 3 s間ポストキユアを行い、 φ 5 0 mm X t 3 mm の成型体を得た。 Further, the pellet was transfer molding with a 4 4 8 K in 1 8 0 s, 7 MP a , then performs a 1 8 X 1 0 3 s between Posutokiyua at 4 5 3 K, φ 5 0 mm X t 3 mm Was obtained.
実施例 8 Example 8
実施例 2で作製した粒径の異なる被覆酸化マグネシウム粉末の混合粉末を使用 したこと以外は上記実施例 7と同様にして、 スパイラルフローを測定し、 成型体 を得た。  Spiral flow was measured in the same manner as in Example 7 except that a mixed powder of coated magnesium oxide powders having different particle sizes prepared in Example 2 was used, and a molded product was obtained.
実施例 9 ' Example 9 '
.実施例 3で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上 記実施例 6と同様にして、 スパイラルフローを測定し、 成型体を得た。  Spiral flow was measured in the same manner as in Example 6 except that the spherical coated magnesium oxide powder produced in Example 3 was used, and a molded product was obtained.
実施例 1 0 Example 1 0
実施例 4で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上 記実施例 6と同様にしてスパイラルフローを測定し、 成型体を得た。  Spiral flow was measured in the same manner as in Example 6 except that the spherical coated magnesium oxide powder produced in Example 4 was used, and a molded product was obtained.
実施例 1 1 Example 11
実施例 5で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上 記実施例 6と同様にして、 スパイラルフローを測定し、 成型体を得た。  Spiral flow was measured in the same manner as in Example 6 except that the spherical coated magnesium oxide powder produced in Example 5 was used, and a molded product was obtained.
実施例 1 2 Example 1 2
実施例 6で作製した球状の被覆酸化マグネシウム粉末を使用したこと以外は上 記実施例 6と同様にして、 スパイラルフローを測定し、 成型体を得た。 Except that the spherical coated magnesium oxide powder prepared in Example 6 was used Spiral flow was measured in the same manner as in Example 6 to obtain a molded body.
比較例 3 Comparative Example 3
比較例 1で作製した試料を用いた以外は、 実施例 7と同様にして、 スパイラル フローを測定し、 成型体を得た。  The spiral flow was measured in the same manner as in Example 7 except that the sample prepared in Comparative Example 1 was used, and a molded product was obtained.
比較例 4 Comparative Example 4
酸化マグネシウム粉末に代えて、 アルミナ粉末を用いたこと以外は、 実施例 7と同様にして、 スパイラルフローを測定し、 成型体を得た。  Spiral flow was measured in the same manner as in Example 7, except that alumina powder was used instead of magnesium oxide powder, to obtain a molded body.
実施例 1 3 Example 1 3
実施例 1で作製した試料粉末に、 ビュルトリメ トキシシランを 1 . O m a s s %添加し、 6 0 0 s撹拌混合して粉末を表面処理し、 次いで 4 2 3 で To the sample powder prepared in Example 1 was added 1.0% of butyltrimethoxysilane, and the mixture was stirred and mixed for 600 s to perform a surface treatment of the powder.
7 2 0 0 s乾燥させた。 得られた試料 4 5 1重量部を、 二液型 R T Vシリコーン ゴム 1 0 0重量部と、 二本ロールを用いて 3 0 0 s混練した。 次いで、 白金触媒 5重量部を添加し、 二本ロールを用いて 6 0 0 s混練して、 コンパウンドを作製 し、 下記に示す条件で粘度を測定した。 これを 3 9 3 Kで 6 0 0 s、 5 M P aで プレス成型し、 < ) 5 0 111111 セ 3 111111の成型体を得た。 It was dried for 720 s. 450 parts by weight of the obtained sample was kneaded with 100 parts by weight of a two-component RTV silicone rubber for 300 seconds using a two-roll mill. Next, 5 parts by weight of a platinum catalyst was added and kneaded for 600 s using a two-roll mill to prepare a compound, and the viscosity was measured under the following conditions. This was press-molded at 3933 K for 600 s and 5 MPa to obtain a molded product of <) 50 111111 c 3 111111.
実施例 1 4 Example 14
実施例 2で作製した混合試料粉末を使用したことを除いては、 実施例 1 3と同 様にして、 粘度を測定し、 成型体を得た。  The viscosity was measured in the same manner as in Example 13 except that the mixed sample powder produced in Example 2 was used, and a molded product was obtained.
比較例 5 Comparative Example 5
比較例 1で作製した試料粉末を用いた以外は、 実施例 1 3と同様にして、 粘度 を測定し、 成型体を得た。  The viscosity was measured in the same manner as in Example 13 except that the sample powder produced in Comparative Example 1 was used, and a molded product was obtained.
比較例 6 Comparative Example 6
酸化マグネシウム粉末に代えて、 アルミナ粉末を用いた以外は、 実施例 1 3と 同様にして、 粘度を測定し、 成型体を得た。  The viscosity was measured in the same manner as in Example 13 except that the alumina powder was used instead of the magnesium oxide powder, to obtain a molded body.
評価試験 Evaluation test
上記各実施例 7〜 1 4及び比較例 3〜 6で得られた樹脂組成物のスパイラルフ ロー又は粘度 (常温での樹脂の状態により適切な測定方法を選択した。)、 ならび に、 これらの樹脂組成物の成型体の熱伝導率、 耐湿性及び耐湿性試験後の外観を 測定し、 結果を表 2に示した。 なお、 上記各項目の評価方法は以下の通りである。 スパイラノレフロー: EMM I一 I一 66に準じて、 測定した。 Spiral flow or viscosity of the resin composition obtained in each of Examples 7 to 14 and Comparative Examples 3 to 6 (an appropriate measurement method was selected depending on the state of the resin at room temperature). The thermal conductivity, moisture resistance, and appearance of the molded article of the resin composition after the moisture resistance test were measured, and the results are shown in Table 2. The evaluation method for each of the above items is as follows. Spirano reflow: Measured according to EMM I-I-66.
粘度: レオメータ 「VAR— 50」 (REOLOG I CA社製) を用いて、 粘 度を測定し、 S h e a r r a t eが 1 s— 1の値とした。 Viscosity: The viscosity was measured using a rheometer "VAR-50" (manufactured by REOLOG ICA), and the value of S hearrate was set to 1 s- 1 .
熱伝導率: レーザーフラッシュ法により、 熱定数測定装置 「T C— 3000」 (真空理工株式会社製) を用いて、 成型体の熱伝導率を測定した。  Thermal conductivity: The thermal conductivity of the molded body was measured by a laser flash method using a thermal constant measuring device “TC 3000” (manufactured by Vacuum Riko Co., Ltd.).
耐湿†生試験:成型体を温度 358 K、 湿度 85 %に設定した恒温恒湿器に 7日 間保管し、 吸湿率を測定した。 また外観を目視により観察した。 Moisture resistance test: The molded body was stored in a thermo-hygrostat set at a temperature of 358 K and a humidity of 85% for 7 days, and the moisture absorption was measured. The appearance was visually observed.
樹脂組成物の流動性 成形体の評価試験 複酸化物 樹脂 スパイラル 粘度 熱伝導率 吸湿率 耐湿性試験 フロー (m) (Pa · s) (W/m ) (mass¾) 後の外観 実施例 7 Mg2Si04 エポキシ樹脂 0.507 ― 3.11 0.18 異常なし 実施例 8 Mg2Si04 エポキシ樹脂 0.468. ― 3.12 0.16 異常なし 実施例 9 Mg2Si04 エポキシ樹脂 0.448 ― 3.25 0.20 異常なし 実施例 10 Mg2Si04 エポキシ樹脂 0.653 ― . 3.03 0.11 異常なし 実施例 11 Al2Mg04 エポキシ樹脂 0.535 ― 3.12 0.15 異常なし 実施例 12 Fe2Mg04 エポキシ樹脂 0.492 ― 3.15 0.14 ¾常なし 比較例 3 Mg2Si04 エポキシ樹脂 0.343 ― 3.18 0.17 異常なし 比較例 4 _w エポキシ樹脂 0.502 ― 2.78 0.15 異常なし 実施例 13 Mg2Si04 シリコーンゴム 一 471 2.20 0.20 異常なし 実施例 14 Mg2Si04 シリコーンゴム ― 624 2.26 0.19 異常なし 比較例 5 Mg2Si04 シリコーンゴム 一 3280 2.14 0.20 異常なし 比較例 6 シリコーンゴム ― 1130 1.70 0.16 異常なしFluidity of resin composition Evaluation test of molded article Double oxide Resin Spiral Viscosity Thermal conductivity Moisture absorption Moisture resistance test Appearance after flow (m) (Pa · s) (W / m) (mass¾) Example 7 Mg 2 Si0 4 epoxy resin 0.507 - 3.11 0.18 No change example 8 Mg 2 Si0 4 epoxy resin 0.468 -. 3.12 0.16 No abnormality example 9 Mg 2 Si0 4 epoxy resin 0.448 - 3.25 0.20 No change example 10 Mg 2 Si0 4 epoxy resin 0.653 -. 3.03 0.11 No abnormality example 11 Al 2 Mg0 4 epoxy resin 0.535 - 3.12 0.15 No change example 12 Fe 2 Mg0 4 epoxy resin 0.492 - 3.15 0.14 ¾ atmospheric None Comparative example 3 Mg 2 Si0 4 epoxy resin 0.343 - 3.18 0.17 No abnormality Comparative example 4 _w Epoxy resin 0.502 ― 2.78 0.15 No abnormality Example 13 Mg 2 Si0 4 Silicone rubber 471 2.20 0.20 No abnormality Example 14 Mg 2 Si0 4 Silicone rubber ― 624 2.26 0.19 No abnormality Comparative example 5 Mg 2 Si0 4 silicone rubber one 3280 2.14 0.20 different None Comparative Example 6 Silicone rubber - 1130 1.70 0.16 No change
(*) :被覆 MgO粉末に代えて、 被覆のない A1203粉末を使用 (*): In place of the coated MgO powder, using A1 2 0 3 powder uncoated
以上の結果から明らかなように、 本発明の安息角及びタップ密度を共に満足す る被覆酸化マグネシウム粉末は、 球状化処理を施したもの (表 1、 実施例 1、 3〜6 ) 及び焼成により得られた粉末を混合して得られたもの (表 1、 実施例 2 ) 共に、 耐湿性に優れている。 そして、 これらの粉末を充填してなる樹脂組成 物 (表 2、 実施例 7〜 1 4 ) は、 流動性に優れており、 さらに、 その成型体は高 い熱伝導率を有し、 耐湿性に優れていることが確認された。 As is evident from the above results, the coated magnesium oxide powder of the present invention that satisfies both the angle of repose and the tap density was subjected to a spheroidizing treatment (Table 1, Examples 1, 3 to 6) and fired. Both of those obtained by mixing the obtained powders (Table 1, Example 2) have excellent moisture resistance. The resin composition filled with these powders (Table 2, Examples 7 to 14) has excellent fluidity, and the molded body has high thermal conductivity and moisture resistance. It was confirmed that it was excellent.
一方、 比較例 1の粉末は、 耐湿性は優れていたが、 タップ密度が本発明の範囲 を下回っている。 これをエポキシ樹脂に充填した場合 (表 2、 比較例 3 )、 及び シリコーンゴムに充填した場合 (表 2、 比較例 5 ) 共に、 流動性が低い値となつ た。  On the other hand, the powder of Comparative Example 1 was excellent in the moisture resistance, but the tap density was lower than the range of the present invention. The fluidity was low when filled with epoxy resin (Table 2, Comparative Example 3) and when filled with silicone rubber (Table 2, Comparative Example 5).
比較例 2の粉末は複酸化物で被覆されていないので、 表 1に示したように耐湿 性が非常に低レ、ものであった  Since the powder of Comparative Example 2 was not coated with the double oxide, the moisture resistance was very low as shown in Table 1.
また、 酸化マグネシウム粉末に代えて、 従来のアルミナ粉末を充填して得られ た樹脂組成物 (表 2、 比較例 4 , 6 ) は、 流動性及び耐湿性は優れているものの、 熱伝導性に劣っていた。 産業上の利用可能性  In addition, the resin composition obtained by filling the conventional alumina powder in place of the magnesium oxide powder (Table 2, Comparative Examples 4 and 6) is excellent in fluidity and moisture resistance, but has poor thermal conductivity. Was inferior. Industrial applicability
以上詳細に説明したように、 本発明の被覆酸化マグネシウム粉末は、 耐湿性に 優れ、 かつ充填材として用いるとき、 充填性に優れ、 樹脂へ高充填することがで き、 熱伝導性フイラ一として有用である。  As described in detail above, the coated magnesium oxide powder of the present invention has excellent moisture resistance, and when used as a filler, has excellent filling properties, can be highly filled into a resin, and can be used as a heat conductive filler. Useful.
また、 この被覆酸化マグネシウム粉末を充填して得られた樹脂組成物は、 流動 性に優れており、 その成型体は高い放熱性及び耐湿性を有するため、 様々な電子 デバイスの封止材又はスぺーサ一、 接着剤又は接着性シート、 あるいは樹脂回路 基板、 金属ベース回路基板、 金属張積層板、 内層回路入り金属張積層板等の構成 部材として非常に有用であり、 その工業的価値は極めて高い。  The resin composition obtained by filling the coated magnesium oxide powder has excellent fluidity, and the molded body has high heat dissipation and moisture resistance. It is very useful as a component material of a substrate, an adhesive or an adhesive sheet, a resin circuit board, a metal base circuit board, a metal-clad laminate, a metal-clad laminate with an inner layer circuit, etc., and its industrial value is extremely high. high.

Claims

請 求 の 範 囲 1. 表面が複酸化物で被覆され、 安息角が 5 5度以下、 かつタップ密度が 1. 65 gZm 1以上であることを特徴とする被覆酸化マグネシウム粉末。  Scope of Claim 1. A coated magnesium oxide powder whose surface is coated with a double oxide, the repose angle is 55 degrees or less, and the tap density is 1.65 gZm1 or more.
2. 複酸化物が、 アルミニウム、 鉄、 ケィ素及びチタンからなる群から選択され る 1以上の元素とマグネシウムとを含む、 請求の範囲 1記載の被覆酸化マグネシ ゥム粉末。 2. The coated magnesium oxide powder according to claim 1, wherein the double oxide contains one or more elements selected from the group consisting of aluminum, iron, silicon and titanium, and magnesium.
3. 複酸化物を 5〜50ma s s %を含む、 請求の範囲 1又は 2記載の被覆酸化 マグネシウム粉末。  3. The coated magnesium oxide powder according to claim 1 or 2, comprising 5 to 50 mass% of the double oxide.
4. 平均粒径が 5 X 1 0— 6〜 500 X 1 0— 6mであり、 :6£丁比表面積が54. an average particle size of 5 X 1 0- 6 ~ 500 X 1 0- 6 m,: 6 £ Ding specific surface area of 5
1 03m2/k g以下である、 請求の範囲 1〜3のいずれか 1項記載の被覆酸化 マグネシウム粉末。 1 0 3 m is 2 / kg or less, coated magnesium oxide powder according to any one of the range of 1 to 3 claims.
5. 請求の範囲 1〜 4のいずれか 1項記載の被覆酸化マグネシゥム粉末を含む樹 脂組成物。  5. A resin composition comprising the coated magnesium oxide powder according to any one of claims 1 to 4.
6. 樹脂組成物の樹脂がエポキシ樹脂である、 請求の範囲 5記載の樹脂組成物。6. The resin composition according to claim 5, wherein the resin of the resin composition is an epoxy resin.
7. 樹脂組成物の樹脂がシリ コーンゴムである、 請求の範囲 5項記載の樹脂組成 物。 7. The resin composition according to claim 5, wherein the resin of the resin composition is silicone rubber.
8. 請求の範囲 5〜 7のいずれか 1項記載の樹脂組成物を用いた電子デパイス。  8. An electronic device using the resin composition according to any one of claims 5 to 7.
PCT/JP2003/015954 2003-10-03 2003-12-12 Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder WO2005033216A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289060A AU2003289060A1 (en) 2003-10-03 2003-12-12 Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
JP2005509330A JP4237182B2 (en) 2003-10-03 2003-12-12 Highly filled coated magnesium oxide powder and resin composition containing the powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003346085 2003-10-03
JP2003-346085 2003-10-03

Publications (1)

Publication Number Publication Date
WO2005033216A1 true WO2005033216A1 (en) 2005-04-14

Family

ID=34419492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015954 WO2005033216A1 (en) 2003-10-03 2003-12-12 Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder

Country Status (4)

Country Link
JP (1) JP4237182B2 (en)
AU (1) AU2003289060A1 (en)
TW (1) TWI262897B (en)
WO (1) WO2005033216A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2007045987A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007045988A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007051270A (en) * 2005-05-25 2007-03-01 Tosoh Corp Polyarylene sulfide composition
JP2007146105A (en) * 2005-11-04 2007-06-14 Tosoh Corp Polyarylene sulfide composition
JP2007291220A (en) * 2006-04-25 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2007291300A (en) * 2006-04-27 2007-11-08 Tosoh Corp Polyarylene sulfide composition
WO2011010291A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive polymer compositions and articles made therefrom
JP2013035950A (en) * 2011-08-09 2013-02-21 Tosoh Corp Polyarylene sulfide resin composition, and composite composed thereof
WO2013161844A1 (en) * 2012-04-27 2013-10-31 ポリプラスチックス株式会社 Resin composition having high thermal conductivity
JP2017154937A (en) * 2016-03-03 2017-09-07 株式会社大豊化成 Thermal conductive composite filler, manufacturing method of thermal conductive composite filler, thermal conductive resin and manufacturing method of thermal conductive resin
WO2018056349A1 (en) * 2016-09-21 2018-03-29 Dic株式会社 Surface-treated spinel particles, method for producing same, resin composition and molded article
CN108017073A (en) * 2017-12-27 2018-05-11 淮阴工学院 A kind of method that magnesia aeroge is prepared using bischofite as raw material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345117A (en) * 1986-08-08 1988-02-26 Ube Ind Ltd Production of magnesia powder resistant to hydration
JPS6445716A (en) * 1987-08-14 1989-02-20 Asahi Glass Co Ltd Magnesium oxide powder
JPH02212314A (en) * 1989-02-10 1990-08-23 Kyowa Chem Ind Co Ltd Production of magnesium oxide having high resistance to hydration and high fluidity
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH0721850A (en) * 1991-06-14 1995-01-24 Hitachi Cable Ltd Filler for dc power cable insulator
JP2001031887A (en) * 1999-07-21 2001-02-06 Toyota Motor Corp Highly conductive powder and its production
WO2001010958A1 (en) * 1999-08-06 2001-02-15 Kyowa Chemical Industry Co., Ltd. Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP2003034523A (en) * 2001-07-24 2003-02-07 Tateho Chem Ind Co Ltd Method for manufacturing coated magnesium oxide powder
JP2003034522A (en) * 2001-07-24 2003-02-07 Tateho Chem Ind Co Ltd Method for manufacturing coated magnesium oxide powder
JP2003261796A (en) * 2002-03-11 2003-09-19 Merck Ltd Extender and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345117A (en) * 1986-08-08 1988-02-26 Ube Ind Ltd Production of magnesia powder resistant to hydration
JPS6445716A (en) * 1987-08-14 1989-02-20 Asahi Glass Co Ltd Magnesium oxide powder
JPH02212314A (en) * 1989-02-10 1990-08-23 Kyowa Chem Ind Co Ltd Production of magnesium oxide having high resistance to hydration and high fluidity
JPH0721850A (en) * 1991-06-14 1995-01-24 Hitachi Cable Ltd Filler for dc power cable insulator
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JP2001031887A (en) * 1999-07-21 2001-02-06 Toyota Motor Corp Highly conductive powder and its production
WO2001010958A1 (en) * 1999-08-06 2001-02-15 Kyowa Chemical Industry Co., Ltd. Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP2003034523A (en) * 2001-07-24 2003-02-07 Tateho Chem Ind Co Ltd Method for manufacturing coated magnesium oxide powder
JP2003034522A (en) * 2001-07-24 2003-02-07 Tateho Chem Ind Co Ltd Method for manufacturing coated magnesium oxide powder
JP2003261796A (en) * 2002-03-11 2003-09-19 Merck Ltd Extender and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2007051270A (en) * 2005-05-25 2007-03-01 Tosoh Corp Polyarylene sulfide composition
JP2007045987A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007045988A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
US8357737B2 (en) 2005-11-04 2013-01-22 Tosoh Corporation Polyarylene sulfide composition
JP2007146105A (en) * 2005-11-04 2007-06-14 Tosoh Corp Polyarylene sulfide composition
JP2007291220A (en) * 2006-04-25 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2007291300A (en) * 2006-04-27 2007-11-08 Tosoh Corp Polyarylene sulfide composition
WO2011010291A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive polymer compositions and articles made therefrom
JP2013035950A (en) * 2011-08-09 2013-02-21 Tosoh Corp Polyarylene sulfide resin composition, and composite composed thereof
WO2013161844A1 (en) * 2012-04-27 2013-10-31 ポリプラスチックス株式会社 Resin composition having high thermal conductivity
JPWO2013161844A1 (en) * 2012-04-27 2015-12-24 ポリプラスチックス株式会社 High thermal conductive resin composition
JP2017154937A (en) * 2016-03-03 2017-09-07 株式会社大豊化成 Thermal conductive composite filler, manufacturing method of thermal conductive composite filler, thermal conductive resin and manufacturing method of thermal conductive resin
WO2018056349A1 (en) * 2016-09-21 2018-03-29 Dic株式会社 Surface-treated spinel particles, method for producing same, resin composition and molded article
US11279830B2 (en) 2016-09-21 2022-03-22 Dic Corporation Surface-treated spinel particles, method for producing the same, resin composition, and molded article
CN108017073A (en) * 2017-12-27 2018-05-11 淮阴工学院 A kind of method that magnesia aeroge is prepared using bischofite as raw material
CN108017073B (en) * 2017-12-27 2019-08-23 淮阴工学院 A method of magnesia aeroge is prepared by raw material of bischofite

Also Published As

Publication number Publication date
TWI262897B (en) 2006-10-01
JP4237182B2 (en) 2009-03-11
TW200513437A (en) 2005-04-16
AU2003289060A1 (en) 2005-04-21
JPWO2005033216A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4302690B2 (en) Spherical coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
KR102318631B1 (en) Resin composition, heat-dissipating material, and heat-dissipating member
TWI412506B (en) Ceramic powder and uses thereof
WO2005033216A1 (en) Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
KR100799042B1 (en) Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
JP2004027177A (en) Resin composition containing magnesium oxide powder
TWI597312B (en) Coated magnesia powder and its manufacturing method
US7820750B2 (en) Silica powder and use thereof
KR101133309B1 (en) Ceramic powder and method of using the same
CN113165874B (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
WO2012026012A1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
WO2006132185A1 (en) Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP5410095B2 (en) Amorphous siliceous powder, method for producing the same, and semiconductor sealing material
JP4237181B2 (en) High fluidity coated magnesium oxide powder and resin composition containing the powder
JP5606740B2 (en) Siliceous powder, production method and use thereof
JP2011046760A (en) Method for producing magnesium oxide powder, thermosetting resin composition, prepreg, and method for manufacturing laminated sheet
JP2014131042A (en) Eucryptite ceramic filler, production method therefor, and insulating composite material containing it
JP2000091476A (en) Semiconductor device
WO2019142353A1 (en) Powder and uses thereof
TW202406850A (en) Zinc spinel particles and manufacturing method thereof, resin composition and molded article
JP2022159147A (en) particle
JP2020029384A (en) Highly thermal conductive inorganic filler composite particles and method for producing the same
JP2002053733A (en) Resin composition for sealing semiconductor, semiconductor device made by using it, and method of manufacturing semiconductor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005509330

Country of ref document: JP

122 Ep: pct application non-entry in european phase