WO2012086673A1 - Thermally conductive resin composition - Google Patents

Thermally conductive resin composition Download PDF

Info

Publication number
WO2012086673A1
WO2012086673A1 PCT/JP2011/079600 JP2011079600W WO2012086673A1 WO 2012086673 A1 WO2012086673 A1 WO 2012086673A1 JP 2011079600 W JP2011079600 W JP 2011079600W WO 2012086673 A1 WO2012086673 A1 WO 2012086673A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
resin composition
heat conductive
frequency
heat
Prior art date
Application number
PCT/JP2011/079600
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 下拂
大樹 舩岡
小林 幸治
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2011554306A priority Critical patent/JP5906741B2/en
Publication of WO2012086673A1 publication Critical patent/WO2012086673A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used

Definitions

  • the present invention relates to a thermally conductive resin composition that enables high filler filling while maintaining good molding fluidity, and further has good filler dispersibility and good heat-and-moisture resistance. More specifically, the present invention relates to a heat conductive resin composition having excellent injection moldability and high heat conductivity, further having good filler dispersibility, and good moisture and heat resistance, containing a polyester resin having a very low melt viscosity and a heat conductive filler. .
  • thermoplastic resin composition is used for these applications, since plastic has a lower thermal conductivity than an inorganic material such as a metal material, it may be a problem that it is difficult to release generated heat.
  • attempts have been widely made to obtain a highly thermally conductive resin composition by highly filling an inorganic compound having high thermal conductivity into a thermoplastic resin.
  • Examples of the inorganic compound having high thermal conductivity include graphite, carbon fiber, metallic silicon, magnesium, aluminum, aluminum nitride, boron nitride, zinc oxide, magnesia, and alumina, and usually 30% by volume or more, and further 50 volume. It is necessary to mix
  • thermoplastic resin if a high thermal conductivity thermoplastic resin is to be molded by a commonly used injection molding method, the resin that has flowed into the mold is cooled and solidified at a high speed because of its high thermal conductivity, and the gate portion in the mold After solidifying, there is a problem that the resin cannot be allowed to flow into the mold at all.
  • special molds such as a combination of hot runners and specially shaped gates are required when injection molding high thermal conductivity thermoplastic resin, making it impossible to mold with general purpose molds. There is an obstacle to the spread. Further, the filler dispersion state is important in physical properties such as kneading and heat conductivity of the heat conductive thermoplastic resin.
  • an invention was made to improve molding fluidity and improve injection moldability by using a resin capable of greatly delaying the solidification rate during cooling in the mold (for example, see Patent Document 2).
  • this invention has been improved in terms of molding fluidity at the time of injection molding, it is necessary to set the injection molding temperature high, and the filler filling rate is limited to about 60% by volume, and the filler can be used sufficiently. This is a problem in that high thermal conductivity cannot be achieved without high filling.
  • an object of the present invention is to provide a highly thermally conductive resin composition that achieves both high filler filling and good injection moldability, and further has good filler dispersibility and good wet heat resistance.
  • the present invention has the following configuration.
  • It comprises 70 to 20 parts by volume of a polyester resin (A) having a melt viscosity of 5 to 2000 dPa ⁇ s at 200 ° C. under a load of 10 kgf, and 30 to 80 parts by volume of a heat conductive filler (B).
  • a thermally conductive resin composition [2] 80 mol% or more of the dicarboxylic acid component constituting the polyester resin (A) is terephthalic acid and / or naphthalenedicarboxylic acid, and 40 mol% of the diol component constituting the polyester resin (A).
  • the dicarboxylic acid component constituting the polyester resin (A) 80 mol% or more is naphthalenedicarboxylic acid, and among the diol components constituting the polyester resin (A), 40 mol% or more is 1,4.
  • the heat conductive filler (B) is composed of one type or two or more types of fillers, and when the total particle frequency of all fillers is 100%, the particle frequency with a particle size of 1 to 10 ⁇ m is 10 to 40. %, And the frequency of particles having a particle diameter of 10 to 100 ⁇ m is 50 to 85%.
  • the particle frequency of 1 to 10 ⁇ m in particle size is 10 to 20 %
  • the frequency of particles having a particle diameter of 10 to 100 ⁇ m is 70 to 85%.
  • the particle frequency of the filler will be described below.
  • the heat conductive filler is sometimes simply referred to as a filler.
  • the greatest feature of the present invention is that the resin properties are made to have an ultra-low melt viscosity and the crystallization speed is significantly delayed, thereby greatly improving the wettability with the filler and enabling a high filler filling. . And a favorable melt viscosity can be maintained for the molding process after filler high filling, and coexistence with high filler filling and the outstanding moldability is realizable. Furthermore, by using a filler that has been surface-treated with a coupling agent, it is possible to suppress filler aggregation and achieve good dispersibility, thereby further improving the thermal conductivity. Further, by using a filler having a particle frequency of the particle size of the filler in a specific range, even if the filler is hygroscopic, it is possible to realize good wet heat resistance by reducing the filler surface area.
  • the polyester resin (A) used in the present invention needs to have a melt viscosity of 5 to 2000 dPa ⁇ s at 200 ° C.
  • the melt viscosity is higher than 2000 dPa ⁇ s, the melt viscosity of the resin composition after the high filler filling is remarkably increased, and good injection moldability cannot be obtained.
  • a polyester resin having a melt viscosity of 2000 dPa ⁇ s or less, preferably 1000 dPa ⁇ s or less good injection moldability can be obtained even after high filler filling. Further, the melt viscosity at 200 ° C.
  • the lower limit is required to be 5 dPa ⁇ s or more, preferably 20 dPa ⁇ s or more, more preferably 100 dPa. ⁇ S or more, more preferably 200 dPa ⁇ s or more.
  • the polyester resin (A) preferably contains 80 mol% or more of terephthalic acid and / or naphthalenedicarboxylic acid as the dicarboxylic acid component, assuming that the total amount of dicarboxylic acid components is 100 mol%. More preferably, it is 90 mol% or more, More preferably, it is 95 mol% or more. If it is less than 80 mol%, the mechanical strength and heat resistance tend to decrease.
  • Naphthalenedicarboxylic acid is preferred as the dicarboxylic acid component from the viewpoints of heat resistance and mechanical strength, and from the viewpoint of better compatibility between high filler filling and good molding fluidity.
  • the methyl ester derivative may be used as the dicarboxylic acid component.
  • Naphthalenedicarboxylic acid is preferably 2,6-naphthalenedicarboxylic acid or a methyl ester derivative thereof, among its isomers, in consideration of the reactivity and the three-dimensional structure of the polymer chain.
  • the polyester resin (A) preferably contains 40 mol% or more of 1,4-butanediol as a glycol component, assuming that the total amount of diol components is 100 mol%. More preferably, it is 50 mol% or more. If it is less than 40 mol%, the crystallinity is too low, and blocking, moldability and heat resistance are problematic.
  • the upper limit is preferably 80 mol% or less, more preferably 70 mol% or less. If it exceeds 80 mol%, the crystallization rate becomes too fast, so that the wettability with the filler deteriorates, the strand breakage or the like tends to occur due to the floating of the filler, and it tends to be difficult to achieve high filler filling.
  • polyalkylene ether glycol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (ethylene oxide / propylene oxide) copolymer, poly (ethylene oxide / tetrahydrofuran) copolymer, poly (ethylene oxide / propylene oxide / tetrahydrofuran).
  • the polyalkylene ether glycol is preferably 2 mol% or more, more preferably 5 mol% or more. More preferably, it is 10 mol% or more, particularly preferably 20 mol% or more, and most preferably 30 mol% or more.
  • the upper limit is preferably 60% by mole or less, more preferably 50% by mole or less in consideration of handling properties such as heat resistance and blocking.
  • Polytetramethylene glycol is desirable as the polyalkylene ether glycol.
  • the number average molecular weight of polytetramethylene glycol is preferably 400 or more, more preferably 500 or more, still more preferably 600 or more, particularly preferably 700 or more, and the upper limit is preferably 4000 or less, more preferably 3500 or less, More preferably, it is 3000 or less.
  • the number average molecular weight of polytetramethylene glycol is less than 400, hydrolysis resistance may be lowered.
  • it exceeds 4000 the compatibility with the polyester portion composed of butylene terephthalate and / or butylene naphthalate units is lowered, and it may be difficult to copolymerize in a block form.
  • the polyester resin of the present invention can be produced by a known method. For example, after the esterification reaction of the above dicarboxylic acid and diol component at 150 to 250 ° C., the pressure is reduced at 230 to 300 ° C. under reduced pressure.
  • the desired polyester can be obtained by condensation.
  • the target polyester can be obtained by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of the above dicarboxylic acid and a diol component, followed by polycondensation at 230 ° C. to 300 ° C. under reduced pressure. Can do.
  • an antioxidant for the purpose of suppressing thermal deterioration, oxidative deterioration, etc., and it may be added before, during or after the reaction.
  • an antioxidant for example, known hindered phenol-based, phosphorus-based, and thioether-based antioxidants can be used. These antioxidants can be used alone or in combination.
  • the addition amount is preferably 0.1% by mass or more and 5% by mass or less with respect to the polyester resin (A). If it is less than 0.1% by mass, the effect of preventing thermal deterioration may be poor. If it exceeds 5 mass%, other physical properties may be adversely affected.
  • a known copolymerizable component can be used for the polyester resin (A) as long as the reactivity and mechanical properties and chemical properties of the obtained copolymer are not impaired.
  • the component includes a divalent or higher aromatic carboxylic acid having 8 to 22 carbon atoms, a divalent or higher aliphatic carboxylic acid having 4 to 12 carbon atoms, and a divalent or higher alicyclic carboxylic acid having 8 to 15 carbon atoms.
  • Carboxylic acids such as acids and their ester-forming derivatives, aliphatic compounds having 2 to 20 carbon atoms and compounds having two or more hydroxyl groups in the molecule, aromatic compounds having 6 to 40 carbon atoms, Examples thereof include compounds having two or more hydroxyl groups in the molecule, and ester-forming derivatives thereof.
  • carboxylic acids in addition to terephthalic acid and naphthalenedicarboxylic acid, for example, isophthalic acid, bis (p-carboxyphenyl) methaneanthracene dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis (Phenoxy) ethane-4,4′-dicarboxylic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, maleic acid, trimesic acid, trimellitic acid, pyromellitic acid, 1,3-cyclohexanedicarboxylic acid, 1, Examples thereof include carboxylic acids such as 4-cyclohexanedicarboxylic acid and decahydronaphthalenedicarboxylic acid or derivatives having ester-forming ability thereof.
  • hydroxyl group-containing compounds examples include 1,4-butanediol, ethylene glycol, 1,3 -Propanediol, 1,2-propanedioe 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, 2,2'-bis (4-hydroxyphenyl) propane, 2,2'-bis (4-hydroxycyclohexyl) propane, hydroquinone, glycerin, pentaerythritol Or derivatives having an ester forming ability thereof.
  • oxyacids such as p-oxybenzoic acid and p-hydroxyethoxybenzoic acid and ester-forming derivatives thereof, and cyclic esters such as ⁇ -caprolactone can be used.
  • the copolymerization amount of the above components is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
  • the method for adding the polyfunctional compound is not particularly limited, and a normal method is used. For example, a method of adding at an arbitrary stage before the end of polycondensation, a method of adding in an inert gas atmosphere after the end of polycondensation, an addition after taking out the copolymer into pellets, flakes, or powders And a method of melt mixing with an extruder or a kneader.
  • the heat conductive filler (B) blended in the heat conductive resin composition of the present invention is not particularly limited.
  • the thermal conductivity of the single component is 10 W / m ⁇ K or more. If it is less than 10 W / m ⁇ K, the effect of improving the thermal conductivity of the composition is poor.
  • the thermal conductivity of the single substance is more preferably 15 W / m ⁇ K or more, further preferably 20 W / m ⁇ K or more, particularly preferably 30 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity of the heat conductive filler (B) alone is not particularly limited, and it is preferably as high as possible. Generally, it is preferably 3000 W / m ⁇ K or less, more preferably 2500 W / m ⁇ K or less. Used.
  • the heat conductive filler (B) can contain one kind or two or more kinds of fillers.
  • the term “two or more types of fillers” means that two or more types differing in at least one of the material type, shape, average particle size, particle size distribution, and surface treatment agent of the filler.
  • heat conductive filler (B) As for the shape of the heat conductive filler (B), various shapes can be applied. For example, particles, particles, nanoparticles, agglomerated particles, wires, rods, needles, plates, irregular shapes, rugby balls, hexahedrons, composite particles in which large particles and fine particles are combined, Various shapes can be exemplified. Further, these heat conductive fillers (B) may be natural products or synthesized ones. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate.
  • thermally conductive fillers (B) are represented as B ′, B ′′, B ′ ′′..., And the total of these masses is 100% by mass.
  • the particle frequency with a particle size of 1 to 10 ⁇ m is obtained by (Equation 1) and the particle frequency with a particle size of 10 to 100 ⁇ m is obtained by (Equation 2)
  • 1 of the thermally conductive filler (B) It is preferable that the particle frequency of a particle size of ⁇ 10 ⁇ m is 10 to 40% and the particle frequency of a particle size of 10 to 100 ⁇ m is 50 to 85%.
  • the particle frequency of 1 to 10 ⁇ m is 10 to 40%
  • the particle frequency of 10 to 100 ⁇ m is 50 to 80%, and more preferably 1 to 10 ⁇ m.
  • the particle frequency of 15 to 35% and a particle size of 10 to 100 ⁇ m is 55 to 78%, particularly preferably a particle frequency of 1 to 10 ⁇ m and a particle frequency of 20 to 30% and a particle size of 10 to 100 ⁇ m.
  • the particle frequency is 60 to 75%. It is preferable that the particle frequency of the filler satisfies these ranges, so that the filler filling rate and the thermal conductivity can be improved efficiently as compared with the case where the same charge amount does not satisfy these ranges.
  • the thermal conductive filler (B) is composed of one kind or two or more kinds of fillers, and the total particle frequency of all fillers is 100. %,
  • the particle frequency with a particle size of 1 to 10 ⁇ m is preferably 10 to 20%, and the particle frequency with a particle size of 10 to 100 ⁇ m is preferably 70 to 85%. More preferably, the particle frequency of 1 to 10 ⁇ m is 10 to 18%, and the particle frequency of 10 to 100 ⁇ m is 70 to 83%.
  • the particle frequency satisfies these ranges, even if the filler is hygroscopic, it is possible to reduce the filler surface area to such an extent that the heat and moisture resistance can be satisfied.
  • the cause is a functional group on the surface. Therefore, if the amount of functional groups on the surface is reduced, the hygroscopicity is improved. In many cases, the amount of surface functional groups depends on the size of the surface area. Therefore, it is possible to improve the hygroscopic property and further the heat and moisture resistance by controlling the surface area by controlling the particle diameter and particle frequency.
  • the average value of the major axis and the minor axis is targeted.
  • the average particle size per particle and the particle frequency are targeted.
  • the average particle diameter and particle frequency in this invention shall be measured using particle size distribution measuring apparatuses, such as a laser scattering particle size distribution analyzer.
  • thermally conductive filler (B) exhibiting electrical insulation include metal oxides such as aluminum oxide (alumina), magnesium oxide (magnesia), silicon oxide, beryllium oxide, zinc oxide, copper oxide, and cuprous oxide.
  • Metal nitride such as boron nitride, aluminum nitride, silicon nitride, metal carbide such as silicon carbide, metal carbonate such as magnesium carbonate, diamond, and other insulating carbon materials, aluminum hydroxide, magnesium hydroxide, etc.
  • the metal hydroxide can be exemplified.
  • metal nitrides such as boron nitride, aluminum nitride, and silicon nitride
  • metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, and zinc oxide
  • metal carbonates such as magnesium carbonate
  • Metal hydroxides such as aluminum hydroxide and magnesium hydroxide
  • insulating carbon materials such as diamond
  • aluminum oxide (alumina), magnesium oxide (magnesia), and zinc oxide are preferable because wettability with the resin is relatively good, and aluminum oxide (alumina) and magnesium oxide (magnesia) are more preferable. is there. These can be used alone or in combination.
  • heat conductive filler (B) exhibiting electrical conductivity include carbon materials such as graphite and carbon fiber, and metal materials such as metal silicon, aluminum, and magnesium. These can be used alone or in combination.
  • the average particle size of the heat conductive filler (B) used in the present invention is preferably 1 to 100 ⁇ m.
  • the thickness is more preferably 1.5 to 80 ⁇ m, further preferably 2 to 70 ⁇ m.
  • the average particle size is preferably 1 to 20 ⁇ m, and the average particle size of the filler having a large particle size is preferably 20 to 100 ⁇ m.
  • the average particle size of the filler having a large particle size is preferably 30 ⁇ m or more, more preferably from the viewpoint of being hardly affected by the poor wettability with the resin and hardly forming an aggregate. 40 ⁇ m or more.
  • These heat conductive fillers (B) improve the adhesiveness at the interface between the polyester resin and the inorganic compound (compound constituting the filler), facilitate the workability, and improve the dispersibility in the resin. Therefore, it is preferable that the surface treatment is performed with a coupling agent.
  • the coupling agent is not particularly limited, and conventionally known ones such as a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, and a phosphate ester coupling agent can be used. Among these, a silane coupling agent is preferably used because it hardly reduces the physical properties of the resin.
  • the surface treatment method of the inorganic compound is not particularly limited, and a normal treatment method can be used.
  • Silane coupling treated magnesia such as RF-10C-SC and RF-50-SC manufactured by Ube Materials Co., Ltd.
  • aluminate coupling treated magnesia such as MCA-10 and MCA- manufactured by Sankyo Seimitsu Co., Ltd. 50, such as MCP-10 and MCP-50 manufactured by Sankyo Seimitsu Co., Ltd. as Magnesia Phosphate Coupling Co., Ltd. MCT-10, MCT-50 manufactured by Sankyo Seiko Co., Ltd. MCT9SA-10, MCT9SA-50, etc.
  • MCT-10, MCT-50 manufactured by Sankyo Seiko Co., Ltd. MCT9SA-10, MCT9SA-50, etc. can be used.
  • the thermal conductivity of the resin composition is further improved, which is preferable.
  • the polyester resin (A) and the heat conductive filler (B) in the heat conductive resin composition of the present invention are 70 to 20 parts by volume of the polyester resin (A) and 30 to 80 parts by volume of the heat conductive filler (B). Contained.
  • the content is preferably (A) 60 to 20 parts by volume and (B) 40 to 80 parts by volume, More preferred are (A) 50-25 parts by volume and (B) 50-75 parts by volume, still more preferred (A) 40-30 parts by volume and (B) 60-70 parts by volume.
  • the blending ratio of the polyester resin (A) and the heat conductive filler (B) is expressed in volume parts, but when the resin composition is produced, (A), ( B) Based on each specific gravity, it mix
  • (A) is based on the specific gravity of the resin alone, and (B) is based on the specific gravity of the filler chemical species alone.
  • the compounding amount is expressed in volume parts because the thermal conductivity, which is an important characteristic of the resin composition obtained according to the present invention, means that the volume ratio is large, not the mass ratio of the heat conductive filler in the composition. Because it has.
  • the heat conductive resin composition which concerns on this invention contains components other than a polyester resin (A) and a heat conductive filler (B), a compounding quantity is determined similarly. Since the heat conductive resin composition according to the present invention has very good dispersibility of the heat conductive filler (B) in the polyester resin (A), there are almost no voids (air layer) in the resin composition. Therefore, whether or not the heat conductive filler (B) is filled according to the blending ratio can be confirmed based on the specific gravity of (A) and (B) by measuring the specific gravity of the obtained heat conductive resin composition. I can do it.
  • the heat conductive resin composition according to the present invention preferably occupies 90% by volume or more in total of the polyester resin (A) and the heat conductive filler (B). The total of (A) and (B) in the thermally conductive resin composition is more preferably 95% by volume or more, and still more preferably 97% by volume or more.
  • a heat stabilizer such as a phenol-based stabilizer, a sulfur-based stabilizer and a phosphorus-based stabilizer is added alone or in combination of two or more. It is preferable to do.
  • a heat stabilizer such as a phenol-based stabilizer, a sulfur-based stabilizer and a phosphorus-based stabilizer is added alone or in combination of two or more. It is preferable to do.
  • An inhibitor, a conductivity imparting agent, a dispersant, a compatibilizing agent, an antibacterial agent and the like may be added alone or in combination of two or more.
  • the method for producing the thermally conductive resin composition of the present invention is not particularly limited. For example, it can be produced by drying the components and additives described above and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder. Moreover, when a compounding component is a liquid, it can also manufacture by adding to a melt kneader on the way using a liquid supply pump etc.
  • the filler As a method of melt-kneading the filler and the polyester resin, it is possible to add and knead the filler separately.
  • one series of side feeds can be used, and a dry blend of a part of the resin and filler can be put into the original feed, and the remaining filler can be put into the side feed and kneaded continuously.
  • use two series of side feeds add resin to the original feed, add part of the filler to the side feed close to the original feed, and the remaining filler to the side feed far from the original feed, and knead continuously. May be.
  • the resin (A) and a part of the filler may be kneaded, once taken out as pellets, etc., mixed with the remaining filler, and then kneaded again.
  • the method for molding the heat conductive resin composition of the present invention is not particularly limited.
  • a molding method generally used for thermoplastic resins for example, injection molding, blow molding, extrusion molding, vacuum molding, press molding. Calendar molding can be used.
  • injection molding for example, injection molding, blow molding, extrusion molding, vacuum molding, press molding.
  • Calendar molding can be used.
  • composition of the present invention exhibits good thermal conductivity as shown in the examples, and is 0.7 W / m ⁇ K or more, preferably 1 W / m ⁇ K or more, more preferably 2.0 W / m ⁇ K or more. It is possible to obtain a molded body.
  • the composition thus obtained can be used in various forms such as resin films, resin molded products, resin foams, paints and coating agents, electronic materials, magnetic materials, catalyst materials, structural materials, optical materials, medical materials. It can be widely used for various applications such as materials, automobile materials, and building materials.
  • the high thermal conductive thermoplastic resin composition obtained in the present invention has a complicated shape because a general plastic molding machine such as an injection molding machine or an extrusion molding machine that is widely used at present can be used. Molding into products is easy. In particular, since it has excellent properties such as excellent moldability and high thermal conductivity, it is very useful as a resin for a casing of a mobile phone, a display, a computer or the like having a heat source inside.
  • the high thermal conductive resin composition of the present invention can be suitably used for injection molded products such as home appliances, OA equipment parts, AV equipment parts, automotive interior / exterior parts, and the like. In particular, it can be suitably used as an exterior material in home appliances and office automation equipment that generate a lot of heat.
  • an electronic device having a heat source inside but difficult to forcibly cool by a fan or the like it is suitably used as an exterior material for these devices in order to dissipate the heat generated inside to the outside.
  • small or portable electronic devices such as portable computers such as notebook computers, PDAs, cellular phones, portable game machines, portable music players, portable TV / video devices, portable video cameras, etc. It is very useful as a resin for housings, housings, and exterior materials. It can also be used very effectively as a resin for battery peripherals in automobiles and trains, a resin for portable batteries of home appliances, a resin for power distribution parts such as a breaker, and a sealing material for motors.
  • the high thermal conductive resin composition of the present invention has better molding processability and impact resistance than conventional well-known compositions, and has useful properties for parts or casings in the above applications. It is.
  • melt viscosity The melt viscosity was measured using a flow tester (CFT-500C type) manufactured by Shimadzu Corporation. A resin sample dried to a moisture content of 0.1% or less is filled in a cylinder at the center of a heating body set to 200 ° C. After 1 minute of filling, a load (10 kgf) is applied to the sample via a plunger, and the bottom of the cylinder The melted sample was extruded from the die (hole diameter: 1.0 mm, thickness: 10 mm), the plunger descending distance and the descending time were recorded, and the melt viscosity was calculated. When the melting point of the resin exceeded 185 ° C., the load was measured at 50 kgf.
  • Polyester resin (A1)) In a reaction vessel equipped with a stirrer, a thermometer, and a condenser for distillation, 194 parts by mass of dimethyl terephthalate, 100 parts by mass of 1,4-butanediol, and polytetramethylene glycol “PTMG2000” having a number average molecular weight of 2000 (Mitsubishi Chemical) 800 parts by mass and 0.25 part by mass of tetrabutyl titanate were added, and an esterification reaction was performed at 170 to 220 ° C. for 2 hours. After completion of the esterification reaction, the temperature was raised to 255 ° C., while the pressure in the system was slowly reduced to 665 Pa at 255 ° C. over 60 minutes.
  • polyester resins (A2) to (A5), (C1) to (C3) The polyester resins (A2) to (A5) and (C1) to (C3) were synthesized by the same method as the polyester resin (A1). Each composition and physical property value are shown below. Polyesters (C1) to (C3) were used as raw materials for the comparative examples.
  • (A2): terephthalic acid // 1,4-butanediol / PTMG2000 100 // 70/30 mol%, melting point 157 ° C., melt viscosity 500 dPa ⁇ s.
  • (A5): 2,6-naphthalenedicarboxylic acid // 1,4-butanediol / PTMG2000 100 // 70/30 mol%, melting point 185 ° C., melt viscosity 650 dPa ⁇ s.
  • (C1): terephthalic acid // 1,4-butanediol / PTMG2000 100 // 80/20 mol%, melting point 178 ° C., melt viscosity 2200 dPa ⁇ s.
  • (C2): terephthalic acid // 1,4-butanediol / PTMG1000 100 // 85/15 mol%, melting point 191 ° C., melt viscosity 4000 dPa ⁇ s.
  • Polyester resins (A1) to (A5) have a melt viscosity at 200 ° C. of 5 to 2000 dPa ⁇ s, while polyester resins (C1) to (C3) have a melt viscosity at 200 ° C. of more than 2000 dPa ⁇ s. is there.
  • the heat conductive filler used for the Example and the comparative example is as follows. Those not described regarding the surface treatment are untreated fillers.
  • B2 Alumina (Nippon Light Metal Co., Ltd.
  • B4 Magnesia (RF-50-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m ⁇ K, average particle size 56.6 ⁇ m, volume resistivity 10 17 ⁇ ⁇ cm, specific gravity 3.58, Particle frequency: [1-10 ⁇ m] 0%, [10-100 ⁇ m] 95%, [Others] 5%)
  • B4a Magnesia (RF-50-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m ⁇ K, average particle size 56.6 ⁇ m, volume resistivity 10 17 ⁇ ⁇ cm, specific gravity 3.58, Particle frequency: [1-10 ⁇ m] 0%, [10-100 ⁇ m] 95%, [Others] 5%)
  • B4a Magnesia (RF-50-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m ⁇ K, average particle size 56.3 ⁇ m, volume resistivity
  • MCA-10 the thermal conductivity by itself 42 ⁇ 60W / m ⁇ K, the average particle diameter of 11.9, a volume resistivity 10 17 Omega ⁇ cm, specific gravity 3.58, particle frequency: [1-10 ⁇ m] 36%, [10-100 ⁇ m] 59%, [others] 5%)
  • B9 Aluminate coupling-treated magnesia (MCA-50 manufactured by Sankyo Seimitsu Co., Ltd., single unit thermal conductivity 42-60 W / m ⁇ K, average particle size 61.8 ⁇ m, volume resistivity 10 17 ⁇ ⁇ cm, specific gravity 3.58, particle frequency: [1-10 ⁇ m] 0%, [10-100 ⁇ m] 86%, [others] 14%)
  • B10 Phosphate ester-treated magnesia (MCP-10 manufactured by Sankyo Seimitsu Co., Ltd., thermal conductivity 42 to 60 W / m ⁇ K alone, average particle size 15.2 ⁇ m, volume resistivity 10 17 ⁇
  • MCT9SA-10 thermal conductivity of 42 to 60 W / m ⁇ K alone, average particle size of 14.7 ⁇ m, volume resistivity of 10 17 ⁇ ⁇ cm , Specific gravity 3.58, particle frequency: [1-10 ⁇ m] 31%, [10-100 ⁇ m] 61%, [others] 8%)
  • B15 Titanate coupling-treated magnesia (Sankyo Seimitsu Co., Ltd. MCT9SA-50, single body thermal conductivity 42-60 W / m ⁇ K, average particle size 51.3 ⁇ m, volume resistivity 10 17 ⁇ ⁇ cm , Specific gravity 3.58, particle frequency: [1-10 ⁇ m] 0%, [10-100 ⁇ m] 90%, [others] 10%)
  • Example 1 After mixing the polyester resin (A1) polymerized by the above method and the mixture of the heat conductive fillers (B1) and (B2) in the ratio shown in Table 1, the tabletop type manufactured by Toyo Seiki Co., Ltd. preheated to 180 ° C. The kneader Laboplast Mill 20C200 was charged and kneaded at 20 rpm for 10 minutes.
  • Examples 2 to 32, Comparative Examples 1 to 7 Kneading was carried out in the same manner as in Example 1 except that the types and blending amounts of the polyester resin and the heat conductive filler were changed as shown in Tables 1 to 6.
  • the examples and comparative examples were kneaded at 200 ° C. using polyester resins (A5) and (C1) to (C3) having a relatively high melting point or melt viscosity.
  • Sheet samples used for various measurements were prepared using a heat press machine SA-302-I manufactured by Tester Sangyo Co., Ltd.
  • the resin composition was placed in a mold having a predetermined thickness, melted at 190 ° C. for 2 minutes, applied with a load of 100 kgf / cm 2 , and then cooled in water after 1 minute to obtain a sheet sample with a predetermined thickness. .
  • a composition using a resin having a melting point of 185 ° C. or higher it was melted at 200 ° C.
  • the kneading state of the resin and filler was determined as follows, and ⁇ was judged good and ⁇ or x was judged as poor kneading. ⁇ is caused by the fact that the resin composition contains a large amount of voids, and is substantially synonymous with the fact that high filling is not achieved. ⁇ : The resin and the filler are uniformly mixed, and the charged amount of the filler and the actually measured filling rate agree within a range of ⁇ 5%. ⁇ : Although uniform at first glance, the charged amount of filler and the actually measured filling rate are outside the range of ⁇ 5%. X: Resin and filler are completely separated and not mixed.
  • the dispersion state is determined as follows. It was. If the kneading state is ⁇ or ⁇ , it is practical as a heat conductive resin composition. The better the dispersion state in this evaluation (the smaller the number of filler aggregates), the more the thermal conductivity can be improved.
  • The number of filler aggregates is 2 or less
  • The number of filler aggregates is 3 or more and 14 or less
  • The number of filler aggregates is 15 or more
  • a constant pressure caliper was used for the measurement.
  • the volume expansion coefficient is 130% or less, the deterioration of brittleness is small and good. If the expansion rate exceeds 130%, the brittleness deteriorates, so use under high humidity is not preferable.
  • Cp is the specific heat of the sample
  • C′p is the specific heat of the reference material (sapphire) at 23 ° C.
  • h is the difference between the DSC curve of the empty container and the sample
  • H is the difference of the DSC curve of the empty container and the reference material (sapphire)
  • m is the sample Mass (g)
  • m ′ represent mass (g) of the reference material (sapphire).
  • a sheet having a thickness of 0.5 mm obtained by heat pressing was sampled to a size of 10 mm ⁇ 10 mm, and the specific gravity was measured by an underwater substitution method.
  • the thermal diffusivity is measured by ai-phase. It measured using Mobile1.
  • the thermal diffusivity in the thickness direction of the kneaded resin composition processed into a sheet having a thickness of 0.5 mm with a heat press was measured.
  • injection moldability The injection moldability was judged as follows, and ⁇ was judged as good moldability and X was judged as poor moldability. ⁇ : Injection molding is possible at a mold temperature of 180 to 280 ° C. ⁇ : Injection molding is not possible at a mold temperature of 180 to 280 ° C. (Short shots of specimens occur.)
  • Tables 1 to 6 The respective formulations and results are shown in Tables 1 to 6. From Tables 1 to 6, it can be seen that the composition of the present invention exhibits particularly excellent thermal conductivity compared to the composition outside the range of the present invention, and a resin composition with high thermal conductivity excellent in injection moldability can be obtained. Recognize.
  • compositions of Examples 20 and 21 using the heat-conductive filler with an untreated surface are heat conductive. Although it is practical as a resin composition, it turns out that the dispersion state of a filler is inferior.
  • compositions of Examples 30 to 31 using a non-thermally conductive filler are practical as a thermally conductive resin composition, but have poor wet heat resistance.
  • the heat conductive resin composition of the present invention enables high filler filling, and also has high heat conductivity, but also has excellent molding fluidity during injection molding, high filler filling and good injection. It is a thermoplastic resin composition with high thermal conductivity that has both moldability and industrial utility value.

Abstract

The present invention is capable of providing a thermally conductive resin composition, which contains 70-20 parts by volume of (A) a polyester resin that has a melt viscosity at 200˚C under a load of 10 kgf of 5-2,000 dPa·s and 30-80 parts by volume of (B) a thermally conductive filler, and which is capable of increasing the filling density of the filler, while maintaining good molding fluidity. In addition, the present invention is capable of providing a thermally conductive resin composition having good filler dispersibility by using a filler that is surface-treated with a coupling agent, and also capable of providing a thermally conductive resin composition having good wet heat resistance by using a filler that has a particle diameter frequency within a specific range.

Description

熱伝導性樹脂組成物Thermally conductive resin composition
 本発明は、良好な成形流動性を保持しながらフィラーの高充填化を可能とし、さらに良好なフィラー分散性、良好な耐湿熱性を有する熱伝導性樹脂組成物に関するものである。詳しくは、超低溶融粘度のポリエステル樹脂、及び熱伝導フィラーを含有する、優れた射出成形性と高熱伝導性、さらに良好なフィラー分散性、良好な耐湿熱性を兼ね備えた熱伝導性樹脂組成物に関する。 The present invention relates to a thermally conductive resin composition that enables high filler filling while maintaining good molding fluidity, and further has good filler dispersibility and good heat-and-moisture resistance. More specifically, the present invention relates to a heat conductive resin composition having excellent injection moldability and high heat conductivity, further having good filler dispersibility, and good moisture and heat resistance, containing a polyester resin having a very low melt viscosity and a heat conductive filler. .
 近年、パソコンやディスプレーの筐体、電子デバイス材料、自動車の内外装などの発熱の問題がクローズアップされており、熱伝導率の高い材料が求められている。これらの用途に熱可塑性樹脂組成物を使用する際、プラスチックは金属材料など無機物と比較して熱伝導性が低いため、発生する熱を逃がしづらいことが問題になることがある。このような課題を解決するため、熱伝導性の高い無機化合物を熱可塑性樹脂中に高充填することで、高熱伝導性樹脂組成物を得ようとする試みが広くなされている。熱伝導率の高い無機化合物としては、黒鉛、炭素繊維、金属ケイ素、マグネシウム、アルミニウム、窒化アルミニウム、窒化ホウ素、酸化亜鉛、マグネシア、アルミナなどが挙げられ、通常は30体積%以上、さらには50体積%以上もの高含有量で樹脂中に配合する必要がある。このフィラー高充填化技術において、しばしば問題となるのは、成形性及びフィラー分散状態である。
 しかしながら、高熱伝導性熱可塑性樹脂を通常良く用いられる射出成形法で成形しようとすると、その高熱伝導性が故に金型内に流入した樹脂が高速に冷却固化してしまい、金型内のゲート部が固化した後は、全く型内に樹脂を流入させることができなくなるという課題がある。これを解決するためには、高熱伝導性熱可塑性樹脂を射出成形する際には、ホットランナーと特殊形状のゲートの組み合わせなど特殊な金型が必要となり、汎用金型での成形が不可能であることが普及の妨げとなっている。
 また、フィラー分散状態は、熱伝導性熱可塑性樹脂の混練や熱伝導性などの物性において、重要となる。例えば、樹脂とフィラーの濡れ性が悪く、その界面に空隙(空気層)が形成されたり、フィラーの凝集体が生成したりすると、ストランドが不安定になりフィラー高充填化ができず、高熱伝導率化を阻害する。あるいは、フィラーの分散状態が不均一であると、熱伝導率が理論値に比べて悪化するなどの問題が生じる。
In recent years, problems of heat generation such as personal computer and display housings, electronic device materials, and interior and exterior of automobiles have been highlighted, and materials having high thermal conductivity are required. When a thermoplastic resin composition is used for these applications, since plastic has a lower thermal conductivity than an inorganic material such as a metal material, it may be a problem that it is difficult to release generated heat. In order to solve such problems, attempts have been widely made to obtain a highly thermally conductive resin composition by highly filling an inorganic compound having high thermal conductivity into a thermoplastic resin. Examples of the inorganic compound having high thermal conductivity include graphite, carbon fiber, metallic silicon, magnesium, aluminum, aluminum nitride, boron nitride, zinc oxide, magnesia, and alumina, and usually 30% by volume or more, and further 50 volume. It is necessary to mix | blend in resin with the high content of more than%. In this filler high-filling technology, what often becomes a problem is formability and filler dispersion.
However, if a high thermal conductivity thermoplastic resin is to be molded by a commonly used injection molding method, the resin that has flowed into the mold is cooled and solidified at a high speed because of its high thermal conductivity, and the gate portion in the mold After solidifying, there is a problem that the resin cannot be allowed to flow into the mold at all. In order to solve this, special molds such as a combination of hot runners and specially shaped gates are required when injection molding high thermal conductivity thermoplastic resin, making it impossible to mold with general purpose molds. There is an obstacle to the spread.
Further, the filler dispersion state is important in physical properties such as kneading and heat conductivity of the heat conductive thermoplastic resin. For example, if the wettability between the resin and the filler is poor and a void (air layer) is formed at the interface, or if aggregates of the filler are formed, the strand becomes unstable and the filler cannot be highly filled, resulting in high thermal conductivity. Inhibits rate. Or when the dispersion state of a filler is non-uniform | heterogenous, problems, such as a heat conductivity worsening compared with a theoretical value, will arise.
 かかる成形性に関する問題を解決すべく、フィラーを高充填した熱可塑性樹脂の射出成形性を向上させるため、室温で液体の有機化合物を添加する方法が例示されている(例えば、特許文献1参照)。しかしながらこのような方法では、射出成形時に液体の有機化合物がブリードアウトし、金型を汚染するなどの課題がある。 In order to solve such a problem relating to moldability, a method of adding a liquid organic compound at room temperature in order to improve the injection moldability of a thermoplastic resin highly filled with a filler is exemplified (for example, see Patent Document 1). . However, in such a method, there is a problem that a liquid organic compound bleeds out during injection molding and contaminates the mold.
 一方、かかる成形性に関する問題を解決すべく、金型内冷却時の固化速度を大幅に遅延しうる樹脂の使用により、成形流動性を改良し、射出成形性を改善するという発明がなされた(例えば、特許文献2参照)。しかし、かかる発明は射出成形時の成形流動性という点では改良されたものの、射出成形温度は高く設定する必要があり、また、フィラー充填率は60体積%程度を上限としており、フィラーを十分に高充填化できずに高熱伝導性を達成することができていないという点で問題である。このような問題が生じる理由としては、樹脂とフィラーの濡れ性が十分でないために、混練の際にストランドが切れるなどの問題に起因してフィラー高充填化が困難となることや、60体積%以上のフィラー高充填化により、樹脂組成物の溶融粘度が著しく上昇するために射出成形が困難になることなどの課題があり、フィラー高充填化と良好な射出成形性の両立には至っていない。 On the other hand, in order to solve the problem relating to moldability, an invention was made to improve molding fluidity and improve injection moldability by using a resin capable of greatly delaying the solidification rate during cooling in the mold ( For example, see Patent Document 2). However, although this invention has been improved in terms of molding fluidity at the time of injection molding, it is necessary to set the injection molding temperature high, and the filler filling rate is limited to about 60% by volume, and the filler can be used sufficiently. This is a problem in that high thermal conductivity cannot be achieved without high filling. The reason why such a problem occurs is that the wettability between the resin and the filler is not sufficient, so that it is difficult to achieve a high filler filling due to problems such as breakage of strands during kneading, or 60% by volume. There is a problem that injection molding becomes difficult because the melt viscosity of the resin composition is remarkably increased due to the above high filler filling, and both high filler filling and good injection moldability have not been achieved.
 他方、かかるフィラー分散状態に関する問題を解決すべく、フィラー凝集体を形成させることなく、樹脂中に均一に分散するため、流動性改質剤を混合してフィラーの流動性を改良する方法が例示されている(例えば、特許文献3参照)。かかるフィラー表面改質により、樹脂への分散性が良好となり、熱伝導性は改善するものの、フィラー高充填化という課題においては達成できていない。
 また、フィラーの種類によっては、吸湿性が高く、そのフィラーを含む樹脂組成物の耐湿熱性が問題になる事がある。
On the other hand, in order to solve such a problem related to the filler dispersion state, a method of improving the fluidity of the filler by mixing a fluidity modifier in order to disperse uniformly in the resin without forming filler aggregates is exemplified. (For example, see Patent Document 3). Such filler surface modification improves the dispersibility in the resin and improves the thermal conductivity, but it has not been achieved in the problem of high filler filling.
Further, depending on the type of filler, the hygroscopicity is high, and the heat and moisture resistance of the resin composition containing the filler may be a problem.
特許第3948240号公報Japanese Patent No. 3948240 特開2009-91440号公報JP 2009-91440 A 特許第3714502号公報Japanese Patent No. 3714502
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、フィラー高充填化と良好な射出成形性を両立し、さらに良好なフィラー分散性、良好な耐湿熱性を有する高熱伝導性樹脂組成物を提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a highly thermally conductive resin composition that achieves both high filler filling and good injection moldability, and further has good filler dispersibility and good wet heat resistance.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は以下の構成を有するものである。
[1] 200℃、10kgf荷重時の溶融粘度が5~2000dPa・sであるポリエステル樹脂(A)70~20体積部及び、熱伝導フィラー(B)30~80体積部を含有することを特徴とする熱伝導性樹脂組成物。
[2] 前記ポリエステル樹脂(A)を構成するジカルボン酸成分のうち80モル%以上がテレフタル酸及び/またはナフタレンジカルボン酸であり、かつ前記ポリエステル樹脂(A)を構成するジオール成分のうち40モル%以上が1,4-ブタンジオールであることを特徴とする[1]に記載の熱伝導性樹脂組成物。
[3] 前記ポリエステル樹脂(A)を構成するジカルボン酸成分のうち80モル%以上がナフタレンジカルボン酸であり、かつ前記ポリエステル樹脂(A)を構成するジオール成分のうち40モル%以上が1,4-ブタンジオールであることを特徴とする[1]に記載の熱伝導性樹脂組成物。
[4] 前記ポリエステル樹脂(A)のジオール成分のうち2モル%以上が、ポリアルキレンエーテルグリコールであることを特徴とする[1]~[3]のいずれかに記載の熱伝導性樹脂組成物。
[5] 前記ポリアルキレンエーテルグリコールが、数平均分子量400~4000のポリテトラメチレングリコールであることを特徴とする[4]に記載の熱伝導性樹脂組成物。
[6] 前記熱伝導フィラー(B)が1種類、または2種類以上のフィラーからなり、全フィラーの粒子頻度の合計を100%としたとき、1~10μmの粒径の粒子頻度が10~40%、かつ、10~100μmの粒径の粒子頻度が50~85%であることを特徴とする[1]~[5]のいずれかに記載の熱伝導性樹脂組成物。
[7] 前記熱伝導フィラー(B)の単体での熱伝導率が10W/m・K以上であることを特徴とする[1]~[6]のいずれかに記載の熱伝導性樹脂組成物。
[8] 前記熱伝導フィラー(B)がカップリング剤によって表面処理されていることを特徴とする[1]~[7]のいずれかに記載の熱伝導性樹脂組成物。
[9] 前記熱伝導フィラー(B)が1種類、または2種類以上のフィラーからなり、全フィラーの粒子頻度の合計を100%としたとき、1~10μmの粒径の粒子頻度が10~20%、かつ、10~100μmの粒径の粒子頻度が70~85%であることを特徴とする[1]~[8]のいずれかに記載の熱伝導性樹脂組成物。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. That is, the present invention has the following configuration.
[1] It comprises 70 to 20 parts by volume of a polyester resin (A) having a melt viscosity of 5 to 2000 dPa · s at 200 ° C. under a load of 10 kgf, and 30 to 80 parts by volume of a heat conductive filler (B). A thermally conductive resin composition.
[2] 80 mol% or more of the dicarboxylic acid component constituting the polyester resin (A) is terephthalic acid and / or naphthalenedicarboxylic acid, and 40 mol% of the diol component constituting the polyester resin (A). The heat conductive resin composition according to [1], wherein the above is 1,4-butanediol.
[3] Of the dicarboxylic acid component constituting the polyester resin (A), 80 mol% or more is naphthalenedicarboxylic acid, and among the diol components constituting the polyester resin (A), 40 mol% or more is 1,4. The heat conductive resin composition according to [1], which is butanediol.
[4] The thermally conductive resin composition according to any one of [1] to [3], wherein 2 mol% or more of the diol component of the polyester resin (A) is a polyalkylene ether glycol. .
[5] The heat conductive resin composition according to [4], wherein the polyalkylene ether glycol is polytetramethylene glycol having a number average molecular weight of 400 to 4000.
[6] The heat conductive filler (B) is composed of one type or two or more types of fillers, and when the total particle frequency of all fillers is 100%, the particle frequency with a particle size of 1 to 10 μm is 10 to 40. %, And the frequency of particles having a particle diameter of 10 to 100 μm is 50 to 85%. The heat conductive resin composition according to any one of [1] to [5].
[7] The thermal conductive resin composition according to any one of [1] to [6], wherein the thermal conductivity of the thermal conductive filler (B) alone is 10 W / m · K or more. .
[8] The heat conductive resin composition according to any one of [1] to [7], wherein the heat conductive filler (B) is surface-treated with a coupling agent.
[9] When the heat conductive filler (B) is composed of one kind or two or more kinds of fillers and the total particle frequency of all fillers is 100%, the particle frequency of 1 to 10 μm in particle size is 10 to 20 %, And the frequency of particles having a particle diameter of 10 to 100 μm is 70 to 85%. The heat conductive resin composition according to any one of [1] to [8].
 フィラーの粒子頻度については、下記で説明する。
 本発明においては、熱伝導フィラーを単にフィラーと称する事がある。
The particle frequency of the filler will be described below.
In the present invention, the heat conductive filler is sometimes simply referred to as a filler.
 本発明における最大の特徴は、樹脂特性を超低溶融粘度とし、かつ結晶化速度を著しく遅延させることにより、フィラーとの濡れ性を大幅に改良し、フィラー高充填化を可能とした点である。そして、フィラー高充填化後の成形加工に良好な溶融粘度を維持することができ、フィラー高充填化と優れた成形性との両立を実現できる。さらには、カップリング剤によって表面処理されているフィラーを用いることで、フィラーの凝集を抑えて良好な分散性をも実現し、熱伝導率をさらに向上させることができる。また、フィラーの粒径の粒子頻度が特定の範囲のフィラーを用いることで、フィラーが吸湿性のものであってもフィラー表面積を小さくすることにより、良好な耐湿熱性をも実現できる。 The greatest feature of the present invention is that the resin properties are made to have an ultra-low melt viscosity and the crystallization speed is significantly delayed, thereby greatly improving the wettability with the filler and enabling a high filler filling. . And a favorable melt viscosity can be maintained for the molding process after filler high filling, and coexistence with high filler filling and the outstanding moldability is realizable. Furthermore, by using a filler that has been surface-treated with a coupling agent, it is possible to suppress filler aggregation and achieve good dispersibility, thereby further improving the thermal conductivity. Further, by using a filler having a particle frequency of the particle size of the filler in a specific range, even if the filler is hygroscopic, it is possible to realize good wet heat resistance by reducing the filler surface area.
 以下、本発明を詳述する。
 本発明に用いられるポリエステル樹脂(A)は、200℃での溶融粘度が5~2000dPa・sであることが必要である。2000dPa・s超の高溶融粘度になると、フィラー高充填後の樹脂組成物の溶融粘度が著しく上昇し、良好な射出成形性が得られない。2000dPa・s以下、好ましくは1000dPa・s以下の溶融粘度を有するポリエステル樹脂を使用することで、フィラー高充填後でも良好な射出成形性を得ることができる。また、200℃での溶融粘度は低いほうが好ましいが、熱伝導性樹脂組成物の機械的強度を考慮すると下限としては5dPa・s以上が必要であり、好ましくは20dPa・s以上、より好ましくは100dPa・s以上、さらに好ましくは200dPa・s以上である。
The present invention is described in detail below.
The polyester resin (A) used in the present invention needs to have a melt viscosity of 5 to 2000 dPa · s at 200 ° C. When the melt viscosity is higher than 2000 dPa · s, the melt viscosity of the resin composition after the high filler filling is remarkably increased, and good injection moldability cannot be obtained. By using a polyester resin having a melt viscosity of 2000 dPa · s or less, preferably 1000 dPa · s or less, good injection moldability can be obtained even after high filler filling. Further, the melt viscosity at 200 ° C. is preferably low, but considering the mechanical strength of the heat conductive resin composition, the lower limit is required to be 5 dPa · s or more, preferably 20 dPa · s or more, more preferably 100 dPa. · S or more, more preferably 200 dPa · s or more.
 ポリエステル樹脂(A)は、ジカルボン酸成分の合計量を100モル%とすると、ジカルボン酸成分としてテレフタル酸及び/またはナフタレンジカルボン酸を80モル%以上含有することが望ましい。より好ましくは90モル%以上、さらに好ましくは95モル%以上である。80モル%未満であると、機械的強度、耐熱性が低下する傾向がある。
 耐熱性や機械強度の観点、フィラー高充填化と良好な成形流動性の両立がより優れるという観点から、ジカルボン酸成分としてナフタレンジカルボン酸が好ましい。
 ジカルボン酸成分として、そのメチルエステル誘導体を用いてもよい。ナフタレンジカルボン酸は、反応性、ポリマー鎖の立体構造などを考慮すると、その異性体の中でも特に2,6-ナフタレンジカルボン酸またはそのメチルエステル誘導体が好ましい。
The polyester resin (A) preferably contains 80 mol% or more of terephthalic acid and / or naphthalenedicarboxylic acid as the dicarboxylic acid component, assuming that the total amount of dicarboxylic acid components is 100 mol%. More preferably, it is 90 mol% or more, More preferably, it is 95 mol% or more. If it is less than 80 mol%, the mechanical strength and heat resistance tend to decrease.
Naphthalenedicarboxylic acid is preferred as the dicarboxylic acid component from the viewpoints of heat resistance and mechanical strength, and from the viewpoint of better compatibility between high filler filling and good molding fluidity.
The methyl ester derivative may be used as the dicarboxylic acid component. Naphthalenedicarboxylic acid is preferably 2,6-naphthalenedicarboxylic acid or a methyl ester derivative thereof, among its isomers, in consideration of the reactivity and the three-dimensional structure of the polymer chain.
 ポリエステル樹脂(A)は、ジオール成分の合計量を100モル%とすると、グリコール成分として1,4-ブタンジオールを40モル%以上含有することが望ましい。より好ましくは50モル%以上である。40モル%未満であると、結晶性が低下しすぎてブロッキングや成形性・耐熱性の悪化が問題となる。上限は80モル%以下が好ましく、より好ましくは70モル%以下である。80モル%を超えると結晶化速度が速くなりすぎるため、フィラーとの濡れ性が悪化し、フィラー浮きが原因でストランド切れなどが生じやすくなり、フィラー高充填化が困難となる傾向がある。 The polyester resin (A) preferably contains 40 mol% or more of 1,4-butanediol as a glycol component, assuming that the total amount of diol components is 100 mol%. More preferably, it is 50 mol% or more. If it is less than 40 mol%, the crystallinity is too low, and blocking, moldability and heat resistance are problematic. The upper limit is preferably 80 mol% or less, more preferably 70 mol% or less. If it exceeds 80 mol%, the crystallization rate becomes too fast, so that the wettability with the filler deteriorates, the strand breakage or the like tends to occur due to the floating of the filler, and it tends to be difficult to achieve high filler filling.
 フィラー高充填化後も良好な射出成形性を維持するためには、フィラー配合前の樹脂の溶融粘度が低いことが望ましく、その目的でポリアルキレンエーテルグリコールを共重合することが望ましい。
 該ポリアルキレンエーテルグリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(エチレンオキシド・プロピレンオキシド)共重合体、ポリ(エチレンオキシド・テトラヒドロフラン)共重合体、ポリ(エチレンオキシド・プロピレンオキシド・テトラヒドロフラン)共重合体などが挙げられ、ポリエステル樹脂(A)のジオール成分の合計量を100%としたとき、ポリアルキレンエーテルグリコールは、2モル%以上であることが好ましく、より好ましくは5モル%以上、さらに好ましくは10モル%以上、特に好ましくは20モル%以上、最も好ましくは30モル%以上である。上限は耐熱性やブロッキングなどの取り扱い性を考慮すると好ましくは60モル%以下、より好ましくは50モル%以下である。
In order to maintain good injection moldability even after high filler filling, it is desirable that the melt viscosity of the resin before blending the filler is low, and it is desirable to copolymerize polyalkylene ether glycol for that purpose.
Examples of the polyalkylene ether glycol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (ethylene oxide / propylene oxide) copolymer, poly (ethylene oxide / tetrahydrofuran) copolymer, poly (ethylene oxide / propylene oxide / tetrahydrofuran). ) Copolymer and the like, and when the total amount of diol components of the polyester resin (A) is 100%, the polyalkylene ether glycol is preferably 2 mol% or more, more preferably 5 mol% or more. More preferably, it is 10 mol% or more, particularly preferably 20 mol% or more, and most preferably 30 mol% or more. The upper limit is preferably 60% by mole or less, more preferably 50% by mole or less in consideration of handling properties such as heat resistance and blocking.
 該ポリアルキレンエーテルグリコールとしてポリテトラメチレングリコールが望ましい。ポリテトラメチレングリコールの数平均分子量は400以上であることが好ましく、より好ましくは500以上、さらに好ましくは600以上、特に好ましくは700以上であり、上限は好ましくは4000以下、より好ましくは3500以下、さらに好ましくは3000以下である。ポリテトラメチレングリコールの数平均分子量が400未満であると、耐加水分解性が低下することがある。一方4000を超えると、ブチレンテレフタレート及び/またはブチレンナフタレート単位からなるポリエステル部分との相溶性が低下し、ブロック状に共重合することが難しくなる場合がある。 Polytetramethylene glycol is desirable as the polyalkylene ether glycol. The number average molecular weight of polytetramethylene glycol is preferably 400 or more, more preferably 500 or more, still more preferably 600 or more, particularly preferably 700 or more, and the upper limit is preferably 4000 or less, more preferably 3500 or less, More preferably, it is 3000 or less. When the number average molecular weight of polytetramethylene glycol is less than 400, hydrolysis resistance may be lowered. On the other hand, when it exceeds 4000, the compatibility with the polyester portion composed of butylene terephthalate and / or butylene naphthalate units is lowered, and it may be difficult to copolymerize in a block form.
 本発明のポリエステル樹脂の製造方法としては、公知の方法をとることができるが、例えば、上記のジカルボン酸及びジオール成分を150~250℃でエステル化反応後、減圧しながら230~300℃で重縮合することにより、目的のポリエステルを得ることができる。あるいは、上記のジカルボン酸のジメチルエステルなどの誘導体とジオール成分を用いて150℃~250℃でエステル交換反応後、減圧しながら230℃~300℃で重縮合することにより、目的のポリエステルを得ることができる。 The polyester resin of the present invention can be produced by a known method. For example, after the esterification reaction of the above dicarboxylic acid and diol component at 150 to 250 ° C., the pressure is reduced at 230 to 300 ° C. under reduced pressure. The desired polyester can be obtained by condensation. Alternatively, the target polyester can be obtained by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of the above dicarboxylic acid and a diol component, followed by polycondensation at 230 ° C. to 300 ° C. under reduced pressure. Can do.
 ポリエステル樹脂(A)を製造する際には、熱劣化、酸化劣化などを抑制するなどの目的で酸化防止剤を添加することが好ましく、反応前、反応途中あるいは反応終了後に添加してもよい。例えば、公知のヒンダードフェノール系、リン系、チオエーテル系の酸化防止剤を用いることができる。
 これら酸化防止剤は、単独で、または複合して使用できる。添加量は、ポリエステル樹脂(A)に対して0.1質量%以上5質量%以下が好ましい。0.1質量%未満だと熱劣化防止効果に乏しくなることがある。5質量%を超えると、他物性などに悪影響を与える場合がある。
In producing the polyester resin (A), it is preferable to add an antioxidant for the purpose of suppressing thermal deterioration, oxidative deterioration, etc., and it may be added before, during or after the reaction. For example, known hindered phenol-based, phosphorus-based, and thioether-based antioxidants can be used.
These antioxidants can be used alone or in combination. The addition amount is preferably 0.1% by mass or more and 5% by mass or less with respect to the polyester resin (A). If it is less than 0.1% by mass, the effect of preventing thermal deterioration may be poor. If it exceeds 5 mass%, other physical properties may be adversely affected.
 また、ポリエステル樹脂(A)には、反応性や得られた共重合体の機械的特性、化学的特性を損なわない範囲で、共重合可能な公知の成分が使用できる。該成分としては炭素数8~22の2価以上の芳香族カルボン酸、炭素数4~12の2価以上の脂肪族カルボン酸、さらには炭素数8~15の2価以上の脂環式カルボン酸などのカルボン酸類及びこれらのエステル形成性誘導体、炭素数2~20の脂肪族化合物であって分子内に2個以上の水酸基を有する化合物類、炭素数6~40の芳香族化合物であって分子内に2個以上の水酸基を有する化合物類、及びこれらのエステル形成性誘導体などが挙げられる。 Also, a known copolymerizable component can be used for the polyester resin (A) as long as the reactivity and mechanical properties and chemical properties of the obtained copolymer are not impaired. The component includes a divalent or higher aromatic carboxylic acid having 8 to 22 carbon atoms, a divalent or higher aliphatic carboxylic acid having 4 to 12 carbon atoms, and a divalent or higher alicyclic carboxylic acid having 8 to 15 carbon atoms. Carboxylic acids such as acids and their ester-forming derivatives, aliphatic compounds having 2 to 20 carbon atoms and compounds having two or more hydroxyl groups in the molecule, aromatic compounds having 6 to 40 carbon atoms, Examples thereof include compounds having two or more hydroxyl groups in the molecule, and ester-forming derivatives thereof.
 具体的には、カルボン酸類としては、テレフタル酸及びナフタレンジカルボン酸以外に、例えば、イソフタル酸、ビス(p-カルボキシフェニル)メタンアントラセンジカルボン酸、4,4’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マレイン酸、トリメシン酸、トリメリット酸、ピロメリット酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、デカヒドロナフタレンジカルボン酸などのカルボン酸又はそのエステル形成能を有する誘導体が挙げられ、水酸基含有化合物類としては、1,4-ブタンジオールの他に、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、2,2’-ビス(4-ヒドロキシフェニル)プロパン、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、ハイドロキノン、グリセリン、ペンタエリスリトールなどの化合物又はそのエステル形成能を有する誘導体が挙げられる。 Specifically, as carboxylic acids, in addition to terephthalic acid and naphthalenedicarboxylic acid, for example, isophthalic acid, bis (p-carboxyphenyl) methaneanthracene dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis (Phenoxy) ethane-4,4′-dicarboxylic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, maleic acid, trimesic acid, trimellitic acid, pyromellitic acid, 1,3-cyclohexanedicarboxylic acid, 1, Examples thereof include carboxylic acids such as 4-cyclohexanedicarboxylic acid and decahydronaphthalenedicarboxylic acid or derivatives having ester-forming ability thereof. Examples of the hydroxyl group-containing compounds include 1,4-butanediol, ethylene glycol, 1,3 -Propanediol, 1,2-propanedioe 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, 2,2'-bis (4-hydroxyphenyl) propane, 2,2'-bis (4-hydroxycyclohexyl) propane, hydroquinone, glycerin, pentaerythritol Or derivatives having an ester forming ability thereof.
 また、p-オキシ安息香酸、p-ヒドロキシエトキシ安息香酸のようなオキシ酸及びこれらのエステル形成性誘導体、ε-カプロラクトンのような環状エステルなども使用可能である。
 上記成分の共重合量としては、好ましくは20質量%以下であり、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。
In addition, oxyacids such as p-oxybenzoic acid and p-hydroxyethoxybenzoic acid and ester-forming derivatives thereof, and cyclic esters such as ε-caprolactone can be used.
The copolymerization amount of the above components is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
 さらに、本発明では、反応性基を少なくとも2個有するエポキシ化合物、有機カルボン酸及び/又はその無水物、オキサゾリン化合物、イソシアネート化合物などの群から選ばれる多官能性化合物を添加することにより、高分子量の共重合体を比較的短時間で得ることができ、ブロック共重合体の熱安定性の点からも有用である。 Furthermore, in the present invention, by adding a polyfunctional compound selected from the group of an epoxy compound having at least two reactive groups, an organic carboxylic acid and / or an anhydride thereof, an oxazoline compound, an isocyanate compound, and the like, This copolymer can be obtained in a relatively short time, and is useful from the viewpoint of the thermal stability of the block copolymer.
 上記多官能性化合物を添加する方法には、特に制限はなく、通常の方法が利用される。例えば、重縮合終了前の任意の段階で添加する方法、重縮合終了後、不活性ガス雰囲気下で添加する方法、共重合体をペレット状、フレーク状、あるいは粉体状に取り出した後、添加し、押出機あるいはニーダーで溶融混合する方法などが挙げられる。 The method for adding the polyfunctional compound is not particularly limited, and a normal method is used. For example, a method of adding at an arbitrary stage before the end of polycondensation, a method of adding in an inert gas atmosphere after the end of polycondensation, an addition after taking out the copolymer into pellets, flakes, or powders And a method of melt mixing with an extruder or a kneader.
 本発明の熱伝導性樹脂組成物に配合する熱伝導フィラー(B)は、特に制限されるものではない。組成物の熱伝導率を向上させる効果を考慮すると、単体での熱伝導率が10W/m・K以上のものが好ましい。10W/m・K未満では、組成物の熱伝導率を向上させる効果に劣る。単体での熱伝導率は、より好ましくは15W/m・K以上、さらに好ましくは20W/m・K以上、特に好ましくは30W/m・K以上のものが用いられる。熱伝導フィラー(B)単体での熱伝導率の上限は特に制限されず、高ければ高いほど好ましいが、一般的には3000W/m・K以下、さらには2500W/m・K以下のものが好ましく用いられる。 The heat conductive filler (B) blended in the heat conductive resin composition of the present invention is not particularly limited. In consideration of the effect of improving the thermal conductivity of the composition, it is preferable that the thermal conductivity of the single component is 10 W / m · K or more. If it is less than 10 W / m · K, the effect of improving the thermal conductivity of the composition is poor. The thermal conductivity of the single substance is more preferably 15 W / m · K or more, further preferably 20 W / m · K or more, particularly preferably 30 W / m · K or more. The upper limit of the thermal conductivity of the heat conductive filler (B) alone is not particularly limited, and it is preferably as high as possible. Generally, it is preferably 3000 W / m · K or less, more preferably 2500 W / m · K or less. Used.
 該熱伝導フィラー(B)は1種類、または2種類以上のフィラーを含有することができる。フィラーが2種類以上とは、フィラーの物質種、形状、平均粒径、粒度分布、表面処理剤などの内、少なくとも一つが異なる2種以上という意味である。 The heat conductive filler (B) can contain one kind or two or more kinds of fillers. The term “two or more types of fillers” means that two or more types differing in at least one of the material type, shape, average particle size, particle size distribution, and surface treatment agent of the filler.
 熱伝導フィラー(B)の形状については、種々の形状のものを適応可能である。例えば粒子状、微粒子状、ナノ粒子、凝集粒子状、ワイヤ状、ロッド状、針状、板状、不定形、ラグビーボール状、六面体状、大粒子と微小粒子とが複合化した複合粒子状、など種々の形状を例示することができる。またこれら熱伝導フィラー(B)は天然物であってもよいし、合成されたものであってもよい。天然物の場合、産地などには特に限定はなく、適宜選択することができる。 As for the shape of the heat conductive filler (B), various shapes can be applied. For example, particles, particles, nanoparticles, agglomerated particles, wires, rods, needles, plates, irregular shapes, rugby balls, hexahedrons, composite particles in which large particles and fine particles are combined, Various shapes can be exemplified. Further, these heat conductive fillers (B) may be natural products or synthesized ones. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate.
 1種類、または2種類以上の熱伝導フィラー(B)をB’、B’’、B’’’・・・と表し、これらの質量の合計を100質量%とし、さらに、全フィラーの粒子頻度の合計を100%として、1~10μmの粒径の粒子頻度を(式1)、10~100μmの粒径の粒子頻度を(式2)により求めたとき、該熱伝導フィラー(B)の1~10μmの粒径の粒子頻度が10~40%、かつ、10~100μmの粒径の粒子頻度が50~85%であることが好ましい。より好ましくは1~10μmの粒径の粒子頻度が10~40%、かつ、10~100μmの粒径の粒子頻度が50~80%であり、さらに好ましくは1~10μmの粒径の粒子頻度が15~35%、かつ、10~100μmの粒径の粒子頻度が55~78%であり、特に好ましくは1~10μmの粒径の粒子頻度が20~30%、かつ、10~100μmの粒径の粒子頻度が60~75%である。
 フィラーの粒子頻度がこれらの範囲を満足することで、同じ仕込み量でも、これらの範囲を満足しない場合に比べてフィラー充填率ならびに熱伝導率が、効率よく向上して好ましい。
One type or two or more types of thermally conductive fillers (B) are represented as B ′, B ″, B ′ ″..., And the total of these masses is 100% by mass. When the particle frequency with a particle size of 1 to 10 μm is obtained by (Equation 1) and the particle frequency with a particle size of 10 to 100 μm is obtained by (Equation 2), 1 of the thermally conductive filler (B) It is preferable that the particle frequency of a particle size of ˜10 μm is 10 to 40% and the particle frequency of a particle size of 10 to 100 μm is 50 to 85%. More preferably, the particle frequency of 1 to 10 μm is 10 to 40%, the particle frequency of 10 to 100 μm is 50 to 80%, and more preferably 1 to 10 μm. The particle frequency of 15 to 35% and a particle size of 10 to 100 μm is 55 to 78%, particularly preferably a particle frequency of 1 to 10 μm and a particle frequency of 20 to 30% and a particle size of 10 to 100 μm. The particle frequency is 60 to 75%.
It is preferable that the particle frequency of the filler satisfies these ranges, so that the filler filling rate and the thermal conductivity can be improved efficiently as compared with the case where the same charge amount does not satisfy these ranges.
 なお、フィラー充填率ならびに熱伝導率に加え、耐湿熱性をも満足させるためには、熱伝導フィラー(B)が1種類、または2種類以上のフィラーからなり、全フィラーの粒子頻度の合計を100%としたとき、1~10μmの粒径の粒子頻度が10~20%、かつ、10~100μmの粒径の粒子頻度が70~85%であることが好ましい。より好ましくは1~10μmの粒径の粒子頻度が10~18%、かつ、10~100μmの粒径の粒子頻度が70~83%である。
 粒子頻度がこれらの範囲を満足することで、フィラーが吸湿性であってもフィラー表面積を耐湿熱性が満足できる程度まで小さくする事が可能である。
 一般的に、フィラーが吸湿性である場合、その原因は表面の官能基にある。よって、表面の官能基量が減少すれば、吸湿性は改善する。多くの場合、表面官能基量は表面積の大きさに依存するため、粒径・粒子頻度制御によって表面積を制御することで吸湿性、さらには耐湿熱性を改善することが可能である。
In addition to the filler filling rate and thermal conductivity, in order to satisfy the heat and moisture resistance, the thermal conductive filler (B) is composed of one kind or two or more kinds of fillers, and the total particle frequency of all fillers is 100. %, The particle frequency with a particle size of 1 to 10 μm is preferably 10 to 20%, and the particle frequency with a particle size of 10 to 100 μm is preferably 70 to 85%. More preferably, the particle frequency of 1 to 10 μm is 10 to 18%, and the particle frequency of 10 to 100 μm is 70 to 83%.
When the particle frequency satisfies these ranges, even if the filler is hygroscopic, it is possible to reduce the filler surface area to such an extent that the heat and moisture resistance can be satisfied.
In general, when the filler is hygroscopic, the cause is a functional group on the surface. Therefore, if the amount of functional groups on the surface is reduced, the hygroscopicity is improved. In many cases, the amount of surface functional groups depends on the size of the surface area. Therefore, it is possible to improve the hygroscopic property and further the heat and moisture resistance by controlling the surface area by controlling the particle diameter and particle frequency.
 使用フィラーが1種類の場合は(式1)、(式2)のB’の項まで、同様に2種類の場合はB’’まで、3種類の場合はB’’’までというように、種類数に対応した項までの粒子頻度の和を考慮するものとする。
 ただし、これら(式1)、(式2)で扱う粒径、及び粒子頻度とは、樹脂と配合する前の熱伝導フィラー単独での粒径、及び粒子頻度を示す。すなわち、熱伝導フィラー(B)の形状に関わらず、凝集体である場合は、凝集体の粒径、及び粒子頻度を対象とする。また、ワイヤ状、ロッド状、針状、板状、ラグビーボール状、六面体状などフィラーのアスペクト比が異なる場合は、長径と短径の平均値を対象とする。ただし、凝集体である場合はこの限りでない。これらのいずれにも該当しない場合は、1粒子あたりの平均粒径、及び粒子頻度を対象とする。なお、本発明での平均粒径、及び粒子頻度はレーザー散乱粒度分布計などの粒度分布測定装置を用いて測定したものとする。
When the type of filler used is one (Equation 1), up to the term B ′ in (Equation 2), similarly up to B ″ in the case of two types, up to B ′ ″ in the case of three types, etc. The sum of particle frequencies up to the term corresponding to the number of types shall be considered.
However, the particle size and particle frequency handled in (Equation 1) and (Equation 2) indicate the particle size and particle frequency of the heat conductive filler alone before blending with the resin. That is, regardless of the shape of the heat conductive filler (B), in the case of an aggregate, the particle size and particle frequency of the aggregate are targeted. Moreover, when the aspect ratios of the fillers are different, such as a wire shape, a rod shape, a needle shape, a plate shape, a rugby ball shape, and a hexahedron shape, the average value of the major axis and the minor axis is targeted. However, this is not the case when it is an aggregate. When none of these applies, the average particle size per particle and the particle frequency are targeted. In addition, the average particle diameter and particle frequency in this invention shall be measured using particle size distribution measuring apparatuses, such as a laser scattering particle size distribution analyzer.
(式1)
{(熱伝導フィラーB’の混合割合[質量%])/100×(熱伝導フィラーB’の1~10μmの粒子頻度[%])/100
+(熱伝導フィラーB’’の混合割合[質量%])/100×(熱伝導フィラーB’’の1~10μmの粒子頻度[%])/100
+(熱伝導フィラーB’’’の混合割合[質量%])/100×(熱伝導フィラーB’’’の1~10μmの粒子頻度[%])/100
+・・・}×100
(式2)
{(熱伝導フィラーB’の混合割合[質量%])/100×(熱伝導フィラーB’の10~100μmの粒子頻度[%])/100
+(熱伝導フィラーB’’の混合割合[質量%])/100×(熱伝導フィラーB’’の10~100μmの粒子頻度[%])/100
+(熱伝導フィラーB’’’の混合割合[質量%])/100×(熱伝導フィラーB’’’の10~100μmの粒子頻度[%])/100
+・・・}×100
(Formula 1)
{(Mixing ratio of heat conductive filler B ′ [mass%]) / 100 × (particle frequency of 1 to 10 μm of heat conductive filler B ′ [%]) / 100
+ (Mixing ratio of heat conductive filler B ″ [% by mass]) / 100 × (particle frequency of 1 to 10 μm of heat conductive filler B ″ [%]) / 100
+ (Mixing ratio of heat conductive filler B ′ ″ [% by mass]) / 100 × (particle frequency of 1 to 10 μm of heat conductive filler B ′ ″ [%]) / 100
+ ...} × 100
(Formula 2)
{(Mixing ratio of heat conductive filler B ′ [mass%]) / 100 × (particle frequency of heat conductive filler B ′ of 10 to 100 μm [%]) / 100
+ (Mixing ratio of heat conductive filler B ″ [mass%]) / 100 × (particle frequency of 10 to 100 μm of heat conductive filler B ″ [%]) / 100
+ (Mixing ratio of heat conductive filler B ′ ″ [% by mass]) / 100 × (particle frequency of heat conductive filler B ′ ″ of 10 to 100 μm [%]) / 100
+ ...} × 100
 電気絶縁性を示す熱伝導フィラー(B)としては具体的には、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化ケイ素、酸化ベリリウム、酸化亜鉛、酸化銅、亜酸化銅、などの金属酸化物、窒化ホウ素、窒化アルミニウム、窒化ケイ素、などの金属窒化物、炭化ケイ素などの金属炭化物、炭酸マグネシウムなどの金属炭酸塩、ダイヤモンド、などの絶縁性炭素材料、水酸化アルミニウム、水酸化マグネシウム、などの金属水酸化物、を例示することができる。 Specific examples of the thermally conductive filler (B) exhibiting electrical insulation include metal oxides such as aluminum oxide (alumina), magnesium oxide (magnesia), silicon oxide, beryllium oxide, zinc oxide, copper oxide, and cuprous oxide. Metal nitride such as boron nitride, aluminum nitride, silicon nitride, metal carbide such as silicon carbide, metal carbonate such as magnesium carbonate, diamond, and other insulating carbon materials, aluminum hydroxide, magnesium hydroxide, etc. The metal hydroxide can be exemplified.
 中でも電気絶縁性に優れることから、窒化ホウ素、窒化アルミニウム、窒化ケイ素、などの金属窒化物、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化亜鉛、などの金属酸化物、炭酸マグネシウムなどの金属炭酸塩、水酸化アルミニウム、水酸化マグネシウム、などの金属水酸化物、ダイヤモンド、などの絶縁性炭素材料、をより好ましく用いることができる。これらのうち、樹脂との濡れ性が比較的良好であることから、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化亜鉛が好ましく、より好ましくは酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)である。これらは単独あるいは複数種類を組み合わせて用いることができる。 Among them, since it has excellent electrical insulation properties, metal nitrides such as boron nitride, aluminum nitride, and silicon nitride, metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, and zinc oxide, metal carbonates such as magnesium carbonate, Metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and insulating carbon materials such as diamond can be more preferably used. Of these, aluminum oxide (alumina), magnesium oxide (magnesia), and zinc oxide are preferable because wettability with the resin is relatively good, and aluminum oxide (alumina) and magnesium oxide (magnesia) are more preferable. is there. These can be used alone or in combination.
 また、電気伝導性を示す熱伝導フィラー(B)としては具体的には、黒鉛、炭素繊維、などの炭素材料、金属ケイ素、アルミニウム、マグネシウムなどの金属材料を例示することができる。これらは単独あるいは複数種類を組み合わせて用いることができる。 Specific examples of the heat conductive filler (B) exhibiting electrical conductivity include carbon materials such as graphite and carbon fiber, and metal materials such as metal silicon, aluminum, and magnesium. These can be used alone or in combination.
 本発明において使用される熱伝導フィラー(B)の平均粒径は、1~100μmであることが好ましい。1.5~80μmであることがより好ましく、2~70μmであることがさらに好ましい。
 平均粒径の異なる2種類のフィラーを用いる場合、樹脂中への最密充填、樹脂組成物の熱伝導率、凝集体生成の問題、ハンドリングのしやすさを考慮すると、粒径が小さいフィラーの平均粒径は1~20μm、粒径が大きいフィラーの平均粒径は20~100μmであることが好ましい。フィラー表面積が小さいと、樹脂との濡れ性の悪さの影響を受けにくく、凝集体を生成しにくいという観点から、粒径が大きいフィラーの平均粒径は30μm以上であることが好ましく、より好ましくは40μm以上である。
The average particle size of the heat conductive filler (B) used in the present invention is preferably 1 to 100 μm. The thickness is more preferably 1.5 to 80 μm, further preferably 2 to 70 μm.
When two types of fillers having different average particle diameters are used, considering the closest packing in the resin, the thermal conductivity of the resin composition, the problem of aggregate formation, and the ease of handling, The average particle size is preferably 1 to 20 μm, and the average particle size of the filler having a large particle size is preferably 20 to 100 μm. When the filler surface area is small, the average particle size of the filler having a large particle size is preferably 30 μm or more, more preferably from the viewpoint of being hardly affected by the poor wettability with the resin and hardly forming an aggregate. 40 μm or more.
 これら熱伝導フィラー(B)は、ポリエステル樹脂と無機化合物(フィラーを構成する化合物)との界面の接着性を高めたり、作業性を容易にしたりするため、そして樹脂中での分散性を良好にするため、カップリング剤によって表面処理されていることが好ましい。カップリング剤としては、特に限定されず、例えばシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、リン酸エステルカップリング剤など従来公知のものを使用することができる。中でも、シランカップリング剤が樹脂の物性を低下させることが少ないため好ましく用いられる。
 無機化合物の表面処理方法としては特に限定されず、通常の処理方法を利用できる。
 このような表面処理されている熱伝導フィラーとしては、次のようなものが例示できる。シランカップリング処理マグネシアとして、宇部マテリアルズ(株)製のRF-10C-SC、RF-50-SCなど、アルミネートカップリング処理マグネシアとして、三共精粉(株)製のMCA-10、MCA-50など、リン酸エステルカップリング処理マグネシアとして、三共精粉(株)製のMCP-10、MCP-50など、チタネートカップリング処理マグネシアとして、三共精粉(株)製MCT-10、MCT-50、MCT9SA-10、MCT9SA-50などが使用可能である。
 フィラーの分散性が向上することにより、樹脂組成物の熱伝導性がさらに向上して好ましい。
These heat conductive fillers (B) improve the adhesiveness at the interface between the polyester resin and the inorganic compound (compound constituting the filler), facilitate the workability, and improve the dispersibility in the resin. Therefore, it is preferable that the surface treatment is performed with a coupling agent. The coupling agent is not particularly limited, and conventionally known ones such as a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, and a phosphate ester coupling agent can be used. Among these, a silane coupling agent is preferably used because it hardly reduces the physical properties of the resin.
The surface treatment method of the inorganic compound is not particularly limited, and a normal treatment method can be used.
The following can be illustrated as such a surface-treated heat conductive filler. Silane coupling treated magnesia such as RF-10C-SC and RF-50-SC manufactured by Ube Materials Co., Ltd., and aluminate coupling treated magnesia such as MCA-10 and MCA- manufactured by Sankyo Seimitsu Co., Ltd. 50, such as MCP-10 and MCP-50 manufactured by Sankyo Seimitsu Co., Ltd. as Magnesia Phosphate Coupling Co., Ltd. MCT-10, MCT-50 manufactured by Sankyo Seiko Co., Ltd. MCT9SA-10, MCT9SA-50, etc. can be used.
By improving the dispersibility of the filler, the thermal conductivity of the resin composition is further improved, which is preferable.
 本発明の熱伝導性樹脂組成物におけるポリエステル樹脂(A)及び、熱伝導フィラー(B)は、ポリエステル樹脂(A)70~20体積部及び、熱伝導フィラー(B)30~80体積部となるように含有する。(A)の含有量が多いほど、得られる樹脂組成物の耐衝撃性、成形加工性が向上し、溶融混練時の樹脂との混練が容易になる傾向がある、という観点、及び(B)が多いほど熱伝導率が向上する傾向があり好ましいという観点を考慮してこれらを両立させるために、含有量は、好ましくは(A)60~20体積部及び(B)40~80体積部、より好ましくは(A)50~25体積部及び(B)50~75体積部、さらに好ましくは(A)40~30体積部及び(B)60~70体積部である。 The polyester resin (A) and the heat conductive filler (B) in the heat conductive resin composition of the present invention are 70 to 20 parts by volume of the polyester resin (A) and 30 to 80 parts by volume of the heat conductive filler (B). Contained. The viewpoint that the impact resistance and molding processability of the resulting resin composition are improved and the kneading with the resin during melt kneading tends to be easier as the content of (A) is larger, and (B) In order to achieve both of them in consideration of the viewpoint that thermal conductivity tends to improve as the amount increases, the content is preferably (A) 60 to 20 parts by volume and (B) 40 to 80 parts by volume, More preferred are (A) 50-25 parts by volume and (B) 50-75 parts by volume, still more preferred (A) 40-30 parts by volume and (B) 60-70 parts by volume.
 本発明の熱伝導性樹脂組成物は、ポリエステル樹脂(A)と熱伝導フィラー(B)の配合割合が、体積部で表されるが、樹脂組成物を製造する際は、(A)、(B)各々の比重より、質量基準で配合を行う。(A)は樹脂単体の比重、(B)はフィラーの化学種単体の比重を基に配合量を決める。このように体積部で配合量を表すのは、本発明により得られる樹脂組成物の重要な特性である熱伝導性が、組成物中の熱伝導フィラーの質量割合ではなく、体積割合が大きな意味を持つからである。
 本発明に係る熱伝導性樹脂組成物が、ポリエステル樹脂(A)、熱伝導フィラー(B)以外の成分を含む場合も、同様に配合量を決定する。
 本発明に係る熱伝導性樹脂組成物は、ポリエステル樹脂(A)中の熱伝導フィラー(B)の分散性が非常に良いので、樹脂組成物中の空隙(空気層)がほとんどない。したがって、熱伝導フィラー(B)が、配合比通り充填されているかどうかは、得られた熱伝導性樹脂組成物の比重を測定すれば、(A)、(B)各々の比重を基に確認する事ができる。
 本発明に係る熱伝導性樹脂組成物は、ポリエステル樹脂(A)と熱伝導フィラー(B)の合計で、90体積%以上占めることが好ましい。熱伝導性樹脂組成物中の(A)と(B)の合計は、95体積%以上がより好ましく、97体積%以上がさらに好ましい。
In the heat conductive resin composition of the present invention, the blending ratio of the polyester resin (A) and the heat conductive filler (B) is expressed in volume parts, but when the resin composition is produced, (A), ( B) Based on each specific gravity, it mix | blends on a mass basis. (A) is based on the specific gravity of the resin alone, and (B) is based on the specific gravity of the filler chemical species alone. In this way, the compounding amount is expressed in volume parts because the thermal conductivity, which is an important characteristic of the resin composition obtained according to the present invention, means that the volume ratio is large, not the mass ratio of the heat conductive filler in the composition. Because it has.
Also when the heat conductive resin composition which concerns on this invention contains components other than a polyester resin (A) and a heat conductive filler (B), a compounding quantity is determined similarly.
Since the heat conductive resin composition according to the present invention has very good dispersibility of the heat conductive filler (B) in the polyester resin (A), there are almost no voids (air layer) in the resin composition. Therefore, whether or not the heat conductive filler (B) is filled according to the blending ratio can be confirmed based on the specific gravity of (A) and (B) by measuring the specific gravity of the obtained heat conductive resin composition. I can do it.
The heat conductive resin composition according to the present invention preferably occupies 90% by volume or more in total of the polyester resin (A) and the heat conductive filler (B). The total of (A) and (B) in the thermally conductive resin composition is more preferably 95% by volume or more, and still more preferably 97% by volume or more.
 本発明の熱伝導性樹脂組成物をより高性能なものにするため、フェノール系安定剤、イオウ系安定剤、リン系安定剤などの熱安定剤などを、単独又は2種類以上を組み合わせて添加することが好ましい。さらに必要に応じて、一般に良く知られている、安定剤、滑剤、離型剤、可塑剤、リン系以外の難燃剤、難燃助剤、紫外線吸収剤、光安定剤、顔料、染料、帯電防止剤、導電性付与剤、分散剤、相溶化剤、抗菌剤などを、単独又は2種類以上を組み合わせて添加してもよい。 In order to make the heat conductive resin composition of the present invention higher performance, a heat stabilizer such as a phenol-based stabilizer, a sulfur-based stabilizer and a phosphorus-based stabilizer is added alone or in combination of two or more. It is preferable to do. Furthermore, as necessary, generally well-known stabilizers, lubricants, mold release agents, plasticizers, flame retardants other than phosphorus, flame retardant aids, ultraviolet absorbers, light stabilizers, pigments, dyes, charging An inhibitor, a conductivity imparting agent, a dispersant, a compatibilizing agent, an antibacterial agent and the like may be added alone or in combination of two or more.
 本発明の熱伝導性樹脂組成物の製造方法としては特に限定されるものではない。例えば、上述した成分や添加剤などを乾燥させた後、単軸、2軸などの押出機のような溶融混練機にて溶融混練することにより製造することができる。また、配合成分が液体である場合は、液体供給ポンプなどを用いて溶融混練機に途中添加して製造することもできる。 The method for producing the thermally conductive resin composition of the present invention is not particularly limited. For example, it can be produced by drying the components and additives described above and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder. Moreover, when a compounding component is a liquid, it can also manufacture by adding to a melt kneader on the way using a liquid supply pump etc.
 フィラーとポリエステル樹脂を溶融混練する方法として、フィラーを分割して添加、混練することも可能である。例えば、サイドフィードを1系列利用し、樹脂とフィラーの一部をドライブレンドしたものを元フィードに投入し、サイドフィードに残りのフィラーを投入して、連続的に混練することができる。または、サイドフィードを2系列利用し、樹脂を元フィードに投入し、元フィードに近いサイドフィードにフィラーの一部、元フィードから遠いサイドフィードに残りのフィラーを投入して、連続的に混練してもよい。あるいは、樹脂(A)とフィラーの一部とを混練して、一旦ペレットなどとして取り出し、それを残りのフィラーと混合した後、再度、混練してもよい。 As a method of melt-kneading the filler and the polyester resin, it is possible to add and knead the filler separately. For example, one series of side feeds can be used, and a dry blend of a part of the resin and filler can be put into the original feed, and the remaining filler can be put into the side feed and kneaded continuously. Alternatively, use two series of side feeds, add resin to the original feed, add part of the filler to the side feed close to the original feed, and the remaining filler to the side feed far from the original feed, and knead continuously. May be. Alternatively, the resin (A) and a part of the filler may be kneaded, once taken out as pellets, etc., mixed with the remaining filler, and then kneaded again.
 本発明の熱伝導性樹脂組成物の成形加工法としては特に限定されず、例えば、熱可塑性樹脂について一般に用いられている成形法、例えば、射出成形、ブロー成形、押出成形、真空成形、プレス成形、カレンダー成形などが利用できる。これらの中でも成形サイクルが短く生産効率に優れること、本組成物が射出成形時の流動性が良好であるという特性を有していること、などから、射出成形法により射出成形することが好ましい。 The method for molding the heat conductive resin composition of the present invention is not particularly limited. For example, a molding method generally used for thermoplastic resins, for example, injection molding, blow molding, extrusion molding, vacuum molding, press molding. Calendar molding can be used. Among these, it is preferable to perform injection molding by an injection molding method because the molding cycle is short, the production efficiency is excellent, and the composition has good fluidity at the time of injection molding.
 本願発明の組成物は、実施例でも示すとおり良好な熱伝導性を示し、0.7W/m・K以上、好ましくは1W/m・K以上、さらに好ましくは2.0W/m・K以上の成形体を得ることが可能である。 The composition of the present invention exhibits good thermal conductivity as shown in the examples, and is 0.7 W / m · K or more, preferably 1 W / m · K or more, more preferably 2.0 W / m · K or more. It is possible to obtain a molded body.
 このようにして得られた組成物は、樹脂フィルム、樹脂成形品、樹脂発泡体、塗料やコーティング剤、などさまざまな形態で、電子材料、磁性材料、触媒材料、構造体材料、光学材料、医療材料、自動車材料、建築材料、などの各種の用途に幅広く用いることが可能である。本発明で得られた高熱伝導性熱可塑性樹脂組成物は、現在広く用いられている射出成形機や押出成形機などの一般的なプラスチック用成形機が使用可能であるため、複雑な形状を有する製品への成形も容易である。特に優れた成形加工性、高熱伝導性、という優れた特性を併せ持つことから、発熱源を内部に有する携帯電話、ディスプレー、コンピューターなどの筐体用樹脂として、非常に有用である。 The composition thus obtained can be used in various forms such as resin films, resin molded products, resin foams, paints and coating agents, electronic materials, magnetic materials, catalyst materials, structural materials, optical materials, medical materials. It can be widely used for various applications such as materials, automobile materials, and building materials. The high thermal conductive thermoplastic resin composition obtained in the present invention has a complicated shape because a general plastic molding machine such as an injection molding machine or an extrusion molding machine that is widely used at present can be used. Molding into products is easy. In particular, since it has excellent properties such as excellent moldability and high thermal conductivity, it is very useful as a resin for a casing of a mobile phone, a display, a computer or the like having a heat source inside.
 本発明の高熱伝導性樹脂組成物は、家電、OA機器部品、AV機器部品、自動車内外装部品、などの射出成形品などに好適に使用することができる。特に多くの熱を発する家電製品やOA機器において、外装材料として好適に用いることができる。 The high thermal conductive resin composition of the present invention can be suitably used for injection molded products such as home appliances, OA equipment parts, AV equipment parts, automotive interior / exterior parts, and the like. In particular, it can be suitably used as an exterior material in home appliances and office automation equipment that generate a lot of heat.
 さらには発熱源を内部に有するがファンなどによる強制冷却が困難な電子機器において、内部で発生する熱を外部へ放熱するために、これらの機器の外装材として好適に用いられる。これらの中でも好ましい装置として、ノートパソコンなどの携帯型コンピューター、PDA、携帯電話、携帯ゲーム機、携帯型音楽プレーヤー、携帯型TV/ビデオ機器、携帯型ビデオカメラ、などの小型あるいは携帯型電子機器類の筐体、ハウジング、外装材用樹脂として非常に有用である。また自動車や電車などにおけるバッテリー周辺用樹脂、家電機器の携帯バッテリー用樹脂、ブレーカーなどの配電部品用樹脂、モーターなどの封止用材料、としても非常に有用に用いることができる。 Furthermore, in an electronic device having a heat source inside but difficult to forcibly cool by a fan or the like, it is suitably used as an exterior material for these devices in order to dissipate the heat generated inside to the outside. Among these, as preferred devices, small or portable electronic devices such as portable computers such as notebook computers, PDAs, cellular phones, portable game machines, portable music players, portable TV / video devices, portable video cameras, etc. It is very useful as a resin for housings, housings, and exterior materials. It can also be used very effectively as a resin for battery peripherals in automobiles and trains, a resin for portable batteries of home appliances, a resin for power distribution parts such as a breaker, and a sealing material for motors.
 本発明の高熱伝導性樹脂組成物は従来良く知られている組成物に比べて、成形加工性、耐衝撃性が良好であり、上記の用途における部品あるいは筐体用として有用な特性を有するものである。 The high thermal conductive resin composition of the present invention has better molding processability and impact resistance than conventional well-known compositions, and has useful properties for parts or casings in the above applications. It is.
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例に記載された各測定値は次の方法によって測定したものである。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In addition, each measured value described in the Example is measured by the following method.
(溶融粘度)
 溶融粘度は、島津製作所(株)製のフローテスター(CFT-500C型)を用いて測定した。200℃に設定した加熱体中央のシリンダー中に水分率0.1%以下に乾燥した樹脂試料を充填し、充填1分経過後、プランジャーを介して試料に荷重(10kgf)をかけ、シリンダー底部のダイ(孔径:1.0mm、厚み:10mm)より、溶融した試料を押出し、プランジャーの降下距離と降下時間を記録し、溶融粘度を算出した。樹脂の融点が185℃を超える場合、荷重を50kgfで測定した。
(Melt viscosity)
The melt viscosity was measured using a flow tester (CFT-500C type) manufactured by Shimadzu Corporation. A resin sample dried to a moisture content of 0.1% or less is filled in a cylinder at the center of a heating body set to 200 ° C. After 1 minute of filling, a load (10 kgf) is applied to the sample via a plunger, and the bottom of the cylinder The melted sample was extruded from the die (hole diameter: 1.0 mm, thickness: 10 mm), the plunger descending distance and the descending time were recorded, and the melt viscosity was calculated. When the melting point of the resin exceeded 185 ° C., the load was measured at 50 kgf.
(粒子頻度)
 1種類、または2種類以上の熱伝導フィラー(B)をB’、B’’、B’’’・・・と表し、これらの質量の合計を100質量%とし、さらに、全フィラーの粒子頻度の合計を100%として、1~10μmの粒径の粒子頻度を(式1)、10~100μmの粒径の粒子頻度を(式2)により求めた。
(式1)
{(熱伝導フィラーB’の混合割合[質量%])/100×(熱伝導フィラーB’の1~10μmの粒子頻度[%])/100
+(熱伝導フィラーB’’の混合割合[質量%])/100×(熱伝導フィラーB’’の1~10μmの粒子頻度[%])/100
+(熱伝導フィラーB’’’の混合割合[質量%])/100×(熱伝導フィラーB’’’の1~10μmの粒子頻度[%])/100
+・・・}×100
(式2)
{(熱伝導フィラーB’の混合割合[質量%])/100×(熱伝導フィラーB’の10~100μmの粒子頻度[%])/100
+(熱伝導フィラーB’’の混合割合[質量%])/100×(熱伝導フィラーB’’の10~100μmの粒子頻度[%])/100
+(熱伝導フィラーB’’’の混合割合[質量%])/100×(熱伝導フィラーB’’’の10~100μmの粒子頻度[%])/100
+・・・}×100
(Particle frequency)
One type or two or more types of thermally conductive fillers (B) are represented as B ′, B ″, B ′ ″..., And the total of these masses is 100% by mass. The particle frequency with a particle size of 1 to 10 μm was obtained from (Equation 1) and the particle frequency with a particle size of 10 to 100 μm was obtained from (Equation 2).
(Formula 1)
{(Mixing ratio of heat conductive filler B ′ [mass%]) / 100 × (particle frequency of 1 to 10 μm of heat conductive filler B ′ [%]) / 100
+ (Mixing ratio of heat conductive filler B ″ [% by mass]) / 100 × (particle frequency of 1 to 10 μm of heat conductive filler B ″ [%]) / 100
+ (Mixing ratio of heat conductive filler B ′ ″ [% by mass]) / 100 × (particle frequency of 1 to 10 μm of heat conductive filler B ′ ″ [%]) / 100
+ ...} × 100
(Formula 2)
{(Mixing ratio of heat conductive filler B ′ [mass%]) / 100 × (particle frequency of heat conductive filler B ′ of 10 to 100 μm [%]) / 100
+ (Mixing ratio of heat conductive filler B ″ [mass%]) / 100 × (particle frequency of 10 to 100 μm of heat conductive filler B ″ [%]) / 100
+ (Mixing ratio of heat conductive filler B ′ ″ [% by mass]) / 100 × (particle frequency of heat conductive filler B ′ ″ of 10 to 100 μm [%]) / 100
+ ...} × 100
(製造例:ポリエステル樹脂(A1))
 撹拌機、温度計、溜出用冷却器を装備した反応缶内に、ジメチルテレフタレート194質量部、1,4-ブタンジオール100質量部、数平均分子量2000のポリテトラメチレングリコール「PTMG2000」(三菱化学(株)製)800質量部、テトラブチルチタネート0.25質量部を加え、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、255℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて255℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、ポリエステル樹脂(A1)を得た。このポリエステル樹脂(A1)の組成は、テレフタル酸//1,4-ブタンジオール/PTMG2000=100//60/40モル%であり、融点は140℃で、溶融粘度は350dPa・sであった。
(Production example: Polyester resin (A1))
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser for distillation, 194 parts by mass of dimethyl terephthalate, 100 parts by mass of 1,4-butanediol, and polytetramethylene glycol “PTMG2000” having a number average molecular weight of 2000 (Mitsubishi Chemical) 800 parts by mass and 0.25 part by mass of tetrabutyl titanate were added, and an esterification reaction was performed at 170 to 220 ° C. for 2 hours. After completion of the esterification reaction, the temperature was raised to 255 ° C., while the pressure in the system was slowly reduced to 665 Pa at 255 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin (A1). The composition of this polyester resin (A1) was terephthalic acid // 1,4-butanediol / PTMG2000 = 100 // 60/40 mol%, the melting point was 140 ° C., and the melt viscosity was 350 dPa · s.
(製造例:ポリエステル樹脂(A2)~(A5)、(C1)~(C3))
 ポリエステル樹脂(A2)~(A5)、(C1)~(C3)は、ポリエステル樹脂(A1)と同様な方法により合成した。それぞれの組成及び物性値を下記に示す。なお、ポリエステル(C1)~(C3)は、比較例の原料として用いた。
(A2):テレフタル酸//1,4-ブタンジオール/PTMG2000=100//70/30モル%、融点157℃、溶融粘度500dPa・s。
(A3):2,6-ナフタレンジカルボン酸//1,4-ブタンジオール/PTMG2000=100//40/60モル%、融点140℃、溶融粘度250dPa・s。
(A4):2,6-ナフタレンジカルボン酸//1,4-ブタンジオール/PTMG2000=100//60/40モル%、融点160℃、溶融粘度500dPa・s。
(A5):2,6-ナフタレンジカルボン酸//1,4-ブタンジオール/PTMG2000=100//70/30モル%、融点185℃、溶融粘度650dPa・s。
(C1):テレフタル酸//1,4-ブタンジオール/PTMG2000=100//80/20モル%、融点178℃、溶融粘度2200dPa・s。
(C2):テレフタル酸//1,4-ブタンジオール/PTMG1000=100//85/15モル%、融点191℃、溶融粘度4000dPa・s。
(C3):2,6-ナフタレンジカルボン酸//1,4-ブタンジオール/PTMG1000=100//75/25モル%、融点189℃、溶融粘度6500dPa・s。
(Production examples: polyester resins (A2) to (A5), (C1) to (C3))
The polyester resins (A2) to (A5) and (C1) to (C3) were synthesized by the same method as the polyester resin (A1). Each composition and physical property value are shown below. Polyesters (C1) to (C3) were used as raw materials for the comparative examples.
(A2): terephthalic acid // 1,4-butanediol / PTMG2000 = 100 // 70/30 mol%, melting point 157 ° C., melt viscosity 500 dPa · s.
(A3): 2,6-naphthalenedicarboxylic acid // 1,4-butanediol / PTMG2000 = 100 // 40/60 mol%, melting point 140 ° C., melt viscosity 250 dPa · s.
(A4): 2,6-naphthalenedicarboxylic acid // 1,4-butanediol / PTMG2000 = 100 // 60/40 mol%, melting point 160 ° C., melt viscosity 500 dPa · s.
(A5): 2,6-naphthalenedicarboxylic acid // 1,4-butanediol / PTMG2000 = 100 // 70/30 mol%, melting point 185 ° C., melt viscosity 650 dPa · s.
(C1): terephthalic acid // 1,4-butanediol / PTMG2000 = 100 // 80/20 mol%, melting point 178 ° C., melt viscosity 2200 dPa · s.
(C2): terephthalic acid // 1,4-butanediol / PTMG1000 = 100 // 85/15 mol%, melting point 191 ° C., melt viscosity 4000 dPa · s.
(C3): 2,6-naphthalenedicarboxylic acid // 1,4-butanediol / PTMG1000 = 100 // 75/25 mol%, melting point 189 ° C., melt viscosity 6500 dPa · s.
 ポリエステル樹脂(A1)~(A5)は、200℃における溶融粘度が5~2000dPa・sを満たすが、ポリエステル樹脂(C1)~(C3)は、200℃における溶融粘度が2000dPa・sを超えるものである。 Polyester resins (A1) to (A5) have a melt viscosity at 200 ° C. of 5 to 2000 dPa · s, while polyester resins (C1) to (C3) have a melt viscosity at 200 ° C. of more than 2000 dPa · s. is there.
 実施例及び比較例に用いた熱伝導フィラーは、下記の通りである。表面処理に関して記載の無いものは、未処理のフィラーである。
 (B1):アルミナ(日本軽金属(株)製LS-210B、単体での熱伝導率20~40W/m・K、平均粒径3.2μm、体積固有抵抗1012~1014Ω・cm、比重3.98、粒子頻度:[1~10μm]95%、[10~100μm]0%、[その他]5%)
 (B2):アルミナ(日本軽金属(株)製LS-110F、単体での熱伝導率20~40W/m・K、平均粒径1.1μm、体積固有抵抗1012~1014Ω・cm、比重3.98、粒子頻度:[1~10μm]60%、[10~100μm]0%、[その他]40%)
 (B3):アルミナ(日本軽金属(株)製V325F、単体での熱伝導率20~40W/m・K、平均粒径12μm、体積固有抵抗1012~1014Ω・cm、比重3.98、粒子頻度:[1~10μm]35%、[10~100μm]55%、[その他]10%)
 (B4):マグネシア(宇部マテリアルズ(株)製RF-50-C、単体での熱伝導率42~60W/m・K、平均粒径56.6μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]95%、[その他]5%)
 (B4a):マグネシア(宇部マテリアルズ(株)製RF-50-C、単体での熱伝導率42~60W/m・K、平均粒径56.3μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]86%、[その他]14%)
 (B5):マグネシア(宇部マテリアルズ(株)製RF-10C-C、単体での熱伝導率42~60W/m・K、平均粒径6.6μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]60%、[10~100μm]35%、[その他]5%)
 (B5a):マグネシア(宇部マテリアルズ(株)製RF-10C-C、単体での熱伝導率42~60W/m・K、平均粒径6.6μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]60%、[10~100μm]39%、[その他]1%)
 (B5b):マグネシア(宇部マテリアルズ(株)製RF-10C-C、単体での熱伝導率42~60W/m・K、平均粒径10.7μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]43%、[10~100μm]50%、[その他]7%)
 (B6):シランカップリング処理マグネシア(宇部マテリアルズ(株)製RF-10C-SC、単体での熱伝導率42~60W/m・K、平均粒径7.4μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]58%、[10~100μm]40%、[その他]2%)
 (B6a):シランカップリング処理マグネシア(宇部マテリアルズ(株)製RF-10C-SC、単体での熱伝導率42~60W/m・K、平均粒径12.5μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]36%、[10~100μm]58%、[その他]6%)
 (B7):シランカップリング処理マグネシア(宇部マテリアルズ(株)製RF-50-SC、単体での熱伝導率42~60W/m・K、平均粒径53.6μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]86%、[その他]14%)
 (B8):アルミネートカップリング処理マグネシア(三共精粉(株)製MCA-10、単体での熱伝導率42~60W/m・K、平均粒径11.9μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]36%、[10~100μm]59%、[その他]5%)
 (B9):アルミネートカップリング処理マグネシア(三共精粉(株)製MCA-50、単体での熱伝導率42~60W/m・K、平均粒径61.8μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]86%、[その他]14%)
 (B10):リン酸エステルカップリング処理マグネシア(三共精粉(株)製MCP-10、単体での熱伝導率42~60W/m・K、平均粒径15.2μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]29%、[10~100μm]62%、[その他]9%)
 (B11):リン酸エステルカップリング処理マグネシア(三共精粉(株)製MCP-50、単体での熱伝導率42~60W/m・K、平均粒径51.9μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]90%、[その他]10%)
 (B12):チタネートカップリング処理マグネシア(三共精粉(株)製MCT-10、単体での熱伝導率42~60W/m・K、平均粒径15.8μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]28%、[10~100μm]62%、[その他]10%)
 (B13):チタネートカップリング処理マグネシア(三共精粉(株)製MCT-50、単体での熱伝導率42~60W/m・K、平均粒径49.6μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]95%、[その他]5%)
 (B14):チタネートカップリング処理マグネシア(三共精粉(株)製MCT9SA-10、単体での熱伝導率42~60W/m・K、平均粒径14.7μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]31%、[10~100μm]61%、[その他]8%)
 (B15):チタネートカップリング処理マグネシア(三共精粉(株)製MCT9SA-50、単体での熱伝導率42~60W/m・K、平均粒径51.3μm、体積固有抵抗1017Ω・cm、比重3.58、粒子頻度:[1~10μm]0%、[10~100μm]90%、[その他]10%)
The heat conductive filler used for the Example and the comparative example is as follows. Those not described regarding the surface treatment are untreated fillers.
(B1): Alumina (LS-210B manufactured by Nippon Light Metal Co., Ltd., single body thermal conductivity 20-40 W / m · K, average particle size 3.2 μm, volume resistivity 10 12 to 10 14 Ω · cm, specific gravity 3.98, Particle frequency: [1-10 μm] 95%, [10-100 μm] 0%, [Others] 5%)
(B2): Alumina (Nippon Light Metal Co., Ltd. LS-110F, thermal conductivity 20 alone ~ 40W / m · K, the average particle diameter of 1.1 .mu.m, a volume resistivity 10 12 ~ 10 14 Ω · cm , a specific gravity 3.98, Particle frequency: [1-10 μm] 60%, [10-100 μm] 0%, [Others] 40%)
(B3): Alumina (Nippon Light Metal Co., Ltd. V325F, single body thermal conductivity 20 to 40 W / m · K, average particle size 12 μm, volume resistivity 10 12 to 10 14 Ω · cm, specific gravity 3.98, Particle frequency: [1-10 μm] 35%, [10-100 μm] 55%, [Others] 10%)
(B4): Magnesia (RF-50-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m · K, average particle size 56.6 μm, volume resistivity 10 17 Ω · cm, specific gravity 3.58, Particle frequency: [1-10 μm] 0%, [10-100 μm] 95%, [Others] 5%)
(B4a): Magnesia (RF-50-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m · K, average particle size 56.3 μm, volume resistivity 10 17 Ω · cm, specific gravity 3.58, particle frequency: [1-10 μm] 0%, [10-100 μm] 86%, [others] 14%)
(B5): Magnesia (RF-10C-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42-60 W / m · K, average particle size 6.6 μm, volume resistivity 10 17 Ω · cm, specific gravity 3.58, Particle frequency: [1-10 μm] 60%, [10-100 μm] 35%, [Others] 5%)
(B5a): Magnesia (RF-10C-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m · K, average particle size 6.6 μm, volume resistivity 10 17 Ω · cm, specific gravity 3.58, particle frequency: [1-10 μm] 60%, [10-100 μm] 39%, [others] 1%)
(B5b): Magnesia (RF-10C-C manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m · K, average particle size 10.7 μm, volume resistivity 10 17 Ω · cm, specific gravity 3.58, particle frequency: [1-10 μm] 43%, [10-100 μm] 50%, [others] 7%)
(B6): Silane coupling-treated magnesia (RF-10C-SC manufactured by Ube Materials Co., Ltd., single body thermal conductivity 42 to 60 W / m · K, average particle size 7.4 μm, volume resistivity 10 17 Ω・ Cm, specific gravity 3.58, particle frequency: [1-10 μm] 58%, [10-100 μm] 40%, [others] 2%)
(B6a): Silane coupling-treated magnesia (RF-10C-SC manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m · K, average particle size 12.5 μm, volume resistivity 10 17 Ω (Cm, specific gravity 3.58, particle frequency: [1-10 μm] 36%, [10-100 μm] 58%, [others] 6%)
(B7): Silane coupling-treated magnesia (RF-50-SC manufactured by Ube Materials Co., Ltd., single unit thermal conductivity 42 to 60 W / m · K, average particle size 53.6 μm, volume resistivity 10 17 Ω (Cm, specific gravity 3.58, particle frequency: [1-10 μm] 0%, [10-100 μm] 86%, [others] 14%)
(B8): aluminate coupling treatment magnesia (Sankyo Seiko Co. MCA-10, the thermal conductivity by itself 42 ~ 60W / m · K, the average particle diameter of 11.9, a volume resistivity 10 17 Omega · cm, specific gravity 3.58, particle frequency: [1-10 μm] 36%, [10-100 μm] 59%, [others] 5%)
(B9): Aluminate coupling-treated magnesia (MCA-50 manufactured by Sankyo Seimitsu Co., Ltd., single unit thermal conductivity 42-60 W / m · K, average particle size 61.8 μm, volume resistivity 10 17 Ω · cm, specific gravity 3.58, particle frequency: [1-10 μm] 0%, [10-100 μm] 86%, [others] 14%)
(B10): Phosphate ester-treated magnesia (MCP-10 manufactured by Sankyo Seimitsu Co., Ltd., thermal conductivity 42 to 60 W / m · K alone, average particle size 15.2 μm, volume resistivity 10 17 Ω (Cm, specific gravity 3.58, particle frequency: [1-10 μm] 29%, [10-100 μm] 62%, [others] 9%)
(B11): Phosphate ester coupling treated magnesia (MCP-50 manufactured by Sankyo Seimitsu Co., Ltd., single unit thermal conductivity 42-60 W / m · K, average particle size 51.9 μm, volume resistivity 10 17 Ω (Cm, specific gravity 3.58, particle frequency: [1-10 μm] 0%, [10-100 μm] 90%, [others] 10%)
(B12): Titanate coupling-treated magnesia (MCT-10 manufactured by Sankyo Seimitsu Co., Ltd., thermal conductivity 42 to 60 W / m · K alone, average particle size 15.8 μm, volume resistivity 10 17 Ω · cm , Specific gravity 3.58, particle frequency: [1-10 μm] 28%, [10-100 μm] 62%, [others] 10%)
(B13): Titanate coupling-treated magnesia (Sankyo Seimitsu Co., Ltd. MCT-50, single unit thermal conductivity 42 to 60 W / m · K, average particle size 49.6 μm, volume resistivity 10 17 Ω · cm Specific gravity 3.58, particle frequency: [1-10 μm] 0%, [10-100 μm] 95%, [others] 5%)
(B14): Titanate coupling-treated magnesia (manufactured by Sankyo Seimitsu Co., Ltd. MCT9SA-10, thermal conductivity of 42 to 60 W / m · K alone, average particle size of 14.7 μm, volume resistivity of 10 17 Ω · cm , Specific gravity 3.58, particle frequency: [1-10 μm] 31%, [10-100 μm] 61%, [others] 8%)
(B15): Titanate coupling-treated magnesia (Sankyo Seimitsu Co., Ltd. MCT9SA-50, single body thermal conductivity 42-60 W / m · K, average particle size 51.3 μm, volume resistivity 10 17 Ω · cm , Specific gravity 3.58, particle frequency: [1-10 μm] 0%, [10-100 μm] 90%, [others] 10%)
(実施例1)
 上記の方法で重合したポリエステル樹脂(A1)と、熱伝導フィラー(B1)、(B2)の混合物とを表1に示す割合で混合した後、180℃に予熱した東洋精機(株)製卓上型混練機ラボプラストミル20C200に投入し、20rpmで10分間混練した。
Example 1
After mixing the polyester resin (A1) polymerized by the above method and the mixture of the heat conductive fillers (B1) and (B2) in the ratio shown in Table 1, the tabletop type manufactured by Toyo Seiki Co., Ltd. preheated to 180 ° C. The kneader Laboplast Mill 20C200 was charged and kneaded at 20 rpm for 10 minutes.
(実施例2~32、比較例1~7)
 ポリエステル樹脂、熱伝導フィラーの種類や配合量を、表1~6に示すように変更した以外は実施例1と同様にして混練した。なお、融点もしくは溶融粘度が比較的高いポリエステル樹脂(A5)、(C1)~(C3)を用いた、実施例、比較例の混練は200℃で行なった。
(Examples 2 to 32, Comparative Examples 1 to 7)
Kneading was carried out in the same manner as in Example 1 except that the types and blending amounts of the polyester resin and the heat conductive filler were changed as shown in Tables 1 to 6. The examples and comparative examples were kneaded at 200 ° C. using polyester resins (A5) and (C1) to (C3) having a relatively high melting point or melt viscosity.
[評価方法]
 以下のようにして、混練状態、分散状態、耐湿熱性、熱伝導率、比重、射出成形性の判定を行なった。
[Evaluation methods]
As described below, the kneaded state, the dispersed state, the heat and humidity resistance, the thermal conductivity, the specific gravity, and the injection moldability were determined.
(評価用シートサンプルの作製)
 各種測定に用いたシートサンプルは、テスター産業(株)製ヒートプレス機SA-302-Iを用いて作製した。所定の厚みを有する型枠内に樹脂組成物を入れ、190℃で2分間溶融後、100kgf/cmの荷重をかけ、1分後に水につけて急冷し、所定の厚みのシートサンプルを得た。樹脂の融点が185℃以上のものを用いた組成物の場合は、200℃で溶融した。
(Preparation of sheet sample for evaluation)
Sheet samples used for various measurements were prepared using a heat press machine SA-302-I manufactured by Tester Sangyo Co., Ltd. The resin composition was placed in a mold having a predetermined thickness, melted at 190 ° C. for 2 minutes, applied with a load of 100 kgf / cm 2 , and then cooled in water after 1 minute to obtain a sheet sample with a predetermined thickness. . In the case of a composition using a resin having a melting point of 185 ° C. or higher, it was melted at 200 ° C.
(混練状態)
 樹脂とフィラーの混練状態を次のように判定し、○を良好、△もしくは×を混練不良と判断した。△は樹脂組成物中に空隙を多く含有していることが原因であり、実質、高充填化未達であることと同義である。
○:樹脂とフィラーが均一に混ざっており、フィラーの仕込み量と実測充填率が±5%の範囲内で一致する。
△:一見すると均一であるが、フィラーの仕込み量と実測充填率が±5%の範囲外である。
×:樹脂とフィラーが完全に分離し、混ざっていない。
(Kneaded state)
The kneading state of the resin and filler was determined as follows, and ○ was judged good and Δ or x was judged as poor kneading. Δ is caused by the fact that the resin composition contains a large amount of voids, and is substantially synonymous with the fact that high filling is not achieved.
○: The resin and the filler are uniformly mixed, and the charged amount of the filler and the actually measured filling rate agree within a range of ± 5%.
Δ: Although uniform at first glance, the charged amount of filler and the actually measured filling rate are outside the range of ± 5%.
X: Resin and filler are completely separated and not mixed.
(分散状態)
 ヒートプレスで得られた0.5mm厚さのシート中央付近の10cmφの範囲内において、シート表面に存在する目視で確認できるフィラー凝集体の数をカウントし、以下のように分散状態の判定を行なった。上記混練状態が○または△であれば、熱伝導性樹脂組成物として実用的である。本評価の分散状態が良好なほど(フィラー凝集体数が少ないほど)、熱伝導率をより向上させることができる。
○:フィラー凝集体の数が2個以下
△:フィラー凝集体の数が3個以上14個以下
×:フィラー凝集体の数が15個以上
(Distributed state)
Within the range of 10 cmφ near the center of the 0.5 mm thick sheet obtained by heat press, the number of filler aggregates present on the sheet surface that can be visually confirmed is counted, and the dispersion state is determined as follows. It was. If the kneading state is ◯ or Δ, it is practical as a heat conductive resin composition. The better the dispersion state in this evaluation (the smaller the number of filler aggregates), the more the thermal conductivity can be improved.
○: The number of filler aggregates is 2 or less Δ: The number of filler aggregates is 3 or more and 14 or less ×: The number of filler aggregates is 15 or more
(耐湿熱性)
 ヒートプレスして得られた厚み1mmのシートサンプルを10mm×50mmのサイズに切断してサンプルを作製した。これを高温高湿槽に投入し、85℃×85%Rhの条件下におけるサンプルの膨張率を観察した。高温高湿槽投入前と高温高湿槽投入後1000時間経過後の長さ、幅、厚さ(mm)をそれぞれ測定し、各方向における膨張率(%)を算出した。さらにそれらの積をとり、体積膨張率(%)を算出した。このとき高温高湿槽投入前の膨張率を100%とする。なお、測定には定圧ノギスを使用した。
 体積膨張率は小さいほど好ましい。体積膨張率が130%以下であると、脆性の悪化が小さく、良好である。膨張率が130%を超えると、脆性が悪化するため、高湿度下での使用は好ましくない。
(Moisture and heat resistance)
A sheet sample having a thickness of 1 mm obtained by heat pressing was cut into a size of 10 mm × 50 mm to prepare a sample. This was put into a high-temperature and high-humidity tank, and the expansion coefficient of the sample under the condition of 85 ° C. × 85% Rh was observed. The length, width, and thickness (mm) before the high temperature and high humidity tank were added and after 1000 hours had elapsed after the high temperature and high humidity tank were supplied, respectively, and the expansion rate (%) in each direction was calculated. Furthermore, those products were taken and the volume expansion coefficient (%) was calculated. At this time, the expansion rate before charging the high-temperature and high-humidity tank is 100%. A constant pressure caliper was used for the measurement.
The smaller the volume expansion coefficient, the better. When the volume expansion coefficient is 130% or less, the deterioration of brittleness is small and good. If the expansion rate exceeds 130%, the brittleness deteriorates, so use under high humidity is not preferable.
(熱伝導率)
 比熱は、TAインスツルメンツ(株)製DSC2920を用いて測定した。樹脂組成物10.0mgをアルミパンに入れ、室温から10℃/分の昇温温度で200℃まで昇温し、200℃に達してから5分間保持した後に、10℃/分で降温した。同様に、基準物質としてサファイア26.8mgをアルミパンに入れ、同条件で測定した。さらに、ブランクとしてサンプルを入れていない空のアルミパンを同条件で測定した。それぞれのDSC曲線の23℃におけるHeat
Flowの値を読み取り、下記式3により比熱容量を算出した。
 Cpは試料比熱、C’pは23℃における基準物質(サファイア)比熱、hは空容器と試料のDSC曲線の差、Hは空容器と基準物質(サファイア)のDSC曲線の差、mは試料質量(g)、m’は基準物質(サファイア)質量(g)を表す。
(式3)
Cp=(h/H)×(m’/m)×C’p
 比重は、東洋精機(株)製自動比重計D-H100を用いて測定した。ヒートプレスして得られた厚さ0.5mmのシートを、10mm×10mmのサイズにサンプリングし、水中置換法により比重測定を行なった。
 熱拡散率は、アイフェイズ(株)製の熱拡散係数測定装置ai-phase
Mobile1を用いて測定した。ヒートプレス機で厚さ0.5mmのシート状に加工した混練樹脂組成物の、厚み方向の熱拡散率を測定した。
 熱伝導率は、前記方法で求めた比熱、比重、熱拡散率から下式により算出した。
(式4)
 熱伝導率(W/m・K)=比重×比熱(J/g・K)×熱拡散率(m/sec)
(Thermal conductivity)
Specific heat was measured using DS Instruments 2920 manufactured by TA Instruments. 10.0 mg of the resin composition was put in an aluminum pan, heated from room temperature to 200 ° C. at a temperature rising temperature of 10 ° C./min, held for 5 minutes after reaching 200 ° C., and then cooled at 10 ° C./min. Similarly, 26.8 mg of sapphire as a reference material was placed in an aluminum pan and measured under the same conditions. Furthermore, the empty aluminum pan which has not put the sample as a blank was measured on the same conditions. Heat of each DSC curve at 23 ° C
The value of Flow was read, and the specific heat capacity was calculated by the following formula 3.
Cp is the specific heat of the sample, C′p is the specific heat of the reference material (sapphire) at 23 ° C., h is the difference between the DSC curve of the empty container and the sample, H is the difference of the DSC curve of the empty container and the reference material (sapphire), m is the sample Mass (g) and m ′ represent mass (g) of the reference material (sapphire).
(Formula 3)
Cp = (h / H) × (m ′ / m) × C′p
The specific gravity was measured using an automatic hydrometer DH100 manufactured by Toyo Seiki Co., Ltd. A sheet having a thickness of 0.5 mm obtained by heat pressing was sampled to a size of 10 mm × 10 mm, and the specific gravity was measured by an underwater substitution method.
The thermal diffusivity is measured by ai-phase.
It measured using Mobile1. The thermal diffusivity in the thickness direction of the kneaded resin composition processed into a sheet having a thickness of 0.5 mm with a heat press was measured.
The thermal conductivity was calculated from the specific heat, specific gravity, and thermal diffusivity obtained by the above method according to the following formula.
(Formula 4)
Thermal conductivity (W / m · K) = specific gravity × specific heat (J / g · K) × thermal diffusivity (m 2 / sec)
(射出成形性)
 射出成形性を次のように判定し、○を成形性良好、×を成形性不良と判断した。
○:180~280℃の金型温度で射出成形可能である。
×:180~280℃の金型温度で射出成形不可である。(試験片のショートショットなどが起こる。)
(Injection moldability)
The injection moldability was judged as follows, and ○ was judged as good moldability and X was judged as poor moldability.
○: Injection molding is possible at a mold temperature of 180 to 280 ° C.
×: Injection molding is not possible at a mold temperature of 180 to 280 ° C. (Short shots of specimens occur.)
 それぞれの配合、及び結果を表1~6に示す。表1~6より、本発明の範囲外の組成物と比べ、本発明の組成物は特に優れた熱伝導性を示し、射出成形性に優れた高熱伝導率の樹脂組成物が得られることがわかる。 The respective formulations and results are shown in Tables 1 to 6. From Tables 1 to 6, it can be seen that the composition of the present invention exhibits particularly excellent thermal conductivity compared to the composition outside the range of the present invention, and a resin composition with high thermal conductivity excellent in injection moldability can be obtained. Recognize.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ジカルボン酸成分がナフタレンジカルボン酸であるポリエステル樹脂を用い、1~10μmの粒径の粒子頻度が10~40%かつ10~100μmの粒径の粒子頻度が50~85%である熱伝導フィラーを用いた実施例3、7、8、11、12の組成物は、混練状態、熱伝導率、射出成形性の全てにおいて、優れた結果が得られていることが分かる。 Uses a polyester resin whose dicarboxylic acid component is naphthalenedicarboxylic acid and uses a thermally conductive filler with a particle frequency of 1 to 10 μm and a particle frequency of 10 to 40 μm and a particle frequency of 10 to 100 μm of 50 to 85%. It can be seen that the compositions of Examples 3, 7, 8, 11, and 12 obtained excellent results in all of the kneaded state, thermal conductivity, and injection moldability.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 カップリング剤によって表面処理された熱伝導フィラーを用いた実施例13~19の組成物に比べて、表面が未処理の熱伝導フィラーを用いた実施例20、21の組成物は、熱伝導性樹脂組成物としては実用的であるが、フィラーの分散状態が劣ることが分かる。 Compared to the compositions of Examples 13 to 19 using the heat conductive filler surface-treated with the coupling agent, the compositions of Examples 20 and 21 using the heat-conductive filler with an untreated surface are heat conductive. Although it is practical as a resin composition, it turns out that the dispersion state of a filler is inferior.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1~10μmの粒径の粒子頻度が10~20%かつ10~100μmの粒径の粒子頻度が70~85%である熱伝導フィラーを用いた実施例22~29の組成物に比べて、そうでない熱伝導フィラーを用いた実施例30~31の組成物は、熱伝導性樹脂組成物としては実用的であるが、耐湿熱性が劣ることが分かる。 Compared to the compositions of Examples 22-29 using thermal conductive fillers with a particle frequency of 1-20 μm particle size of 10-20% and a particle frequency of 10-100 μm particle size of 70-85% It can be seen that the compositions of Examples 30 to 31 using a non-thermally conductive filler are practical as a thermally conductive resin composition, but have poor wet heat resistance.
 本発明の熱伝導性樹脂組成物は、フィラー高充填化を可能としており、さらに高熱伝導性でありながら、射出成形時の成形流動性も非常に優れており、フィラー高充填化と良好な射出成形性を両立した、高熱伝導性熱可塑性樹脂組成物であり、産業上の利用価値が大きい。 The heat conductive resin composition of the present invention enables high filler filling, and also has high heat conductivity, but also has excellent molding fluidity during injection molding, high filler filling and good injection. It is a thermoplastic resin composition with high thermal conductivity that has both moldability and industrial utility value.

Claims (9)

  1.  200℃、10kgf荷重時の溶融粘度が5~2000dPa・sであるポリエステル樹脂(A)70~20体積部及び、熱伝導フィラー(B)30~80体積部を含有することを特徴とする熱伝導性樹脂組成物。 Heat conduction characterized by containing 70 to 20 parts by volume of a polyester resin (A) having a melt viscosity of 5 to 2000 dPa · s at 200 ° C. under a load of 10 kgf and 30 to 80 parts by volume of a heat conductive filler (B). Resin composition.
  2.  前記ポリエステル樹脂(A)を構成するジカルボン酸成分のうち80モル%以上がテレフタル酸及び/またはナフタレンジカルボン酸であり、かつ前記ポリエステル樹脂(A)を構成するジオール成分のうち40モル%以上が1,4-ブタンジオールであることを特徴とする請求項1に記載の熱伝導性樹脂組成物。 80 mol% or more of the dicarboxylic acid component constituting the polyester resin (A) is terephthalic acid and / or naphthalenedicarboxylic acid, and 40 mol% or more of the diol component constituting the polyester resin (A) is 1 The heat conductive resin composition according to claim 1, which is 1,4-butanediol.
  3.  前記ポリエステル樹脂(A)を構成するジカルボン酸成分のうち80モル%以上がナフタレンジカルボン酸であり、かつ前記ポリエステル樹脂(A)を構成するジオール成分のうち40モル%以上が1,4-ブタンジオールであることを特徴とする請求項1に記載の熱伝導性樹脂組成物。 80 mol% or more of the dicarboxylic acid component constituting the polyester resin (A) is naphthalenedicarboxylic acid, and 40 mol% or more of the diol component constituting the polyester resin (A) is 1,4-butanediol. The thermally conductive resin composition according to claim 1, wherein:
  4.  前記ポリエステル樹脂(A)のジオール成分のうち2モル%以上が、ポリアルキレンエーテルグリコールであることを特徴とする請求項1~3のいずれかに記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to any one of claims 1 to 3, wherein 2 mol% or more of the diol component of the polyester resin (A) is polyalkylene ether glycol.
  5.  前記ポリアルキレンエーテルグリコールが、数平均分子量400~4000のポリテトラメチレングリコールであることを特徴とする請求項4に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to claim 4, wherein the polyalkylene ether glycol is polytetramethylene glycol having a number average molecular weight of 400 to 4000.
  6.  前記熱伝導フィラー(B)が1種類、または2種類以上のフィラーからなり、全フィラーの粒子頻度の合計を100%としたとき、1~10μmの粒径の粒子頻度が10~40%、かつ、10~100μmの粒径の粒子頻度が50~85%であることを特徴とする請求項1~5のいずれかに記載の熱伝導性樹脂組成物。 When the heat conductive filler (B) is composed of one kind or two or more kinds of fillers, and the total particle frequency of all fillers is 100%, the particle frequency of 1 to 10 μm in particle diameter is 10 to 40%, and 6. The thermally conductive resin composition according to claim 1, wherein the frequency of particles having a particle diameter of 10 to 100 μm is 50 to 85%.
  7.  前記熱伝導フィラー(B)の単体での熱伝導率が10W/m・K以上であることを特徴とする請求項1~6のいずれかに記載の熱伝導性樹脂組成物。 The thermal conductive resin composition according to any one of claims 1 to 6, wherein the thermal conductivity of the thermal conductive filler (B) alone is 10 W / m · K or more.
  8.  前記熱伝導フィラー(B)がカップリング剤によって表面処理されていることを特徴とする請求項1~7のいずれかに記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to any one of claims 1 to 7, wherein the heat conductive filler (B) is surface-treated with a coupling agent.
  9.  前記熱伝導フィラー(B)が1種類、または2種類以上のフィラーからなり、全フィラーの粒子頻度の合計を100%としたとき、1~10μmの粒径の粒子頻度が10~20%、かつ、10~100μmの粒径の粒子頻度が70~85%であることを特徴とする請求項1~8のいずれかに記載の熱伝導性樹脂組成物。
     
    When the heat conductive filler (B) is composed of one kind or two or more kinds of fillers, and the total particle frequency of all fillers is 100%, the particle frequency of 1 to 10 μm in particle diameter is 10 to 20%, and The thermally conductive resin composition according to any one of claims 1 to 8, wherein the frequency of particles having a particle diameter of 10 to 100 µm is 70 to 85%.
PCT/JP2011/079600 2010-12-24 2011-12-21 Thermally conductive resin composition WO2012086673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011554306A JP5906741B2 (en) 2010-12-24 2011-12-21 Thermally conductive resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-287244 2010-12-24
JP2010287244 2010-12-24
JP2011-274185 2011-12-15
JP2011274185 2011-12-15
JP2011-274186 2011-12-15
JP2011274186 2011-12-15

Publications (1)

Publication Number Publication Date
WO2012086673A1 true WO2012086673A1 (en) 2012-06-28

Family

ID=46313941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079600 WO2012086673A1 (en) 2010-12-24 2011-12-21 Thermally conductive resin composition

Country Status (2)

Country Link
JP (1) JP5906741B2 (en)
WO (1) WO2012086673A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169608A1 (en) * 2011-06-08 2012-12-13 東洋紡株式会社 Thermally conductive resin composition and method for producing same
JP2013014756A (en) * 2011-06-08 2013-01-24 Toyobo Co Ltd Method for producing heat-conductive resin composition
WO2014115649A1 (en) * 2013-01-24 2014-07-31 東洋紡株式会社 Heat-conductive resin composition
JP7447930B2 (en) 2018-03-26 2024-03-12 三菱ケミカル株式会社 Fiber-reinforced thermoplastic resin molding material, pellets and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176341A (en) * 2001-09-18 2003-06-24 Toyobo Co Ltd Polyester resin for molding, resin composition and molded article produced by using the same
WO2007066711A1 (en) * 2005-12-09 2007-06-14 Kaneka Corporation Thermoplastic resin composition with high thermal conductivity
JP2008239898A (en) * 2007-03-28 2008-10-09 Techno Polymer Co Ltd Heat-radiating resin composition and molded article containing the same
JP2009091440A (en) * 2007-10-05 2009-04-30 Kaneka Corp Highly thermally-conductive thermoplastic resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014445B2 (en) * 2002-05-22 2007-11-28 電気化学工業株式会社 Engine oil additive and engine oil
WO2008123312A1 (en) * 2007-03-26 2008-10-16 Techno Polymer Co., Ltd. Alcohol-resistant molding material, and molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176341A (en) * 2001-09-18 2003-06-24 Toyobo Co Ltd Polyester resin for molding, resin composition and molded article produced by using the same
WO2007066711A1 (en) * 2005-12-09 2007-06-14 Kaneka Corporation Thermoplastic resin composition with high thermal conductivity
JP2008239898A (en) * 2007-03-28 2008-10-09 Techno Polymer Co Ltd Heat-radiating resin composition and molded article containing the same
JP2009091440A (en) * 2007-10-05 2009-04-30 Kaneka Corp Highly thermally-conductive thermoplastic resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169608A1 (en) * 2011-06-08 2012-12-13 東洋紡株式会社 Thermally conductive resin composition and method for producing same
JP2013014756A (en) * 2011-06-08 2013-01-24 Toyobo Co Ltd Method for producing heat-conductive resin composition
WO2014115649A1 (en) * 2013-01-24 2014-07-31 東洋紡株式会社 Heat-conductive resin composition
JPWO2014115649A1 (en) * 2013-01-24 2017-01-26 東洋紡株式会社 Thermally conductive resin composition
JP7447930B2 (en) 2018-03-26 2024-03-12 三菱ケミカル株式会社 Fiber-reinforced thermoplastic resin molding material, pellets and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2012086673A1 (en) 2014-05-22
JP5906741B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5226270B2 (en) High thermal conductivity thermoplastic resin composition
JP5767809B2 (en) High thermal conductive resin molding
EP2774952B1 (en) Wholly aromatic liquid crystal polyester resin compound and product having antistatic properties
JP5853376B2 (en) Polyalkylene terephthalate resin composition and molded article
WO2015002198A1 (en) High thermal conductivity thermoplastic resin composition with excellent injection moldability
JP2008050555A (en) Thermoconductive resin composition and use thereof
JP5906741B2 (en) Thermally conductive resin composition
JP2010001402A (en) High thermal conductivity resin molded article
WO2012081381A1 (en) Polybutylene terephthalate resin composition and pellet thereof
JP2012229315A (en) Thermally-conductive polyalkylene terephthalate resin composition and molding
JP2007262295A (en) Thermoconductive resin composition and molded article consisting of the same
JP2013014758A (en) Thermally conductive resin composition
JP2013014757A (en) Thermally conductive resin composition
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JP6003250B2 (en) Method for producing thermally conductive resin composition
JP6007610B2 (en) Thermally conductive resin composition
JP6237618B2 (en) Thermally conductive resin composition
JP2010285581A (en) Insulating resin composition
CN110845935A (en) Small motor insulation powder and preparation method thereof
JP5981759B2 (en) Method for producing thermoplastic resin composition
WO2012169608A1 (en) Thermally conductive resin composition and method for producing same
CN112041397B (en) Resin composition for antistatic member
KR101405264B1 (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and warpage
WO2015020120A1 (en) Polylactic acid resin composition
JP2006306991A (en) Thermoplastic resin composition for electric and electronic component and electric contact point component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011554306

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851932

Country of ref document: EP

Kind code of ref document: A1