JP2006045390A - Flat glass fiber-containing pellet, molded object of flat glass fiber-containing thermoplastic resin and manufacturing method thereof - Google Patents

Flat glass fiber-containing pellet, molded object of flat glass fiber-containing thermoplastic resin and manufacturing method thereof Download PDF

Info

Publication number
JP2006045390A
JP2006045390A JP2004229818A JP2004229818A JP2006045390A JP 2006045390 A JP2006045390 A JP 2006045390A JP 2004229818 A JP2004229818 A JP 2004229818A JP 2004229818 A JP2004229818 A JP 2004229818A JP 2006045390 A JP2006045390 A JP 2006045390A
Authority
JP
Japan
Prior art keywords
glass fiber
flat glass
thermoplastic resin
pellet
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004229818A
Other languages
Japanese (ja)
Other versions
JP4876377B2 (en
Inventor
Hironao Ito
洋尚 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2004229818A priority Critical patent/JP4876377B2/en
Publication of JP2006045390A publication Critical patent/JP2006045390A/en
Application granted granted Critical
Publication of JP4876377B2 publication Critical patent/JP4876377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • B29K2709/08Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material to obtain a molded object of a glass fiber-containing thermoplastic resin having superior tensile strength, superior impact strength and enhanced surface flatness. <P>SOLUTION: This flat glass fiber-containing pellet 100 comprises flat glass fiber filaments 20 of a flat cross section in a pellet 10 of a thermoplastic resin, in which the plurality of the filaments are arranged in one direction so that both end faces of the filaments come to surfaces of the pellet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、扁平ガラス繊維含有ペレット、扁平ガラス繊維含有熱可塑性樹脂成型物及びこれらの製造方法に関する。   The present invention relates to flat glass fiber-containing pellets, flat glass fiber-containing thermoplastic resin moldings, and methods for producing them.

ガラス繊維で強化された熱可塑性樹脂成型物は、一般に、ガラス繊維フィラメントを複数束ねて所定の長さに切断したガラス繊維チョップドストランドを、熱可塑性樹脂ペレットとともに溶融混合し、これを射出成型して製造される。   Generally, a thermoplastic resin molding reinforced with glass fibers is obtained by melt-mixing glass fiber chopped strands obtained by bundling a plurality of glass fiber filaments and cutting them into a predetermined length together with thermoplastic resin pellets, and then subjecting the mixture to injection molding. Manufactured.

しかし、この製造方法では、射出成型時にガラス繊維が粉砕されてしまうことが多く、最終製品に残存するガラス繊維の繊維長が極端に短くなり、強度(引張強度等)や耐衝撃性が不十分となる。また、ガラス繊維フィラメントが射出成型時の樹脂の流れに伴い配向して、成型物に方向性が出てしまい、反りが発生することがある。   However, in this manufacturing method, the glass fiber is often crushed during injection molding, the fiber length of the glass fiber remaining in the final product becomes extremely short, and the strength (tensile strength, etc.) and impact resistance are insufficient. It becomes. Further, the glass fiber filament may be oriented with the flow of the resin at the time of injection molding, so that the molded product may have directionality and warp may occur.

このような問題を解決するために、円形断面のガラス繊維フィラメントを用いたガラス繊維チョップドストランドに代えて、断面が扁平な扁平ガラス繊維を用い、これを熱可塑性樹脂と混合溶融して射出成型する方法が提案されている(特許文献1)。また、長尺のガラス繊維に熱可塑性樹脂を含浸させた後に切断したペレットを用いることも検討されている(特許文献2)。
特公平2−60494号公報 特開平5−9380号公報
In order to solve such problems, instead of glass fiber chopped strands using glass fiber filaments having a circular cross section, flat glass fibers having a flat cross section are used, and this is mixed and melted with a thermoplastic resin and injection molded. A method has been proposed (Patent Document 1). In addition, the use of pellets cut after impregnating a long glass fiber with a thermoplastic resin has been studied (Patent Document 2).
Japanese Patent Publication No. 2-60494 JP-A-5-9380

特許文献1記載の方法では、確かに、引張強度が向上し、成型物に方向性が生じてしまうことも防止され、表面平滑性や反り防止にも効果がある。しかしながら、耐衝撃性(衝撃強度)については、用いる熱可塑性樹脂の種類を変えると、円形断面のガラス繊維を用いた場合と同程度に低下する場合があり、熱可塑性樹脂をポリアミド樹脂にした場合この現象が顕著に生じる問題がある。この理由は定かではないが、熱可塑性樹脂の溶融粘度及び熱可塑性樹脂とガラス繊維フィラメントとの接着性の影響により、成型時の熱可塑性樹脂中での繊維束の流動性と分散性のバランスが崩れることがあるためと考えられる。   In the method described in Patent Document 1, it is true that the tensile strength is improved, the directionality of the molded product is prevented, and surface smoothness and warpage prevention are also effective. However, with regard to impact resistance (impact strength), if the type of thermoplastic resin used is changed, it may be reduced to the same extent as when glass fibers having a circular cross section are used. When the thermoplastic resin is a polyamide resin There is a problem that this phenomenon occurs remarkably. The reason for this is not clear, but due to the influence of the melt viscosity of the thermoplastic resin and the adhesiveness between the thermoplastic resin and the glass fiber filament, the balance between the fluidity and dispersibility of the fiber bundle in the thermoplastic resin at the time of molding. It is thought that it may collapse.

一方、特許文献2記載の方法では、引張強度、及び衝撃強度の向上は期待できるが、反りを防止して表面平滑性を向上させることが困難である。   On the other hand, the method described in Patent Document 2 can be expected to improve tensile strength and impact strength, but it is difficult to prevent warpage and improve surface smoothness.

そこで、本発明の目的は、熱可塑性樹脂としてポリアミド樹脂を用いた場合であっても、引張強度に優れるのみならず、衝撃強度に優れ、反りの発生が抑制されており、表面平滑性も向上したガラス繊維含有熱可塑性樹脂成型物及びその製造方法を提供することにある。本発明の目的はまた、このようなガラス繊維含有熱可塑性樹脂成型物を製造するために用いられる、ガラス繊維及び熱可塑性樹脂を含む原料、並びにその製造方法を提供することにある。   Therefore, even if a polyamide resin is used as a thermoplastic resin, the object of the present invention is not only excellent in tensile strength, but also excellent in impact strength, suppressed warpage, and improved surface smoothness. An object of the present invention is to provide a glass fiber-containing thermoplastic resin molding and a method for producing the same. Another object of the present invention is to provide a raw material containing glass fibers and a thermoplastic resin used for producing such a glass fiber-containing thermoplastic resin molding, and a method for producing the same.

上記目的を達成するため、本発明は、熱可塑性樹脂からなるペレット中に、断面が扁平な扁平ガラス繊維フィラメントを、該フィラメントの両端面が前記ペレット表面に達するように、複数一方向に配列させた、扁平ガラス繊維含有ペレットを提供する。   In order to achieve the above-mentioned object, the present invention arranges a plurality of flat glass fiber filaments having a flat cross section in a pellet made of a thermoplastic resin in one direction so that both end faces of the filament reach the pellet surface. A flat glass fiber-containing pellet is provided.

このような扁平ガラス繊維含有ペレットを用いて射出成型によりガラス繊維含有熱可塑性樹脂成型物を製造すると、成型時のガラス繊維粉砕に伴うガラス繊維の短繊維化を抑制することができる。これにより、引張強度のみならず、衝撃強度も向上し、且つ成型物に方向性が生じてしまう現象も抑制され、反りが防止されて表面平滑性も向上する。更には、熱可塑性樹脂の種類によらず上記効果が発揮され、従来困難であったポリアミド樹脂についても安定した特性が得られる。   When a glass fiber-containing thermoplastic resin molding is produced by injection molding using such flat glass fiber-containing pellets, it is possible to suppress the shortening of the glass fibers accompanying the glass fiber grinding during molding. As a result, not only the tensile strength but also the impact strength is improved, and the phenomenon that directionality occurs in the molded product is suppressed, warping is prevented, and the surface smoothness is also improved. Furthermore, the above effect is exhibited regardless of the type of thermoplastic resin, and stable characteristics can be obtained even for polyamide resins that have been difficult in the past.

扁平ガラス繊維フィラメントは繊維長2〜50mmであり、ペレット中に配列させる前記扁平ガラス繊維フィラメントの数は500〜8000本であることが好ましい。このような構成を採用することにより、上記効果を顕著に発揮させることができる。   The flat glass fiber filaments have a fiber length of 2 to 50 mm, and the number of the flat glass fiber filaments arranged in the pellet is preferably 500 to 8000. By adopting such a configuration, the above effects can be remarkably exhibited.

上記の扁平ガラス繊維含有ペレットは、断面が扁平な長尺扁平ガラス繊維フィラメントを複数引き揃えて配列させた繊維束を、熱溶融した熱可塑性樹脂とともに、貫通孔が形成されているダイスの当該貫通孔に通して引き抜いて、引き抜いて得られた、熱可塑性樹脂が付着した繊維束を切断する製造方法によって効率的に製造することが可能である。   The above-mentioned flat glass fiber-containing pellet is a through-hole of a die in which a through hole is formed together with a thermoplastic resin obtained by hot-melting a fiber bundle in which a plurality of long flat glass fiber filaments having a flat cross section are arranged and arranged. It can be efficiently produced by a production method in which a fiber bundle attached with a thermoplastic resin obtained by drawing through a hole and cutting out is cut.

熱可塑性樹脂としてポリアミド樹脂を用いた場合であっても、引張強度に優れるのみならず、衝撃強度に優れ、反りの発生が抑制されており、表面平滑性も向上したガラス繊維含有熱可塑性樹脂成型物及びその製造方法が提供される。また、このようなガラス繊維含有熱可塑性樹脂成型物を製造するために用いられる、ガラス繊維及び熱可塑性樹脂を含む原料、並びにその製造方法が提供される。   Even when a polyamide resin is used as a thermoplastic resin, it is not only excellent in tensile strength, but also excellent in impact strength, suppressed warpage, and improved surface smoothness. Articles and methods for making the same are provided. Moreover, the raw material containing glass fiber and a thermoplastic resin used in order to manufacture such a glass fiber containing thermoplastic resin molding, and its manufacturing method are provided.

以下、添付図面を参照して、扁平ガラス繊維含有ペレット、扁平ガラス繊維含有熱可塑性樹脂成型物及びこれらの製造方法の好適な実施形態について詳細に説明する。なお、同一要素には同一符号を用いるものとし、重複する説明は省略する。   Hereinafter, preferred embodiments of flat glass fiber-containing pellets, flat glass fiber-containing thermoplastic resin moldings, and production methods thereof will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol shall be used for the same element and the overlapping description is abbreviate | omitted.

図1は第1実施形態に係る扁平ガラス繊維含有ペレットの斜視図、図2(a)は当該実施形態に係る扁平ガラス繊維含有ペレットの正面図、(b)は同側面図、(c)は同平面図である。   FIG. 1 is a perspective view of a flat glass fiber-containing pellet according to the first embodiment, FIG. 2A is a front view of the flat glass fiber-containing pellet according to the embodiment, FIG. 1B is a side view thereof, and FIG. It is the same top view.

図1及び図2(a)〜(c)に示すように、第1実施形態に係る扁平ガラス繊維含有ペレット100は、熱可塑性樹脂からなるペレット10中に扁平ガラス繊維フィラメント20を複数一方向に配列させたものである。   As shown in FIG. 1 and FIGS. 2A to 2C, the flat glass fiber-containing pellet 100 according to the first embodiment includes a plurality of flat glass fiber filaments 20 in one direction in a pellet 10 made of a thermoplastic resin. Is arranged.

図2(b)の側面図から明らかなように、扁平ガラス繊維フィラメント20の断面は扁平(非円形)であり、扁平ガラス繊維フィラメント20の端面はペレット10の表面に達している。なお、図2(b)では一方の側面(端面)しか示されていないが、図2(a)及び(c)から分かるように他方の側面(端面)の表面にも扁平ガラス繊維フィラメント20が到達している。   As apparent from the side view of FIG. 2B, the cross section of the flat glass fiber filament 20 is flat (non-circular), and the end surface of the flat glass fiber filament 20 reaches the surface of the pellet 10. In FIG. 2 (b), only one side surface (end surface) is shown, but as can be seen from FIGS. 2 (a) and 2 (c), the flat glass fiber filament 20 is also formed on the surface of the other side surface (end surface). Has reached.

第1実施形態の扁平ガラス繊維含有ペレット100は楕円柱状であり、両端面が存在し、断面形状は長手方向に沿ってほぼ同様である。しかし、本発明の扁平ガラス繊維含有ペレットはこのような形状に限定されるものではなく、円柱状など種々の形状のものが採用可能である。   The flat glass fiber-containing pellet 100 of the first embodiment has an elliptical columnar shape, has both end faces, and the cross-sectional shape is substantially the same along the longitudinal direction. However, the flat glass fiber-containing pellet of the present invention is not limited to such a shape, and various shapes such as a columnar shape can be employed.

図3は、第1実施形態とは形状の異なる形状の扁平ガラス繊維含有ペレット(第2実施形態に係る扁平ガラス繊維含有ペレット)を示すものであり、図3(a)、(b)及び(c)はそれぞれ正面図、側面図及び平面図である。   FIG. 3 shows flat glass fiber-containing pellets (flat glass fiber-containing pellets according to the second embodiment) having a shape different from that of the first embodiment, and FIGS. 3 (a), 3 (b) and ( c) are a front view, a side view and a plan view, respectively.

図3(a)〜(c)に示す第2実施形態に係る扁平ガラス繊維含有ペレット110は、熱可塑性樹脂からなるペレット10中に扁平ガラス繊維フィラメント20を複数一方向に配列させたものであり、扁平ガラス繊維フィラメント20の両端面はペレット10の表面に達している。図に示されるように、扁平ガラス繊維含有ペレット110において、長手方向に垂直な面で切断した断面は、円形又は楕円形とは異なった異型断面形状を呈している。また、長手方向に沿って切断した断面形状は切断部位により異なっている。   A flat glass fiber-containing pellet 110 according to the second embodiment shown in FIGS. 3A to 3C is obtained by arranging a plurality of flat glass fiber filaments 20 in one direction in a pellet 10 made of a thermoplastic resin. Yes, both end faces of the flat glass fiber filament 20 reach the surface of the pellet 10. As shown in the figure, in the flat glass fiber-containing pellet 110, a cross section cut by a plane perpendicular to the longitudinal direction has an atypical cross-sectional shape different from a circular or elliptical shape. Moreover, the cross-sectional shape cut | disconnected along the longitudinal direction changes with cutting parts.

このように本発明の扁平ガラス繊維含有ペレットはその外観形状は任意であるが、射出成型に用いることで、引張強度及び衝撃強度並びに表面平滑性により優れるガラス繊維含有熱可塑性樹脂を得るためには、以下の好適条件を採用することが好ましい。   As described above, the flat glass fiber-containing pellets of the present invention can have any external shape, but by using them for injection molding, in order to obtain a glass fiber-containing thermoplastic resin that is superior in tensile strength, impact strength, and surface smoothness. The following preferred conditions are preferably employed.

扁平ガラス繊維フィラメントについては、短径が3〜20μm(更には4〜15μm)で、長径が6〜100μm(更には15〜80μm)で、且つ扁平率が2〜10(更には3〜8)の範囲のものが好適である。ここで、図4を参照して「短径」、「長径」及び「扁平率」を説明する。図4に示すように、「長径」及び「短径」は、扁平ガラス繊維フィラメント20に外接する最小面積の長方形Rを想定したときに、その長方形Rの長辺Raの長さA(繊維断面の最長寸法に相当)、及び、短辺Rbの長さBにそれぞれ相当する。また、「扁平率」は、長辺の長さと短辺の長さの比(A/B)で示される。   For flat glass fiber filaments, the minor axis is 3 to 20 μm (further 4 to 15 μm), the major axis is 6 to 100 μm (further 15 to 80 μm), and the flatness is 2 to 10 (further 3 to 8). The thing of the range is suitable. Here, the “minor axis”, “major axis”, and “flatness” will be described with reference to FIG. As shown in FIG. 4, the “major axis” and “minor axis” are the length A (fiber cross section) of the long side Ra of the rectangle R assuming a rectangle R of the minimum area circumscribing the flat glass fiber filament 20. And the length B of the short side Rb. Further, the “flattening ratio” is indicated by a ratio (A / B) between the length of the long side and the length of the short side.

扁平ガラス繊維フィラメント20の断面の好適な短径が3〜20μmであり、好適な長径が6〜100μmであるのは、次の理由による。すなわち、短径が3μmより細い扁平ガラス繊維フィラメントや短径が20μmを超える扁平ガラス繊維フィラメントを用いた場合、紡糸が困難であったり、紡糸効率が低下する。特に短径が20μmを超える扁平ガラス繊維フィラメントを含有するペレットを射出成型した成型物は強度が低下することがある。また、長径が6μm未満の扁平ガラス繊維フィラメントや長径が100μmを越える扁平ガラス繊維フィラメントは、ガラス繊維フィラメントの紡糸が困難になったり、紡糸効率が低下しやすい。特に長径が100μmを越えるものは、扁平化効率が悪く、剛性が高くなってしまう。   The preferred short diameter of the cross section of the flat glass fiber filament 20 is 3 to 20 μm and the preferred long diameter is 6 to 100 μm for the following reason. That is, when a flat glass fiber filament whose minor axis is thinner than 3 μm or a flat glass fiber filament whose minor axis exceeds 20 μm is used, spinning is difficult or spinning efficiency is lowered. In particular, the strength of a molded product obtained by injection-molding pellets containing flat glass fiber filaments having a minor axis exceeding 20 μm may decrease. In addition, flat glass fiber filaments having a major axis of less than 6 μm and flat glass fiber filaments having a major axis of more than 100 μm are difficult to spin glass fiber filaments, and the spinning efficiency tends to be reduced. In particular, when the major axis exceeds 100 μm, the flattening efficiency is poor and the rigidity becomes high.

なお、「扁平」には非円形状のものが含まれ、例えば、扁平ガラス繊維フィラメント20には、断面形状が楕円形状、長径方向に直線部を有する長円形状、図5の断面図に示すような繭型のガラス繊維フィラメントなどが含まれる。本発明では、扁平ガラス繊維フィラメントがペレット中に複数配列されるときに、それぞれの扁平ガラス繊維フィラメントの長径がほぼ同一方向に向くように重なり合って配列しやすい。断面が繭型の扁平ガラス繊維フィラメント20についても同様であり、図6の断面図に示すように、へこみ部とふくらみ部とが組み合わされた集合状態になりやすい。扁平ガラス繊維フィラメントの断面形状は成型品の熱可塑性樹脂の種類や要求特性により適宜選定することができる。   The “flat” includes non-circular ones. For example, the flat glass fiber filament 20 has an elliptical cross-sectional shape and an elliptical shape having a straight portion in the major axis direction, as shown in the cross-sectional view of FIG. Such a glass fiber filament is included. In the present invention, when a plurality of flat glass fiber filaments are arranged in a pellet, the flat glass fiber filaments are easily arranged in an overlapping manner so that the long diameters of the flat glass fiber filaments are oriented in substantially the same direction. The same applies to the flat glass fiber filament 20 having a saddle-shaped cross section, and as shown in the cross-sectional view of FIG. 6, it is likely to be in an aggregated state in which the dent portion and the bulge portion are combined. The cross-sectional shape of the flat glass fiber filament can be appropriately selected according to the type of thermoplastic resin of the molded product and the required characteristics.

扁平ガラス繊維フィラメント20の繊維長は2〜50mmが好ましく、5〜30mmがより好ましい。扁平ガラス繊維フィラメント20の繊維長が2mm未満である場合は、製造する扁平ガラス繊維含有熱可塑性樹脂成型物がガラス繊維により強化される程度が低くなる場合があり、50mmを超す場合は繊維長が長すぎて、射出成型機の供給ホッパーでブリッジを起こしやすく、成型時の熱可塑性樹脂中における流動性が不均一になり、成型不良を起こす場合がある。なお、扁平ガラス繊維フィラメント20はその両端がペレット10の表面に達しているために、扁平ガラス繊維フィラメント20の繊維長と扁平ガラス繊維含有ペレットのペレット長は略等しくなる。例えば、扁平ガラス繊維フィラメント20の繊維長が10mmである場合は、扁平ガラス繊維含有ペレットのペレット長は略10mmとなる。   The fiber length of the flat glass fiber filament 20 is preferably 2 to 50 mm, and more preferably 5 to 30 mm. When the fiber length of the flat glass fiber filament 20 is less than 2 mm, the degree to which the flat glass fiber-containing thermoplastic resin molded product to be produced is reinforced by the glass fiber may be low. When the fiber length exceeds 50 mm, the fiber length is Since it is too long, bridging is likely to occur in the supply hopper of the injection molding machine, the fluidity in the thermoplastic resin during molding becomes uneven, and molding failure may occur. In addition, since the both ends of the flat glass fiber filament 20 have reached the surface of the pellet 10, the fiber length of the flat glass fiber filament 20 and the pellet length of a flat glass fiber containing pellet become substantially equal. For example, when the fiber length of the flat glass fiber filament 20 is 10 mm, the pellet length of the flat glass fiber-containing pellet is approximately 10 mm.

扁平ガラス繊維フィラメント20を構成するガラスの種類としては、Eガラス、Sガラス、低誘電ガラス、Cガラスが挙げられ、繊維化が容易であるという点からEガラスが好適である。   Examples of the glass constituting the flat glass fiber filament 20 include E glass, S glass, low dielectric glass, and C glass. E glass is preferred from the viewpoint of easy fiberization.

扁平ガラス繊維含有ペレットに含有される扁平ガラス繊維フィラメント20の本数は500〜8000本が好ましく、600〜5000本が更に好ましい。扁平ガラス繊維フィラメント20の本数が500本未満である場合は、ペレットの製造効率が低下してしまい、扁平ガラス繊維フィラメント20の本数が8000本を超す場合は、ペレットが太くなりすぎ、ペレットの作製時、トラブルが発生しやすくなり、樹脂含浸性が低下することがある。   The number of flat glass fiber filaments 20 contained in the flat glass fiber-containing pellet is preferably 500 to 8000, and more preferably 600 to 5000. When the number of flat glass fiber filaments 20 is less than 500, the production efficiency of pellets is reduced, and when the number of flat glass fiber filaments 20 exceeds 8000, the pellets become too thick and the pellets are produced. At times, troubles are likely to occur and the resin impregnation property may be reduced.

扁平ガラス繊維含有ペレットには好適な扁平ガラス繊維フィラメントの含有量(以下「ガラス含有量」という。)が存在する。このガラス含有量は扁平ガラス繊維含有ペレットの全重量を基準として、好適には10〜60質量%であり、更には30〜50質量%である。ガラス含有量が10質量%未満ではガラス繊維による補強効果が充分でなく成型品の強度が低下することがある。ガラス含有量が60質量%を超える場合は、樹脂含浸性が低下し、成型品の強度が低下することがある。   The flat glass fiber-containing pellet has a suitable flat glass fiber filament content (hereinafter referred to as “glass content”). The glass content is preferably 10 to 60% by mass, more preferably 30 to 50% by mass, based on the total weight of the flat glass fiber-containing pellets. If the glass content is less than 10% by mass, the reinforcing effect by the glass fiber is not sufficient, and the strength of the molded product may be lowered. When glass content exceeds 60 mass%, resin impregnation property may fall and the intensity | strength of a molded product may fall.

扁平ガラス繊維含有ペレットの扁平ガラス繊維フィラメント20の周囲(すなわち、扁平ガラス繊維フィラメントと熱可塑性樹脂との界面)には、集束剤成分が付着していてもよい。この集束剤は、扁平ガラス繊維フィラメント20を複数束ねた繊維束を製造するときに用いられ、この繊維束は、以下に詳述する本発明の扁平ガラス繊維含有ペレットの製造方法において用いられる。集束剤成分の典型例としては、オレフィン系樹脂(ポリエチレン、ポリプロピレン等)、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などの皮膜形成剤、及び油脂、界面活性剤、シランカップリング剤、帯電防止剤等である。   A sizing agent component may adhere to the periphery of the flat glass fiber filament 20 of the flat glass fiber-containing pellet (that is, the interface between the flat glass fiber filament and the thermoplastic resin). This sizing agent is used when producing a fiber bundle in which a plurality of flat glass fiber filaments 20 are bundled, and this fiber bundle is used in the method for producing flat glass fiber-containing pellets of the present invention described in detail below. Typical examples of the sizing agent component include film forming agents such as olefin resins (polyethylene, polypropylene, etc.), urethane resins, acrylic resins, epoxy resins, and oils, surfactants, silane coupling agents, antistatic agents, and the like. is there.

扁平ガラス繊維含有ペレットに含まれる熱可塑性樹脂としては、ポリアミド樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、液晶ポリマー、ポリスチレン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂、アクリルスチレン樹脂、ABS樹脂等が挙げられ、なかでもポリアミド樹脂が好ましい。ポリアミド樹脂としては、ナイロン(登録商標)6;ナイロン(登録商標)6,6;ナイロン(登録商標)6,10;ナイロン(登録商標)6,12;芳香族ポリアミド樹脂等が好適である。なお、扁平ガラス繊維含有ペレットに用いられる熱可塑性樹脂は、単一成分からなるのもでも、複数成分からなるものでもよい。   The thermoplastic resin contained in the flat glass fiber-containing pellet includes polyamide resin, polybutylene terephthalate resin, polycarbonate resin, polyphenylene sulfide resin, liquid crystal polymer, polystyrene resin, polypropylene resin, polyethylene resin, polyethylene terephthalate resin, acrylic styrene resin, ABS. Examples thereof include a resin, and a polyamide resin is particularly preferable. As the polyamide resin, nylon (registered trademark) 6; nylon (registered trademark) 6, 6; nylon (registered trademark) 6, 10; nylon (registered trademark) 6, 12; The thermoplastic resin used for the flat glass fiber-containing pellet may be composed of a single component or a plurality of components.

扁平ガラス繊維含有ペレットのペレット長は、上述したように2〜50mmが好ましい。ペレット長は、より好適には5〜30mmである。   The pellet length of the flat glass fiber-containing pellet is preferably 2 to 50 mm as described above. The pellet length is more preferably 5 to 30 mm.

扁平ガラス繊維含有ペレットは、断面が扁平な長尺扁平ガラス繊維フィラメントを複数引き揃えて配列させた扁平ガラス繊維束を、熱溶融した熱可塑性樹脂とともに、貫通孔が形成されているダイスの当該貫通孔に通して引き抜いて、引き抜いて得られた、熱可塑性樹脂が付着した繊維束を切断することにより得ることができる。   A flat glass fiber-containing pellet is formed by passing a flat glass fiber bundle in which a plurality of long flat glass fiber filaments having a flat cross section are arranged and arranged together with a hot melted thermoplastic resin and a through hole formed in the die. It can be obtained by cutting through a fiber bundle to which a thermoplastic resin is adhered, which is obtained by pulling through a hole and pulling out.

この製造方法では扁平ガラス繊維束を用いるが、この扁平ガラス繊維束は、扁平ガラス繊維用ブッシングから引き出された溶融状態の複数の扁平ガラス繊維フィラメントを冷却しながら集束剤で束ねる公知のガラス繊維ストランドの製造方法により製造できる。このガラス繊維ストランドは巻芯に巻き取って巻糸体として保管でき、この巻糸体を用いて、例えば図7に示す連続製造装置を適用して、扁平ガラス繊維含有ペレットを製造することができる。   In this production method, a flat glass fiber bundle is used, and this flat glass fiber bundle is a known glass fiber strand that is bundled with a sizing agent while cooling a plurality of molten flat glass fiber filaments drawn from a flat glass fiber bushing. It can manufacture with the manufacturing method of. This glass fiber strand can be wound around a winding core and stored as a wound body. By using this wound body, a flat glass fiber-containing pellet can be manufactured by applying the continuous production apparatus shown in FIG. 7, for example. .

図7は本発明の方法により扁平ガラス含有ペレットを連続製造するための連続製造装置200の概略構成図である。図7に示すように、連続製造装置200は、加熱により溶融した熱可塑性樹脂10aを収容した熱可塑性樹脂槽34と、扁平ガラス繊維束21(複数の扁平ガラス繊維フィラメント20が集束してなる)を熱溶融した熱可塑性樹脂10aとともに通過させる貫通孔31が形成されたダイス30と、熱可塑性樹脂が付着した長尺扁平ガラス繊維束をダイス30から引抜くプーラー40と、熱可塑性樹脂が付着した長尺扁平ガラス繊維束を所望の長さに切断して、扁平ガラス繊維含有ペレット100を得る切断機50とを備えている。   FIG. 7 is a schematic configuration diagram of a continuous manufacturing apparatus 200 for continuously manufacturing flat glass-containing pellets by the method of the present invention. As shown in FIG. 7, the continuous manufacturing apparatus 200 includes a thermoplastic resin tank 34 containing a thermoplastic resin 10a melted by heating, and flat glass fiber bundles 21 (a plurality of flat glass fiber filaments 20 are converged). A die 30 formed with a through hole 31 through which the thermoplastic resin 10a that has been melted with heat is passed, a puller 40 that pulls out a long flat glass fiber bundle to which the thermoplastic resin is attached, and the thermoplastic resin is attached. And a cutting machine 50 that cuts the long flat glass fiber bundle into a desired length to obtain the flat glass fiber-containing pellet 100.

なお、ダイス30の上流側には、ダイス30に導入すべき扁平ガラス繊維束21が巻きつけられた巻糸体22が配置されている。ダイス30の下流側に位置するプーラー40は、熱可塑性樹脂が付着した長尺扁平ガラス繊維束を、回転するローラで上下から挟み込むいわゆるキャタピラ方式のプーラーである。また、切断機50はブレードをモータMの駆動力で回転させて熱可塑性樹脂が付着した長尺扁平ガラス繊維束を切断し、扁平ガラス繊維含有ペレット100とする切断機である。   A wound body 22 around which a flat glass fiber bundle 21 to be introduced into the die 30 is wound is disposed on the upstream side of the die 30. The puller 40 located on the downstream side of the die 30 is a so-called caterpillar puller in which a long flat glass fiber bundle to which a thermoplastic resin is attached is sandwiched from above and below by a rotating roller. The cutting machine 50 is a cutting machine that cuts a long flat glass fiber bundle to which a thermoplastic resin is adhered by rotating a blade with a driving force of a motor M to obtain a flat glass fiber-containing pellet 100.

連続製造装置200を用いて扁平ガラス繊維含有ペレット100を製造するためには、先ず、プーラー40を回転駆動させ、巻糸体22から扁平ガラス繊維束21を解舒して引き出す。そして、引き出された扁平ガラス繊維束21をダイス30の貫通孔31に導入するとともに、ポンプ等を使って熱溶融させた熱可塑性樹脂10aを貫通孔31に導く。ダイス30中では扁平ガラス繊維束21の周囲及び内部に熱溶融した熱可塑性樹脂10aが付着し、プーラー40の巻取りにより、貫通孔31の出口側断面形状に対応した形状に成型されながら、熱可塑性樹脂が付着した長尺扁平ガラス繊維束が断面形状ダイス30から引き抜かれる。その後、切断に適した状態に熱可塑性樹脂を固化させて、切断機50により切断し、扁平ガラス繊維含有ペレット100を得る。   In order to manufacture the flat glass fiber-containing pellet 100 using the continuous manufacturing apparatus 200, first, the puller 40 is rotationally driven, and the flat glass fiber bundle 21 is unwound and pulled out from the wound body 22. Then, the drawn flat glass fiber bundle 21 is introduced into the through hole 31 of the die 30, and the thermoplastic resin 10 a that is thermally melted using a pump or the like is guided to the through hole 31. In the die 30, the hot-melt thermoplastic resin 10 a adheres to and around the flat glass fiber bundle 21, and is wound into a shape corresponding to the outlet side cross-sectional shape of the through-hole 31 by winding the puller 40. The long flat glass fiber bundle to which the plastic resin is attached is pulled out from the cross-sectional die 30. Thereafter, the thermoplastic resin is solidified in a state suitable for cutting, and is cut by a cutting machine 50 to obtain flat glass fiber-containing pellets 100.

図7では巻糸体22を1つ用いたが、これを複数用い扁平ガラス繊維束21を複数ダイス30に導入してもよい。また、ダイス30の下工程側に、熱溶融した熱可塑性樹脂の固化を促進するための冷却手段を設置してもよい。更に、ダイス30とプーラー40との間に、熱可塑性樹脂が付着した長尺扁平ガラス繊維束の断面形状を整える成型手段を設置してもよい。   Although one wound body 22 is used in FIG. 7, the flat glass fiber bundle 21 may be introduced into a plurality of dies 30 by using a plurality of the wound bodies 22. Further, a cooling means for promoting the solidification of the hot-melted thermoplastic resin may be installed on the lower process side of the die 30. Further, a molding means for adjusting the cross-sectional shape of the long flat glass fiber bundle to which the thermoplastic resin is attached may be installed between the die 30 and the puller 40.

このようにして得られた扁平ガラス繊維含有ペレットは、公知の射出成型機のフィーダに投入して、用いた熱可塑性樹脂の種類に応じて加熱溶融させて所望の形状に射出成型することができる。射出成型機のフィーダには扁平ガラス繊維含有ペレットの他、当該ペレットに用いたのと同種又は異種の熱可塑性樹脂ペレットを添加することができ、その他射出成型に一般に用いられる添加剤(帯電防止剤、離形剤等)を添加することもできる。   The flat glass fiber-containing pellets thus obtained can be put into a feeder of a known injection molding machine, heated and melted according to the type of thermoplastic resin used, and injection molded into a desired shape. . In addition to flat glass fiber-containing pellets, the same or different types of thermoplastic resin pellets used for the pellets can be added to the feeder of the injection molding machine, and other additives commonly used for injection molding (antistatic agents) , Mold release agents, etc.) can also be added.

得られた扁平ガラス繊維含有熱可塑性樹脂成型物は、本発明の扁平ガラス繊維含有ペレットを用いて製造されるものであるために、引張強度のみならず、衝撃強度も向上し、成型物に方向性が生じてしまう現象も抑制される。また、反りが防止され表面平滑性も向上する。更には、熱可塑性樹脂の種類によらず上記効果が発揮され、従来困難であったポリアミド樹脂についても安定した特性が得られる。   The obtained flat glass fiber-containing thermoplastic resin molded product is manufactured using the flat glass fiber-containing pellet of the present invention, so that not only the tensile strength but also the impact strength is improved and the direction to the molded product is improved. The phenomenon that the sexuality occurs is also suppressed. Further, warpage is prevented and surface smoothness is improved. Furthermore, the above effect is exhibited regardless of the type of thermoplastic resin, and stable characteristics can be obtained even for polyamide resins that have been difficult in the past.

以下、本発明の好適な実施例を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although the suitable Example of this invention is described in detail, this invention is not limited to a following example.

(実施例1)
<ペレットの作製>
短径8μm、長径31μm(扁平率3.8、換算繊維径17μm)のEガラス組成の扁平ガラス長繊維(長尺扁平ガラス繊維フィラメント)を、ウレタン系集束剤で被覆処理し、4000本集束して、扁平ガラス繊維束を得た。この扁平ガラス繊維束を、熱溶融したナイロン(登録商標)6,6(旭化成(株)製 レオナ1300S)中に導入し溶融含浸して、円形の貫通孔を有するダイスを通過させた後、長さ10mmに切断し、ガラス含有率40質量%の実施例1のペレットを作製した。ここで、「換算繊維径」とは扁平ガラス繊維と同等の断面積を有する丸断面繊維の直径をいう。
<射出成型品の作製>
実施例1のペレットを、シリンダー温度280℃、金型温度80℃、射出圧4MPaで射出成型し、実施例1の試験片A及び試験片Bを作製した。試験片Aは長さ方向の両側につかみしろ部を有する長さ100mm、幅12mm、厚さ3mmの試験片であり、試験片Bは厚さ1mmの80mm角の平板の試験片である。
Example 1
<Preparation of pellet>
A flat glass long fiber (long flat glass fiber filament) having an E glass composition with a short diameter of 8 μm and a long diameter of 31 μm (flat rate of 3.8, converted fiber diameter of 17 μm) is coated with a urethane-based sizing agent, and 4000 pieces are bundled. Thus, a flat glass fiber bundle was obtained. This flat glass fiber bundle was introduced into hot-melted nylon (registered trademark) 6,6 (Leona 1300S manufactured by Asahi Kasei Co., Ltd.), melted and impregnated, and passed through a die having a circular through hole. The pellet of Example 1 whose glass content rate is 40 mass% was produced. Here, the “converted fiber diameter” refers to the diameter of a round cross-section fiber having a cross-sectional area equivalent to that of a flat glass fiber.
<Production of injection molded products>
The pellets of Example 1 were injection-molded at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., and an injection pressure of 4 MPa to prepare Test A and Test B of Example 1. The test piece A is a test piece having a length of 100 mm, a width of 12 mm, and a thickness of 3 mm having gripping portions on both sides in the length direction, and the test piece B is an 80 mm square flat test piece having a thickness of 1 mm.

(比較例1)
<ペレットの作製>
短径7μm、長径27μm(扁平率3.8、換算繊維径15μm)のEガラス組成の扁平ガラス長繊維を、ウレタン系集束剤で被覆処理し、1600本集束して、扁平ガラス繊維束を得た。この扁平ガラス繊維束を、長さ3mmに切断し、扁平ガラス繊維チョップドストランドを得た。得られた扁平ガラス繊維チョップドストランドを実施例1と同様のナイロン6,6と温度280℃で溶融混練し、直径5mmの円形の貫通孔を有するダイスから押し出し、長さ4mmに切断し、ガラス含有率40質量%の比較例1のペレットを作製した。比較例1のペレットにおいては、扁平ガラス繊維フィラメントが一方向に配列していなかった。なお、長さ10mmの扁平ガラス繊維チョップドストランドを用いてペレットを作製しようとしたが、チョップドストランドがスクリューに投入できず溶融混練できなかった。
<射出成型品の作製>
比較例1のペレットを用いた他は実施例1と同様の方法で、比較例1の試験片A及び試験片Bを作製した。
(Comparative Example 1)
<Preparation of pellet>
E glass composition flat glass long fibers having a short diameter of 7 μm and a long diameter of 27 μm (flat rate of 3.8, converted fiber diameter of 15 μm) are coated with a urethane-based sizing agent, and 1600 fibers are bundled to obtain a flat glass fiber bundle. It was. This flat glass fiber bundle was cut into a length of 3 mm to obtain flat glass fiber chopped strands. The obtained flat glass fiber chopped strand was melt-kneaded with nylon 6 and 6 as in Example 1 at a temperature of 280 ° C., extruded from a die having a circular through hole with a diameter of 5 mm, cut into a length of 4 mm, and containing glass. A pellet of Comparative Example 1 having a rate of 40% by mass was produced. In the pellet of Comparative Example 1, flat glass fiber filaments were not arranged in one direction. In addition, although it tried to produce a pellet using the flat glass fiber chopped strand of length 10mm, the chopped strand could not be thrown into a screw but could not be melt-kneaded.
<Production of injection molded products>
A test piece A and a test piece B of Comparative Example 1 were produced in the same manner as in Example 1 except that the pellets of Comparative Example 1 were used.

(比較例2)
直径17μmの円形断面のガラス繊維を用いた他は実施例1と同様の方法で、比較例2のペレット、試験片A、試験片Bを作製した。
(Comparative Example 2)
A pellet, test piece A, and test piece B of Comparative Example 2 were prepared in the same manner as in Example 1 except that a glass fiber having a circular cross section with a diameter of 17 μm was used.

(比較例3)
直径11μmの円形断面のガラス繊維を用いた他は比較例1と同様の方法で、比較例3のペレット、試験片A、試験片Bを作製した。
(Comparative Example 3)
A pellet, test piece A, and test piece B of Comparative Example 3 were prepared in the same manner as in Comparative Example 1 except that glass fibers having a circular cross section with a diameter of 11 μm were used.

実施例1及び比較例1〜3で得られた試験片Aについて、JIS K 7054 「ガラス繊維強化プラスチックの引張強度試験方法」に準じ、引張強度を測定した。また、JIS K7061 「ガラス繊維強化プラスチックのシャルピー衝撃試験方法」に準じ、厚み方向を衝撃方向としシャルピー衝撃強度を測定した。   About the test piece A obtained in Example 1 and Comparative Examples 1-3, tensile strength was measured according to JISK7054 "Tensile strength test method of glass fiber reinforced plastics". Further, according to JIS K7061 “Charpy impact test method for glass fiber reinforced plastic”, the Charpy impact strength was measured with the thickness direction as the impact direction.

また、試験片Aを625℃で1時間加熱し、熱可塑性樹脂を燃焼させ、残留したガラス繊維の長さを(株)ニレコ LUZEX FSのリアルタイム画像処理解析装置にて画像解析し、残存繊維長(ガラス繊維含有成型物中のガラス繊維フィラメントの長さ)を求めた。   In addition, the test piece A was heated at 625 ° C. for 1 hour to burn the thermoplastic resin, and the length of the remaining glass fiber was subjected to image analysis using a real-time image processing analyzer of Nireco LUZEX FS, and the remaining fiber length was analyzed. (The length of the glass fiber filament in the glass fiber-containing molded product) was determined.

更に、実施例1及び比較例1〜3で得られた試験片Bについて、平坦面上に置き最も浮き上がった箇所の高さを測定し反りの評価をした。また、(株)ミツトヨ製 サーフテスト501の粗さ測定器で、長さ0.8mmの基準長さにおける最高点、最低点の高さの差を5箇所求め、その平均値を算出し、表面平滑性を評価した。以上の評価結果をまとめて以下の表1に示す。   Furthermore, about the test piece B obtained in Example 1 and Comparative Examples 1-3, the height of the place which floated most on the flat surface was measured, and curvature was evaluated. In addition, with a roughness tester manufactured by Mitutoyo Corp. Surf Test 501, the difference between the height of the highest point and the lowest point in the reference length of 0.8 mm was obtained, and the average value was calculated. Smoothness was evaluated. The above evaluation results are summarized in Table 1 below.

Figure 2006045390
Figure 2006045390

ここで、実施例1のガラス繊維フィラメントは比較例1のガラス繊維フィラメントより換算繊維径が小さく、比較例2のガラス繊維フィラメントは比較例3のガラス繊維フィラメントより直径が小さい。仮に実施例1と比較例1の扁平ガラス繊維フィラメントの換算繊維径が同じであった場合や、比較例2と比較例3の円形断面ガラス繊維フィラメントの直径が同じであった場合は、実施例1は比較例1に対し、また比較例2は比較例3に対し、更に引張強度、衝撃強度において優位になることは容易に想像できる。   Here, the glass fiber filament of Example 1 has a smaller converted fiber diameter than the glass fiber filament of Comparative Example 1, and the glass fiber filament of Comparative Example 2 has a smaller diameter than the glass fiber filament of Comparative Example 3. If the converted fiber diameters of the flat glass fiber filaments of Example 1 and Comparative Example 1 are the same, or if the diameters of the circular cross-section glass fiber filaments of Comparative Example 2 and Comparative Example 3 are the same, Example It can be easily imagined that 1 is superior to Comparative Example 1 and Comparative Example 2 is superior to Comparative Example 3 in terms of tensile strength and impact strength.

第1実施形態に係る扁平ガラス繊維含有ペレットの斜視図である。It is a perspective view of the flat glass fiber containing pellet which concerns on 1st Embodiment. (a)は第1実施形態に係る扁平ガラス繊維含有ペレットの正面図、(b)は同側面図、(c)は同平面図である。(A) is a front view of the flat glass fiber containing pellet which concerns on 1st Embodiment, (b) is the same side view, (c) is the same top view. (a)は第2実施形態に係る扁平ガラス繊維含有ペレットの正面図、(b)は同側面図、(c)は同平面図である。(A) is a front view of the flat glass fiber containing pellet which concerns on 2nd Embodiment, (b) is the same side view, (c) is the same top view. 扁平ガラス繊維フィラメントの長径及び短径を説明する図である。It is a figure explaining the major axis and minor axis of a flat glass fiber filament. 扁平ガラス繊維フィラメントの断面(繭型断面)を示す図である。It is a figure which shows the cross section (saddle type cross section) of a flat glass fiber filament. 断面が繭型の扁平ガラス繊維フィラメントが集合した状態の断面図である。It is sectional drawing of the state in which the flat glass fiber filament with a cross-sectional shape gathered. 扁平ガラス含有ペレットを連続製造するための連続製造装置の概略構成図である。It is a schematic block diagram of the continuous manufacturing apparatus for continuously manufacturing a flat glass containing pellet.

符号の説明Explanation of symbols

10…熱可塑性樹脂からなるペレット、10a…熱溶融した熱可塑性樹脂、20…扁平ガラス繊維フィラメント、21…扁平ガラス繊維束、22…巻糸体、30…ダイス、31…貫通孔、40…プーラー、50…切断機、100…第1実施形態に係る扁平ガラス繊維含有ペレット、110…第2実施形態に係る扁平ガラス繊維含有ペレット、200…連続製造装置。   DESCRIPTION OF SYMBOLS 10 ... The pellet which consists of thermoplastic resins, 10a ... Hot melted thermoplastic resin, 20 ... Flat glass fiber filament, 21 ... Flat glass fiber bundle, 22 ... Winding body, 30 ... Dies, 31 ... Through-hole, 40 ... Puller DESCRIPTION OF SYMBOLS 50 ... Cutting machine 100 ... Flat glass fiber containing pellet which concerns on 1st Embodiment, 110 ... Flat glass fiber containing pellet which concerns on 2nd Embodiment, 200 ... Continuous manufacturing apparatus.

Claims (8)

熱可塑性樹脂からなるペレット中に、
断面が扁平な扁平ガラス繊維フィラメントを、該フィラメントの両端面が前記ペレット表面に達するように、複数一方向に配列させた、扁平ガラス繊維含有ペレット。
In pellets made of thermoplastic resin,
A flat glass fiber-containing pellet in which a plurality of flat glass fiber filaments having a flat cross section are arranged in one direction so that both end faces of the filament reach the pellet surface.
前記扁平ガラス繊維フィラメントは繊維長2〜50mmであり、前記熱可塑性樹脂からなるペレット中に配列させる前記扁平ガラス繊維フィラメントの数は500〜8000本である、請求項1記載の扁平ガラス繊維含有ペレット。   The flat glass fiber-containing pellet according to claim 1, wherein the flat glass fiber filament has a fiber length of 2 to 50 mm, and the number of the flat glass fiber filaments arranged in the pellet made of the thermoplastic resin is 500 to 8000. . 前記熱可塑性樹脂はポリアミド樹脂である請求項1又は2記載の扁平ガラス繊維含有ペレット。   The flat glass fiber-containing pellet according to claim 1 or 2, wherein the thermoplastic resin is a polyamide resin. 断面が扁平な長尺扁平ガラス繊維フィラメントを複数引き揃えて配列させた繊維束を、
熱溶融した熱可塑性樹脂とともに、貫通孔が形成されているダイスの当該貫通孔に通して引き抜いて、
引き抜いて得られた、熱可塑性樹脂が付着した繊維束を切断する、扁平ガラス繊維含有ペレットの製造方法。
A fiber bundle in which a plurality of long flat glass fiber filaments having a flat cross section are aligned and arranged,
Along with the hot-melt thermoplastic resin, pull through the through-hole of the die in which the through-hole is formed,
A method for producing flat glass fiber-containing pellets, which is obtained by cutting a fiber bundle to which a thermoplastic resin is attached, which is obtained by drawing.
前記熱可塑性樹脂はポリアミド樹脂である請求項4記載の製造方法。   The manufacturing method according to claim 4, wherein the thermoplastic resin is a polyamide resin. 請求項4又は5記載の製造方法で得ることのできる扁平ガラス繊維含有ペレット。   The flat glass fiber containing pellet which can be obtained with the manufacturing method of Claim 4 or 5. 請求項1、2、3又は6記載の扁平ガラス繊維含有ペレットを射出成型する、扁平ガラス繊維含有熱可塑性樹脂成型物の製造方法。   A method for producing a flat glass fiber-containing thermoplastic resin molding, which comprises injection-molding the flat glass fiber-containing pellet according to claim 1, 2, 3 or 6. 請求項7記載の製造方法で得ることのできる扁平ガラス繊維含有熱可塑性樹脂成型物。   The flat glass fiber containing thermoplastic resin molding which can be obtained with the manufacturing method of Claim 7.
JP2004229818A 2004-08-05 2004-08-05 Method for producing flat glass fiber-containing pellets Active JP4876377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229818A JP4876377B2 (en) 2004-08-05 2004-08-05 Method for producing flat glass fiber-containing pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229818A JP4876377B2 (en) 2004-08-05 2004-08-05 Method for producing flat glass fiber-containing pellets

Publications (2)

Publication Number Publication Date
JP2006045390A true JP2006045390A (en) 2006-02-16
JP4876377B2 JP4876377B2 (en) 2012-02-15

Family

ID=36024353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229818A Active JP4876377B2 (en) 2004-08-05 2004-08-05 Method for producing flat glass fiber-containing pellets

Country Status (1)

Country Link
JP (1) JP4876377B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034905A1 (en) 2005-09-22 2007-03-29 Fujitsu Limited Plant-based resin containing composition and plant-based resin containing molded body using same
WO2007091293A1 (en) * 2006-02-06 2007-08-16 Nitto Boseki Co., Ltd. Pellet containing flat glass fibers, molded thermoplastic resin containing flat glass fibers, and processes for producing these
WO2007097214A1 (en) * 2006-02-22 2007-08-30 Ube Industries, Ltd. Material for slide part
WO2007138966A1 (en) 2006-05-25 2007-12-06 Mitsubishi Engineering-Plastics Corporation Moldings of fiber-reinforced thermoplastic resin
JP2008095066A (en) * 2006-05-25 2008-04-24 Mitsubishi Engineering Plastics Corp Molded article from fiber-reinforced thermoplastic resin
WO2008068898A1 (en) * 2006-12-04 2008-06-12 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
WO2008120619A1 (en) * 2007-03-30 2008-10-09 Kyocera Corporation Fiber-reinforced resin and method for producing the same
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2008291192A (en) * 2007-05-28 2008-12-04 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced polyamide resin composition
EP2028231A1 (en) 2007-08-24 2009-02-25 Ems-Patent Ag High temperature polyamide moulding composition reinforced with flat glass fibres
EP2060607A1 (en) * 2007-11-16 2009-05-20 Ems-Patent Ag Filled polyamide moulding materials
WO2009144055A1 (en) * 2008-05-30 2009-12-03 Robert Bosch Gmbh Process for producing a stator housing of an electric motor
JP2010511778A (en) * 2006-12-05 2010-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polyamide housing for portable electronic devices
JP2010094896A (en) * 2008-10-16 2010-04-30 Nitto Boseki Co Ltd Method for manufacturing long-fiber-reinforced resin pellet
JP2010513652A (en) * 2006-12-18 2010-04-30 チェイル インダストリーズ インコーポレイテッド Nylon polymer composite material
WO2010087192A1 (en) * 2009-01-29 2010-08-05 東洋紡績株式会社 Glass fiber reinforced polyamide resin composition
WO2010087193A1 (en) * 2009-01-29 2010-08-05 東洋紡績株式会社 Glass fiber reinforced flame-retardant polyamide resin composition
JP2011503306A (en) * 2007-11-16 2011-01-27 エムス−パテント・アクチェンゲゼルシャフト Filled polyamide molding compound
JP2012513499A (en) * 2008-12-23 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Reinforced polyamide composition having excellent surface appearance with less sink and article
US8268956B2 (en) 2006-12-08 2012-09-18 Ems-Chemie Ag Transparent mold made of a polyamide molding material
US8383244B2 (en) 2011-06-17 2013-02-26 Ems-Patent Ag Semiaromatic molding compounds and uses thereof
US8404323B2 (en) 2010-03-12 2013-03-26 Ems-Patent Ag Impact-resistant modified polyamide moulding compound and container formed therefrom
WO2013084895A1 (en) 2011-12-06 2013-06-13 日東紡績株式会社 Glass fibers having non-circular cross sections, and fiber-reinforced resin compact using same
US8604120B2 (en) 2010-07-30 2013-12-10 Ems-Patent Ag Polyamide moulding compound for producing moulded articles with a soft-touch surface and also corresponding moulded articles
JP5500986B2 (en) * 2007-04-03 2014-05-21 ユニチカ株式会社 Glass fiber reinforced polyamide resin composition
JP2014111780A (en) * 2006-12-28 2014-06-19 Ems Chemie Ag Reinforced polyamide molding material using flat glass fiber and ejected molded component manufactured of polyamide molding material
US9109115B2 (en) 2013-03-15 2015-08-18 Ems-Patent Ag Polyamide moulding compound and moulded articles produced herefrom
US9133322B2 (en) 2012-10-02 2015-09-15 Ems-Patent Ag Polyamide moulding compounds and use thereof in the production of moulded articles
EP2716715B1 (en) 2011-05-27 2015-12-09 Asahi Kasei Chemicals Corporation Reinforced polyamide resin pellets
US9453106B2 (en) 2012-05-23 2016-09-27 Ems-Patent Ag Scratch-resistant, transparent and tough copolyamide moulding compounds, moulded articles produced therefrom and uses thereof
US9567462B2 (en) 2006-12-28 2017-02-14 Ems-Chemie Ag Polyamide molding materials reinforced with glass fibers and injection molded parts thereof
CN106987119A (en) * 2007-05-03 2017-07-28 Ems专利股份公司 Partially aromatic polyamide moulding masses and application thereof
US9963591B2 (en) 2012-12-18 2018-05-08 Ems-Patent Ag Polyamide molding material and moldings manufactured from same
CN108778655A (en) * 2016-03-11 2018-11-09 大赛璐塑料株式会社 It is impregnated with the fibre bundle, compression forming product and its manufacturing method of resin
US10450461B2 (en) 2015-12-11 2019-10-22 Ticona Llc Crosslinkable polyarylene sulfide composition
US10590273B2 (en) 2015-12-11 2020-03-17 Ticona Llc Polyarylene sulfide composition
CN113549323A (en) * 2021-08-06 2021-10-26 重庆国际复合材料股份有限公司 High-strength high-flow low-warpage long glass fiber reinforced polyamide composite material, and preparation method and application thereof
US20220106447A1 (en) * 2020-10-07 2022-04-07 Hyundai Motor Company Long glass fiber reinforced thermoplastic resin composition and molded article including the same
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure
CN115916877A (en) * 2020-10-15 2023-04-04 日东纺绩株式会社 Glass fiber reinforced resin plate
WO2023089969A1 (en) * 2021-11-17 2023-05-25 日本電気硝子株式会社 Method for producing multiple-ply roving, multiple-ply roving, and glass fiber-reinforced resin molded body
WO2024090237A1 (en) * 2022-10-26 2024-05-02 日本電気硝子株式会社 Glass roving

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374217A (en) * 2012-04-24 2013-10-30 苏州汉扬精密电子有限公司 Glass fibre reinforced polyphenyl ether resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462109A (en) * 1990-06-27 1992-02-27 Toyobo Co Ltd Thermoplastic resin molding material containing reinforcing fiber with irregularly shaped cross-section
JPH09301745A (en) * 1996-05-14 1997-11-25 Nitto Boseki Co Ltd Fiber size for glass fiber
JP2002047412A (en) * 2000-04-14 2002-02-12 Asahi Kasei Corp Glass fiber reinforced polyamide resin composition
JP2003192911A (en) * 2001-12-27 2003-07-09 Asahi Fiber Glass Co Ltd Long-glass-fiber-reinforced thermoplastic resin molding material and method for producing the same
JP2005349697A (en) * 2004-06-10 2005-12-22 Idemitsu Kosan Co Ltd Method for producing fiber-reinforced resin pellet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462109A (en) * 1990-06-27 1992-02-27 Toyobo Co Ltd Thermoplastic resin molding material containing reinforcing fiber with irregularly shaped cross-section
JPH09301745A (en) * 1996-05-14 1997-11-25 Nitto Boseki Co Ltd Fiber size for glass fiber
JP2002047412A (en) * 2000-04-14 2002-02-12 Asahi Kasei Corp Glass fiber reinforced polyamide resin composition
JP2003192911A (en) * 2001-12-27 2003-07-09 Asahi Fiber Glass Co Ltd Long-glass-fiber-reinforced thermoplastic resin molding material and method for producing the same
JP2005349697A (en) * 2004-06-10 2005-12-22 Idemitsu Kosan Co Ltd Method for producing fiber-reinforced resin pellet

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034905A1 (en) 2005-09-22 2007-03-29 Fujitsu Limited Plant-based resin containing composition and plant-based resin containing molded body using same
WO2007091293A1 (en) * 2006-02-06 2007-08-16 Nitto Boseki Co., Ltd. Pellet containing flat glass fibers, molded thermoplastic resin containing flat glass fibers, and processes for producing these
WO2007097214A1 (en) * 2006-02-22 2007-08-30 Ube Industries, Ltd. Material for slide part
JP5182086B2 (en) * 2006-02-22 2013-04-10 宇部興産株式会社 Material for sliding parts
JP2013199121A (en) * 2006-05-25 2013-10-03 Mitsubishi Engineering Plastics Corp Molding of fiber-reinforced thermoplastic resin
JP2008095066A (en) * 2006-05-25 2008-04-24 Mitsubishi Engineering Plastics Corp Molded article from fiber-reinforced thermoplastic resin
WO2007138966A1 (en) 2006-05-25 2007-12-06 Mitsubishi Engineering-Plastics Corporation Moldings of fiber-reinforced thermoplastic resin
US7858172B2 (en) 2006-05-25 2010-12-28 Mitsubishi Engineering-Plastics Corporation Fiber-reinforced thermoplastic resin molded article
WO2008068898A1 (en) * 2006-12-04 2008-06-12 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
US8053500B2 (en) 2006-12-04 2011-11-08 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
EP2089466B1 (en) 2006-12-05 2019-01-30 E. I. du Pont de Nemours and Company Polyamide housings for portable electronic devices
JP2010511778A (en) * 2006-12-05 2010-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polyamide housing for portable electronic devices
US8268956B2 (en) 2006-12-08 2012-09-18 Ems-Chemie Ag Transparent mold made of a polyamide molding material
US9796845B2 (en) * 2006-12-18 2017-10-24 Lotte Advanced Materials Co., Ltd. Nylon-based resin composite
JP2010513652A (en) * 2006-12-18 2010-04-30 チェイル インダストリーズ インコーポレイテッド Nylon polymer composite material
US9567462B2 (en) 2006-12-28 2017-02-14 Ems-Chemie Ag Polyamide molding materials reinforced with glass fibers and injection molded parts thereof
JP2014111780A (en) * 2006-12-28 2014-06-19 Ems Chemie Ag Reinforced polyamide molding material using flat glass fiber and ejected molded component manufactured of polyamide molding material
WO2008120619A1 (en) * 2007-03-30 2008-10-09 Kyocera Corporation Fiber-reinforced resin and method for producing the same
US8012561B2 (en) 2007-03-30 2011-09-06 Kyocera Corporation Fiber-reinforced resin and method for manufacturing the same
JP5500986B2 (en) * 2007-04-03 2014-05-21 ユニチカ株式会社 Glass fiber reinforced polyamide resin composition
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
CN106987119A (en) * 2007-05-03 2017-07-28 Ems专利股份公司 Partially aromatic polyamide moulding masses and application thereof
JP2008291192A (en) * 2007-05-28 2008-12-04 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced polyamide resin composition
EP2314644A1 (en) 2007-08-24 2011-04-27 EMS-Patent AG High temperature polyamide moulding composition reinforced with flat glass fibres
US8324307B2 (en) 2007-08-24 2012-12-04 Ems-Patent Ag High-temperature polyamide molding compounds reinforced with flat glass fibers
EP2028231A1 (en) 2007-08-24 2009-02-25 Ems-Patent Ag High temperature polyamide moulding composition reinforced with flat glass fibres
WO2009062692A3 (en) * 2007-11-16 2009-08-13 Ems Patent Ag Filled polyamide molding materials
JP2011503306A (en) * 2007-11-16 2011-01-27 エムス−パテント・アクチェンゲゼルシャフト Filled polyamide molding compound
WO2009062692A2 (en) * 2007-11-16 2009-05-22 Ems-Patent Ag Filled polyamide molding materials
EP2060607B1 (en) 2007-11-16 2017-01-18 Ems-Patent Ag Filled polyamide moulding materials
JP2015042744A (en) * 2007-11-16 2015-03-05 エムス−パテント・アクチェンゲゼルシャフト Filled polyamide molding composition
EP2060607A1 (en) * 2007-11-16 2009-05-20 Ems-Patent Ag Filled polyamide moulding materials
US8586662B2 (en) 2007-11-16 2013-11-19 Ems-Patent Ag Filled polyamide molding materials
WO2009144055A1 (en) * 2008-05-30 2009-12-03 Robert Bosch Gmbh Process for producing a stator housing of an electric motor
JP2010094896A (en) * 2008-10-16 2010-04-30 Nitto Boseki Co Ltd Method for manufacturing long-fiber-reinforced resin pellet
JP2012513499A (en) * 2008-12-23 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Reinforced polyamide composition having excellent surface appearance with less sink and article
JP5640746B2 (en) * 2009-01-29 2014-12-17 東洋紡株式会社 Glass fiber reinforced polyamide resin composition
JPWO2010087193A1 (en) * 2009-01-29 2012-08-02 東洋紡績株式会社 Glass fiber reinforced flame retardant polyamide resin composition
WO2010087192A1 (en) * 2009-01-29 2010-08-05 東洋紡績株式会社 Glass fiber reinforced polyamide resin composition
US8669310B2 (en) 2009-01-29 2014-03-11 Toyo Boseki Kabushiki Kaisha Polyamide resin composition reinforced with glass fiber
WO2010087193A1 (en) * 2009-01-29 2010-08-05 東洋紡績株式会社 Glass fiber reinforced flame-retardant polyamide resin composition
JPWO2010087192A1 (en) * 2009-01-29 2012-08-02 東洋紡績株式会社 Glass fiber reinforced polyamide resin composition
US8404323B2 (en) 2010-03-12 2013-03-26 Ems-Patent Ag Impact-resistant modified polyamide moulding compound and container formed therefrom
US8604120B2 (en) 2010-07-30 2013-12-10 Ems-Patent Ag Polyamide moulding compound for producing moulded articles with a soft-touch surface and also corresponding moulded articles
EP2716715B1 (en) 2011-05-27 2015-12-09 Asahi Kasei Chemicals Corporation Reinforced polyamide resin pellets
US8383244B2 (en) 2011-06-17 2013-02-26 Ems-Patent Ag Semiaromatic molding compounds and uses thereof
WO2013084895A1 (en) 2011-12-06 2013-06-13 日東紡績株式会社 Glass fibers having non-circular cross sections, and fiber-reinforced resin compact using same
US9242892B2 (en) 2011-12-06 2016-01-26 Nitto Boseki Co., Ltd. Glass fibers having non-circular cross sections, and fiber-reinforced resin compact using same
US9453106B2 (en) 2012-05-23 2016-09-27 Ems-Patent Ag Scratch-resistant, transparent and tough copolyamide moulding compounds, moulded articles produced therefrom and uses thereof
US9133322B2 (en) 2012-10-02 2015-09-15 Ems-Patent Ag Polyamide moulding compounds and use thereof in the production of moulded articles
US9963591B2 (en) 2012-12-18 2018-05-08 Ems-Patent Ag Polyamide molding material and moldings manufactured from same
US9109115B2 (en) 2013-03-15 2015-08-18 Ems-Patent Ag Polyamide moulding compound and moulded articles produced herefrom
US10590273B2 (en) 2015-12-11 2020-03-17 Ticona Llc Polyarylene sulfide composition
US10450461B2 (en) 2015-12-11 2019-10-22 Ticona Llc Crosslinkable polyarylene sulfide composition
CN108778655A (en) * 2016-03-11 2018-11-09 大赛璐塑料株式会社 It is impregnated with the fibre bundle, compression forming product and its manufacturing method of resin
CN108778655B (en) * 2016-03-11 2020-10-30 大赛璐塑料株式会社 Resin-impregnated fiber bundle, compression-molded article, and method for producing same
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure
US11919273B2 (en) 2016-03-24 2024-03-05 Ticona Llc Composite structure
US20220106447A1 (en) * 2020-10-07 2022-04-07 Hyundai Motor Company Long glass fiber reinforced thermoplastic resin composition and molded article including the same
CN114292516A (en) * 2020-10-07 2022-04-08 现代自动车株式会社 Long glass fiber-reinforced thermoplastic resin composition and molded article comprising the same
CN115916877A (en) * 2020-10-15 2023-04-04 日东纺绩株式会社 Glass fiber reinforced resin plate
CN115916877B (en) * 2020-10-15 2023-12-22 日东纺绩株式会社 Glass fiber reinforced resin plate
CN113549323A (en) * 2021-08-06 2021-10-26 重庆国际复合材料股份有限公司 High-strength high-flow low-warpage long glass fiber reinforced polyamide composite material, and preparation method and application thereof
CN113549323B (en) * 2021-08-06 2023-09-15 重庆国际复合材料股份有限公司 High-strength high-fluidity low-warpage long glass fiber reinforced polyamide composite material and preparation method and application thereof
WO2023089969A1 (en) * 2021-11-17 2023-05-25 日本電気硝子株式会社 Method for producing multiple-ply roving, multiple-ply roving, and glass fiber-reinforced resin molded body
WO2024090237A1 (en) * 2022-10-26 2024-05-02 日本電気硝子株式会社 Glass roving

Also Published As

Publication number Publication date
JP4876377B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
WO2007091293A1 (en) Pellet containing flat glass fibers, molded thermoplastic resin containing flat glass fibers, and processes for producing these
JP2569380B2 (en) Fiber reinforced molded product
CN101711230B (en) Chopped fiber bundle, molding material, and fiber reinforced plastic, and process for producing them
US6783716B2 (en) Nozzle insert for long fiber compounding
KR20130112710A (en) Reinforced hollow profiles
JP5969714B2 (en) Assembly of molding material for injection molding, extrusion molding, or pultrusion molding, carbon fiber reinforced thermoplastic resin pellet, molded body, and method of manufacturing injection molded body
JP2012056173A (en) Method for manufacturing fiber-reinforced resin material
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP5467828B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
JP5608818B2 (en) Carbon fiber composite material, molded product using the same, and production method thereof
JP2007254566A (en) Filament pellet, method for producing the same, and method for producing fiber-reinforced thermoplastic resin composite material molding
JP2001219473A (en) Method for manufacturing fiber-reinforced resin molding
JP2013104056A (en) Fiber-reinforced plastic tape
KR101290076B1 (en) Pellet containing flat glass fibers, molded thermoplastic resin containing flat glass fibers, and processes for producing these
JP2002086509A (en) Mold for molding resin composition containing fibrous filler, molding method using the same, and resin molded product
JP3368642B2 (en) Single groove spiral slot and method for manufacturing the same
JP2006016463A (en) Filament-reinforced polyamide resin molding material and method for producing the same
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
JPH06287317A (en) Pellet for molding fiber reinforced synthetic resin product
JP2000210933A (en) Resin-coated fiber bundle and its manufacture
JP3241435B2 (en) Fiber-reinforced thermoplastic resin composite material and method for producing the same
JP2005290195A (en) Long fiber reinforced resin material for molding and its manufacturing method
JP2646029B2 (en) Molding materials and mixtures thereof
JP2005144834A (en) Method and apparatus for manufacturing fiber reinforced synthetic resin product and fiber reinforced synthetic resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250