JP3241435B2 - Fiber-reinforced thermoplastic resin composite material and method for producing the same - Google Patents

Fiber-reinforced thermoplastic resin composite material and method for producing the same

Info

Publication number
JP3241435B2
JP3241435B2 JP16467992A JP16467992A JP3241435B2 JP 3241435 B2 JP3241435 B2 JP 3241435B2 JP 16467992 A JP16467992 A JP 16467992A JP 16467992 A JP16467992 A JP 16467992A JP 3241435 B2 JP3241435 B2 JP 3241435B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
composite material
tape
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16467992A
Other languages
Japanese (ja)
Other versions
JPH06817A (en
Inventor
良誠 高橋
俊明 北洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16467992A priority Critical patent/JP3241435B2/en
Publication of JPH06817A publication Critical patent/JPH06817A/en
Application granted granted Critical
Publication of JP3241435B2 publication Critical patent/JP3241435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂をマトリッ
クスとする繊維強化複合材料および成形材料に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced composite material and a molding material using a thermoplastic resin as a matrix.

【0002】[0002]

【従来技術】従来、熱硬化性樹脂をマトリックスとする
繊維強化複合材料が各種の成形材料等に主に使用されて
いた。しかし、靭性、貯蔵性、リサイクル性の観点から
熱可塑性樹脂をマトリックスとした繊維強化複合材料が
注目され、近年盛んに開発されている。しかしながら、
熱可塑性樹脂は一般に溶融粘度が高く、強化繊維への含
浸が困難であるため、種々の方法が開発されつつある。
例えば、熱可塑性樹脂を繊維化し、強化繊維と均一に混
合した混繊糸法や、熱可塑性樹脂粉末を、強化繊維間に
分散させる方法がある。しかし、これらの場合、成形時
に熱可塑性樹脂を溶融含浸させる必要があり、比較的、
成形時間が長く、成形圧力を高くする必要が生じる。
2. Description of the Related Art Conventionally, fiber-reinforced composite materials having a thermosetting resin as a matrix have been mainly used for various molding materials. However, fiber-reinforced composite materials using a thermoplastic resin as a matrix have attracted attention from the viewpoints of toughness, storability and recyclability, and have been actively developed in recent years. However,
Since thermoplastic resins generally have a high melt viscosity and are difficult to impregnate reinforcing fibers, various methods are being developed.
For example, there are a mixed fiber method in which a thermoplastic resin is fiberized and uniformly mixed with reinforcing fibers, and a method in which a thermoplastic resin powder is dispersed between reinforcing fibers. However, in these cases, it is necessary to melt-impregnate the thermoplastic resin during molding,
The molding time is long, and it is necessary to increase the molding pressure.

【0003】一方、直接溶融熱可塑性樹脂で含浸する方
法も種々開発されている。この場合、樹脂を押出機で溶
融し、ダイに供給し、その中で強化繊維に含浸させるた
め、ダイの中に突起を設けたり、あるいは、ピンを設け
それに強化繊維を沿わせ、しごいて含浸させる方法があ
る。しかし、溶融樹脂の粘度が高いため含浸した繊維強
化複合材料の引き取り張力が高くなり、生産速度の向上
が困難となる。そのため、熱可塑性樹脂の溶融粘度を低
下させ含浸を容易にすると同時に引き取り張力を低くす
る方法等が併用される。
On the other hand, various methods for directly impregnating with a molten thermoplastic resin have been developed. In this case, the resin is melted by an extruder, supplied to a die, and in order to impregnate the reinforcing fibers therein, a projection is provided in the die, or a pin is provided, and the reinforcing fibers are passed along the same, and squeezed. There is a method of impregnation. However, since the viscosity of the molten resin is high, the take-up tension of the impregnated fiber reinforced composite material is increased, and it is difficult to improve the production speed. For this reason, a method of lowering the melt tension of the thermoplastic resin to facilitate the impregnation and at the same time lowering the take-up tension is used in combination.

【0004】[0004]

【発明が解決しようとする課題】上記の、ダイ内含浸に
おいて、マトリックスに難燃剤、帯電防止剤、離型剤、
潤滑剤、結晶化促進剤、酸化防止剤、紫外線吸収剤、熱
安定剤、顔料等の添加剤を加え種々のグレードを揃える
には、また、強化繊維の含有率を変えたグレードを揃え
るには、押出機及びダイの洗浄または、ダイの交換や、
ダイ出口の賦形ダイの交換が必要となり、稼動率が低下
し生産性が悪化する。一方、溶融粘度を低下させた場合
には、含浸が容易になり、生産性も向上するが、得られ
た繊維強化複合材料としての物性が低下しやすい問題点
がある。
In the above impregnation in a die, a flame retardant, an antistatic agent, a release agent,
To prepare various grades by adding additives such as lubricants, crystallization accelerators, antioxidants, ultraviolet absorbers, heat stabilizers, and pigments, and to prepare grades with different contents of reinforcing fibers , Extruder and die cleaning or die replacement,
It is necessary to replace the shaping die at the die outlet, which lowers the operation rate and lowers productivity. On the other hand, when the melt viscosity is reduced, the impregnation becomes easier and the productivity is improved, but there is a problem that the physical properties of the obtained fiber-reinforced composite material are apt to be lowered.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
鋭意研究した結果、本発明を完成するに至った。すなわ
ち本発明は、連続強化繊維に第1の熱可塑性樹脂を含浸
した、偏平率5以上のテープ状繊維強化熱可塑性樹脂複
合材料を1本以上集束したものを、第1の熱可塑性樹脂
と実質的に同一の第2の熱可塑性樹脂により被覆一体化
することを特徴とする繊維強化熱可塑性樹脂複合材料で
あり、また、前記繊維強化熱可塑性樹脂複合材料におい
て、第1の熱可塑性樹脂の分子量が第2の熱可塑性樹脂
の分子量より低いことを特徴とする繊維強化熱可塑性樹
脂複合材料であり、さらに、前記繊維強化熱可塑性樹脂
複合材料において、第1の熱可塑性樹脂には特に添加剤
を含まず、第2の熱可塑性樹脂中に添加剤を含むことを
特徴とする繊維強化熱可塑性樹脂複合材料である。さら
に連続強化繊維に第1の熱可塑性樹脂を含浸し、偏平率
5以上のテープ状繊維強化熱可塑性樹脂複合材料を製造
し、そのテープを1本以上集束した後、第1の熱可塑性
樹脂と実質的に同一の第2の熱可塑性樹脂により被覆一
体化することを特徴とする前記の繊維強化熱可塑性樹脂
複合材料の製造方法である。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present invention has been completed. That is, the present invention relates to a method in which one or more tape-like fiber-reinforced thermoplastic resin composite materials having a flatness of 5 or more, in which continuous reinforcing fibers are impregnated with a first thermoplastic resin, are bundled with the first thermoplastic resin. A fiber-reinforced thermoplastic resin composite material characterized by being coated and integrated with the same second thermoplastic resin, and the molecular weight of the first thermoplastic resin in the fiber-reinforced thermoplastic resin composite material. Is a fiber-reinforced thermoplastic resin composite material characterized by having a lower molecular weight than the second thermoplastic resin, further, in the fiber-reinforced thermoplastic resin composite material, the first thermoplastic resin, especially an additive A fiber-reinforced thermoplastic resin composite material characterized by containing an additive in the second thermoplastic resin without containing the additive. Further, a continuous thermoplastic fiber is impregnated with a first thermoplastic resin to produce a tape-like fiber-reinforced thermoplastic resin composite material having an aspect ratio of 5 or more, and after bunching one or more tapes, the first thermoplastic resin and The method for producing a fiber-reinforced thermoplastic resin composite material according to the above, characterized in that the fiber-reinforced thermoplastic resin composite material is coated and integrated with substantially the same second thermoplastic resin.

【0006】以下本発明を詳細に述べる。本発明に用い
られる強化繊維としては、ガラス繊維、炭素繊維、アラ
ミド繊維、セラミックス繊維、金属繊維、ポリベンゾチ
アゾールやポリベンゾオキサゾールなどから成る複素環
含有ポリマーから得られる繊維等の連続繊維が挙げら
れ、これらを、2種以上併用して用いてもよく、さらに
は、用いる熱可塑性樹脂との接着を良くするための表面
処理がなされていることが好ましい。また、これらの強
化繊維の本数は、1ストランドあたり、50〜2000
0本、好ましくは200〜12000本である。一方、
熱可塑性樹脂としては、ポリエチレン、ポリプロピレ
ン、およびその共重合体や変性体を含むポリオレフィン
系、ナイロン6、ナイロン66、ナイロン12等のポリ
アミド系、ポリエチレンテレフタレート、ポリブチレン
テレフタレート等のポリエステル系、ポリカーボネー
ト、熱可塑性ポリウレタン、ポリエーテルイミド、ポリ
フェニレンサルファイド、ポリエーテルケトン等が挙げ
られる。補強繊維および熱可塑性樹脂は特にこれらに限
定されない。
Hereinafter, the present invention will be described in detail. Examples of the reinforcing fibers used in the present invention include continuous fibers such as glass fibers, carbon fibers, aramid fibers, ceramic fibers, metal fibers, and fibers obtained from heterocyclic-containing polymers such as polybenzothiazole and polybenzoxazole. These may be used in combination of two or more, and it is preferable that a surface treatment for improving the adhesion with the thermoplastic resin to be used is performed. The number of these reinforcing fibers is 50 to 2000 per strand.
0, preferably 200 to 12,000. on the other hand,
Examples of the thermoplastic resin include polyethylene, polypropylene, polyolefins including copolymers and modified products thereof, polyamides such as nylon 6, nylon 66, and nylon 12, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, and thermosetting resins. Examples include plastic polyurethane, polyetherimide, polyphenylene sulfide, and polyether ketone. The reinforcing fiber and the thermoplastic resin are not particularly limited to these.

【0007】連続強化繊維に第1の熱可塑性樹脂を含浸
する方法は、公知の種々の方法を用いることができる。
例えば、図1に示すような凸状ダイと直線ダイを組み合
わせた例が効率的な含浸に有効である。この場合、連続
的に強化繊維を凸状ダイに供給し、凸状ダイで強化繊維
に部分的に樹脂を含浸させ、その後直線ダイで更に含浸
をさせるものである。またその後に、さらに含浸を良く
するための、ロール等の圧縮手段等を設けても良い。こ
の場合の含浸状態は良好なほうが好ましいが、完全でな
くとも良い。含浸状態の評価としては、得られた含浸物
を10mm程度の長さに切断し、水に浸漬し、浸漬前後の
重量増加比で評価するのが簡便で好ましい。この評価法
で測定した値を空隙率と呼び、その値が15%以下が好
ましく、より好ましくは8%以下である。この値が15
%をはるかに越えると、最終的に得られる複合材料の物
性が低く好ましくない。15%前後であれば、第2の熱
可塑性樹脂で被覆一体化する際に若干含浸が向上し、問
題のないレベルになる。このように含浸した繊維強化熱
可塑性樹脂複合材料は、偏平率5以上のテープ状が良
い。この様な形状であれば、取扱い性、含浸性に優れる
からである。とくに、巻取りが容易であり、保存時にス
ペース効率が良いと共に次工程に供しやすくなる。ここ
で、偏平率とは、テープの幅/厚さである。また、テー
プの幅は好ましくは1〜30mm、より好ましくは2〜1
5mmである。この偏平率、および幅の範囲をはずれると
巻取りが困難となるか、もしくは、巻取り量が制限さ
れ、次工程での第2の熱可塑性樹脂の被覆一体化が効率
良く行いにくい。さらに、このテープ状繊維強化熱可塑
性樹脂複合材料の強化繊維含有率は、好ましくは50〜
80体積%、より好ましくは60〜75体積%である。
ここでの繊維含有率は高い方が好ましく、後の第2の熱
可塑性樹脂の被覆一体化により、容易に所望の繊維含有
率とすることができる。このテープ状繊維強化熱可塑性
樹脂複合材料の強化繊維含有率が50体積%より少ない
と、後の第2の熱可塑性樹脂の被覆一体化により、強化
繊維含有率の変更の自由度が減り、全体として強化繊維
含有率の低い物しか得られない。一方、80体積%を超
えると、強化繊維を均一に含浸できず良いものが得られ
ない。一方、第1の熱可塑性樹脂は第2の熱可塑性樹脂
より分子量が低く、すなわち溶融粘度が低く含浸性に優
れるのが好ましい。また、第1の熱可塑性樹脂は、強化
繊維との接着性に優れるように、変性された物を用いる
こともできる。例えば、熱可塑性樹脂として、ポリプロ
ピレンを用いる場合、第1の熱可塑性樹脂はポリプロピ
レンをマレイン酸変性した物を用い、一方、第2の熱可
塑性樹脂に第1のポリプロピレンより分子量が高く、す
なわち溶融粘度が高く、ホモのポリプロピレンを用いる
様な場合をも含む。さらに第2の熱可塑性樹脂には、目
的に応じて難燃剤、帯電防止剤、離型剤、潤滑剤、結晶
化促進剤、酸化防止剤、紫外線吸収剤、熱安定剤、顔料
等の添加剤を加えることができる。この場合、第1の熱
可塑性樹脂には添加剤を特に含まないのが好ましい。な
ぜならば、あらかじめ第1の熱可塑性樹脂で含浸した、
同一グレードのテープ状繊維強化熱可塑性樹脂複合材料
を高速度で生産し、ストックを持っておき、第2の熱可
塑性樹脂を被覆一体化することにより各種の機能を付与
した繊維強化熱可塑性複合材料を高速度で効率よく生産
することができるからである。
[0007] Various known methods can be used for impregnating the continuous reinforcing fibers with the first thermoplastic resin.
For example, an example in which a convex die and a linear die as shown in FIG. 1 are combined is effective for efficient impregnation. In this case, the reinforcing fibers are continuously supplied to the convex die, the reinforcing fibers are partially impregnated with the resin by the convex die, and then further impregnated by the linear die. After that, a compression means such as a roll for improving impregnation may be provided. In this case, the impregnation state is preferably better, but not necessarily perfect. As the evaluation of the impregnation state, it is simple and preferable to cut the obtained impregnated material into a length of about 10 mm, immerse the same in water, and evaluate the weight increase ratio before and after the immersion. The value measured by this evaluation method is called a porosity, and the value is preferably 15% or less, more preferably 8% or less. This value is 15
%, The physical properties of the finally obtained composite material are unfavorably low. When it is about 15%, the impregnation is slightly improved when the coating and integration with the second thermoplastic resin is performed, and the level is no problem. The impregnated fiber-reinforced thermoplastic resin composite material is preferably in the form of a tape having an aspect ratio of 5 or more. This is because such a shape is excellent in handleability and impregnation. In particular, winding is easy, space efficiency is high at the time of storage, and it is easy to provide for the next step. Here, the flatness is the width / thickness of the tape. The width of the tape is preferably 1 to 30 mm, more preferably 2 to 1 mm.
5 mm. If the flatness and the width are out of the range, winding becomes difficult or the winding amount is limited, and it is difficult to efficiently integrate the second thermoplastic resin into the coating in the next step. Further, the reinforcing fiber content of the tape-like fiber-reinforced thermoplastic resin composite material is preferably 50 to
It is 80% by volume, more preferably 60 to 75% by volume.
Here, the fiber content is preferably high, and the desired fiber content can be easily obtained by coating and integrating the second thermoplastic resin later. If the reinforcing fiber content of the tape-shaped fiber-reinforced thermoplastic resin composite material is less than 50% by volume, the degree of freedom of changing the reinforcing fiber content is reduced by the subsequent integration of the second thermoplastic resin by coating, and the overall As a result, only a product having a low reinforcing fiber content can be obtained. On the other hand, when the content exceeds 80% by volume, the reinforcing fibers cannot be uniformly impregnated and good products cannot be obtained. On the other hand, the first thermoplastic resin preferably has a lower molecular weight than the second thermoplastic resin, that is, has a low melt viscosity and excellent impregnation. Further, as the first thermoplastic resin, a modified thermoplastic resin may be used so as to have excellent adhesion to the reinforcing fiber. For example, when polypropylene is used as the thermoplastic resin, the first thermoplastic resin is a maleic acid-modified polypropylene, while the second thermoplastic resin has a higher molecular weight than the first polypropylene, that is, the melt viscosity is higher. And the case where a homopolypropylene is used. Furthermore, additives such as a flame retardant, an antistatic agent, a release agent, a lubricant, a crystallization accelerator, an antioxidant, an ultraviolet absorber, a heat stabilizer, and a pigment may be added to the second thermoplastic resin according to the purpose. Can be added. In this case, it is preferable that the first thermoplastic resin does not particularly contain an additive. Because it was previously impregnated with the first thermoplastic resin,
A fiber-reinforced thermoplastic composite material with the same grade of tape-like fiber-reinforced thermoplastic resin material produced at high speed, stocks held, and a second thermoplastic resin coated and integrated to provide various functions Can be efficiently produced at high speed.

【0008】このような、第2の熱可塑性樹脂を、第1
の熱可塑性樹脂で含浸したテープ状繊維強化熱可塑性樹
脂複合材料に被覆一体化する手段としては、例えば、通
常の押出機の先端に電線被覆用のダイを取付け、該ダイ
にテープを1本、好ましくは2本以上、所望本数集束さ
せたテープ状繊維強化熱可塑性樹脂複合材料を供給し、
第2の熱可塑性樹脂で被覆一体化する方法が挙げられ
る。ここで、テープの集束本数は所望断面積にあうよう
供給することが好ましい。この際、第2の熱可塑性樹脂
の量と最終繊維含有率を考慮して、断面積を決定する必
要がある。最終繊維含有率は、該ダイの出口賦形ノズル
の断面積でコントロールでき、また、最終形状も、丸、
角、異形等出口賦形ノズルの形状でコントロールでき
る。この様に被覆一体化する工程は、含浸工程に比べは
るかに簡便であり、かつその加工速度は非常に速く行う
ことが可能である。また、ここで得られた複合材料の空
隙率は、好ましくは10%以下、より好ましくは8%以
下である。このようにして得られた繊維強化熱可塑性樹
脂複合材料は、例えば、コンクリート補強筋や、ジオグ
リッド、テンションメンバー等に用いることができ、一
方、5〜100mm程度に切断して射出成形や、圧縮成形
の材料としても供することができる。
[0008] Such a second thermoplastic resin is converted into a first thermoplastic resin.
As a means for coating and integrating into a tape-like fiber reinforced thermoplastic resin composite material impregnated with a thermoplastic resin, for example, a die for wire coating is attached to the tip of a normal extruder, and one tape is attached to the die. Preferably two or more, supply the desired number of tape-shaped fiber reinforced thermoplastic resin composite material bundled,
A method of coating and integrating with a second thermoplastic resin is given. Here, it is preferable that the number of bundles of the tape is supplied so as to match a desired cross-sectional area. At this time, it is necessary to determine the cross-sectional area in consideration of the amount of the second thermoplastic resin and the final fiber content. The final fiber content can be controlled by the cross-sectional area of the exit shaping nozzle of the die, and the final shape is also round,
It can be controlled by the shape of the exit shaping nozzle, such as corners and irregular shapes. The step of coating and integrating in this manner is much simpler than the impregnation step, and the processing speed can be extremely high. Further, the porosity of the composite material obtained here is preferably 10% or less, more preferably 8% or less. The fiber-reinforced thermoplastic resin composite material thus obtained can be used for, for example, concrete reinforcing bars, geogrids, tension members, and the like. It can also be used as a molding material.

【0009】[0009]

【作用】本発明によれば、例えば第1の熱可塑性樹脂で
含浸したテープ状繊維強化熱可塑性樹脂複合材料を同一
グレード、すなわち添加剤を特に含まない樹脂を用い
て、繊維含有率が50〜80体積%の高いものを大量に
生産しストックしておく。これにより、含浸ダイでの樹
脂切り替えや、繊維含有率切り替えをすることなく、多
目的・多品種の繊維強化熱可塑性樹脂複合材料の生産が
効率よくおこなえる。しかも、この工程において、完全
含浸していなくても良く、そのため、比較的生産速度を
向上させ易い。また、テープ状であるため、巻取ること
が可能であり、次工程に供し易くかつ、保管に場所をと
らない。その後、上記テープを第2の熱可塑性樹脂で被
覆一体化する際に添加剤を加えることやまた、繊維含有
率を変えることが簡便に行え、多種のグレードに対応で
きる。また、付随効果として、得られた複合材料表面の
毛羽等をなくし、表面性をよくすることが可能である。
しかも、この工程は被覆一体化するためであるので、加
工速度を飛躍的に向上させることが可能である。さらに
は、この工程において、賦形ダイを通過させることによ
り、多少なりとも含浸が向上すると同時に、得られる複
合材料中の強化繊維の分散も良好となる。ただし、これ
らは、被覆一体化の加工速度、被覆ダイ内の圧力等に依
存するものであり、要求される複合材料の特性に合わせ
て条件を決定するのが好ましい。
According to the present invention, for example, a tape-like fiber-reinforced thermoplastic resin composite material impregnated with a first thermoplastic resin is made of the same grade, that is, a resin containing no particular additive, and has a fiber content of 50 to 50%. High volume of 80% by volume is produced and stocked in large quantities. This allows efficient production of a multipurpose, multi-product fiber-reinforced thermoplastic resin composite material without switching the resin at the impregnation die or switching the fiber content. Moreover, in this step, it is not necessary to completely impregnate, and therefore, the production speed is relatively easily improved. Further, since it is in the form of a tape, it can be wound up, is easy to be provided for the next step, and requires little space for storage. Thereafter, when the tape is coated and integrated with the second thermoplastic resin, it is possible to easily add an additive and to change the fiber content, and it is possible to cope with various grades. Further, as an attendant effect, it is possible to eliminate fluff and the like on the surface of the obtained composite material and improve the surface properties.
Moreover, since this step is for coating and integrating, it is possible to dramatically improve the processing speed. Furthermore, in this step, the impregnation is improved to some extent by passing through the shaping die, and the dispersion of the reinforcing fibers in the obtained composite material is also improved. However, these depend on the processing speed of coating integration, the pressure in the coating die, and the like, and it is preferable to determine the conditions according to the required characteristics of the composite material.

【0010】さらに、本発明では、第1の熱可塑性樹脂
として分子量の低い、すなわち、溶融粘度の低い樹脂を
用いることができると同時に、強化繊維との接着性に優
れる樹脂を用いることができる。このことにより、含浸
をよりすばやく行うことが可能となり、含浸工程の生産
速度を向上できる。さらに、強化繊維との接着性も優れ
る。しかも、第1の熱可塑性樹脂より高分子量の、第2
の熱可塑性樹脂により被覆一体化するため、複合材料と
しての物性を満足のゆくレベルに保つことが可能であ
る。
Further, in the present invention, a resin having a low molecular weight, that is, a resin having a low melt viscosity can be used as the first thermoplastic resin, and at the same time, a resin having excellent adhesion to the reinforcing fiber can be used. Thus, the impregnation can be performed more quickly, and the production speed of the impregnation step can be improved. Furthermore, the adhesiveness with a reinforcing fiber is also excellent. Moreover, the second thermoplastic resin having a higher molecular weight than the first thermoplastic resin is used.
Since it is coated and integrated with a thermoplastic resin, it is possible to maintain physical properties as a composite material at a satisfactory level.

【0011】[0011]

【効果】本発明によれば、種々の機能を有する繊維強化
熱可塑性樹脂を高速度で効率よく生産することができ、
特に多品種、少ロットの生産に極めて迅速に対応でき
る。また、各々の工程が比較的高生産速度で行えるの
で、全体としての効率の向上が行える。さらに、得られ
た複合材料としての物性も高いものが得られる。
According to the present invention, a fiber-reinforced thermoplastic resin having various functions can be efficiently produced at a high speed.
In particular, it can respond to production of many kinds and small lots very quickly. Further, since each process can be performed at a relatively high production speed, the efficiency as a whole can be improved. Further, a material having high physical properties as the obtained composite material is obtained.

【0012】[0012]

【実施例1】強化繊維として、単糸径17μ、フィラメ
ント本数2000本、1150テックスであり、アミノ
シラン及び、変性オレフィン処理が施されたガラス繊維
を用いた。第1の熱可塑性樹脂として、0.2重量%マ
レイン酸変性されたポリプロピレンを用いた。このポリ
プロピレンの、メルト・フロー・インデックス(MF
I)は60g/10分(ASTM D−1238)であ
る。上記ガラス繊維ストランド1本を図1及び図2に示
すようなダイを用いて含浸し、幅3.8mm、厚さ0.2
mm、繊維含有率60体積%、のテープを60m/分の速
度で製造し巻取った。得られたテープの偏平率は19、
空隙率は8%であった。第2の熱可塑性樹脂として、第
1の熱可塑性樹脂より高分子量のホモのポリプロピレン
(MFI=10g/10分)を用い、図3に示すような
電線被覆用ダイを用いて、上記テープを2本被覆一体化
し、繊維含有率20体積%(40重量%)の直径約2.
5mmの棒状体を得た。被覆一体化の加工速度は150m
/分で行い、得られた複合材料の空隙率は5%であっ
た。この棒を10mm長さに切断しペレットを得た。この
ペレットを射出成形に供した。成形機は型締め力100
トン、スクリュー直径32mm、L/Dが21.6、圧縮
比(深さ比)が2.26を用いた。得られた成形品をA
STMに従い評価を行った。アイゾット衝撃値は48kg
・cm/cmであった。
Example 1 As reinforcing fibers, glass fibers having a single yarn diameter of 17 μm, a number of filaments of 2,000 and 1,150 tex, and treated with aminosilane and a modified olefin were used. As the first thermoplastic resin, 0.2% by weight maleic acid-modified polypropylene was used. The melt flow index (MF) of this polypropylene
I) is 60 g / 10 min (ASTM D-1238). One glass fiber strand was impregnated with a die as shown in FIGS. 1 and 2 to have a width of 3.8 mm and a thickness of 0.2.
mm, a tape having a fiber content of 60% by volume was produced and wound at a speed of 60 m / min. The resulting tape has a flatness of 19,
The porosity was 8%. As the second thermoplastic resin, a homopolypropylene (MFI = 10 g / 10 min) having a higher molecular weight than that of the first thermoplastic resin was used. This coating was integrated, and the diameter of the fiber was 20% by volume (40% by weight).
A 5 mm rod was obtained. Processing speed of coating integration is 150m
/ Min, and the porosity of the obtained composite material was 5%. This rod was cut into a length of 10 mm to obtain a pellet. The pellet was subjected to injection molding. The molding machine has a mold clamping force of 100
Ton, screw diameter 32 mm, L / D 21.6, compression ratio (depth ratio) 2.26 were used. The obtained molded product is designated as A
Evaluation was performed according to STM. Izod impact value is 48kg
-Cm / cm.

【0013】[0013]

【実施例2】実施例1で得られたテープにおいて、第2
の熱可塑性樹脂として0.2重量%カーボンブラックを
ドライブレンドしたMFI=10g/10分のポリプロ
ピレンを用い実施例1と同様に被覆一体化した。実施例
1と同様に射出成形を行ったところ成形品に色斑はなか
った。
Example 2 In the tape obtained in Example 1, the second
In the same manner as in Example 1, coating and integration were performed using a polypropylene blended with 0.2% by weight of carbon black and having an MFI of 10 g / 10 minutes as a thermoplastic resin. When injection molding was performed in the same manner as in Example 1, there was no color spot on the molded product.

【0014】[0014]

【比較例1】実施例1と同様にしテープの代わりに偏平
率1.0直径1mmの線材を得た。しかし、この線材は巻
くことが困難なため、多量に製造しストックすることが
不可能であった。
Comparative Example 1 In the same manner as in Example 1, a wire having a flatness of 1.0 and a diameter of 1 mm was obtained instead of the tape. However, since this wire is difficult to wind, it was impossible to manufacture and stock it in large quantities.

【0015】[0015]

【比較例2】実施例1のガラス繊維を2本、含浸ダイの
中に直径10mmのピンを3本セットしたダイに通し、含
浸を行った。熱可塑性樹脂として、0.2重量%マレイ
ン酸変性されたMFI=10g/10分のポリプロピレ
ンを用いた。製造速度は10m/分が限界であり、これ
以上速度を上げるとガラス繊維が切断した。製造速度を
10m/分とし、強化繊維含有率を20体積%(40重
量%)になるようにし、直径2.5mmの棒状複合材料を
得た、この複合材料の空隙率は17%であり表面にかな
りの毛羽がみられた。これを長さ10mmに切断し、実施
例1と同様に射出成形を行い評価した。しかし、成形時
に毛羽によりホッパーにてブリッジを形成し成形しにく
く、また計量時間(可塑化時間)に実施例1の約2倍の
25秒所要した。得られた成形品のアイゾット衝撃値
は、32kg・cm/cmであった。
Comparative Example 2 Two glass fibers of Example 1 were passed through a die in which three pins each having a diameter of 10 mm were set in an impregnating die to perform impregnation. As the thermoplastic resin, 0.2% by weight maleic acid-modified MFI = 10 g / 10 min. Polypropylene was used. The production speed was limited to 10 m / min, and when the speed was further increased, the glass fiber was cut. The production speed was 10 m / min, the reinforcing fiber content was set to 20% by volume (40% by weight), and a rod-shaped composite material having a diameter of 2.5 mm was obtained. Had considerable fluff. This was cut into a length of 10 mm, injection molded in the same manner as in Example 1, and evaluated. However, at the time of molding, a bridge was formed by the hopper due to the fluff, making molding difficult, and the measuring time (plasticizing time) required 25 seconds, which was about twice that of Example 1. The Izod impact value of the obtained molded product was 32 kg · cm / cm.

【0016】[0016]

【比較例3】比較例2の樹脂をMFI=60g/10分
にした以外は比較例2と同様に行った。製造速度は20
m/分まで可能であった。得られた複合材料の空隙率は
6%であった。表面の毛羽は比較例2よりかなり少な
く、射出成形は問題なくできた。得られた成形品のアイ
ゾット衝撃値は30kg・cm/cmであった。
Comparative Example 3 The same procedure was performed as in Comparative Example 2 except that the resin of Comparative Example 2 was changed to MFI = 60 g / 10 minutes. Production speed is 20
m / min. The porosity of the obtained composite material was 6%. The fluff on the surface was considerably less than that of Comparative Example 2, and injection molding was performed without any problem. The Izod impact value of the obtained molded product was 30 kg · cm / cm.

【0017】[0017]

【比較例4】実施例1において、第1の樹脂をMFI=
10g/10分の0.2重量%マレイン酸変性されたポ
リプロピレンを用い、第2の樹脂としてMFI=60g
/10分のホモのポリプロピレンを用いた以外、実施例
1と同様に行なった。テープでの空隙率は19%であ
り、丸棒の複合材料の空隙率は16%であった。射出成
形の結果は、アイゾット衝撃値で27kg・cm/cmであっ
た。これは、含浸が悪いため、射出成形時のスクリュウ
によりガラス繊維が破損したためと考えられる。
Comparative Example 4 In Example 1, the first resin was changed to MFI =
MFI = 60 g was used as the second resin using a polypropylene modified with 0.2% by weight of maleic acid at 10 g / 10 min.
The procedure was performed in the same manner as in Example 1 except that a homopolypropylene of / 10 min was used. The porosity of the tape was 19% and the porosity of the round bar composite was 16%. The result of the injection molding was an Izod impact value of 27 kg · cm / cm. This is probably because the impregnation was poor and the glass fibers were damaged by the screw during injection molding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の熱可塑性樹脂を含浸するダイの
形態を示す一実施例の略式図である。
FIG. 1 is a schematic view of one embodiment showing a form of a die impregnated with a first thermoplastic resin of the present invention.

【図2】本発明の第1の熱可塑性樹脂を含浸する工程の
一実施例の各装置の略式図である。
FIG. 2 is a schematic view of each apparatus in one embodiment of a step of impregnating a first thermoplastic resin of the present invention.

【図3】本発明の第2の熱可塑性樹脂でテープを被覆一
体化する工程の一実施例の各装置の略式図である。
FIG. 3 is a schematic view of each apparatus in one embodiment of a step of coating and integrating a tape with a second thermoplastic resin of the present invention.

【図4】本発明の複合材料の概略をしめす断面模式図で
ある。
FIG. 4 is a schematic sectional view schematically showing a composite material of the present invention.

【符号の説明】[Explanation of symbols]

1 含浸ダイ 2 凸状ダイ 3 直線ダイ 4 出口ノズルブロック 5 樹脂吐出口 6 出口ノズル 7 押出機 8 強化繊維ボビン 9 開繊バー 10 圧縮冷却ニップロール 11 引き取り機 12 ワインダー 13 ガイドロール 14 第1の熱可塑性樹脂で含浸されたテープ 15 第1の熱可塑性樹脂で含浸されたテープを巻いた
もの 16 第2の熱可塑性樹脂でテープを被覆一体化するダ
イ 17 冷却用水槽 18 ペレタイザー 19 ペレット 20 強化繊維 30 熱可塑性複合材料 40 第1の熱可塑性樹脂 50 第2の熱可塑性樹脂
DESCRIPTION OF SYMBOLS 1 Impregnation die 2 Convex die 3 Straight die 4 Outlet nozzle block 5 Resin discharge port 6 Outlet nozzle 7 Extruder 8 Reinforcing fiber bobbin 9 Opening bar 10 Compression cooling nip roll 11 Puller 12 Winder 13 Guide roll 14 First thermoplasticity Tape impregnated with resin 15 Wounded tape impregnated with first thermoplastic resin 16 Die for covering and integrating tape with second thermoplastic resin 17 Cooling water tank 18 Pelletizer 19 Pellet 20 Reinforcing fiber 30 Heat Plastic composite material 40 First thermoplastic resin 50 Second thermoplastic resin

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29B 11/16 B29B 15/08 - 15/14 B29C 70/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B29B 11/16 B29B 15/08-15/14 B29C 70/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】連続強化繊維に直接溶融含浸法にて第1の
熱可塑性樹脂を含浸した、扁平率5以上のテープ状繊維
強化熱可塑性樹脂複合材料を1本以上集束したものを、
第1の熱可塑性樹脂と実質的に同一の第2の熱可塑性樹
脂により被覆一体化することを特徴とする繊維強化熱可
塑性樹脂複合材料。
What is claimed is: 1. A continuous reinforcing fiber directly impregnated with a first thermoplastic resin by a melt impregnation method, wherein at least one tape-like fiber-reinforced thermoplastic resin composite material having an aspect ratio of 5 or more is bundled.
A fiber-reinforced thermoplastic resin composite material characterized by being covered and integrated with a second thermoplastic resin that is substantially the same as the first thermoplastic resin.
【請求項2】 第1の熱可塑性樹脂の分子量が第2の熱
可塑性樹脂の分子量より低いことを特徴とする請求項1
記載の繊維強化熱可塑性樹脂複合材料。
2. The method according to claim 1, wherein the molecular weight of the first thermoplastic resin is lower than the molecular weight of the second thermoplastic resin.
The fiber-reinforced thermoplastic resin composite material according to the above.
【請求項3】第1の熱可塑性樹脂には特に添加剤を含ま
ず、第2の熱可塑性樹脂中に添加剤を含むことを特徴と
する請求項1又は2記載の繊維強化熱可塑性樹脂複合材
料。
3. A particular free of additives to the first thermoplastic resin, fiber-reinforced thermoplastic resin composite according to claim 1 or 2 characterized in that it comprises an additive to the second thermoplastic resin material.
【請求項4】連続強化繊維に第1の熱可塑性樹脂を含浸
し、扁平率5以上のテープ状繊維強化熱可塑性樹脂複合
材料を製造し、そのテープを1本以上集束した後、第1
の熱可塑性樹脂と実質的に同一の第2の熱可塑性樹脂に
より被覆一体化することを特徴とする請求項1〜3いず
れか1項に記載の繊維強化熱可塑性樹脂複合材料の製造
方法。
4. A continuous reinforcing fiber is impregnated with a first thermoplastic resin to produce a tape-like fiber-reinforced thermoplastic resin composite material having an aspect ratio of 5 or more.
Claims 1-3 Izu by the thermoplastic resin substantially identical to the second thermoplastic resin, wherein the covering integrated
The method for producing a fiber-reinforced thermoplastic resin composite material according to claim 1.
JP16467992A 1992-06-23 1992-06-23 Fiber-reinforced thermoplastic resin composite material and method for producing the same Expired - Fee Related JP3241435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16467992A JP3241435B2 (en) 1992-06-23 1992-06-23 Fiber-reinforced thermoplastic resin composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16467992A JP3241435B2 (en) 1992-06-23 1992-06-23 Fiber-reinforced thermoplastic resin composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06817A JPH06817A (en) 1994-01-11
JP3241435B2 true JP3241435B2 (en) 2001-12-25

Family

ID=15797790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16467992A Expired - Fee Related JP3241435B2 (en) 1992-06-23 1992-06-23 Fiber-reinforced thermoplastic resin composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3241435B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161108B2 (en) * 2012-02-16 2017-07-12 広島県 Fiber-reinforced composite material and method for producing the same
EP3467010B1 (en) 2016-05-27 2021-06-09 Mitsubishi Gas Chemical Company, Inc. Material and formed article
CN112662070A (en) * 2020-12-31 2021-04-16 广州金发碳纤维新材料发展有限公司 Continuous metal wire reinforced thermoplastic composite material strip

Also Published As

Publication number Publication date
JPH06817A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US5268050A (en) Process for using an extruder die assembly for the production of fiber reinforced thermoplastic pellets, tapes and similar products
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
CN100482452C (en) Glass fibre reinforced thermoplastic resin granule material and its production process
SK283876B6 (en) Process for the manufacture of a composite thread and composite products obtained from said thread
WO2011034187A1 (en) Method for producing long-fiber-reinforced thermoplastic resin pellets
CN209851636U (en) Production equipment for continuous fiber reinforced thermoplastic composite material
TW202146206A (en) Method for manufacturing composite fibers
JP3241435B2 (en) Fiber-reinforced thermoplastic resin composite material and method for producing the same
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
CN1329330C (en) Fiber glass product incorporating string binders
JP3982007B2 (en) -Direction reinforced thermoplastic resin structure manufacturing method and manufacturing apparatus
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
JPH031907A (en) Production of fiber reinforced composite material
JPH0347714A (en) Resin-inpregnated covering fiber
US6183864B1 (en) Thermoplastic resin-combined glass fiber base material and process for its production
EP0330932A2 (en) Method of manufacturing plastics articles reinforced with short fibres
JPH04197726A (en) Manufacture of long fiber reinforced composite material
JP4332020B2 (en) DIE FOR PRODUCING LONG FIBER REINFORCED THERMOPLASTIC RESIN STRUCTURE AND METHOD FOR PRODUCING THE STRUCTURE
JPH0647740A (en) Continuous glass filament thermoplastic resin pellet
JP4477925B2 (en) Manufacturing method of long fiber reinforced resin molding material and impregnation die for molding
JP2662853B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JPH04278311A (en) Manufacture of fiber reinforced thermoplastic resin and die therefor
JPH06116851A (en) Fiber-reinforced thermoplastic resin structure and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees