JPH031907A - Production of fiber reinforced composite material - Google Patents
Production of fiber reinforced composite materialInfo
- Publication number
- JPH031907A JPH031907A JP13599889A JP13599889A JPH031907A JP H031907 A JPH031907 A JP H031907A JP 13599889 A JP13599889 A JP 13599889A JP 13599889 A JP13599889 A JP 13599889A JP H031907 A JPH031907 A JP H031907A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- resin
- reinforced composite
- composite material
- strand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 57
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 229920005989 resin Polymers 0.000 claims abstract description 62
- 239000011347 resin Substances 0.000 claims abstract description 62
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 55
- 238000005470 impregnation Methods 0.000 claims abstract description 13
- 238000005520 cutting process Methods 0.000 claims abstract description 9
- 239000008188 pellet Substances 0.000 claims description 26
- 229920005992 thermoplastic resin Polymers 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 15
- 239000003365 glass fiber Substances 0.000 abstract description 9
- 238000000465 moulding Methods 0.000 abstract description 6
- 239000010935 stainless steel Substances 0.000 abstract description 5
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 5
- 239000002131 composite material Substances 0.000 abstract description 4
- 229920002302 Nylon 6,6 Polymers 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 36
- 239000011159 matrix material Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 8
- 238000001746 injection moulding Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【発明の詳細な説明】
cM業上の利用分野]
本発明は、連続した補強繊維ロービングを溶融した熱可
塑性樹脂中に均一に分散、複合化することにより1機械
的性質の優れたストランド状、またはペレット状の繊維
強化複合材料を製造する方法に関するものである。Detailed Description of the Invention Field of Application in the CM Industry] The present invention achieves a strand-like structure with excellent mechanical properties by uniformly dispersing and compounding continuous reinforcing fiber rovings into a molten thermoplastic resin. Alternatively, the present invention relates to a method of manufacturing a pellet-shaped fiber reinforced composite material.
[従来の技v#]
熱可塑性樹脂は、成形性の自由度が大きく、比重が小さ
い等の特性を生かして多くの分野で利用されている。し
かし、金属と比べ強度的に劣っている。[Conventional Technique v#] Thermoplastic resins are used in many fields, taking advantage of their characteristics such as a high degree of freedom in moldability and low specific gravity. However, it is inferior in strength compared to metal.
このため強度の向上を目的として、ガラス繊維等の補強
繊維をマトリックス樹脂中に規則的にまたは不規則的に
充填した繊維強化複合材料が開発され多岐にわたって用
いられている。For this reason, fiber-reinforced composite materials in which reinforcing fibers such as glass fibers are filled regularly or irregularly into a matrix resin have been developed and used in a wide variety of ways to improve strength.
熱可塑性樹脂中に補強繊維を充填し優れた機械的性質と
外観特性を得るためには、充填された補強繊維がある程
度の長さを有し、成形品中に均一に分散していることが
必要である。In order to obtain excellent mechanical properties and appearance characteristics by filling reinforcing fibers into thermoplastic resin, it is necessary that the filled reinforcing fibers have a certain length and are uniformly dispersed in the molded product. is necessary.
3〜10m閣長に切断された補強繊維ロービングと熱可
塑性樹脂を、押出し機で混練してペレットを製造し、そ
のペレットを原料として射出成形または押出し成形で繊
維強化複合材料の成形品を得る方法は製造が容易で、比
較的繊維の分散も均一にし易い、しかし、ペレット製造
時に押出し機のスクリュ混線効果により補強繊維の破損
が発生し、成形性の自由度とその成形品の外観特性は優
れているが1機械的性質特に耐tr撃性の向上はあまり
期待できない。A method of producing pellets by kneading reinforcing fiber roving cut into 3-10 m lengths and a thermoplastic resin using an extruder, and then using the pellets as a raw material to obtain molded articles of fiber-reinforced composite material by injection molding or extrusion molding. is easy to manufacture, and it is relatively easy to disperse the fibers uniformly.However, during pellet production, the reinforcing fibers are damaged due to the cross-wire effect of the extruder's screws, and the degree of freedom in moldability and the appearance characteristics of the molded product are excellent. However, one cannot expect much improvement in mechanical properties, especially resistance to shock.
補強繊維の破損を抑え機械的性質の向上を目的として開
発されたシート状繊維強化複合材料(例えばスタンパブ
ルシート)は、チョプドストランドマット等のマット状
補強繊維を熱可塑性樹脂中に充填したものである。しか
しこの材料は、スタンピング成形によりその成形品を得
るため、マトリックスとして用いられる熱可塑性樹脂特
有の成形性の自由度の低下や、補強繊維の均一な分散が
実施されていないために繊維束が成形品の表面に浮き出
るといった外観特性の低下を引き起す。Sheet-like fiber-reinforced composite materials (e.g. stampable sheets) developed with the aim of suppressing breakage of reinforcing fibers and improving mechanical properties are made by filling thermoplastic resin with mat-like reinforcing fibers such as chopped strand mats. It is. However, since the molded product of this material is obtained by stamping molding, there is a reduction in the degree of freedom in moldability peculiar to the thermoplastic resin used as the matrix, and the reinforcing fibers are not uniformly dispersed, resulting in fiber bundles being molded. This causes deterioration of the appearance characteristics, such as embossed appearance on the surface of the product.
マトリックス樹脂の成形性の自由度を損なわず、さらに
成形品の優れた機械的性質を付与することを目的とした
繊維強化複合材料の開発には、被覆電線の製造のような
連続繊維被覆方式が採用されている。これは、連続した
補強繊維ロービングを押出し機のダイ部に導入し、溶融
樹脂で被覆してノズルから引き抜くことによりストラン
ド状の繊維強化複合材料を製造し、冷却後任意の長さに
切断して射出成形または押出し成形用の原料ペレットを
得るものである。In order to develop fiber-reinforced composite materials that do not impair the moldability of the matrix resin and also provide excellent mechanical properties to molded products, continuous fiber coating methods, such as those used in the production of covered electric wires, are required. It has been adopted. In this process, a continuous reinforcing fiber roving is introduced into the die of an extruder, coated with molten resin, and pulled out from a nozzle to produce a strand-shaped fiber-reinforced composite material.After cooling, the fiber-reinforced composite material is cut into a desired length. Raw material pellets for injection molding or extrusion molding are obtained.
この方法では、補強繊維ロービング中にマトリックス樹
脂が浸入せず第2図(A)に示したように補強繊維ロー
ビングが樹脂中に集束された状態で充填されているもの
や、補強繊維ロービングのダイ中への導入、被覆方式を
制御することにより、第2図(B)に示したように複数
のロービングが互いに接触することなく樹脂中に充填さ
れたストランド状複合材料が得られる。これらのストラ
ンドは、個々の補強繊維と樹脂との密着性が不足してい
るため切断時に補強繊維が引き抜けたり、ペレットの被
覆樹脂の割れが発生するといった欠点を有し、充填でき
る繊維含有量も制限される。このようなペレットは、成
形加工時において微細な繊維が空気中へ飛散し作業環境
の悪化を引き起したり、成形機中においてペレット移動
の円滑性を妨げたり、またペレット接触部のシリンダー
、スクリュ等の著しい摩耗を引き起こすなどハンドリン
グ性の低下の原因となる。そしてその成形品は、補強繊
維の分散が不均一になり期待される強度も十分得られず
、補強繊維束が表面に浮き出ることによる外観特性の低
下も見られる。In this method, the matrix resin does not penetrate into the reinforcing fiber roving, and the reinforcing fiber roving is filled in a bundled state in the resin as shown in Figure 2 (A), or the reinforcing fiber roving is immersed in the reinforcing fiber roving. By controlling the introduction and coating method, it is possible to obtain a strand-like composite material in which a plurality of rovings are filled in the resin without coming into contact with each other, as shown in FIG. 2(B). These strands have drawbacks such as the reinforcing fibers being pulled out during cutting due to insufficient adhesion between the individual reinforcing fibers and the resin, and the resin covering the pellets cracking. is also restricted. During the molding process, fine fibers from such pellets scatter into the air, causing a deterioration of the working environment, impeding the smooth movement of the pellets in the molding machine, and causing damage to the cylinders and screws in contact with the pellets. This may cause significant wear such as deterioration of handling properties. In the molded product, the reinforcing fibers are not uniformly dispersed, and the expected strength cannot be obtained sufficiently, and the appearance characteristics are also deteriorated due to the reinforcing fiber bundles rising to the surface.
さらに、補強繊維ロービング中への樹脂含浸を向上する
ために、上記の方法で得られたストランド状の繊維強化
複合材料をその樹脂が可塑性を有している内に、ロール
で偏平状に押し潰し、冷却後ペレット化する方法が提案
されている(特開昭59−128704号公報)、シか
し、この方法でもロール抑圧により樹脂含浸を行なう際
、多くの樹脂を必要とし繊維含有量が制限され、ペレッ
ト形状が偏平なためそれを用いて成形する際に、ペレッ
トの移動の円滑性を妨げるというハンドリング性の低下
を引き起こす。Furthermore, in order to improve resin impregnation into the reinforcing fiber roving, the strand-shaped fiber-reinforced composite material obtained by the above method was crushed into a flat shape with a roll while the resin still had plasticity. A method of pelletizing after cooling has been proposed (Japanese Unexamined Patent Publication No. 59-128704).However, even with this method, when impregnating with resin by roll compression, a large amount of resin is required and the fiber content is limited. Since the pellet shape is flat, when it is used for molding, the smooth movement of the pellet is hindered, resulting in a decrease in handling properties.
[発明が解決しようとする課題]
本発明は、前記従来技術の問題点を解決することを目的
とするもので1機械的性質の優れたストランド状の繊維
強化複合材料と、さらにこれを切断したペレット状の繊
維強化複合材料を成形材料として用いて射出成形または
押出し成形により得られた成形品の機械的性質、外観特
性の向上を導くために、連続繊維被覆方式において補強
繊維ロービング中への機械的な樹脂含浸の促進を行ない
、補強繊維がマトリックス樹脂中でモノフィラメントあ
るいはそれに近い状態で均一に分散し、良好な補強繊維
と樹脂の密着性を示す繊維強化複合材料の製造方法を提
供しようとするものである。[Problems to be Solved by the Invention] The present invention aims to solve the problems of the prior art as described above. 1. A fiber-reinforced composite material in the form of a strand with excellent mechanical properties, and a material obtained by cutting the same. In order to improve the mechanical properties and appearance characteristics of molded products obtained by injection molding or extrusion molding using pellet-shaped fiber reinforced composite materials as a molding material, reinforcing fibers are added to the reinforcing fiber roving in a continuous fiber coating method. An object of the present invention is to provide a method for producing a fiber-reinforced composite material in which reinforcing fibers are uniformly dispersed in a matrix resin in a monofilament or similar state, and exhibit good adhesion between the reinforcing fibers and the resin. It is something.
[課題を解決するための手段]
本発明者らは、繊維強化複合材料の製造方法において連
続した補強繊維ロービングを熱可塑性樹脂で被覆する際
、に、機械的な樹脂含浸の促進を行なうことにより、得
られるストランド状繊維強化複合材料は、補強繊維が均
一に分散し樹脂との密着性も改善されるため強度が向上
し、そしてその繊維強化複合材料を任意の長さに切断し
てペレットとする場合、補強繊維の引き抜けやペレット
被覆樹脂の割れが発生せずハンドリング性が向上し。[Means for Solving the Problems] The present inventors have solved the problem by mechanically accelerating resin impregnation when covering a continuous reinforcing fiber roving with a thermoplastic resin in a method for producing a fiber-reinforced composite material. The resulting strand-shaped fiber-reinforced composite material has improved strength because the reinforcing fibers are uniformly dispersed and the adhesion with the resin is improved, and the fiber-reinforced composite material can be cut into arbitrary lengths and made into pellets. In this case, the reinforcing fibers do not pull out and the pellet coating resin does not crack, improving handling.
さらにこれを原料として射出成形または押出し成形によ
って得られた成形品が優れた機械的性質と外観特性を示
すことを見い出し、これをもとに本発明を完成した。Furthermore, it was discovered that molded products obtained by injection molding or extrusion molding using this material as a raw material exhibit excellent mechanical properties and appearance characteristics, and based on this finding, the present invention was completed.
すなわち、本発明はロールを設置したダイボックス中に
溶融した熱可塑性樹脂を供給し、さらに連続した補強繊
維ロービングを溶融した樹脂中に導入し、溶融した樹脂
中でロービングがロール面上を接触するように通過させ
ロービング中への樹脂含浸を機械的に促進させた後、ロ
ービングの過剰量の樹脂を絞り込みながら引抜いてスト
ランド状とすることを特徴とする繊維強化複合材料の製
造方法、およびこのストランド状の繊維強化複合材料を
任意の長さに切断しペレット状にする繊維強化複合材料
の製造方法である。That is, in the present invention, a molten thermoplastic resin is supplied into a die box in which a roll is installed, and a continuous reinforcing fiber roving is introduced into the molten resin, and the roving contacts the roll surface in the molten resin. A method for producing a fiber-reinforced composite material, which comprises mechanically accelerating resin impregnation into the roving, and then pulling out the roving while squeezing out excess resin to form a strand, and the strand. This is a method for producing a fiber-reinforced composite material in which the fiber-reinforced composite material is cut into arbitrary lengths and made into pellets.
以下、本発明の内容を詳しく説明する。Hereinafter, the contents of the present invention will be explained in detail.
本発明で用いられる補強Mllll−ビングとしては、
ポリアクリロニトリル系、レーヨン系、ピッチ系などの
炭素ta維、ガラス繊維、アスベスト繊維、ポリエステ
ル繊維、ポリアミド繊維等の合成繊維、ステンレス鋼繊
維、銅繊維、ニッケル繊維。The reinforcing Mllll-bing used in the present invention is as follows:
Carbon ta fibers such as polyacrylonitrile, rayon, and pitch fibers, synthetic fibers such as glass fibers, asbestos fibers, polyester fibers, and polyamide fibers, stainless steel fibers, copper fibers, and nickel fibers.
アモルファス合金繊維などの無機系、有機系、金属系の
種々の繊維の一種または二種以上の組合せが挙げられる
。また、各々の繊維と樹脂の組合せにおいて、繊維にサ
イジング処理あるいはカップリング剤の適用など、適宜
表面処理を施すことができる。Examples include one type or a combination of two or more of various inorganic, organic, and metal fibers such as amorphous alloy fibers. In addition, for each fiber and resin combination, the fibers can be subjected to appropriate surface treatment such as sizing treatment or application of a coupling agent.
被覆に用いる熱可塑性樹脂としては、ポリエチレン、ポ
リプロピレン、ポリスチレン、ポリアクリロニトリル、
ポリオキシメチレン、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート。Thermoplastic resins used for coating include polyethylene, polypropylene, polystyrene, polyacrylonitrile,
Polyoxymethylene, polyethylene terephthalate, polybutylene terephthalate.
ポリアミド、ポリウレタン、ポリフェニレンサルファイ
ド等の合成樹脂およびそれらの混合物または共重合体が
挙げられる。さらに、これらの熱可塑性樹脂には、その
特性を改善するために種々の添加剤jullえば耐熱剤
、耐候剤、酸化防止剤、紫外線劣化防止剤、帯電防止剤
、滑剤、離型剤、染料、顔料などの着色剤、結晶化促進
剤、難燃防止剤等や、第三成分として炭酸カルシウム等
の無機系、有機系、金属系の粉末も添加することができ
る。Examples include synthetic resins such as polyamide, polyurethane, polyphenylene sulfide, and mixtures or copolymers thereof. Furthermore, these thermoplastic resins contain various additives to improve their properties, such as heat resistant agents, weather resistant agents, antioxidants, ultraviolet deterioration inhibitors, antistatic agents, lubricants, mold release agents, dyes, etc. Coloring agents such as pigments, crystallization promoters, flame retardants, etc., and inorganic, organic, and metallic powders such as calcium carbonate as a third component can also be added.
次に図面に従って1本発明を説明する。Next, one embodiment of the present invention will be explained with reference to the drawings.
第1図は1本発明の繊維強化複合材料の製造に用いられ
る熱可塑性樹脂プルトルージョン装置の一例を示したも
のである。FIG. 1 shows an example of a thermoplastic resin pultrusion device used for manufacturing the fiber reinforced composite material of the present invention.
押出し機1で溶融可塑化された熱可塑性樹脂を。Thermoplastic resin melted and plasticized in extruder 1.
溶融樹脂供給口3を通してダイボックス2中へ供給し、
一方複数の連続補強繊維ロービング4を、ロービング導
入口5からダイボックスZ内の溶融した樹脂中に導入す
る。補強繊維ロービング4を、溶融した樹脂で満たされ
ているダイボックス2中のフリーロール6面上を接触す
るように通過させロービング中への機械的な樹脂含浸を
効果的に実施し、ダイボックス2先端のノズル7でロー
ビングの過剰量の樹脂を絞り込みながら連続的に引抜く
ことにより、補強繊維がマトリックス樹脂中で連続であ
り、モノフィラメントあるいはそれに近い状態で均一に
分散しているストランド状の繊維強化複合材料8が得ら
れる。Supplying the molten resin into the die box 2 through the supply port 3,
On the other hand, a plurality of continuous reinforcing fiber rovings 4 are introduced into the molten resin in the die box Z through the roving introduction port 5. The reinforcing fiber roving 4 is passed over and in contact with the surface of the free roll 6 in the die box 2 filled with molten resin to effectively mechanically impregnate the roving with the resin. By continuously pulling out the excess resin in the roving while squeezing it with the nozzle 7 at the tip, the reinforcing fibers are continuous in the matrix resin and are uniformly dispersed in a monofilament or similar state to form strand-shaped fiber reinforcement. A composite material 8 is obtained.
第1図では、このストランド状繊維強化複合材料8をペ
ルタイザ−9で連続的に引抜きながら冷却後任意の長さ
に切断し、切断長に等しい補強繊維が樹脂中にモノフィ
ラメントあるいはそれに近い状態で均一に分散している
ペレット状の繊維強化複合材料10の製造装置を示して
いる。In Fig. 1, this strand-shaped fiber reinforced composite material 8 is continuously pulled out with a peltizer 9, cooled, and then cut into a desired length, so that reinforcing fibers equal to the cutting length are uniformly distributed in the resin as monofilaments or in a state close to it. 1 shows an apparatus for producing pellet-shaped fiber-reinforced composite material 10 dispersed in .
本発明は、熱可塑性樹脂プルトルージョン技術の改良を
図ることにより、連続した補強繊維ロービング中への熱
可塑性樹脂の含浸を機械的に促進させることを可能にし
た。このプルトルージョン装置は、非常に簡便なもので
一例を第1図に示したが、溶融した樹脂で満たされたダ
イボックス2中のフリーロール6面上を補強繊維ロービ
ング4が通過する際に、樹脂含浸を実施するものである
。The present invention makes it possible to mechanically accelerate the impregnation of a thermoplastic resin into a continuous reinforcing fiber roving by improving thermoplastic resin pultrusion technology. This pultrusion device is very simple and an example is shown in FIG. 1. When the reinforcing fiber roving 4 passes over the free roll 6 surface in the die box 2 filled with molten resin, Resin impregnation is carried out.
ロールの周囲には高粘度の溶融した熱可塑性樹脂が存在
する九めに、ストランド状繊維強化複合材料8をノズル
7から引抜く時、大きな張力を必要とする。ストランド
を矢印11方向に引抜く時、ロールは矢印12方向に回
転する。そして、溶融樹脂は矢印13方向に補強繊維ロ
ービング中を通過し、樹脂含浸が効果的に実施される。Furthermore, since there is a highly viscous molten thermoplastic resin around the roll, a large tension is required when the strand-shaped fiber-reinforced composite material 8 is pulled out from the nozzle 7. When the strand is pulled out in the direction of arrow 11, the roll rotates in the direction of arrow 12. Then, the molten resin passes through the reinforcing fiber roving in the direction of arrow 13, and resin impregnation is effectively carried out.
本発明の製造方法では、第2図(C)に示したようにマ
トリックス樹脂中に補強繊維がモノフィラメントあるい
はそれに近い状態で均一に分散し、補強繊維と樹脂間の
密着性が良好なストランド状の繊維強化複合材料が得ら
れる。このため、このストランド状の繊維強化複合材料
は引張強度が著しく上昇し、例えば鉄筋代替としてのセ
メント補強材として用いても優れた性質を示す。In the manufacturing method of the present invention, the reinforcing fibers are uniformly dispersed in the matrix resin in the form of monofilaments or similar, as shown in FIG. A fiber reinforced composite material is obtained. Therefore, this strand-shaped fiber-reinforced composite material has a markedly increased tensile strength, and exhibits excellent properties even when used as a cement reinforcing material as a substitute for reinforcing steel, for example.
このストランド状の繊維強化複合材料を揃えてダイボッ
クスからシート状に引き抜いたり、可塑性を有している
状態で任意形状のドラム、マンドレルに巻き付けること
により熱可塑性プリプレグを製造することができ、ある
いはフィラメントワインディング法による成形品の製造
も可能である。Thermoplastic prepreg can be manufactured by aligning this strand-shaped fiber-reinforced composite material and pulling it out in a sheet form from a die box, or by winding it in a plastic state around a drum or mandrel of any shape, or by making a filament. It is also possible to manufacture molded products by the winding method.
本発明で得られた第2図(C)のストランドは切断性も
良好で、第2図(A)、(B)よりも高い充填率でハン
ドリング性の良い原料ペレットを得ることができる。そ
して、その成形品も繊維長の長い補強繊維が均一に分散
しているため1機械的性質も十分向上し、外観特性の低
下も抑えることができた。The strand shown in FIG. 2(C) obtained by the present invention has good cutting properties, and raw material pellets with good handling properties can be obtained at a higher filling rate than those shown in FIGS. 2(A) and 2(B). Furthermore, since the reinforcing fibers having a long fiber length were uniformly dispersed in the molded product, the mechanical properties were also sufficiently improved, and deterioration in appearance characteristics could be suppressed.
本発明による繊維強化複合材料の製造方法は、溶融した
熱可塑性樹脂で満たされたダイボックス中のロール面上
を補強繊維ロービングが通過する際に、ロービング中へ
の樹脂含浸を機械的に促進させる工程と、それに引き続
いて樹脂が可塑性を有している状態で目的に応じたノズ
ルから引き抜くことにより断面形状と繊維含有量を任意
にコントロールする工程からストランド状の繊維強化複
合材料を得、あるいはこのストランド状の繊維強化複合
材料を任意の長さに切断することによりベレット状の繊
維強化複合材料を得るものである。The method for producing a fiber-reinforced composite material according to the present invention mechanically promotes resin impregnation into the reinforcing fiber roving when the reinforcing fiber roving passes over the roll surface in a die box filled with molten thermoplastic resin. A strand-shaped fiber-reinforced composite material is obtained from this process, followed by a process in which the cross-sectional shape and fiber content are arbitrarily controlled by pulling the resin while it has plasticity through a nozzle according to the purpose. A pellet-shaped fiber-reinforced composite material is obtained by cutting the strand-shaped fiber-reinforced composite material into an arbitrary length.
先に説明した第1図の製造装置あるいは製造工程は、そ
れを実現するための一例に過ぎず、本発明を実施するた
めには各種の組合せが考えられる。The manufacturing apparatus or manufacturing process shown in FIG. 1 described above is only an example for realizing the same, and various combinations can be considered to implement the present invention.
例えば、押出し機1は溶融可塑化した熱可塑性樹脂を連
続的に供給できる装置であればよいので、調製されたベ
レットを単に溶融可塑化する押出し機あるいは複数種類
の樹脂および各種添加剤、充填剤等を混練する機能を持
った装置でもよい。さらに高分子重合設備の出側に直接
設置してもよい。For example, the extruder 1 may be any device that can continuously supply melted and plasticized thermoplastic resin, so it may be an extruder that simply melts and plasticizes the prepared pellets, or an extruder that simply melts and plasticizes the prepared pellets, or an extruder that contains multiple types of resins, various additives, and fillers. A device having a function of kneading etc. may also be used. Furthermore, it may be installed directly on the outlet side of the polymer polymerization equipment.
第1図では、閉じたダイボックスを用いた繊維強化複合
材料の製造方法の一例を示したが、これは必ずしも閉じ
た系で行なう必要はなくロール、ノズルを分離して配置
することも考えられる。しかし、マトリックス樹脂の酸
化防止とノズルで除去される過剰量の樹脂の歩留り向上
の点からは、第1図に示したダイボックス方式が望まし
く、さらに必要に応じてダイボックス内に不活性ガスを
導入することも可能である。第1図では、フリーロール
を用いて樹脂含浸の促進を行なう方式を説明したが、ロ
ールの回転スピードとストランドの引き抜きスピードを
制御することにより駆動ロールを設置することもできる
。ロールの材質は、熱可塑性樹脂の溶融温度で耐久性を
有するものであれば特に限定されないが、金属あるいは
その表面にクロムメツキ等の硬質メツキを施したものが
好ましい。ノズルは、ストランドの断面形状と、ロービ
ング中に含浸された過剰量の樹脂を可塑性を有している
状態で絞り込むことにより繊維含有量をコントロールす
るために用いる。その形状は、用途により円形の他、楕
円、多角形あるいは任意の形状に設定することができる
。Figure 1 shows an example of a method for manufacturing fiber-reinforced composite materials using a closed die box, but this does not necessarily have to be done in a closed system, and it is also possible to separate the rolls and nozzles. . However, from the point of view of preventing oxidation of the matrix resin and improving the yield of excess resin removed by the nozzle, the die box method shown in Figure 1 is preferable, and if necessary, inert gas may be added to the die box. It is also possible to introduce In FIG. 1, a method has been described in which a free roll is used to promote resin impregnation, but a drive roll can also be installed by controlling the rotational speed of the roll and the speed at which the strand is pulled out. The material of the roll is not particularly limited as long as it has durability at the melting temperature of the thermoplastic resin, but metal or a material with hard plating such as chrome plating on the surface is preferable. The nozzle is used to control the cross-sectional shape of the strand and the fiber content by squeezing out the excess resin impregnated in the roving in a plastic state. Its shape can be set to a circle, an ellipse, a polygon, or any other shape depending on the purpose.
ノズルから引き抜かれたストランドの冷却は。Cooling of the strand pulled out from the nozzle.
使用する樹脂や目的とする断面形状により適宜行なう。This is done as appropriate depending on the resin used and the desired cross-sectional shape.
冷却には圧縮空気を用いる他窒素等の気体を用いること
もでき、水などの液体を用いてスプレー、浸漬による冷
却を施したり、あるいは間接的に冷却ジャケット、冷却
ロールなどで冷却することもできる。In addition to compressed air, gases such as nitrogen can be used for cooling, and cooling can be performed by spraying or immersing liquids such as water, or indirectly cooling with cooling jackets, cooling rolls, etc. .
[実施例]
実施例1
第1図の繊維強化複合材料製造装置を用いて、Tax番
手(g/km) 1280のガラス繊維ロービング(直
径約13μ禦φの繊維が3000本程度に集束されてい
る。[Example] Example 1 Using the fiber-reinforced composite material manufacturing apparatus shown in Fig. 1, a glass fiber roving with a tax number (g/km) of 1280 (about 3000 fibers with a diameter of about 13μ and φ) was produced. .
)2本を張力150kgf一定に調節しながら、ステン
レス鋼SO3304製ロールを3個を設けたダイボック
ス内の溶融ナイロン66樹脂中に導入し、ロービングが
フリーロール面上を接触するように通過させ、直径2.
51φの円形ノズルから引き抜くことによりストランド
状の繊維強化複合材料を得、さらにこれを10a+mに
切断してペレット状の繊維強化複合材料を製造した。) Two stainless steel SO3304 rolls were introduced into the molten nylon 66 resin in a die box with three rolls while adjusting the tension to a constant 150 kgf, and the rovings were passed over the free roll surface so that they were in contact with each other. Diameter 2.
A strand-shaped fiber-reinforced composite material was obtained by pulling it out from a 51φ circular nozzle, and this was further cut into 10 a+m pieces to produce a pellet-shaped fiber-reinforced composite material.
比較例
311Il+長に切断されたガラス繊維ロービングとナ
イロン66樹脂を繊維含有量40vt%に調合して20
0mmφ単軸押出し機で混練し、直径3mmφの円形ノ
ズルを通してストランドを引き抜き、これを6ma+に
切断してペレット状の繊維複合材料を製造した。Comparative Example 3 A glass fiber roving cut into 11I+ lengths and a nylon 66 resin were blended to have a fiber content of 40vt%.
The mixture was kneaded using a 0 mmφ single-screw extruder, and the strands were pulled out through a circular nozzle with a diameter of 3 mmφ and cut into 6 ma+ pieces to produce a pellet-like fiber composite material.
実施例1のストランドをエポキシ樹脂に埋め込みその断
面を研磨して、ガラス繊維ロービング中への樹脂含浸状
態を顕微鏡で観察した。その結果。The strand of Example 1 was embedded in an epoxy resin, its cross section was polished, and the state of resin impregnation into the glass fiber roving was observed using a microscope. the result.
実施例1は第2図(C)と同程度のものが得られたこと
が認められた。It was observed that in Example 1, a product comparable to that shown in FIG. 2(C) was obtained.
さらに、実施例1のストランドに第3図に示すようにタ
ブ17を取り付け、引張試験を行なった。Furthermore, a tab 17 was attached to the strand of Example 1 as shown in FIG. 3, and a tensile test was conducted.
試験スピードを5m1n#+inに設定し、その結果を
表1に示した。実施例1のストランドは補強繊維が樹脂
中に均一に分散し、補強繊維と樹脂の間の密着性も良好
であるため、応力集中部が少なく理論強度(ガラス繊維
の単糸強度から求めた引張り強度)と同程度のものが得
られた。The test speed was set at 5 m1n#+in, and the results are shown in Table 1. In the strand of Example 1, the reinforcing fibers are uniformly dispersed in the resin and the adhesion between the reinforcing fibers and the resin is good. The same strength was obtained.
実施例1、比較例で得られた材料ペレットを用いて、射
出成形機のシリンダー温度を高めに設定し、スクリュ背
圧をかけずに溶融混練し、表2に示した各種規格の試験
片を、その補強繊維の破損を極力抑えて直接成形するこ
とにより準備した。Using the material pellets obtained in Example 1 and Comparative Example, the cylinder temperature of the injection molding machine was set high and melt-kneaded without applying screw back pressure, and test pieces of various specifications shown in Table 2 were prepared. , was prepared by directly molding the reinforcing fibers to minimize breakage.
前記の試験片を用いて機械的性質を測定した結果を表2
に示した。Table 2 shows the results of measuring mechanical properties using the above test piece.
It was shown to.
実施例1の原料ペレットは、十分な樹脂含浸がなされて
いるためハンドリング性も良好で、その成形品は比較例
に比べて優れた機械的性質、特に衝撃強度が2倍程度に
向上するとともに、両者は成形品中の補強繊維がモノフ
ィラメントの状態で均一に分散しているたるため良好な
外観特性を示した。The raw material pellets of Example 1 were sufficiently impregnated with resin, so they had good handling properties, and the molded products had excellent mechanical properties, especially impact strength, which was about twice as good as those of the comparative example. Both products exhibited good appearance characteristics because the reinforcing fibers in the molded products were uniformly dispersed in the form of monofilaments.
実施例2
第1図の繊維強化複合材料製造装置を用いて、実施例1
と同じのガラス繊維ロービング3本を張表
※()内は、標準偏差値
力150kgf一定に調節しなから、ステンレスm5u
s304製ロールを3個を設けたダイボックス内の溶融
ナイロン6樹脂中に導入し、ロービングがフリーロール
面上を接触するように通過させ、直径3.0■φの円形
ノズルから引き抜いたストランドを10−mに切断して
ペレット状の繊維強化複合材料を製造した。Example 2 Using the fiber-reinforced composite material manufacturing apparatus shown in FIG.
Three glass fiber rovings of the same size as the table *The values in parentheses indicate the standard deviation value, which was adjusted to a constant force of 150 kgf, and stainless steel m5u.
Three S304 rolls were introduced into molten nylon 6 resin in a die box, and the rovings were passed through the free roll surface in contact with each other, and the strands were pulled out from a circular nozzle with a diameter of 3.0 mm. A fiber-reinforced composite material in the form of pellets was produced by cutting into 10-m pieces.
実施例3
第1図の繊維強化複合材料製造装置を用いて、実施例1
と同じのガラス繊維ロービング2本を張力150kgf
一定に調節しながら、ステンレス鋼5US304製ロー
ルを3個を設けたダイボックス内の溶融ポリフェニレン
サルファイド樹脂中に導入し、ロービングがフリーロー
ル面上を接触するように通過させ、直径2.5+++m
φの円形ノズルから引き抜いたストランドを10011
1に切断してペレット状の繊維強化複合材料を製造した
。Example 3 Using the fiber-reinforced composite material manufacturing apparatus shown in FIG.
Two glass fiber rovings with the same tension as 150 kgf.
With constant control, three rolls made of stainless steel 5US304 were introduced into the molten polyphenylene sulfide resin in a die box with three rolls, passed in such a way that the rovings were in contact with each other on the free roll surface, and the rolls were rolled with a diameter of 2.5+++ m.
The strand pulled out from the φ circular nozzle is 10011
A fiber-reinforced composite material in the form of pellets was produced by cutting into 1 pieces.
マトリックス樹脂を替えて製造した実施例2,3の原料
ペレットもまた、その補強繊維の破損を極力抑えて試験
片を直接射出成形し、機械的性質を測定した結果を表3
に示した。実施例2,3も、実施例1と同様に原料ペレ
ットのハンドリング性が良好で、その成形品は従来品に
比べて2倍程度の優れた衝撃強度と、成形品中の補強繊
維がモノフィラメントの状態で均一に分散しているため
従来品と同等の外観特性を示した。The raw material pellets of Examples 2 and 3, which were manufactured by changing the matrix resin, were also directly injection molded into test pieces with as little damage to the reinforcing fibers as possible, and the mechanical properties were measured. Table 3 shows the results of measuring the mechanical properties.
It was shown to. In Examples 2 and 3, the raw material pellets had good handling properties as in Example 1, and the molded products had excellent impact strength that was about twice that of the conventional product, and the reinforcing fibers in the molded products were superior to those of monofilament. Because it was uniformly dispersed, it exhibited the same appearance characteristics as conventional products.
実施例4 試験片中の繊維破損状態の衝撃強度への影響を調べた。Example 4 The influence of the fiber breakage state in the specimen on the impact strength was investigated.
実施例2の原料ペレットを用いて、射出成形機のスクリ
ュ背圧を変えて1kgf/cm2.5kgf/ctrr
”に設定した。補強繊維の破損状態の異なる試験片を成
形し、アイゾツト衝撃強度を測定した。さらに、補強繊
維の破損状態の測定をフルイ分げにより実施した。実施
例2の射出成形機のスクリュ背圧をかけずに成形したア
イゾツト衝撃試験片とこれらのアイゾツト衝撃試験片を
燃焼してガラス繊維を採取し、水流を用いて開孔径0.
71.1.0.5.0mmのフルイで分別し各々につい
て実測した。結果として、フルイ開孔径0.7in+m
以下の部分には、繊維長衣
×()内は、倚叶暗1乞直
2mm以下の繊維の約85%が補足されていることから
、このフルイのみで分別された値が繊維破損状態をかな
りよく反映していることが予想された。Using the raw material pellets of Example 2, the screw back pressure of the injection molding machine was changed to 1 kgf/cm2.5 kgf/ctrr.
” was set. Test specimens with different reinforcing fiber breakage states were molded and the Izot impact strength was measured.Furthermore, the breakage states of the reinforcing fibers were measured by sieving.The injection molding machine of Example 2 Izotsu impact test pieces molded without applying screw back pressure and these Izotsu impact test pieces were burned to collect glass fibers, and a water jet was used to make the pores with an opening diameter of 0.
The samples were separated using a 71.1.0.5.0 mm sieve, and each sample was measured. As a result, the sieve opening diameter is 0.7in+m
In the following part, approximately 85% of the fibers with a length of 2 mm or less are captured in the fiber long garment x (), so the value separated only by this sieve indicates the state of fiber damage. It was expected that the results would be reflected fairly well.
この約2+++m以上の繊維(フルイ開孔径0.71n
v以上で補足されたもの)の含有量と衝撃強度の関係を
第4図に示した。スクリュ背圧が大きくなるに従って、
補強繊維の繊維破損状態が進行しアイゾツト衝撃強度が
低下していることが認められた。成形品中の繊維長保持
が、衝撃強度の向上をもたらすことが明らかである。This fiber of approximately 2+++m or more (sieve pore diameter 0.71n)
Figure 4 shows the relationship between the content of (supplemented with v or more) and impact strength. As the screw back pressure increases,
It was observed that the fiber damage state of the reinforcing fibers progressed and the Izot impact strength decreased. It is clear that maintaining the fiber length in the molded article results in improved impact strength.
以上の結果から1本発明の製造方法により機械的性質、
成形品中の繊維分散状層、繊維破損状態、外観品質、ハ
ンドリング性の全般に亘って優れているストランド状あ
るいはペレット状の繊維強化複合材料の製造が可能にな
った。From the above results, 1. The manufacturing method of the present invention improves mechanical properties.
It has become possible to produce fiber-reinforced composite materials in the form of strands or pellets that are excellent in all aspects including the fiber dispersed layer in the molded product, fiber breakage, appearance quality, and handling properties.
[発明の効果]
本発明は、熱可塑性樹脂プルトルージョンの改良を図り
、補強繊維ロービング中への機械的樹脂含浸を促進させ
、補強繊維がマトリックス樹脂中にモノフィラメントあ
るいはそれに近い状態で均一に分散し、良好な補強繊維
と樹脂との密着性を示すストランド状又はペレット状の
繊維強化複合材料の製造方法であって、本発明によれば
、高強度のストランド状補強材および成形材料として射
出成形、押出し成形により得られる成形品に優れた機械
的性質と外観品質を与える繊維強化複合材料の製造が可
能になった。[Effects of the Invention] The present invention improves thermoplastic resin pultrusion, promotes mechanical resin impregnation into reinforcing fiber rovings, and enables reinforcing fibers to be uniformly dispersed in the matrix resin as monofilaments or in a state close to it. , a method for producing a fiber-reinforced composite material in the form of strands or pellets that exhibits good adhesion between reinforcing fibers and resin, and according to the present invention, injection molding, It has become possible to produce fiber-reinforced composite materials that give excellent mechanical properties and appearance quality to molded products obtained by extrusion molding.
第1図は1本発明による繊維強化複合材料の製造に用い
られる熱可塑性樹脂プルトルージョン装置の一例の全体
を示す概要図。
第2図(A)、(B)、(C)は連続した補強繊維ロー
ビングを溶融熱可塑性樹脂で被覆した繊維強化複合材料
の断面状態の説明図、
第3図は、ストランド状繊維強化複合材料の引張試験片
の説明図、
第4図は、試験片中の繊維破損状態の衝撃強度への影響
を示した図、
である。
1:押出し機、 2:ダイボックス、 3:溶融樹脂供
給口、 4:連続補強繊維ロービング、5:ロービング
導入口、 6:フリーロール、7:ノズル、 8:スト
ランド状繊維強化複合材料、 9:ペレタイザー、10
;ペレット状繊維強化複合材料、11:ストランド引き
抜き方向、12:ロール回転方向、 13:樹脂含浸方
向、14:補強繊維ロービング、15:マトリックス樹
脂、16:補強繊維モノフィラメント、17:タブ。
第
図
特許出願人 新日本製鐵株式会社
新日鐵化学株式会社FIG. 1 is a schematic diagram showing the entirety of an example of a thermoplastic resin pultrusion device used for manufacturing a fiber-reinforced composite material according to the present invention. Figures 2 (A), (B), and (C) are explanatory diagrams of the cross-sectional state of a fiber-reinforced composite material in which continuous reinforcing fiber rovings are coated with molten thermoplastic resin. Figure 3 is a strand-shaped fiber-reinforced composite material. Fig. 4 is an explanatory diagram of a tensile test piece, and Fig. 4 is a diagram showing the influence of fiber breakage state in the test piece on impact strength. 1: Extruder, 2: Die box, 3: Molten resin supply port, 4: Continuously reinforced fiber roving, 5: Roving introduction port, 6: Free roll, 7: Nozzle, 8: Strand-shaped fiber reinforced composite material, 9: Pelletizer, 10
; Pellet-like fiber reinforced composite material, 11: Strand drawing direction, 12: Roll rotation direction, 13: Resin impregnation direction, 14: Reinforcing fiber roving, 15: Matrix resin, 16: Reinforcing fiber monofilament, 17: Tab. Figure Patent applicant: Nippon Steel Corporation Nippon Steel Chemical Co., Ltd.
Claims (2)
塑性樹脂を供給し、さらに連続した補強繊維ロービング
を前記ダイボックス中に導入し、溶融した熱可塑性樹脂
中のロール面上を接触するように通過させロービング中
への樹脂含浸を促進させた後、ロービングの過剰量の樹
脂を絞り込みながら連続的に引き抜いて、ストランド状
とすることを特徴とする繊維強化複合材料の製造方法。(1) A molten thermoplastic resin is supplied into a die box in which a roll is installed, and a continuous reinforcing fiber roving is introduced into the die box so that it comes into contact with the roll surface in the molten thermoplastic resin. A method for manufacturing a fiber-reinforced composite material, which comprises passing through the roving to promote resin impregnation into the roving, and then continuously pulling out the roving while squeezing the excess resin to form a strand.
ンド状の繊維強化複合材料を任意の長さに切断しペレッ
ト状にすることを特徴とする繊維強化複合材料の製造方
法。(2) A method for producing a fiber-reinforced composite material, which comprises cutting the strand-shaped fiber-reinforced composite material obtained by the method according to claim (1) into arbitrary lengths to form pellets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13599889A JPH031907A (en) | 1989-05-31 | 1989-05-31 | Production of fiber reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13599889A JPH031907A (en) | 1989-05-31 | 1989-05-31 | Production of fiber reinforced composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH031907A true JPH031907A (en) | 1991-01-08 |
Family
ID=15164807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13599889A Pending JPH031907A (en) | 1989-05-31 | 1989-05-31 | Production of fiber reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH031907A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06182761A (en) * | 1992-12-15 | 1994-07-05 | Toyobo Co Ltd | Fiber-reinforced resin pellet and molded product thereof |
US6031039A (en) * | 1996-09-18 | 2000-02-29 | E. I. Du Pont De Nemours And Company | Anti-static composition |
WO2003033227A1 (en) * | 2001-10-17 | 2003-04-24 | Faurecia Innenraum Systeme Gmbh | Profiled part and aggregates for making same |
JP2005513206A (en) * | 2001-12-20 | 2005-05-12 | エムス−ヒェミー アクチェンゲゼルシャフト | Method for producing a composite material using a thermoplastic matrix |
JP2006298465A (en) * | 2005-04-25 | 2006-11-02 | Nippon Zenyaku Kogyo Kk | Container for solidifying and packaging fluid material, device for solidifying and packaging fluid material and method for solidifying and packaging fluid material |
CN102034576A (en) * | 2010-12-15 | 2011-04-27 | 沈阳中恒新材料有限公司 | Yarn dividing device for manufacturing carbon fiber composite core rod |
JP2018188496A (en) * | 2017-04-28 | 2018-11-29 | 三菱エンジニアリングプラスチックス株式会社 | Carbon fiber/polycarbonate resin composite pellet and method for producing the same |
-
1989
- 1989-05-31 JP JP13599889A patent/JPH031907A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06182761A (en) * | 1992-12-15 | 1994-07-05 | Toyobo Co Ltd | Fiber-reinforced resin pellet and molded product thereof |
US6031039A (en) * | 1996-09-18 | 2000-02-29 | E. I. Du Pont De Nemours And Company | Anti-static composition |
WO2003033227A1 (en) * | 2001-10-17 | 2003-04-24 | Faurecia Innenraum Systeme Gmbh | Profiled part and aggregates for making same |
JP2005513206A (en) * | 2001-12-20 | 2005-05-12 | エムス−ヒェミー アクチェンゲゼルシャフト | Method for producing a composite material using a thermoplastic matrix |
JP2006298465A (en) * | 2005-04-25 | 2006-11-02 | Nippon Zenyaku Kogyo Kk | Container for solidifying and packaging fluid material, device for solidifying and packaging fluid material and method for solidifying and packaging fluid material |
CN102034576A (en) * | 2010-12-15 | 2011-04-27 | 沈阳中恒新材料有限公司 | Yarn dividing device for manufacturing carbon fiber composite core rod |
JP2018188496A (en) * | 2017-04-28 | 2018-11-29 | 三菱エンジニアリングプラスチックス株式会社 | Carbon fiber/polycarbonate resin composite pellet and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6090319A (en) | Coated, long fiber reinforcing composite structure and process of preparation thereof | |
TWI549140B (en) | Continuous fiber reinforced thermoplastic rods | |
JP2833694B2 (en) | Fiber reinforced pellet structure for thermoforming | |
US5213889A (en) | Fibre-reinforced compositions and methods for producing such compositions | |
US6517654B1 (en) | Process for the production of fiber-reinforced semi-finished articles made of thermoplastics of medium to high viscosity | |
US5520867A (en) | Method of manufaturing a resin structure reinforced with long fibers | |
TW201303192A (en) | Umbilical for use in subsea applications | |
JP2013530855A (en) | Method for forming reinforced pultruded profile | |
TW201308362A (en) | Composite core for electrical transmission cables | |
JPS6337694B2 (en) | ||
EP1105277B1 (en) | Coated, long fiber reinforcing composite structure and process of preparation thereof | |
WO1996005956A1 (en) | Method for producing long fiber-reinforced thermoplastic resin composition | |
KR100317864B1 (en) | Manufacturing method of fiber reinforced thermoformable composite | |
JPS63132036A (en) | Manufacture of fiber reinforced composite material | |
JPH031907A (en) | Production of fiber reinforced composite material | |
EP0170245B1 (en) | Pellets of fibre-reinforced compositions and methods for producing such pellets | |
JPH06254857A (en) | Manufacture of fiber reinforced thermoplastic resin composition and apparatus for making the same | |
CA1121705A (en) | High strength composite of resin, helically wound fibers and chopped fibers and method of its formation | |
JP2829323B2 (en) | Equipment for manufacturing fiber-reinforced resin molding materials | |
JP2821004B2 (en) | Method for producing glass fiber reinforced thermoplastic resin molding material | |
JP2524941B2 (en) | Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same | |
JPH0768544A (en) | Impregnation of fiber bundle with resin | |
JPH0762246A (en) | Production of filament-reinforced thermoplastic resin composition and its apparatus | |
JP3241435B2 (en) | Fiber-reinforced thermoplastic resin composite material and method for producing the same | |
JP3638292B2 (en) | Fiber reinforced thermoplastic resin molding |