JP3638292B2 - Fiber reinforced thermoplastic resin molding - Google Patents

Fiber reinforced thermoplastic resin molding Download PDF

Info

Publication number
JP3638292B2
JP3638292B2 JP34904692A JP34904692A JP3638292B2 JP 3638292 B2 JP3638292 B2 JP 3638292B2 JP 34904692 A JP34904692 A JP 34904692A JP 34904692 A JP34904692 A JP 34904692A JP 3638292 B2 JP3638292 B2 JP 3638292B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
length
reinforced thermoplastic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34904692A
Other languages
Japanese (ja)
Other versions
JPH06198753A (en
Inventor
幸久 熊谷
光博 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Daicel Chemical Industries Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP34904692A priority Critical patent/JP3638292B2/en
Publication of JPH06198753A publication Critical patent/JPH06198753A/en
Application granted granted Critical
Publication of JP3638292B2 publication Critical patent/JP3638292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は繊維強化熱可塑性樹脂成形体に関する。本発明は、成形に便利な熱可塑性樹脂ペレットを用いて機械的強度、特に多軸衝撃強度が大幅に向上した成形品を実現し、プラスチック成形分野の進歩に貢献するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、繊維強化樹脂成形体としては、短繊維強化型のものと長繊維強化型のものが知られている。
短繊維強化型の熱可塑性樹脂構造体は、例えば、3mm程度の短繊維を熱可塑性樹脂とブレンドして押出機で混練し、ペレット化後、射出成形することによって製造されている。このような成形体は、製造工程における繊維の折損により、成形体中の平均繊維長は0.3 mm程度である。かかる成形体は広く用いられているが、成形体中の繊維は短く、絡み合いも少ないため、繊維による補強効果が充分に発揮されておらず、高度の衝撃強度を必要とする用途には満足できる性能を持つことができなかった。
そのため、近年、長繊維強化型の樹脂成形体が提案されている。
熱硬化性樹脂を用いた長繊維強化樹脂構造体は、繊維のトウまたはロービングを低粘度の熱硬化性樹脂の浴に通して引いて、繊維を含浸する事により繊維強化構造物を製造し、これを型枠上に固定後、加熱により架橋反応を起こし硬化させることによって製造されるのが一般的である。しかし、この場合、熱硬化性樹脂が粘稠な為、繊維を濡す事が困難であり、成形品は濡れ性に劣り、機械特性において期待が持てない。又、シート状の繊維強化構造物の成形時、型枠上に固定し圧縮成形する為、成形品形状の自由度も著しく劣り、成形品周囲にバリが発生し、その為後工程で仕上げ加工が必要、その上繊維強化構造物の保存上でも架橋硬化の防止を考慮する必要がある等の問題点がある。
一方、長繊維強化熱可塑性樹脂成形品としては、スタンパブル・シート等に代表される圧縮成形法によるものが知られているが、これもペレット状原料を用いた射出溶融圧縮成形法、溶融圧縮法、射出成形法によるものに比べ強化繊維が成形品の全般に渡って均一に分散するという点において成形品形状の自由度が著しく劣る。かつ、長繊維強化樹脂成形品において繊維自体に樹脂が十分に被覆された状態が機械特性上好ましいと予想されるが、製造上スタンパブル・シートはシート状の繊維とシート状の樹脂とのサンドウィッチ構造であり、これらを加熱圧縮する為、繊維同士の重なりが避けられず、機械的特性において限界が有る。更に、スタンパブル・シートはシートの特性上、3次元構造物製造時、圧縮成形法を取ると流動性が悪いため構造体の機械物性が著しく不均一な成形品になるという欠点が有る。
又、熱可塑性樹脂被覆繊維束の切断により製造される、平行に配列した繊維で強化されたペレットが知られている。例えば、米国特許第4559262 号明細書には、2〜100mm の平行繊維ペレットと他の(強化繊維なし又は短繊維強化)ペレットとの混合物を射出成形機のような可塑化装置で溶融、均質化して成形する技術が記載されている。この技術によれば、成形品内の強化繊維の繊維長は少なくとも2mmの長さのものが50重量%以上存在するとされている。成形品内の強化繊維長の詳しい情報は開示されていないが、本発明者等がペレットの長さ10mmの実施例について追試したところ、たかだか2〜3mmの長さが主体となることが判明した。要するに、この技術においては、短繊維強化樹脂成形体に比べれば繊維長や強度の改善が見られるが、成形体中の繊維長を5mmレベルに保持することは困難であり、成形品の機械的特性、特に衝撃強度は連続繊維を用いたスタンパブル・シートに比べて低水準のものしか得られないのである。
本発明は上記従来技術の問題点に鑑み案出されたものであり、本発明の目的は、特に優れた機械的強度、例えばスタンパブル・シートに匹敵する衝撃強度を持ち、しかも熱可塑性樹脂ペレットを用いて容易に成形することができる成形体を提供することである。又、平行繊維強化熱可塑性樹脂ペレットからこのような成形体を得るための成形技術を提供することである。
【0003】
【課題を解決するための手段】
本発明者等は上記目的を達成するべく鋭意検討した結果、強化繊維の熱可塑性樹脂中での濡れ性を向上させ、かつ長サイズペレットを用い、繊維の折損を抑制した可塑化装置により可塑化を行った後、圧縮成形法等を用いることによって長繊維を保持し、機械強度、特に衝撃強度が大幅に向上した成形体が得られることを見出し、本発明を完成するに到った。
即ち本発明は、長さ10〜100mmの平行繊維強化熱可塑性樹脂ペレット乃至はそれを含む樹脂組成物を、スクリューを有する可塑化装置を用いて低剪断力で可塑化し、成形して得られる成形体であって、ガラス繊維、カーボン繊維、セラミック繊維、鉱物繊維又は金属繊維からなる長さ5〜 100mm の強化繊維が絡み合った位置関係にあり、成形体重量の10〜80%を占める全強化繊維のうち、50%以上が絡み合い骨格を形成していることを特徴とする繊維強化熱可塑性樹脂成形体、並びに
ガラス繊維、カーボン繊維、セラミック繊維、鉱物繊維又は金属繊維からなる長さ5〜 100mm の強化繊維が絡み合った位置関係にあり、成形体重量の10〜80%を占める全強化繊維のうち、50%以上が絡み合い骨格を形成している繊維強化熱可塑性樹脂成形体の製造方法であって、長さ10〜100mmの平行繊維強化熱可塑性樹脂ペレット乃至はそれを含む樹脂組成物を、スクリューを有する可塑化装置を用いて、スクリュー背圧を0kg/cm2Gにして、低剪断力で可塑化し、成形することを特徴とする繊維強化熱可塑性樹脂成形体の製造方法である。
【0004】
以下、本発明について詳述する。
本発明においては、成形に便利な熱可塑性樹脂ペレットを用いる。そして一層優れた強度を発現させるために、従来、ペレットを用いる熱可塑性樹脂強化の分野で実現していたものより著しく長い5〜100mm の繊維長が保持され、且つ該繊維が成形体中で絡み合った位置関係で存在する構成をとる。このような繊維長(スタンパブル・シートにおける連続繊維と区別して中程度の繊維長と呼ぶ)とその絡み合い構造は、例えば次のような手段で実現することができる。即ち、従来技術の中間原料である熱可塑性樹脂被覆繊維束を、長めの10〜100mm に切断した平行繊維強化ペレットを用い、これを適度の剪断応力のかかる可塑化条件下で成形する。実際には、シリンダ温度、スクリュー回転数、スクリュー背圧の最適化を行い必要に応じてスクリュー各部寸法、ノズル寸法及びそれらの関係を調整して低剪断力を実現することができる。平行繊維強化ペレットと可塑化条件とを適切に選ぶことにより、上記のような繊維長とその絡み合い構造を持ち、且つ繊維含量10〜80重量%の繊維強化熱可塑性樹脂成形体を得ることができる。この成形体は、樹脂と繊維の密着性の良い平行繊維強化ペレットを原料とするので、空隙率は極めて低い値に保持される。適切な繊維含量と低い空隙率とは樹脂と繊維の密着性を確保し、中程度の繊維長とその絡み合った位置関係と相まって成形体に優れた強度をもたらす。
このようにして、本発明の技術思想は、長さ5〜100mm の強化繊維が絡み合った位置関係にあり、成形体重量の10〜80%(好ましくは10〜60%)を占める全強化繊維含量のうち、50%以上(好ましくは70%以上)が絡み合い骨格を形成していることを特徴とする繊維強化熱可塑性樹脂成形体として表現される。又、絡み合い骨格を形成する比率(絡み合い度)の代わりに平均繊維長を用いて、長さ5〜100mm の強化繊維が絡み合った位置関係にあり、全強化繊維含量が成形体重量の10〜80%(好ましくは10〜60%)を占め、強化繊維の重量平均繊維長が5〜50mm(好ましくは10〜50mm)であることを特徴とする繊維強化熱可塑性樹脂成形体として表現することもできる。
【0005】
この繊維強化熱可塑性樹脂成形体を最も特徴づけるものは、中程度の長さ(5〜100mm )の繊維の絡み合った位置関係である。絡み合った位置関係とは、必ずしも繊維と繊維が直接に接して絡み合っていることを必要とせず、一方の繊維が他方の繊維のループの中を通っている位置関係にあればよい。実際、予め樹脂を含浸被覆した長繊維から製造された平行繊維強化熱可塑性樹脂ペレットを用いて可塑化工程で絡み合った位置関係を実現させる場合、繊維と繊維は直接接触状態にはならず、又、このような非接触絡み合い構造の方が繊維と樹脂との良好な密着が保持されているので好ましい。
このような成形体は、射出成形法、溶融圧縮成形法、圧縮成形法の採用により製造できるが、好ましくは次の成形技術により実現することができる。即ち、長さ10〜100mm の平行繊維強化熱可塑性樹脂ペレット乃至はそれを含む樹脂組成物を、適度の剪断応力をかけて可塑化、成形する方法である。適度の剪断応力とは大き過ぎない剪断応力であり、別の表現をすれば、繊維の絡み合いを起こすが、著しい切断を引き起こさない程度の剪断応力である。当業者であれば、このような判断基準に基づいて試行することにより適切な条件を選定することができ、その具体例は後記実施例に示されている。又、可塑化工程における剪断応力の指標として、対比できる装置の消費電力の比を用いることができる。
従って、本願における製法発明は、長さ10〜100mm の平行繊維強化熱可塑性樹脂ペレット乃至はそれを含む樹脂組成物を、上記の適度の剪断応力をかけて可塑化し、成形することを特徴とする長さ5〜100mm の強化繊維が絡み合った位置関係にある繊維強化熱可塑性樹脂成形体の製造法として表現することができる。
【0006】
ここで、本発明を特徴づける上記数値は次のような試験法により確認することができる。
先ず、製品である長繊維強化樹脂成形体から、焼成(600 ℃灰化処理)、溶解等の方法で樹脂成分を除去し、繊維強化の骨格を得る。通常の場合、目視観察によって、この骨格が5〜100mm の繊維長を有するか、且つそれが絡み合った位置関係で存在するか否かを判断できる。即ち、焼成(600 ℃灰化処理)時に骨格が簡単に崩れてしまうものは繊維が絡み合った位置関係にあるとは言えない。骨格が残っていても多量の繊維が骨格からこぼれ落ちるものも繊維が短くて絡み合っていないためである。繊維長や絡み合いの判定が微妙な場合は次の方法で「絡み合い度」を測定して、絡み合い度50%以上のものを絡み合った位置関係にあるものと判定する。
〔絡み合い度の測定法〕
成形体から樹脂成分を除去して得られる繊維成分を2mm標準篩を用い、繊維の骨格が崩れない程度の振動を与えて篩分けする。この際、篩下重量を測定し、全体重量に対する比率(X)を求め、1−Xを百分率で表示して絡み合い度とする。Xが0.5 以下(絡み合い度;50%以上)であれば強化繊維が絡み合った位置関係で存在すると判断する。
〔繊維含量の測定、熱可塑性樹脂であるかの判断〕
成形体中の繊維含量、及び樹脂が熱可塑性樹脂であるか否かは、通常の技術水準で問題なく判別できる。
〔成形体中の強化繊維の繊維長分布および重量平均繊維長の測定法〕
成形体を600 ℃灰化処理後、約100mg をサンプリングして、光学フロファイルプロジェクター上に投影し、十字線にかかった繊維について長さを実測する。繊維長分布および重量平均繊維長はこれに基づいて測定する。
〔多軸衝撃強度の測定法〕
厚さ3mmの成形品から80mm角試験片を切出し、プランジャー先端曲率10mmR、テストスピード1m/秒でインストロン社製多軸衝撃測定装置を用いて測定する。
〔曲げ強度の測定法〕
幅12mm、厚さ3mm、長さ100 mm、スパン50mmの試験片を用いて、テストスピード1.5 m/分で島津製作所社製万能試験機により測定する。
【0007】
次に、本発明に用いる各成分を説明する。
本発明に用いる熱可塑性樹脂はポリエチレン、ポリプロピレン等のポリオレフィン;ポリスチレン、ゴム補強ポリスチレン、アクリロニトリル−スチレン共重合体、ABS樹脂等のスチレン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;ナイロン6、ナイロン66、ナイロン46等のポリアミド樹脂;ポリフェニレンエーテル、変性ポリフェニレンエーテル等のポリエーテル樹脂;ポリオキシメチレン、ポリカーボネート、ポリアリレート、ポリフェニレンサルファイド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトンカーボネート/ポリブチレンテレフタレート、ポリカーボネート/ABS、ポリフェニレンエーテル/ポリブチレンテレフタレート、ポリフェニレンエーテル/ポリアミド等のブレンド樹脂が挙げられる。
本発明に用いる熱可塑性樹脂は特に制限は無く、用途に応じて選択すれば良い。例えば、繊維強化の効果が顕著である点は結晶性の熱可塑性樹脂、その中でも汎用性の熱可塑性樹脂が好ましい。
好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;ナイロン6,ナイロン66,ナイロン46等のポリアミド樹脂;ポリフェニレンエーテル、変性ポリフェニレンエーテル等のポリエーテル樹脂;ポリオキシメチレン、ポリカーボネート、ポリフェニレンサルファイドまたはこれらの樹脂のブレンド樹脂である。
【0008】
本発明に用いる強化繊維は、本発明に用いる熱可塑性樹脂の引張弾性率よりも高い弾性率を持つものであれば問題無く、例えば、E-ガラス、S-ガラス等のガラス繊維、ポリアクリロニトリル系、ピッチ系、レーヨン系等のカーボン繊維、炭化ケイ素繊維等のセラミック繊維、鉱物繊維等の無機繊維、ステンレス、黄銅等の金属繊維、超高分子量ポリエチレン繊維、ポリオキシメチレン繊維、ポリビニルアルコール繊維、液晶性芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維、ポリ-p- フェニレンテレフタルアミド繊維、ポリ-m- フェニレンイソフタルアミド繊維等のアラミド繊維、ポリフェニレンベンゾチアゾール繊維、ポリアクリロニトリル繊維、ジュート等のセルロース繊維等の有機繊維等が挙げられる。
尚、本発明に用いる強化繊維は機械物性、耐熱性等を考慮し、熱可塑性樹脂との好ましい組合わせ等からガラス繊維、カーボン繊維、セラミック繊維、鉱物繊維等の無機繊維、ステンレス、黄銅等の金属繊維、液晶性芳香族ポリエステル繊維、ポリ-p- フェニレンテレフタルアミド繊維、ポリフェニレンベンゾチアゾール繊維等が好ましく、単独あるいは組合わせて用いられる。
強化繊維径は繊維の種類によっても異なるが、例えばガラス繊維の場合は3〜20μm であるが、機械特性から細い方が好ましいが、3μm 未満ではペレットを作る過程で繊維への樹脂の含浸が困難であり、逆に20μm を越えると折損しやすくなる。
【0009】
本発明の成形体の製造に用いる成形材料は、熱可塑性樹脂で連続単繊維の表面を被覆した連続繊維/熱可塑性樹脂複合体を一定長に切断することにより得られる平行繊維強化熱可塑性樹脂ペレットである。尚、ここで平行繊維強化熱可塑性樹脂ペレットとは、繊維が実質上ペレットと同一長さでペレットの長さ方向に実質的に平行配列しているものを言う。
平行繊維強化熱可塑性樹脂ペレットの長さは10〜100mm であり、該ペレット長が10mm未満の場合は成形物の繊維強化効果は期待できず、また、100mm を越える長さでは可塑化装置への均一な供給が困難となり好ましくない。
成形用材料中の繊維強化材の充填率は成形体の機械的強度等の目的に応じて選ぶことができ、普通10〜80重量%である。一般に高充填率ほど強度は大きくなるが、80重量%を越えると、単繊維の表面を熱可塑性樹脂で十分に被覆する事ができず、成形品において補強効果が低下する為好ましくない。低い充填率の場合は絡み合い度が小さくなりやすく、機械的強度等の特徴を発揮しないことがある。マスターバッチとして用いる場合、10重量%未満では経済面からも好ましくない。
繊維状強化材の熱可塑性樹脂との接着性の面から機械的物性を改良する別の手段として、ペレット製造の過程で表面処理する事は望ましく、例えばガラス繊維の場合、シラン系、チタン系カップリング剤で処理する事は特に好ましい。
連続でかつ平行配列した繊維を含有するペレットの製造にあたっては、連続平行配列した繊維束の構成単位である単繊維(フィラメント)の表面の大部分を熱可塑性樹脂で被覆し、ストランドを作成し、これを所定の長さで切断する事により得られる。この熱可塑性樹脂で被覆する方法としては、通常の方法は全て利用でき、例えば、熱可塑性樹脂を溶融状態で繊維強化材に含浸させる溶融含浸法(特開昭61−229534号、同61−229535号、同61−229536号、特願昭61−216253号公報)、粉末状の熱可塑性樹脂を空気中に浮遊、または水などの液体中に懸濁させた状態で繊維束に含浸させた後、溶融してストランドを得る方法等が挙げられる。溶融含浸法としては特に制約は無く、偏平ダイ(特開昭63−216732号公報)、屈曲通路(特開昭63−264326号公報)を通す方法、ローラー(特開昭63−132036号公報)やベルト(特開平1−214408号公報)を用いる方法等の公知のいずれの方法でも良い。特に、操作性の点で、偏平ダイや屈曲通路を有する形状の含浸ダイを繊維束が通る引き抜き成形法が好ましい。また、これらの方法で得られた熱可塑性樹脂が含浸した繊維束を更に賦形ダイを通して所望のストランド形状、かつ長さで切断しペレットを得る事もできる。
【0010】
成形体全体の組成を所望のものにするために、必要に応じ平行繊維強化熱可塑性樹脂ペレット以外の形で熱可塑性樹脂を併用することもできる。例えば繊維で強化されていない樹脂ペレット、短繊維強化樹脂ペレット、異種の樹脂を含むペレット、樹脂粉末等を併用することができる。
本発明の繊維強化熱可塑性樹脂成形体には、難燃剤、熱安定剤、酸化防止剤、紫外線吸収剤(防止剤)、滑剤、着色剤等の各種安定剤を同成形体を用いた成形品の機械特性を損なわない範囲で添加することができる。これらの添加剤はペレット成分として加えるか、または別個に加えることができる。
【0011】
【実施例】
以下、実施例により本発明を具体的に説明するが、これらのものは本発明をなんら限定するものではない。
以下の実施例、比較例で用いた長繊維強化熱可塑性樹脂ペレットは、次のような方法で作製した樹脂含浸繊維束を切断することにより得たものである。即ち、ガラス繊維束のロービングを連続的に引取りながら加熱した後、クロスヘッドダイを通過させた。クロスヘッドダイには、押出機にて溶融したポリプロピレン(住友化学製ノープレンAX574 )が供給されており、クロスヘッドダイ中でポリプロピレンをガラスロービングに含浸した。この時、ガラスロービングの引取り速度と溶融ポリプロピレンの供給量を制御して、ガラス含有量を40重量%に調整した。クロスヘッドダイを出たポリプロピレン含浸ガラスロービング(ストランド)は、次に、賦形ダイを通過し、更に引取りロールを通過後、ペレタイダーにてストランドを切断して48mm、12mm、3mm長のペレットを作製した。
このペレットを下記の可塑化装置を用いて、下記条件で適度な剪断応力を加えながら可塑化した後、200 ×100 ×3mmの平板試験金型を用いたハンドプレスで、冷却時間60秒で圧縮成形を行い、80×80mmの試験片を切り出して試験を行った。
〔可塑化装置及び条件〕
スクリュー径;90mm、スクリューピッチ;90mm
溝深さ;フィード部10mm、メタリング部5mm
スクリュー回転数;90rpm 、圧縮比;2.5
予備加熱;100 ℃
成形温度調節値;(吐出)240,230,220,200 ℃(供給)
吐出径20mm、背圧0kg/cm2G
〔試験項目〕
繊維長観察、繊維含量実測、繊維長分布の実測と重量平均繊維長の算出、絡み合い度の測定、機械的強度の測定
実施例1、比較例1
上記48mm長の平行繊維強化ポリプロピレンペレットを用い、上記条件で可塑化し、圧縮成形して板状成形品(実施例1)を作成した。この板状成形品はペレットからの成形品であるから、繊維長はペレットの長さを越えることはなく、比較的折れやすいような条件で可塑化しても重量平均繊維長は12mm程度あり、ポリプロピレン製スタンパブル・シート(比較例1)に用いられている連続ガラス繊維(40%含有)の長さとは比較にならない。それにもかかわらず、表1に示すように、ポリプロピレン製スタンパブル・シートに匹敵する多軸衝撃強度を有する。又、アイゾット衝撃強度もポリプロピレン製スタンパブル・シートに近い値である。
尚、後記比較例3に示した従来技術による成形体のアイゾット衝撃強度は19(ノッチ付き)および52(反ノッチ)であり、短繊維強化ポリプロピレン成形体(比較例2)の12および42という値にくらべれば大きいが、実施例1に比べれば著しく小さい。
【0012】
【表1】

Figure 0003638292
【0013】
実施例2、比較例2〜3
上記12mm長の平行繊維強化ポリプロピレンペレットを用い、上記条件で可塑化し、圧縮成形して板状成形品(実施例2)を作成した。又、上記3mm長の平行繊維強化ポリプロピレンペレットを用い、上記条件で可塑化し、圧縮成形して板状成形品(比較例2)を作成した。更に、上記12mm長の平行繊維強化ポリプロピレンを用い、通常の射出成形ノズル(吐出径4mm)をつけた装置で、通常の条件(背圧5kg/cm2G)で可塑化処理後、圧縮成形して板状成形品(比較例3)を作成した。
これらのものの物性値を表2に示す。実施例2の成形品は、比較例2〜3の成形品に比べて、優れた機械的強度が発揮されている。
【0014】
【表2】
Figure 0003638292
【0015】
実施例3、比較例4
実施例1と同じペレットを用い、同様の可塑化処理で、圧縮成形により箱状成形品(300 ×200 ×150 ×3mm)を作製し、天板部と側板部に分けて80mm角の試験片を切出し評価した。又、連続ガラス繊維(40%)含有のポリプロピレン製スタンパブル・シートを用いて、同様の圧縮成形により箱状成形品を作製し、評価した。
表3の結果から明らかなように、比較例4では可塑化溶融物(ブランク)の投入位置である天板部の多軸衝撃強度は高いが、圧縮時の流動によって賦形される側板部の多軸衝撃強度は極めて低い値を示し、測定位置(流動距離)の違いによる物性差が大きいことがわかる。これにに対し、実施例3の成形品では、繊維長が比較例4よりも短いにもかかわらず、何れの場所でも充分な多軸衝撃強度を有している。
【0016】
【表3】
Figure 0003638292
【0017】
【発明の効果】
本発明によれば、取扱いやすいペレット状の繊維強化熱可塑性樹脂材料を用いて、連続繊維のスタンパブル・シートに匹敵し、側板部についてはこれを凌駕する機械的強度を有する成形体が得られる。本発明は、従来のスタンパブル・シートに比べて成形体形状の自由度が大きく、又、強化繊維含有量も広範囲のものを実現できる。[0001]
[Industrial application fields]
The present invention relates to a fiber-reinforced thermoplastic resin molded body. The present invention realizes a molded product having greatly improved mechanical strength, particularly multiaxial impact strength, using thermoplastic resin pellets convenient for molding, and contributes to the advancement of the plastic molding field.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, as a fiber reinforced resin molding, a short fiber reinforced type and a long fiber reinforced type are known.
The short fiber reinforced thermoplastic resin structure is manufactured, for example, by blending short fibers of about 3 mm with a thermoplastic resin, kneading with an extruder, pelletizing, and injection molding. Such a molded body has an average fiber length of about 0.3 mm due to fiber breakage in the manufacturing process. Although such molded bodies are widely used, the fibers in the molded bodies are short and have little entanglement, so that the reinforcing effect by the fibers is not sufficiently exhibited, and it is satisfactory for applications that require high impact strength. Could not have performance.
Therefore, in recent years, a long fiber reinforced resin molded body has been proposed.
A long fiber reinforced resin structure using a thermosetting resin is produced by drawing a fiber tow or roving through a low viscosity thermosetting resin bath and impregnating the fiber to produce a fiber reinforced structure. In general, it is produced by fixing it on a mold and then curing it by heating to cause a crosslinking reaction. However, in this case, since the thermosetting resin is viscous, it is difficult to wet the fiber, and the molded product is inferior in wettability and cannot be expected in mechanical properties. In addition, when molding a sheet-like fiber reinforced structure, it is fixed on the mold and compression molded, so the degree of freedom of the molded product is extremely inferior, and burrs are generated around the molded product, so finishing is performed in the subsequent process. In addition, there is a problem that it is necessary to consider prevention of cross-linking and curing even in the storage of the fiber reinforced structure.
On the other hand, long fiber reinforced thermoplastic resin molded products are known to be compression molding methods represented by stampable sheets, etc., which are also injection melt compression molding methods and melt compression methods using pellet raw materials. Compared with the injection molding method, the degree of freedom in the shape of the molded product is remarkably inferior in that the reinforcing fibers are uniformly dispersed throughout the molded product. In addition, in the long fiber reinforced resin molded product, it is expected that the resin itself is sufficiently coated with the resin from the viewpoint of mechanical properties. However, the stampable sheet is a sandwich structure of the sheet-like fiber and the sheet-like resin. Since these are heated and compressed, overlapping of the fibers cannot be avoided, and there is a limit in mechanical properties. Furthermore, stampable sheets have the disadvantage that due to the characteristics of the sheets, when a three-dimensional structure is produced, if the compression molding method is employed, the fluidity is poor and the mechanical properties of the structure are extremely non-uniform.
Also known are pellets reinforced with fibers arranged in parallel, produced by cutting thermoplastic resin-coated fiber bundles. For example, U.S. Pat. No. 4,559,262 discloses a mixture of 2 to 100 mm parallel fiber pellets and other (no reinforcing fiber or short fiber reinforced) pellets melted and homogenized in a plasticizer such as an injection molding machine. The technique of molding is described. According to this technique, the fiber length of the reinforcing fiber in the molded product is at least 2 mm, and it is said that 50% by weight or more exists. Although detailed information on the length of the reinforcing fiber in the molded article is not disclosed, the present inventors have made additional trials on an example of a pellet length of 10 mm, and it has been found that the length is at most 2 to 3 mm. . In short, in this technology, the fiber length and strength are improved compared to the short fiber reinforced resin molded product, but it is difficult to keep the fiber length in the molded product at the 5 mm level, and the mechanical properties of the molded product Properties, particularly impact strength, can only be obtained at a lower level than stampable sheets using continuous fibers.
The present invention has been devised in view of the above-mentioned problems of the prior art, and the object of the present invention is to have a particularly excellent mechanical strength, for example, an impact strength comparable to a stampable sheet, and further, thermoplastic resin pellets. It is to provide a molded body that can be easily molded by use. Another object of the present invention is to provide a molding technique for obtaining such a molded body from parallel fiber reinforced thermoplastic resin pellets.
[0003]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned object, the present inventors have improved the wettability of the reinforcing fiber in the thermoplastic resin, and plasticized by a plasticizer that uses long-size pellets and suppresses fiber breakage. After performing the above, the present inventors have found that a molded body that retains long fibers by using a compression molding method or the like and has greatly improved mechanical strength, particularly impact strength can be obtained, and the present invention has been completed.
That is, the present invention is a molding obtained by plasticizing a parallel fiber reinforced thermoplastic resin pellet having a length of 10 to 100 mm or a resin composition containing the pellet with a low shear force using a plasticizer having a screw. Body, which is in a positional relationship in which reinforcing fibers having a length of 5 to 100 mm made of glass fiber, carbon fiber, ceramic fiber, mineral fiber or metal fiber are intertwined and occupy 10 to 80% of the weight of the molded body Among them, a fiber-reinforced thermoplastic resin molded product characterized in that 50% or more forms an intertwined skeleton, and
50% of the total reinforcing fibers that occupy 10 to 80% of the weight of the molded product , in which the reinforcing fibers of length 5 to 100 mm made of glass fiber, carbon fiber, ceramic fiber, mineral fiber or metal fiber are intertwined The above is a method for producing a fiber-reinforced thermoplastic resin molded article having an entangled skeleton, wherein a parallel fiber-reinforced thermoplastic resin pellet having a length of 10 to 100 mm or a resin composition containing the same is formed into a plastic having a screw. using apparatus, and a screw back pressure 0 kg / cm 2 G, and plasticized with low shear, it is a manufacturing how the fiber-reinforced thermoplastic resin molded article, characterized by molding.
[0004]
Hereinafter, the present invention will be described in detail.
In the present invention, thermoplastic resin pellets convenient for molding are used. And in order to express even better strength, a fiber length of 5 to 100 mm, which is significantly longer than that conventionally realized in the field of thermoplastic resin reinforcement using pellets, is maintained, and the fibers are entangled in the molded body. A configuration that exists in a certain positional relationship. Such a fiber length (referred to as a medium fiber length as distinguished from continuous fibers in a stampable sheet) and its entanglement structure can be realized by the following means, for example. That is, a thermoplastic resin-coated fiber bundle, which is an intermediate raw material of the prior art, is formed using plastic fibers reinforced pellets cut into a long length of 10 to 100 mm and plasticized under an appropriate shear stress. Actually, the cylinder temperature, the screw rotation speed, and the screw back pressure are optimized, and if necessary, the size of each part of the screw, the size of the nozzle, and the relationship thereof can be adjusted to realize a low shear force. By appropriately selecting parallel fiber reinforced pellets and plasticizing conditions, a fiber reinforced thermoplastic resin molded article having the fiber length and the entangled structure as described above and having a fiber content of 10 to 80% by weight can be obtained. . Since this molded body is made of parallel fiber reinforced pellets having good adhesion between the resin and the fiber, the porosity is kept at a very low value. Appropriate fiber content and low porosity ensure the adhesion between the resin and the fiber and, combined with the medium fiber length and its intertwined positional relationship, provides excellent strength to the molded body.
Thus, the technical idea of the present invention is the positional relationship in which reinforcing fibers having a length of 5 to 100 mm are intertwined, and the total reinforcing fiber content occupying 10 to 80% (preferably 10 to 60%) of the molded body weight. Of these, 50% or more (preferably 70% or more) is expressed as a fiber-reinforced thermoplastic resin molded article characterized by forming an entangled skeleton. In addition, the average fiber length is used in place of the ratio (entanglement degree) for forming the entangled skeleton, and the reinforcing fibers having a length of 5 to 100 mm are intertwined, and the total reinforcing fiber content is 10 to 80 of the weight of the compact. % (Preferably 10 to 60%), and the weight average fiber length of the reinforcing fiber is 5 to 50 mm (preferably 10 to 50 mm). .
[0005]
What characterizes this fiber reinforced thermoplastic resin molded body most is the intertwined positional relationship of medium length fibers (5 to 100 mm). The intertwined positional relationship does not necessarily require that the fiber and the fiber are in direct contact with each other, and may be in a positional relationship in which one fiber passes through the loop of the other fiber. In fact, when using the parallel fiber reinforced thermoplastic resin pellets made from long fibers pre-impregnated and coated with a resin to achieve a tangled positional relationship in the plasticizing process, the fibers and fibers are not in direct contact, and Such a non-contact entangled structure is preferable because good adhesion between the fiber and the resin is maintained.
Such a molded body can be manufactured by adopting an injection molding method, a melt compression molding method, or a compression molding method, but can be preferably realized by the following molding technique. That is, it is a method of plasticizing and molding a parallel fiber reinforced thermoplastic resin pellet having a length of 10 to 100 mm or a resin composition containing the same by applying an appropriate shear stress. A moderate shear stress is a shear stress that is not too large. In other words, it is a shear stress that causes fiber entanglement but does not cause significant cutting. A person skilled in the art can select an appropriate condition by making a trial based on such a judgment criterion, and specific examples thereof are shown in the examples described later. Moreover, the ratio of the power consumption of the apparatus which can be compared can be used as an index of the shear stress in the plasticizing process.
Accordingly, the manufacturing method in the present application is characterized by plasticizing and molding parallel fiber reinforced thermoplastic resin pellets having a length of 10 to 100 mm or a resin composition containing the same by applying the appropriate shear stress as described above. It can be expressed as a method for producing a fiber-reinforced thermoplastic resin molded article having a positional relationship in which reinforcing fibers having a length of 5 to 100 mm are intertwined.
[0006]
Here, the above-mentioned numerical value characterizing the present invention can be confirmed by the following test method.
First, the resin component is removed from the product, which is a long fiber reinforced resin molded product, by a method such as firing (600 ° C. ashing treatment) or dissolution to obtain a fiber reinforced skeleton. In normal cases, it can be determined by visual observation whether the skeleton has a fiber length of 5 to 100 mm and whether or not it exists in an intertwined positional relationship. That is, it cannot be said that the skeleton easily collapses during firing (600 ° C. ashing treatment) is in a positional relationship in which fibers are intertwined. This is because even if the skeleton remains, a large amount of fibers spilling from the skeleton is short and not entangled. When the fiber length or the entanglement is delicately determined, the “entanglement degree” is measured by the following method, and it is determined that the entanglement degree of 50% or more is in an intertwined positional relationship.
[Measurement of degree of entanglement]
The fiber component obtained by removing the resin component from the molded body is sieved using a 2 mm standard sieve, giving vibrations that do not cause the fiber skeleton to collapse. At this time, the weight under the sieve is measured, the ratio (X) to the total weight is obtained, and 1-X is displayed as a percentage to obtain the degree of entanglement. If X is 0.5 or less (entanglement degree: 50% or more), it is determined that the reinforcing fibers are present in an intertwined positional relationship.
[Measurement of fiber content, judgment of thermoplastic resin]
The fiber content in the molded body and whether or not the resin is a thermoplastic resin can be discriminated without any problem by a normal technical level.
[Measurement method of fiber length distribution and weight average fiber length of reinforcing fibers in molded body]
After the ashing treatment of the molded body at 600 ° C, about 100 mg is sampled and projected on an optical profile projector, and the length of the fiber that has been crossed is measured. The fiber length distribution and the weight average fiber length are measured based on this.
[Measurement method of multiaxial impact strength]
An 80 mm square test piece is cut out from a molded product having a thickness of 3 mm, and measured using a multi-axis impact measuring device manufactured by Instron with a plunger tip curvature of 10 mmR and a test speed of 1 m / sec.
[Measurement method of bending strength]
Using a test piece having a width of 12 mm, a thickness of 3 mm, a length of 100 mm, and a span of 50 mm, the measurement is performed with a universal testing machine manufactured by Shimadzu Corporation at a test speed of 1.5 m / min.
[0007]
Next, each component used for this invention is demonstrated.
The thermoplastic resin used in the present invention is polyolefin such as polyethylene and polypropylene; polystyrene, rubber-reinforced polystyrene, acrylonitrile-styrene copolymer, styrene resin such as ABS resin; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; nylon 6, Polyamide resins such as nylon 66 and nylon 46; polyether resins such as polyphenylene ether and modified polyphenylene ether; polyoxymethylene, polycarbonate, polyarylate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone carbonate / polybutylene terephthalate , Polycarbonate / ABS, Polyphenylene ether / Polybutylene terephthalate, Polyphenylene Blend resins such as ether / polyamide.
There is no restriction | limiting in particular in the thermoplastic resin used for this invention, What is necessary is just to select according to a use. For example, a crystalline thermoplastic resin, particularly a general-purpose thermoplastic resin is preferable because the fiber reinforcing effect is remarkable.
Preferably, polyolefins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyamide resins such as nylon 6, nylon 66 and nylon 46; polyether resins such as polyphenylene ether and modified polyphenylene ether; Polycarbonate, polyphenylene sulfide, or a blend resin of these resins.
[0008]
The reinforcing fiber used in the present invention has no problem as long as it has an elastic modulus higher than the tensile elastic modulus of the thermoplastic resin used in the present invention. For example, glass fibers such as E-glass and S-glass, polyacrylonitrile series Carbon fiber such as pitch and rayon, ceramic fiber such as silicon carbide fiber, inorganic fiber such as mineral fiber, metal fiber such as stainless steel and brass, ultrahigh molecular weight polyethylene fiber, polyoxymethylene fiber, polyvinyl alcohol fiber, liquid crystal Organic fiber such as cellulose fiber such as aromatic aromatic polyester fiber, polyethylene terephthalate fiber, poly-p-phenylene terephthalamide fiber, poly-m-phenylene isophthalamide fiber, aramid fiber, polyphenylenebenzothiazole fiber, polyacrylonitrile fiber, jute Etc.
In addition, the reinforcing fiber used in the present invention takes into account mechanical properties, heat resistance, and the like, from a preferable combination with a thermoplastic resin, etc., such as inorganic fibers such as glass fiber, carbon fiber, ceramic fiber, mineral fiber, stainless steel, brass, etc. Metal fibers, liquid crystalline aromatic polyester fibers, poly-p-phenylene terephthalamide fibers, polyphenylene benzothiazole fibers and the like are preferable, and they are used alone or in combination.
The diameter of the reinforcing fiber varies depending on the type of fiber. For example, it is 3 to 20 μm for glass fiber, but it is preferable to be thin because of mechanical properties. On the other hand, if it exceeds 20 μm, breakage tends to occur.
[0009]
The molding material used for the production of the molded body of the present invention is a parallel fiber reinforced thermoplastic resin pellet obtained by cutting a continuous fiber / thermoplastic resin composite having a continuous single fiber surface coated with a thermoplastic resin into a predetermined length. It is. Here, the parallel fiber reinforced thermoplastic resin pellets are those in which the fibers are substantially the same length as the pellets and substantially parallel to the length direction of the pellets.
The length of the parallel fiber reinforced thermoplastic resin pellet is 10 to 100 mm. If the pellet length is less than 10 mm, the fiber reinforcement effect of the molded product cannot be expected. Uniform supply becomes difficult, which is not preferable.
The filling rate of the fiber reinforcement in the molding material can be selected according to the purpose such as mechanical strength of the molded body, and is usually 10 to 80% by weight. Generally, the higher the filling rate, the greater the strength. However, if it exceeds 80% by weight, it is not preferable because the surface of the single fiber cannot be sufficiently covered with the thermoplastic resin and the reinforcing effect is lowered in the molded product. In the case of a low filling rate, the degree of entanglement tends to be small, and characteristics such as mechanical strength may not be exhibited. When used as a masterbatch, if it is less than 10% by weight, it is not preferable from the economical aspect.
As another means of improving mechanical properties from the viewpoint of adhesion of the fibrous reinforcement to the thermoplastic resin, it is desirable to perform surface treatment in the process of pellet production. For example, in the case of glass fiber, a silane-based or titanium-based cup It is particularly preferable to treat with a ring agent.
In the production of pellets containing fibers that are continuous and arranged in parallel, most of the surface of a single fiber (filament) that is a structural unit of a fiber bundle that is arranged in parallel and continuous is coated with a thermoplastic resin, and a strand is created. This can be obtained by cutting it at a predetermined length. As a method for coating with this thermoplastic resin, all usual methods can be used. For example, a melt impregnation method in which a fiber reinforcement is impregnated with a thermoplastic resin in a molten state (Japanese Patent Laid-Open Nos. 61-229534 and 61-229535). No. 61-229536, Japanese Patent Application No. 61-216253), after impregnating a fiber bundle in a state where a powdered thermoplastic resin is suspended in air or suspended in a liquid such as water And a method of obtaining a strand by melting. There are no particular restrictions on the melt impregnation method, and a flat die (Japanese Patent Laid-Open No. 63-216732), a method of passing a bent passage (Japanese Patent Laid-Open No. 63-264326), a roller (Japanese Patent Laid-Open No. 63-1332036) Any known method such as a method using a belt or a belt (JP-A-1-214408) may be used. In particular, in view of operability, a pultrusion method in which the fiber bundle passes through a flat die or an impregnation die having a bent passage is preferable. Moreover, the fiber bundle impregnated with the thermoplastic resin obtained by these methods can be further cut into a desired strand shape and length through a shaping die to obtain pellets.
[0010]
In order to make the composition of the whole molded article desired, a thermoplastic resin can be used in combination with a form other than the parallel fiber reinforced thermoplastic resin pellets, if necessary. For example, resin pellets not reinforced with fibers, short fiber reinforced resin pellets, pellets containing different types of resins, resin powders, and the like can be used in combination.
The fiber-reinforced thermoplastic resin molded product of the present invention is a molded product using various molded products such as flame retardants, thermal stabilizers, antioxidants, ultraviolet absorbers (inhibitors), lubricants, and colorants. It is possible to add in the range which does not impair the mechanical properties. These additives can be added as pellet components or added separately.
[0011]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, these things do not limit this invention at all.
The long fiber reinforced thermoplastic resin pellets used in the following examples and comparative examples are obtained by cutting a resin-impregnated fiber bundle produced by the following method. That is, the glass fiber bundle was heated while continuously roving the glass fiber bundle, and then passed through the crosshead die. Polypropylene melted by an extruder (Noprene AX574 manufactured by Sumitomo Chemical) was supplied to the crosshead die, and polypropylene was impregnated into glass roving in the crosshead die. At this time, the glass content was adjusted to 40% by weight by controlling the take-up speed of glass roving and the supply amount of molten polypropylene. Next, the polypropylene-impregnated glass roving (strand) exiting the crosshead die passes through the shaping die, and further passes through the take-up roll. Produced.
The pellets were plasticized using the following plasticizer while applying appropriate shear stress under the following conditions, and then compressed with a hand press using a 200 x 100 x 3 mm flat plate test die with a cooling time of 60 seconds. Molding was performed, and an 80 × 80 mm test piece was cut out and tested.
[Plasticizing equipment and conditions]
Screw diameter: 90mm, screw pitch: 90mm
Groove depth: Feed section 10mm, metering section 5mm
Screw rotation speed: 90rpm, compression ratio: 2.5
Preheating: 100 ° C
Molding temperature adjustment value: (Discharge) 240,230,220,200 ℃ (Supply)
Discharge diameter 20mm, back pressure 0kg / cm 2 G
〔Test items〕
Fiber length observation, fiber content measurement, fiber length distribution measurement and weight average fiber length calculation, entanglement measurement, mechanical strength measurement Example 1, Comparative Example 1
The 48 mm long parallel fiber reinforced polypropylene pellets were plasticized under the above conditions and compression molded to produce a plate-shaped product (Example 1). Since this plate-shaped molded product is a molded product from pellets, the fiber length does not exceed the length of the pellets, and the weight average fiber length is about 12 mm even when plasticized under conditions that are relatively easy to break. It cannot be compared with the length of the continuous glass fiber (containing 40%) used in the stampable sheet (Comparative Example 1). Nevertheless, as shown in Table 1, it has a multiaxial impact strength comparable to that of a polypropylene stampable sheet. Also, the Izod impact strength is close to that of a stampable sheet made of polypropylene.
Incidentally, the Izod impact strength of the molded article according to the prior art shown in Comparative Example 3 described later is 19 (notched) and 52 (anti-notched), and values of 12 and 42 of the short fiber reinforced polypropylene molded article (Comparative Example 2). Compared to Example 1, it is significantly smaller.
[0012]
[Table 1]
Figure 0003638292
[0013]
Example 2, Comparative Examples 2-3
Using the 12 mm long parallel fiber reinforced polypropylene pellets, plasticization was performed under the above conditions, and compression molding was performed to prepare a plate-shaped molded product (Example 2). Further, the above-mentioned 3 mm long parallel fiber reinforced polypropylene pellets were plasticized under the above conditions and compression molded to produce a plate-shaped molded product (Comparative Example 2). Furthermore, using the above 12mm long parallel fiber reinforced polypropylene and equipped with a normal injection molding nozzle (discharge diameter 4mm), after plasticizing under normal conditions (back pressure 5kg / cm 2 G), compression molding A plate-shaped molded product (Comparative Example 3) was prepared.
The physical property values of these are shown in Table 2. The molded product of Example 2 exhibits superior mechanical strength as compared with the molded products of Comparative Examples 2-3.
[0014]
[Table 2]
Figure 0003638292
[0015]
Example 3 and Comparative Example 4
Box-shaped molded product (300 x 200 x 150 x 3 mm) is produced by compression molding using the same pellets as in Example 1, and divided into a top plate and a side plate, and an 80 mm square test piece. Was cut out and evaluated. In addition, a box-shaped molded product was prepared and evaluated by the same compression molding using a polypropylene stampable sheet containing continuous glass fibers (40%).
As is clear from the results in Table 3, in Comparative Example 4, the multi-axial impact strength of the top plate portion, which is the injection position of the plasticized melt (blank), is high, but the side plate portion formed by the flow during compression is The multiaxial impact strength shows a very low value, and it can be seen that the difference in physical properties due to the difference in measurement position (flow distance) is large. On the other hand, the molded article of Example 3 has sufficient multiaxial impact strength at any location, although the fiber length is shorter than that of Comparative Example 4.
[0016]
[Table 3]
Figure 0003638292
[0017]
【The invention's effect】
According to the present invention, by using a pellet-like fiber-reinforced thermoplastic resin material that is easy to handle, a molded body having mechanical strength comparable to that of a continuous fiber stampable sheet and surpassing that of the side plate portion can be obtained. The present invention has a greater degree of freedom in the shape of the molded body than conventional stampable sheets, and can achieve a wide range of reinforcing fiber content.

Claims (2)

長さ10〜100mmの平行繊維強化熱可塑性樹脂ペレット乃至はそれを含む樹脂組成物を、スクリューを有する可塑化装置を用いて低剪断力で可塑化し、成形して得られる成形体であって、ガラス繊維、カーボン繊維、セラミック繊維、鉱物繊維又は金属繊維からなる長さ5〜 100mm の強化繊維が絡み合った位置関係にあり、成形体重量の10〜80%を占める全強化繊維のうち、50%以上が絡み合い骨格を形成していることを特徴とする繊維強化熱可塑性樹脂成形体。A molded article obtained by plasticizing and molding a parallel fiber reinforced thermoplastic resin pellet having a length of 10 to 100 mm or a resin composition containing the pellet with a low shear force using a plasticizer having a screw , 50% of the total reinforcing fibers that occupy 10 to 80% of the weight of the molded product , in which the reinforcing fibers of length 5 to 100 mm made of glass fiber, carbon fiber, ceramic fiber, mineral fiber or metal fiber are intertwined A fiber-reinforced thermoplastic resin molded article characterized in that the above forms an entangled skeleton. ガラス繊維、カーボン繊維、セラミック繊維、鉱物繊維又は金属繊維からなる長さ5〜Length 5 consisting of glass fiber, carbon fiber, ceramic fiber, mineral fiber or metal fiber 100mm100mm の強化繊維が絡み合った位置関係にあり、成形体重量のOf reinforced fibers are intertwined, and the weight of the compact 10Ten ~ 8080 %を占める全強化繊維のうち、Of all the reinforcing fibers that make up 5050 %以上が絡み合い骨格を形成している繊維強化熱可塑性樹脂成形体の製造方法であって、長さ% Or more is a method for producing a fiber-reinforced thermoplastic resin molded article having an entangled skeleton, the length of which is 10Ten ~ 100mm100mm の平行繊維強化熱可塑性樹脂ペレット乃至はそれを含む樹脂組成物を、スクリューを有する可塑化装置を用いて、スクリュー背圧を0The parallel fiber reinforced thermoplastic resin pellets or the resin composition containing the parallel fiber reinforced thermoplastic resin pellets using a plasticizer having a screw, the screw back pressure is reduced to 0. kgkg / cmcm 22 GG にして、低剪断力で可塑化し、成形することを特徴とする繊維強化熱可塑性樹脂成形体の製造方法。Then, a method for producing a fiber-reinforced thermoplastic resin molded article, which is plasticized and molded with a low shear force.
JP34904692A 1992-12-28 1992-12-28 Fiber reinforced thermoplastic resin molding Expired - Lifetime JP3638292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34904692A JP3638292B2 (en) 1992-12-28 1992-12-28 Fiber reinforced thermoplastic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34904692A JP3638292B2 (en) 1992-12-28 1992-12-28 Fiber reinforced thermoplastic resin molding

Publications (2)

Publication Number Publication Date
JPH06198753A JPH06198753A (en) 1994-07-19
JP3638292B2 true JP3638292B2 (en) 2005-04-13

Family

ID=18401128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34904692A Expired - Lifetime JP3638292B2 (en) 1992-12-28 1992-12-28 Fiber reinforced thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JP3638292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063298A1 (en) 2010-11-08 2012-05-18 三菱重工プラスチックテクノロジー株式会社 Resin molded product for vehicle structural member or aircraft structural member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148443A (en) * 2011-01-18 2012-08-09 Toyota Motor Corp Fiber-reinforced resin material of structure with rib, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063298A1 (en) 2010-11-08 2012-05-18 三菱重工プラスチックテクノロジー株式会社 Resin molded product for vehicle structural member or aircraft structural member

Also Published As

Publication number Publication date
JPH06198753A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
JP4813654B2 (en) Method of prepreg with resin and novel prepreg produced by the method
JP2833694B2 (en) Fiber reinforced pellet structure for thermoforming
JPS6337694B2 (en)
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
KR20140057264A (en) Production method for composite molded body having undercut section
JPWO2012133013A1 (en) Laminated molded product of fiber reinforced thermoplastic resin
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
JP3638292B2 (en) Fiber reinforced thermoplastic resin molding
WO2003057454A1 (en) Method for producting lofty, acoustical and structural parts
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
JPS63132036A (en) Manufacture of fiber reinforced composite material
JP2008284729A (en) Fiber-containing resin pellet and its manufacturing method
JP2001219473A (en) Method for manufacturing fiber-reinforced resin molding
JP3492416B2 (en) Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
JPH0365311A (en) Carbon fiber chop
JPH031907A (en) Production of fiber reinforced composite material
JP7198454B2 (en) Method for producing molding of fiber-reinforced thermoplastic resin
JPH05124036A (en) Production of fiber-reinforced resin body
JP2002086509A (en) Mold for molding resin composition containing fibrous filler, molding method using the same, and resin molded product
JP2646028B2 (en) Molding materials and mixtures thereof
JP2006001116A (en) Splittable shaping die for producing long fiber-reinforced thermoplastic resin structure and method for producing long fiber-reinforced thermoplastic resin structure using the die
JP2013203942A (en) Thermoplastic prepreg and method of manufacturing the same
JPH10316771A (en) Sheet material for composite-fiber-reinforced molding and molding made therefrom
JP2646029B2 (en) Molding materials and mixtures thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

EXPY Cancellation because of completion of term