JP2006016463A - Filament-reinforced polyamide resin molding material and method for producing the same - Google Patents

Filament-reinforced polyamide resin molding material and method for producing the same Download PDF

Info

Publication number
JP2006016463A
JP2006016463A JP2004194467A JP2004194467A JP2006016463A JP 2006016463 A JP2006016463 A JP 2006016463A JP 2004194467 A JP2004194467 A JP 2004194467A JP 2004194467 A JP2004194467 A JP 2004194467A JP 2006016463 A JP2006016463 A JP 2006016463A
Authority
JP
Japan
Prior art keywords
polyamide resin
fiber
molding material
mass
reinforced polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004194467A
Other languages
Japanese (ja)
Other versions
JP4666571B2 (en
Inventor
Masahiko Tominaga
真彦 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2004194467A priority Critical patent/JP4666571B2/en
Publication of JP2006016463A publication Critical patent/JP2006016463A/en
Application granted granted Critical
Publication of JP4666571B2 publication Critical patent/JP4666571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filament-reinforced polyamide resin molding material that gives molded products having excellent impregnating ability of polyamide resin into the reinforcing fibers, excellent mechanical strength and excellent strength deviation and surface appearance and provide a method for producing the same. <P>SOLUTION: This filament-reinforced polyamide resin molding material comprises a polyamide resin that has a melt flow rate of 20 to 120 g/10 min at 300°C under a load of 325 g according to JIS K7210 and reinforcing fibers treated with a surface treatment agent of 0.2 to 0.8 % mass where the content of the reinforcing fibers is 35 to 65 pts. mass per 100 pts. mass of the molding materials and they are arranged in almost the same direction and in almost the same length. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機械的強度に優れ、そのばらつきが小さくかつ表面外観性に優れる成形品を製造するための長繊維強化ポリアミド樹脂成形材料及びその製造方法に関する。   The present invention relates to a long fiber reinforced polyamide resin molding material for producing a molded article having excellent mechanical strength, small variation and excellent surface appearance, and a method for producing the same.

強化繊維であるチョップドストランドと熱可塑性樹脂とのコンパウンド(FRTP)では、押出し機によるペレット作製時や、射出成形機における成形時にそれぞれスクリューにより溶融混練されるため、3mm程度の長さであるチョップドストランドは臨界繊維長レベル(0.2mm程度)まで最終的に破断される。そのため繊維長をコントロールすることは難しく、それによる強度向上には限界が有った。すなわち、繊維の破断を考慮すると、高強度化のためには、繊維の径を細くすることが一般的であり、コンパウンド時には押出し機により充分に溶融混練されるので、繊維を細くすることによる含浸性の低下はほとんどなく、ある程度の細い繊維径の強化繊維を使用した場合でも樹脂との密着は比較的容易である。繊維径としては10μm〜13μmとする場合が好適に採用される。   In the compound (FRTP) of the chopped strand and the thermoplastic resin which are reinforcing fibers, the chopped strand having a length of about 3 mm because it is melt-kneaded by a screw at the time of pellet preparation by an extruder or at the time of molding by an injection molding machine. Is finally broken to a critical fiber length level (about 0.2 mm). Therefore, it is difficult to control the fiber length, and there is a limit to improving the strength. In other words, considering the fiber breakage, it is common to reduce the fiber diameter in order to increase the strength, and since it is sufficiently melt-kneaded by an extruder during compounding, impregnation by thinning the fiber There is almost no deterioration in the properties, and even when reinforcing fibers having a certain thin fiber diameter are used, adhesion to the resin is relatively easy. The fiber diameter is preferably 10 μm to 13 μm.

一方、繊維長による強度向上を目的に、特許文献1には、連続した長繊維の強化繊維に、熱可塑性樹脂をマトリックス樹脂として含浸させて、これを切断した長繊維強化熱可塑性樹脂成形材料が開示されている。その製造方法としては、マトリックス樹脂原料を押出機にて可塑化して溶融させ、溶融した樹脂を含浸ダイに充填させるとともに、回巻体等から引出された連続した強化繊維を含浸ダイ中に通過させる。これにより、フィラメントの集合体であるストランドからなる強化繊維中に樹脂が含浸した状態となり、これをノズルにより賦形された連続強化樹脂を切断した成形材料とされる。   On the other hand, for the purpose of improving the strength by the fiber length, Patent Document 1 discloses a long fiber reinforced thermoplastic resin molding material obtained by impregnating a continuous long fiber reinforced fiber with a thermoplastic resin as a matrix resin and cutting it. It is disclosed. As a manufacturing method thereof, the matrix resin raw material is plasticized and melted by an extruder, and the molten resin is filled in the impregnation die and the continuous reinforcing fiber drawn from the wound body is passed through the impregnation die. . Thereby, the resin is impregnated into the reinforcing fiber composed of the strand, which is an assembly of filaments, and this is used as the molding material obtained by cutting the continuous reinforcing resin shaped by the nozzle.

特許文献2に開示される長繊維強化熱可塑性樹脂ペレットは、熱可塑性樹脂製の窓枠または扉枠用であり、そのマトリックス樹脂は成形温度付近での溶融流動指数が5g/10分以上であるポリオレフィン系樹脂、ポリアミド系樹脂、及び熱可塑性ポリウレタン系樹脂の中から選ばれる。また、強化用繊維は、無機系繊維又は有機系繊維であり、繊維径は3〜40μmの広い範囲の繊維であり、強化用繊維の含有量も10〜80重量%であることが開示されている。
特開平8−157610号公報 特開2003−25456号公報
The long fiber reinforced thermoplastic resin pellet disclosed in Patent Document 2 is for a window frame or door frame made of a thermoplastic resin, and the matrix resin has a melt flow index near the molding temperature of 5 g / 10 min or more. It is selected from polyolefin resins, polyamide resins, and thermoplastic polyurethane resins. Further, it is disclosed that the reinforcing fiber is an inorganic fiber or an organic fiber, the fiber diameter is a wide range fiber of 3 to 40 μm, and the content of the reinforcing fiber is 10 to 80% by weight. Yes.
JP-A-8-157610 JP 2003-25456 A

しかしながら、連続繊維束と樹脂の溶融含浸引き抜き法による成形材料では、マトリックス樹脂と強化繊維の含浸性、引き抜き作業性が重要である。マトリックス樹脂として、ポリオレフィン、特にポリプロピレンが一般的に使用されるのは、融点が比較的低いことなど樹脂の取り扱い性が良好なためである。かかる成形品の高強度化、特に、衝撃強度の増大のためには、残存繊維長を長くすることが必要である。その結果、成形作業性が損なわれない範囲で成形材料のカット長を長くすることが行われている。   However, in the molding material by the melt impregnation drawing method of the continuous fiber bundle and the resin, the impregnation property and the drawing workability of the matrix resin and the reinforcing fiber are important. Polyolefin, particularly polypropylene, is generally used as the matrix resin because the resin has good handleability such as a relatively low melting point. In order to increase the strength of such a molded product, in particular, to increase the impact strength, it is necessary to lengthen the remaining fiber length. As a result, the cutting length of the molding material is increased within a range where the molding workability is not impaired.

一方、高強度化のもう1つの手段として、強化繊維の繊維径を細くすることも考えられるが、強化繊維の繊維径を細くすることは、連続繊維束の繊維本数を増やすこととなり、ポリオレフィンのようにガラス繊維との接着性が劣る場合には、接着性が劣るうえに樹脂の含浸性も劣り易く、かえって成形材料から得られる成形品の機械的強度や表面外観性の低下を引き起こす。このため、上記特許文献2などで使用される強化繊維は、その実施例に見られるように、比較的太い17μm程度の繊維径が使用されている。   On the other hand, as another means of increasing the strength, it is conceivable to reduce the fiber diameter of the reinforcing fiber. However, reducing the fiber diameter of the reinforcing fiber increases the number of fibers of the continuous fiber bundle, and the polyolefin Thus, when the adhesiveness with the glass fiber is inferior, the adhesiveness is inferior and the impregnation property of the resin is also inferior, and on the contrary, the mechanical strength and surface appearance of the molded product obtained from the molding material are lowered. For this reason, the reinforcing fiber used in the above-mentioned Patent Document 2 and the like has a relatively thick fiber diameter of about 17 μm as seen in the examples.

一方で、ポリアミド樹脂をマトリックス樹脂とする場合には、ガラス繊維との接着が比較的良好であり、ポリオレフィン樹脂をマトリクス樹脂とした場合に比べて強化繊維の繊維径を細くすることによる強度向上が期待できる。しかし、通常のポリアミド樹脂をマトリックス樹脂として使用した場合に、狙いとする、成形品の高強度化は達成されず、かえって、得られる成形品における強化繊維の分散不良による部分的な機械的強度の低下や外観不良が生じるといった問題が生じてしまう。   On the other hand, when the polyamide resin is used as the matrix resin, the adhesion to the glass fiber is relatively good, and the strength improvement by reducing the fiber diameter of the reinforcing fiber is smaller than when the polyolefin resin is used as the matrix resin. I can expect. However, when ordinary polyamide resin is used as the matrix resin, the targeted strength increase of the molded product is not achieved. Instead, partial mechanical strength due to poor dispersion of reinforcing fibers in the obtained molded product is not achieved. Problems such as degradation and poor appearance occur.

本発明の目的は、マトリックス樹脂として、ポリアミド樹脂を使用した場合、強化繊維へのマトリックス樹脂の含浸性に優れ、得られる成形品が機械的強度に優れ、しかも成形品の強度ばらつきや表面外観性に優れる長繊維強化ポリアミド樹脂成形材料及びその製造方法を提供することにある。   The object of the present invention is, when a polyamide resin is used as a matrix resin, the matrix resin is excellently impregnated into the reinforcing fiber, the resulting molded product is excellent in mechanical strength, and the strength variation and surface appearance of the molded product are excellent. An object of the present invention is to provide a long fiber reinforced polyamide resin molding material having excellent resistance and a method for producing the same.

本発明は、上記目的を達成すべき鋭意研究を進めたところ、マトリックス樹脂として、ポリアミド樹脂のなかでも溶融時の流動性として特定の範囲を有するポリアミド樹脂を使用し、かつ特定の細い繊維径を有し、かつ特定の範囲の付着量の表面処理剤で処理された強化繊維を、得られる成形材料に特定の量だけ含有させることにより、上記目的を達成できることを見出し、本発明に到達した。   As a result of diligent research to achieve the above object, the present invention uses, as a matrix resin, a polyamide resin having a specific range as a fluidity at the time of melting, and a specific thin fiber diameter. It has been found that the above-mentioned object can be achieved by containing a specific amount of reinforcing fibers having and having been treated with a surface treatment agent having an adhesion amount in a specific range in the obtained molding material.

かくして、本発明は、下記の要旨を有する長繊維強化ポリアミド樹脂成形材料及びその製造方法にある。
(1)JIS K7210に準拠した、温度300℃、荷重325gにおける、メルトフローレート値が20〜120g/10分であるポリアミド樹脂と、繊維径が5〜12μmであり、表面処理剤を0.2〜0.8質量%付着する強化繊維とを含み、該強化繊維が成形材料100質量部当たり35〜65質量部含まれ、かつ、組成物の長さ方向と実質上ほぼ同一長さ状態で配列されていることを特徴とする長繊維強化ポリアミド樹脂成形材料。
(2)前記長繊維強化ポリアミド樹脂成形材料の長さが3〜12mmである上記(1)に記載の長繊維強化ポリアミド樹脂成形材料。
(3)前記強化繊維がガラス繊維である上記(1)又は(2)に記載の長繊維強化ポリアミド樹脂成形材料。
(4)繊維径が5〜12μmの単繊維600〜5000本を表面処理剤が0.2〜0.8質量%付着するようにして束ねた繊維束を2〜12本引き揃えた強化繊維を、JIS K7210に準拠した、温度300℃、荷重325gにおける、メルトフローレート値が20〜120g/10分であるポリアミド樹脂を、得られる成形材料中の強化繊維が成形材料100質量部あたり35〜65質量部となるように含浸させ、ノズルにより連続的に引き抜き賦形された組成物を切断することを特徴とする長繊維強化ポリアミド樹脂成形材料の製造方法。
(5)前記強化繊維がガラス繊維であり、かつ長さ3〜12mmに切断する上記(4)に記載の製造方法。
Thus, the present invention resides in a long fiber reinforced polyamide resin molding material having the following gist and a method for producing the same.
(1) A polyamide resin having a melt flow rate value of 20 to 120 g / 10 min at a temperature of 300 ° C. and a load of 325 g according to JIS K7210, a fiber diameter of 5 to 12 μm, and a surface treatment agent of 0.2 -0.8 mass% reinforcing fiber adhering, the reinforcing fiber is contained in an amount of 35 to 65 parts by mass per 100 parts by mass of the molding material, and arranged in substantially the same length as the length direction of the composition A long fiber reinforced polyamide resin molding material characterized by being made.
(2) The long fiber reinforced polyamide resin molding material according to the above (1), wherein the length of the long fiber reinforced polyamide resin molding material is 3 to 12 mm.
(3) The long fiber reinforced polyamide resin molding material according to (1) or (2), wherein the reinforcing fiber is a glass fiber.
(4) Reinforcing fibers obtained by arranging 2 to 12 fiber bundles in which 600 to 5000 single fibers having a fiber diameter of 5 to 12 μm are bundled so that the surface treatment agent adheres to 0.2 to 0.8 mass%. In accordance with JIS K7210, a polyamide resin having a melt flow rate value of 20 to 120 g / 10 min at a temperature of 300 ° C. and a load of 325 g is 35 to 65 per 100 parts by mass of the molding material. A method for producing a long-fiber reinforced polyamide resin molding material, wherein the composition is impregnated so as to have a mass part and the composition continuously drawn and shaped by a nozzle is cut.
(5) The manufacturing method according to (4), wherein the reinforcing fiber is a glass fiber and is cut into a length of 3 to 12 mm.

本発明における長繊維強化ポリアミド樹脂成形材料は、繊維径の細い強化繊維が使用されるので、同じ含有量の場合には、より多数本の強化繊維が含有でき、またメルトフローレートが特定の範囲を有するポリアミド樹脂をマトリックス樹脂として使用し、かつ、強化繊維の表面処理剤が付着量を特定の範囲にすることにより、繊維径の細い強化繊維に対するマトリックス樹脂の含浸性が向上する。これにより、本発明によれば、機械的強度や強度ばらつき及び表面外観性に優れる成形品が得られる長繊維強化ポリアミド樹脂成形材料、及びその製造方法が提供される。   Since the long fiber reinforced polyamide resin molding material in the present invention uses reinforcing fibers having a thin fiber diameter, when the content is the same, a larger number of reinforcing fibers can be contained, and the melt flow rate is in a specific range. When the polyamide resin having the above is used as the matrix resin and the surface treatment agent for reinforcing fibers has an adhesion amount within a specific range, the impregnation property of the matrix resin to the reinforcing fibers having a small fiber diameter is improved. Thereby, according to this invention, the long fiber reinforced polyamide resin molding material from which the molded article excellent in mechanical strength, intensity | strength dispersion | variation, and surface appearance property is obtained, and its manufacturing method are provided.

本発明における長繊維強化ポリアミド樹脂成形材料に使用する強化繊維は、ガラス繊維、炭素繊維、他のセラミックス繊維などが挙げられるが、ガラス繊維が好ましい。強化繊維の(平均)繊維径は5〜12μmであり、9〜11μmであることが好ましい。前記繊維径が5μm未満であると、繊維の生産コストがかかり経済的に好ましくなく、さらに特定の繊維含有量とするためには、必然的に繊維の本数が多く必要となり、繊維中への樹脂の含浸性が低下し好ましくない。また前記繊維径が12μmを超えると、得られる成形品の機械的強度が低下し好ましくない。本発明においては、繊維径が比較的細い強化繊維を使用しても、後述する表面処理剤及びポリアミド樹脂を用いることにより、ポリアミド樹脂の強化繊維に対する含浸性及び接着性に優れるものである。   Examples of the reinforcing fiber used for the long fiber reinforced polyamide resin molding material in the present invention include glass fiber, carbon fiber, and other ceramic fibers, and glass fiber is preferable. The (average) fiber diameter of the reinforcing fibers is 5 to 12 μm, and preferably 9 to 11 μm. If the fiber diameter is less than 5 μm, the production cost of the fiber is increased, which is not economically preferable. In addition, in order to obtain a specific fiber content, a large number of fibers are inevitably required, and the resin into the fiber. The impregnation property of is reduced, which is not preferable. On the other hand, when the fiber diameter exceeds 12 μm, the mechanical strength of the obtained molded product is lowered, which is not preferable. In the present invention, even if reinforcing fibers having a relatively small fiber diameter are used, the use of a surface treatment agent and a polyamide resin, which will be described later, provides excellent impregnation properties and adhesion to the reinforcing fibers of the polyamide resin.

本発明で使用する強化繊維は、上記の特定の繊維径を有する単繊維の繊維束の形態で使用される。通常、好ましくは600〜5000本、特に好ましくは2000〜4000本の単繊維の繊維束を作成し、この繊維束を好ましくは2〜12本、特に好ましくは3〜7本引き揃えたものを引き抜いたものが、好適である。上記の繊維束が1本であると繊維束における単繊維の本数が多数必要となり含浸性に劣るため好ましくなく、また、繊維束が12本を超えると作業性に劣るばかりでなく、それに応じた回巻体を設置するスペースが必要となるため好ましくない。   The reinforcing fiber used in the present invention is used in the form of a single fiber bundle having the specific fiber diameter. Usually, preferably a fiber bundle of 600 to 5000, particularly preferably 2000 to 4000 single fibers is prepared, and 2 to 12, particularly preferably 3 to 7 of these fiber bundles are drawn out. Are preferred. When the number of the above-mentioned fiber bundles is one, a large number of single fibers in the fiber bundle are required and the impregnation property is inferior, and this is not preferable. This is not preferable because a space for installing the winding body is required.

前記強化繊維がガラス繊維の場合、ガラス単繊維から繊維束を作製するには、ガラス単繊維の紡糸直後に表面処理剤を塗布して繊維束にせしめられる。この場合の表面処理剤としては、種々のものが使用できるが、なかでも、マトリックス樹脂であるポリアミド樹脂との接着性を向上させるために、表面処理剤はカップリング剤を含むものが好ましい。カップリング剤としては、アミノシラン、エポキシシラン、アミドシラン、アジドシラン、アクリルシランのようなシランカップリング剤、チタネート系カップリング剤、又はこれらの混合物が利用できる。これらのうち、アミノシランやエポキシシランが好ましく、特に、アミノシランが好ましい。   When the reinforcing fiber is a glass fiber, in order to produce a fiber bundle from the glass single fiber, a surface treatment agent is applied immediately after spinning of the glass single fiber to form a fiber bundle. Various surface treatment agents can be used in this case, and among them, the surface treatment agent preferably contains a coupling agent in order to improve the adhesion to the polyamide resin as the matrix resin. As the coupling agent, a silane coupling agent such as aminosilane, epoxy silane, amide silane, azido silane, or acrylic silane, titanate coupling agent, or a mixture thereof can be used. Of these, aminosilane and epoxysilane are preferable, and aminosilane is particularly preferable.

前記表面処理剤のガラス繊維への付着量は、表面処理剤を含むガラス繊維に対して0.2〜0.8質量%が使用され、特に、0.25〜0.60質量%がより好ましい。付着量が0.2質量%未満であるとガラス繊維束の集束性が劣り、回巻体からの繊維の引出しや含浸ダイ中を引き抜く際に、単子切れ、毛羽立ち等生じ、含浸ダイのノズルを詰まらせるばかりでなく、成形品の機械的強度が劣り好ましくない。また、付着量が0.8質量%を超えると、繊維束が含浸ダイ中で開繊せず、含浸不良が生じ、成形品中で強化繊維がポリアミド樹脂を含浸しない状態で束として残り、成形品における機械的強度のばらつきや表面外観性の不良が生じ好ましくない。   The amount of the surface treatment agent attached to the glass fiber is 0.2 to 0.8% by mass, and more preferably 0.25 to 0.60% by mass, based on the glass fiber containing the surface treatment agent. . When the adhesion amount is less than 0.2% by mass, the convergence property of the glass fiber bundle is inferior. In addition to clogging, the mechanical strength of the molded product is inferior. Also, if the adhesion amount exceeds 0.8% by mass, the fiber bundle will not be opened in the impregnation die, resulting in poor impregnation, and the reinforcing fiber will remain in the molded product in a state not impregnated with the polyamide resin. Variations in mechanical strength and poor surface appearance in the product are undesirable.

本発明で使用するポリアミド樹脂は、溶融時における流動性としてJIS K7210に準拠した、温度300℃、荷重325gにおける、メルトフローレート値が20〜120g/10分、好ましくは30〜90g/10分であることが好適である。メルトフローレート値が20g/10分未満であると、含浸ダイ中でポリアミド樹脂が繊維束中に含浸し難くなり、また、得られる成形品の機械的強度のばらつきが生じ、また表面外観性が低下し好ましくない。メルトフローレート値が120g/10分を超えると、含浸性は向上するものの、樹脂自体が有する機械的強度が低下し、結果として得られる成形品の機械的強度が劣り好ましくない。   The polyamide resin used in the present invention has a melt flow rate value of 20 to 120 g / 10 min, preferably 30 to 90 g / 10 min at a temperature of 300 ° C. and a load of 325 g, according to JIS K7210 as fluidity at the time of melting. Preferably it is. When the melt flow rate value is less than 20 g / 10 minutes, it becomes difficult for the polyamide resin to be impregnated into the fiber bundle in the impregnation die, and the mechanical strength of the resulting molded product varies, and the surface appearance is improved. Decreasing and not preferable. When the melt flow rate value exceeds 120 g / 10 min, the impregnation property is improved, but the mechanical strength of the resin itself is lowered, and the mechanical strength of the resulting molded product is inferior.

またポリアミド樹脂は、前記流動性であれば特に限定はされず、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド11、ポリアミド12、ポリアミド6-10などのポリアミド樹脂、アクリロニトリル−ブタジエン−スチレン共重合体やスチレン−ブタジエン共重合体などの他の樹脂との混合物又はアロイ化したものも使用できる。なかでも、ポリアミド6、ポリアミド66が好ましく使用できる。ポリアミド6及びポリアミド66の特性をバランスよく付与する為にアロイ化したものが、特に好ましく使用できる。   The polyamide resin is not particularly limited as long as it is fluid. The polyamide resin such as polyamide 6, polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 6-10, acrylonitrile-butadiene-styrene copolymer, Mixtures or alloyed with other resins such as styrene-butadiene copolymer can also be used. Of these, polyamide 6 and polyamide 66 can be preferably used. In order to impart the properties of polyamide 6 and polyamide 66 in a well-balanced manner, an alloy that has been alloyed can be particularly preferably used.

本発明では、上記の表面処理を施されたガラス繊維束を、溶融したポリアミド樹脂で含浸することにより長繊維強化ポリアミド樹脂成形材料が製造される。即ち、ガラス繊維束は、押出機が取り付けられた含浸ダイ中を引き抜かれ、その間に溶融したポリアミド樹脂が含浸される。含浸ダイの中には数本のバーが設置され、ガラス繊維束はそこを通過される際に開繊される。   In the present invention, a long fiber reinforced polyamide resin molding material is produced by impregnating the glass fiber bundle subjected to the above surface treatment with a molten polyamide resin. That is, the glass fiber bundle is drawn out of the impregnation die to which the extruder is attached, and is impregnated with the molten polyamide resin. Several bars are installed in the impregnation die, and the glass fiber bundle is opened as it passes through it.

一方、押出機より好ましくは270℃〜350℃で可塑化され溶融されたポリアミド樹脂が含浸ダイに送りこまれ、開繊したガラス繊維束に含浸され、そしてポリアミド樹脂を含浸したガラス繊維束は、含浸ダイ出口でダイス等により余分なポリアミド樹脂をしごかれ、冷却される。なお、ポリアミド樹脂の可塑化温度は、ガラス繊維含有率及び含浸の度合に応じたメルトフローレート値に合わせ調整するのが好ましい。   On the other hand, the polyamide resin plasticized and melted preferably at 270 ° C. to 350 ° C. is fed into the impregnation die, impregnated into the opened glass fiber bundle, and the glass fiber bundle impregnated with the polyamide resin is impregnated from the extruder. Excess polyamide resin is squeezed by a die or the like at the die exit and cooled. The plasticizing temperature of the polyamide resin is preferably adjusted according to the melt flow rate value according to the glass fiber content and the degree of impregnation.

本発明で長繊維強化ポリアミド樹脂成形材料を製造するためには、ポリアミド樹脂の可塑化温度は、上記の温度範囲で充分であるが、含浸性・生産性及び最終的に得られる成形品におけるガラス繊維の分散性をより向上させるためには、特に、290℃〜340℃が好適である。このようにして得られる長繊維強化ポリアミド樹脂成形材料中のガラス含有率は、好ましくは35〜65質量%、更には40〜60質量%が好適である。該ガラス含有率が65質量%を超えると、ガラス繊維量が多くなり、ポリアミド樹脂の含浸が不充分となりやすい。一方、35質量%未満では、ガラス繊維の補強効果が顕著ではなく、また、コスト面に好ましくない影響が現れる。   In order to produce a long fiber reinforced polyamide resin molding material in the present invention, the above-mentioned temperature range is sufficient as the plasticizing temperature of the polyamide resin. However, impregnation and productivity and glass in the finally obtained molded article are sufficient. In order to further improve the dispersibility of the fibers, 290 ° C to 340 ° C is particularly preferable. The glass content in the long fiber reinforced polyamide resin molding material thus obtained is preferably 35 to 65% by mass, and more preferably 40 to 60% by mass. When the glass content exceeds 65% by mass, the amount of glass fiber increases and the impregnation with the polyamide resin tends to be insufficient. On the other hand, if it is less than 35% by mass, the reinforcing effect of the glass fiber is not remarkable, and an undesirable effect appears in terms of cost.

次いで、長繊維強化ポリアミド樹脂を含浸したガラス繊維束は、切断機によって好ましくは、3〜12mm、特に好ましくは、5〜10mmの長さに切断される。切断長が3mm未満では、得られる長繊維強化ポリアミド樹脂成形材料が縦に割れやすくなり、毛羽立ち等の問題が生じる。一方、切断長が12mmを超えると、成形時のガラス繊維の分散性が低下し、得られる成形品における機械的強度にバラツキが生じ、また、成形品表面外観における不分散による外観不良が生じ易くなる。   Next, the glass fiber bundle impregnated with the long fiber reinforced polyamide resin is preferably cut into a length of 3 to 12 mm, particularly preferably 5 to 10 mm, by a cutting machine. When the cutting length is less than 3 mm, the obtained long fiber reinforced polyamide resin molding material is easily cracked in the vertical direction, causing problems such as fluffing. On the other hand, if the cutting length exceeds 12 mm, the dispersibility of the glass fiber during molding is lowered, the mechanical strength of the resulting molded product varies, and appearance defects due to non-dispersion in the molded product surface appearance are likely to occur. Become.

製造された長繊維強化ポリアミド樹脂成形材料は、それ単独で、又は他の樹脂と混合して成形に供される。この場合に混合、使用される樹脂としては、長繊維強化ポリアミド樹脂成形材料に含まれるポリアミド樹脂と必ずしも同じものを用いる必要はないが、同じポリアミド樹脂を用いた場合、成形品の機械的強度や表面外観性に優れるために好ましい。   The produced long fiber reinforced polyamide resin molding material is used for molding alone or mixed with other resins. The resin mixed and used in this case is not necessarily the same as the polyamide resin contained in the long fiber reinforced polyamide resin molding material, but when the same polyamide resin is used, It is preferable because of its excellent surface appearance.

本発明の長繊維強化ポリアミド樹脂成形材料を使用した成形品の製造方法における成形方法は特に制限されないが、好ましくは射出成形が使用される。本発明では、成形品中の強化繊維が重量平均繊維長で好ましくは2mm以上で分散していることが好ましい。かかる成形品を製造するためには、溝の深いスクリュー、径の大きいノズルを備えた成形機を使用することが好ましい。   Although the molding method in the manufacturing method of the molded article using the long fiber reinforced polyamide resin molding material of the present invention is not particularly limited, preferably injection molding is used. In the present invention, it is preferable that the reinforcing fibers in the molded product are dispersed with a weight average fiber length of preferably 2 mm or more. In order to manufacture such a molded article, it is preferable to use a molding machine equipped with a screw having a deep groove and a nozzle having a large diameter.

本発明の長繊維強化ポリアミド樹脂成形材料には、本発明の目的を大きく阻害しない範囲で成形品に所望の特性を付与するために適宜の添加剤を含有させることができる。例えば、酸化防止剤、紫外線吸収剤等の安定剤、帯電防止剤、染料や顔料等の着色剤、潤滑剤、可塑剤並びにガラスフレーク、ガラス粉、ガラスビーズ、マイカ、アルミナ及びカーボン粉等の無機材料を適当量配合させてもよい。また、成形時の成形材料の流動性向上及び強化繊維の均一化に有効な脂肪酸の金属塩、例えば、炭素原子数28〜30の脂肪酸とリチウム等の金属との塩等の滑剤から選択した化合物を適量配合することができる。   The long fiber reinforced polyamide resin molding material of the present invention can contain an appropriate additive in order to impart desired characteristics to the molded product within a range that does not significantly impair the object of the present invention. For example, antioxidants, stabilizers such as ultraviolet absorbers, antistatic agents, coloring agents such as dyes and pigments, lubricants, plasticizers, and inorganics such as glass flakes, glass powder, glass beads, mica, alumina and carbon powder An appropriate amount of the material may be blended. Also, a compound selected from a lubricant such as a metal salt of a fatty acid effective for improving the fluidity of the molding material during molding and homogenizing the reinforcing fiber, for example, a salt of a fatty acid having 28 to 30 carbon atoms and a metal such as lithium. Can be blended in an appropriate amount.

以下に本発明について実施例を挙げてさらに具体的に説明するが、本発明はかかる実施例に限定して解釈されるべきでないことはもちろんである。なお、以下の例において、例1、例2は、本発明の実施例であり、例3〜例6は比較例である。   The present invention will be described more specifically with reference to the following examples. However, the present invention should not be construed as being limited to such examples. In the following examples, Examples 1 and 2 are examples of the present invention, and Examples 3 to 6 are comparative examples.

実施例及び比較例において長繊維強化ポリアミド樹脂成形材料の製造に用いたガラス繊維束及びポリアミド樹脂は以下のとおりである。
・ガラス繊維束(ガラスロービング):ブッシングから紡糸された直後の、繊維径10μm及び16μmのガラス単繊維に表面処理剤、ポリウレタン樹脂、エチレン−マレイン酸共重合体、シランカップリング剤を所定量塗布することにより製造した。なお、1繊維束中の単繊維の本数は、平均繊維径10μmの場合2400本、また16μmの場合は4000本となるよう調整した。
・ポリアミド樹脂:JIS K7210に準拠した、温度300℃、荷重325gにおけるメルトフローレート値が、90および16である、市販のポリアミド6樹脂を使用した。
In the examples and comparative examples, the glass fiber bundle and the polyamide resin used for the production of the long fiber reinforced polyamide resin molding material are as follows.
・ Glass fiber bundle (glass roving): A predetermined amount of surface treatment agent, polyurethane resin, ethylene-maleic acid copolymer, and silane coupling agent are applied to glass fibers having a fiber diameter of 10 μm and 16 μm immediately after spinning from bushings. It was manufactured by doing. The number of single fibers in one fiber bundle was adjusted to be 2400 when the average fiber diameter was 10 μm and 4000 when the average fiber diameter was 16 μm.
Polyamide resin: A commercially available polyamide 6 resin having a melt flow rate value of 90 and 16 at a temperature of 300 ° C. and a load of 325 g according to JIS K7210 was used.

前記材料を用いて、以下に示す方法により製造し長繊維強化ポリアミド樹脂材料を射出成形し、成形品の表面外観、引張強度、曲げ強度、耐衝撃性について評価した。   Using the above materials, the long fiber reinforced polyamide resin material produced by the method shown below was injection molded, and the surface appearance, tensile strength, bending strength, and impact resistance of the molded product were evaluated.

・長繊維強化ポリアミド樹脂成形材料の製造:
前記のガラスロービングを含浸ダイで開繊して引きながら、押出機で可塑化、溶融して含浸ダイへ送り込んだポリアミド樹脂の溶融物に浸透させた後、賦形ダイを通して、ストランドとして引取り、冷却後、切断機で例2は長さ12mmに、その他は長さ8mmに切断して製造した。可塑化、溶融温度は、290℃である。
・ Manufacture of long fiber reinforced polyamide resin molding materials:
While opening the glass roving with an impregnation die and pulling it, plasticizing with an extruder, melting and infiltrating the melt of the polyamide resin sent to the impregnation die, and then taking it as a strand through the shaping die, After cooling, Example 2 was cut with a cutting machine into a length of 12 mm, and the others were cut into a length of 8 mm. Plasticization and melting temperature is 290 ° C.

・成形品の製造:
前記にて得られた長繊維強化ポリアミド樹脂成形材料を、長繊維用射出成形機、及び多目的試験片金型を用い、JIS-K8921-2に準拠したシリンダー温度300℃、射出速度12.7mm/secの条件で射出成形し、物性試験用の多目的試験片(JIS K7139)を作製した。
・ Manufacture of molded products:
Using the long fiber reinforced polyamide resin molding material obtained above, a cylinder temperature of 300 ° C. and an injection speed of 12.7 mm / in accordance with JIS-K8921-2 using a long fiber injection molding machine and a multi-purpose test piece mold. A multi-purpose test piece (JIS K7139) for physical property testing was produced by injection molding under the conditions of sec.

・成形品の評価:
前記で得た成形品を使用し、引張強度はJIS-K-7161、曲げ強度はJIS-K-7171、ノッチ付Izod衝撃強度はJIS-K-7110に準拠して評価した。
・ Evaluation of molded products:
Using the molded product obtained above, the tensile strength was evaluated according to JIS-K-7161, the bending strength was evaluated according to JIS-K-7171, and the notched Izod impact strength was evaluated according to JIS-K-7110.

また、繊維分散性は前記長繊維射出成形機により縦60mm、横60mm、厚さ2mmの平板成形品10枚成形したものを用い、その表面における繊維の分散状態、特に未解繊束の有無、頻度を目視により成形品の表面外観性を観察した。結果の評価は以下により判断した。
◎ 長繊維の未解繊束が、10枚全てにおいてみられない
○ 長繊維の未解繊束が、ほとんど見られない
× 長繊維の未解繊束が、散見される
×× 長繊維の未解繊束が、10枚全てにおいて見られる
Further, the fiber dispersibility was obtained by molding 10 flat molded products having a length of 60 mm, a width of 60 mm, and a thickness of 2 mm using the long fiber injection molding machine, and the dispersion state of the fibers on the surface, particularly the presence or absence of undefined bundles, The appearance of the surface of the molded product was observed visually. The evaluation of the results was judged as follows.
◎ No undefined bundles of long fibers are observed in all 10 sheets ○ Undissolved bundles of long fibers are rarely seen × Undefined bundles of long fibers are scattered ×× A defibrated bundle can be seen on all 10 sheets

表1から明らかなように、例1及び例2に比較して、例4〜6は、繊維径16mmであり、分散性は良好なものの、強度が低い、また、例3は、繊維径が10mmであるが、ポリアミド樹脂のメルトフローレート値が低く、表面処理剤の付着性が高いため分散性(表面外観性)に劣ることがわかる。このように例1及び例2は、例3〜6と比較して、ガラス含有率等が同等であるにもかかわらず機械的強度や表面外観性に優れる。   As is clear from Table 1, compared with Examples 1 and 2, Examples 4 to 6 have a fiber diameter of 16 mm and good dispersibility, but the strength is low. In Example 3, the fiber diameter is low. Although it is 10 mm, it can be seen that the melt flow rate value of the polyamide resin is low and the surface treatment agent has high adhesion, so that the dispersibility (surface appearance) is poor. Thus, Example 1 and Example 2 are excellent in mechanical strength and surface appearance, compared with Examples 3-6, although glass content rate etc. are equivalent.

Figure 2006016463
Figure 2006016463

Claims (5)

JIS K7210に準拠した、温度300℃、荷重325gにおける、メルトフローレート値が20〜120g/10分であるポリアミド樹脂と、繊維径が5〜12μmであり、表面処理剤を0.2〜0.8質量%付着する強化繊維とを含み、該強化繊維が成形材料100質量部当たり35〜65質量部含まれ、かつ、組成物の長さ方向と実質上ほぼ同一長さ状態で配列されていることを特徴とする長繊維強化ポリアミド樹脂成形材料。   In accordance with JIS K7210, a polyamide resin having a melt flow rate value of 20 to 120 g / 10 min at a temperature of 300 ° C. and a load of 325 g, a fiber diameter of 5 to 12 μm, and a surface treatment agent of 0.2 to 0.00. 8% by mass adhering reinforcing fibers, the reinforcing fibers are contained in an amount of 35 to 65 parts by mass per 100 parts by mass of the molding material, and arranged in substantially the same length as the length direction of the composition. A long fiber reinforced polyamide resin molding material characterized by the above. 前記長繊維強化ポリアミド樹脂成形材料の長さが3〜12mmである請求項1に記載の長繊維強化ポリアミド樹脂成形材料。   The long fiber reinforced polyamide resin molding material according to claim 1, wherein the length of the long fiber reinforced polyamide resin molding material is 3 to 12 mm. 前記強化繊維がガラス繊維である請求項1又は2に記載の長繊維強化ポリアミド樹脂成形材料。   The long fiber-reinforced polyamide resin molding material according to claim 1 or 2, wherein the reinforcing fibers are glass fibers. 繊維径が5〜12μmの単繊維600〜5000本を表面処理剤が0.2〜0.8質量%付着するようにして束ねた繊維束を2〜12本引き揃えた強化繊維を、JIS K7210に準拠した、温度300℃、荷重325gにおける、メルトフローレート値が20〜120g/10分であるポリアミド樹脂を、得られる成形材料中の強化繊維が成形材料100質量部あたり35〜65質量部となるように含浸させ、ノズルより連続的に引き抜き賦形された組成物を切断することを特徴とする長繊維強化ポリアミド樹脂成形材料の製造方法。   Reinforcing fibers obtained by arranging 2 to 12 fiber bundles obtained by bundling 600 to 5000 single fibers having a fiber diameter of 5 to 12 μm so that the surface treatment agent is attached to 0.2 to 0.8 mass% are JIS K7210. , A polyamide resin having a melt flow rate value of 20 to 120 g / 10 min at a temperature of 300 ° C. and a load of 325 g is 35 to 65 parts by mass per 100 parts by mass of the molding material. A method for producing a long fiber reinforced polyamide resin molding material, comprising impregnating the composition and cutting the composition continuously drawn and shaped from a nozzle. 前記強化繊維がガラス繊維であり、かつ長さ3〜12mmに切断する請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein the reinforcing fiber is a glass fiber and is cut into a length of 3 to 12 mm.
JP2004194467A 2004-06-30 2004-06-30 Long glass fiber reinforced polyamide resin molding material and method for producing the same Expired - Fee Related JP4666571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194467A JP4666571B2 (en) 2004-06-30 2004-06-30 Long glass fiber reinforced polyamide resin molding material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194467A JP4666571B2 (en) 2004-06-30 2004-06-30 Long glass fiber reinforced polyamide resin molding material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006016463A true JP2006016463A (en) 2006-01-19
JP4666571B2 JP4666571B2 (en) 2011-04-06

Family

ID=35791022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194467A Expired - Fee Related JP4666571B2 (en) 2004-06-30 2004-06-30 Long glass fiber reinforced polyamide resin molding material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4666571B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197938A (en) * 2008-02-22 2009-09-03 Ntn Corp Member for rolling bearing and rolling bearing
JP2009204121A (en) * 2008-02-28 2009-09-10 Ntn Corp Rolling bearing member and rolling bearing
US7834080B2 (en) 2006-03-13 2010-11-16 Asahi Kasei Chemicals Corporation Process for producing glass fiber-reinforced polyamide resin composition
JP2011201990A (en) * 2010-03-25 2011-10-13 Toyobo Co Ltd Polyamide resin pellet reinforced with long glass fiber
JP2011241296A (en) * 2010-05-18 2011-12-01 Asahi Kasei Chemicals Corp Process for manufacturing long fiber-reinforced polyamide resin composition
DE102012200059A1 (en) * 2012-01-03 2013-07-04 Thermoplast Composite Gmbh Composites
JP2015017248A (en) * 2013-06-13 2015-01-29 旭化成ケミカルズ株式会社 Glass fiber-reinforced polyamide resin composition, and molding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179035A (en) * 1989-12-08 1991-08-05 Mitsui Toatsu Chem Inc Molding material and its mixture
JPH04338140A (en) * 1991-05-10 1992-11-25 Dainippon Ink & Chem Inc Water-base sizing agent for glass fiber
JPH05162124A (en) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd Long fiber-reinforced thermoplastic resin pellet
JPH05162135A (en) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd Manufacture of fiber-reinforced thermoplastic resin structure
JPH06114830A (en) * 1992-10-05 1994-04-26 Asahi Fiber Glass Co Ltd Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
JPH07251437A (en) * 1994-03-15 1995-10-03 Ube Ind Ltd Method and device for manufacture of long fiber reinforced thermoplastic composite material
JP2002085109A (en) * 2000-07-14 2002-03-26 Daicel Chem Ind Ltd Toe core for safety shoes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179035A (en) * 1989-12-08 1991-08-05 Mitsui Toatsu Chem Inc Molding material and its mixture
JPH04338140A (en) * 1991-05-10 1992-11-25 Dainippon Ink & Chem Inc Water-base sizing agent for glass fiber
JPH05162124A (en) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd Long fiber-reinforced thermoplastic resin pellet
JPH05162135A (en) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd Manufacture of fiber-reinforced thermoplastic resin structure
JPH06114830A (en) * 1992-10-05 1994-04-26 Asahi Fiber Glass Co Ltd Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
JPH07251437A (en) * 1994-03-15 1995-10-03 Ube Ind Ltd Method and device for manufacture of long fiber reinforced thermoplastic composite material
JP2002085109A (en) * 2000-07-14 2002-03-26 Daicel Chem Ind Ltd Toe core for safety shoes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834080B2 (en) 2006-03-13 2010-11-16 Asahi Kasei Chemicals Corporation Process for producing glass fiber-reinforced polyamide resin composition
JP2009197938A (en) * 2008-02-22 2009-09-03 Ntn Corp Member for rolling bearing and rolling bearing
JP2009204121A (en) * 2008-02-28 2009-09-10 Ntn Corp Rolling bearing member and rolling bearing
JP2011201990A (en) * 2010-03-25 2011-10-13 Toyobo Co Ltd Polyamide resin pellet reinforced with long glass fiber
JP2011241296A (en) * 2010-05-18 2011-12-01 Asahi Kasei Chemicals Corp Process for manufacturing long fiber-reinforced polyamide resin composition
DE102012200059A1 (en) * 2012-01-03 2013-07-04 Thermoplast Composite Gmbh Composites
JP2015017248A (en) * 2013-06-13 2015-01-29 旭化成ケミカルズ株式会社 Glass fiber-reinforced polyamide resin composition, and molding

Also Published As

Publication number Publication date
JP4666571B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
EP0663418B1 (en) Mixture of long glass fiber-reinforced polypropylene and polypropylene resin and moldings formed therefrom
JP3073988B1 (en) Manufacturing method of organic fiber reinforced resin pellets
US7592388B2 (en) Long fiber-reinforced thermoplastic compositions, articles made therefrom and methods of making the same
JP2006045390A (en) Flat glass fiber-containing pellet, molded object of flat glass fiber-containing thermoplastic resin and manufacturing method thereof
JPWO2008056646A1 (en) Organic fiber reinforced composite resin composition and organic fiber reinforced composite resin molded product
JP2001504401A (en) Rod-shaped pellets
JP2000037723A (en) Fiber-reinforced tbermoplastic resin molded article with excellent appearance
JP2023182600A (en) Weatherable fiber-reinforced propylene composition
JP4666571B2 (en) Long glass fiber reinforced polyamide resin molding material and method for producing the same
JPH07232324A (en) Melt molding mixture of long-glass-fiber reinforced polypropylene with polypropylene, and molded item thereof
JP2009242616A (en) Resin injection-molded article and its molding method
KR101602814B1 (en) Polyamide 66 resin composition reinforced with glass fiber for high tensile strength and manufacturing method thereof
JP4743593B2 (en) Manufacturing method of long fiber reinforced polypropylene resin molding material
JP4514531B2 (en) A composition for molding a long fiber reinforced polyamide resin and a method for producing a molded body.
JP2009132772A (en) Composition for automobile interior part
JP4330258B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
JP3352121B2 (en) Long fiber reinforced polyamide resin composition and molded article thereof
JP2005298663A (en) Automobile interior part made of resin
JPH0365311A (en) Carbon fiber chop
JP2002086509A (en) Mold for molding resin composition containing fibrous filler, molding method using the same, and resin molded product
JP2003105620A (en) Shell of industrial safety helmet and method for producing the same
JP5238938B2 (en) Long fiber reinforced composite resin composition and molded product
JP2003285323A (en) Fiber reinforced thermoplastic resin pellets, plastication method for pellets and manufacturing method for molded object
JPH059380A (en) Long-fiber reinforced polyamide resin composition and its molded article
WO1995009893A1 (en) Long-fiber-reinforced polyamide resin composition and molded article thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees