JP2009242616A - Resin injection-molded article and its molding method - Google Patents

Resin injection-molded article and its molding method Download PDF

Info

Publication number
JP2009242616A
JP2009242616A JP2008091361A JP2008091361A JP2009242616A JP 2009242616 A JP2009242616 A JP 2009242616A JP 2008091361 A JP2008091361 A JP 2008091361A JP 2008091361 A JP2008091361 A JP 2008091361A JP 2009242616 A JP2009242616 A JP 2009242616A
Authority
JP
Japan
Prior art keywords
resin
molded product
fiber
injection molded
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008091361A
Other languages
Japanese (ja)
Inventor
Tadashi Uto
正 宇戸
Keiji Kawamoto
圭司 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DaikyoNishikawa Corp
Original Assignee
DaikyoNishikawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaikyoNishikawa Corp filed Critical DaikyoNishikawa Corp
Priority to JP2008091361A priority Critical patent/JP2009242616A/en
Publication of JP2009242616A publication Critical patent/JP2009242616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure strength and surface impact resistance of a resin injection-molded article by suppressing bending fracture of a reinforcing fiber. <P>SOLUTION: A thermoplastic resin (pellet) R is charged into a twin screw extruder 1C and kneaded and melted, and a granular solid material A of which the aspect ratio is set to be 1-5 and the average particle size is set to be 10 μm or less of 0.5-5 wt.% is added and charged and uniformly mixed therewith. A roving F1-a is introduced into the twin screw extruder 1C and is cut and unraveled in the kneading process of the thermoplastic resin R and the granular solid material A, and subsequently the thermoplastic resin with the granular solid material A and the reinforcing fiber mixed thereinto is extruded into an injection molding machine 15C, and is injected into a mold 23 by the injection molding machine 15C so as to form the resin injection-molded article. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、補強繊維を混入した樹脂射出成形品及びその成形方法の改良に関し、特に補強繊維に折損対策に関するものである。   The present invention relates to an improvement in a resin injection molded product in which reinforcing fibers are mixed and a molding method thereof, and particularly to measures against breakage of reinforcing fibers.

従来より、樹脂射出成形品にガラス繊維等の補強繊維を混入して強度及び剛性を確保することが行われている。特に、最近では、補強繊維として繊維長が比較的長いものを採用することで、樹脂射出成形品の強度及び面衝撃性を大幅に向上させて構造部材にまで用途が広がっている。   2. Description of the Related Art Conventionally, reinforcing and reinforcing fibers such as glass fibers are mixed into a resin injection molded product to ensure strength and rigidity. In particular, recently, by adopting a fiber having a relatively long fiber length as a reinforcing fiber, the strength and surface impact property of a resin injection molded product are greatly improved, and the application has been extended to structural members.

その一例として、特許文献1では、長繊維状補強材と鱗片状充填材とを混入した結晶性樹脂で射出成形された樹脂射出成形品が開示されている。   As an example, Patent Document 1 discloses a resin injection molded product that is injection-molded with a crystalline resin in which a long fibrous reinforcing material and a scaly filler are mixed.

また、特許文献2では、ガラス長繊維を含むペレットの可塑化射出に適した射出成形機が開示されている。
特開2004−323559号公報(第3〜5頁) 特開2004−291409号公報(段落0019欄、図1)
Patent Document 2 discloses an injection molding machine suitable for plasticizing injection of pellets containing long glass fibers.
JP 2004-323559 A (pages 3 to 5) JP 2004-291409 A (paragraph 0019 column, FIG. 1)

しかし、一般に使用される補強繊維は剛直な場合が多いため、繊維長が長くなると、可塑化溶融時、混練時及び射出成形時において、繊維同士が絡み合って樹脂粘度が高くなり、補強繊維が折損し易く、繊維長の長い補強繊維を用いることによる物性向上が思うように期待できない。   However, since the reinforcing fibers generally used are often rigid, when the fiber length becomes long, the fibers become entangled during plasticizing and melting, kneading and injection molding, the resin viscosity becomes high, and the reinforcing fibers break. The improvement of physical properties by using a reinforcing fiber having a long fiber length is not expected as expected.

この補強繊維の折損を抑制するために、上記の特許文献2では、混練力の小さな特殊スクリューを採用しているが、一般の射出成形機とは異なる特殊な射出成形機であるため、設備投資が必要でコストが高騰する。また、混練力が小さいため、他の一般の樹脂射出成形品の成形には適さず、汎用性がなくて射出成形機の生産性が良くない。   In order to suppress the breakage of the reinforcing fiber, the above-mentioned Patent Document 2 employs a special screw with a small kneading force, but because it is a special injection molding machine different from a general injection molding machine, capital investment Is necessary and the cost increases. Further, since the kneading force is small, it is not suitable for molding other general resin injection molded products, and is not versatile and the productivity of the injection molding machine is not good.

一方、成形温度を高温にして樹脂粘度を下げることで補強繊維の折損を抑制することも行われるが、高温成形であるため樹脂が劣化し易くなり、新たに抗酸化剤を入れるなどの対策が必要でコストの高騰を招く。   On the other hand, it is also possible to suppress breakage of the reinforcing fibers by lowering the resin viscosity by increasing the molding temperature, but the resin tends to deteriorate due to high temperature molding, and measures such as adding an antioxidant are newly added. Necessary and costly.

なお、上記の特許文献1では、樹脂射出成形品の反り変形を防止する観点から、充填材としてアスペクト比が5〜200、平均径が20〜700μmに設定された鱗片状のものを採用しているものであって、補強繊維の折損については何ら対策が施されていない。つまり、充填材が鱗片状でかつ径が大きいと、混練時等に補強繊維の折損頻度が高くなることを本出願人は実施形態にて後述する実験(比較例3)により経験している。   In addition, in said patent document 1, from a viewpoint which prevents the curvature deformation of a resin injection molded product, the thing of a scale shape with which the aspect-ratio was set to 5-200 and the average diameter to 20-700 micrometers was employ | adopted as a filler. No measures are taken for breakage of the reinforcing fiber. That is, when the filler is scaly and has a large diameter, the applicant has experienced through experiments (Comparative Example 3) described later in the embodiment that the frequency of breakage of the reinforcing fibers increases during kneading.

この発明はかかる点に鑑みてなされたものであり、その目的とするところは、補強繊維の折損を抑制して樹脂射出成形品中の補強繊維長を長くすることにあり、その結果として樹脂射出成形品の物性、特に強度及び面衝撃性を確保することにある。   The present invention has been made in view of such points, and the object of the invention is to lengthen the reinforcing fiber length in the resin injection molded product by suppressing breakage of the reinforcing fiber, and as a result, the resin injection. The object is to ensure the physical properties of the molded product, particularly the strength and surface impact.

上記の目的を達成するため、この発明は、充填材として混練時等に潤滑機能を発揮する粒状固形物を採用したことを特徴とする。   In order to achieve the above object, the present invention is characterized in that a granular solid material that exhibits a lubricating function at the time of kneading or the like is employed as a filler.

具体的には、この発明は、樹脂射出成形品及びその成形方法を対象とし、次のような解決手段を講じた。   Specifically, the present invention is directed to a resin injection molded article and a molding method thereof, and has taken the following solutions.

すなわち、請求項1〜3に記載の発明は、補強繊維と粒状固形物とを混入した熱可塑性樹脂で射出成形された樹脂射出成形品に関するものであり、そのうち、請求項1に記載の発明は、上記粒状固形物は、アスペクト比が1〜5、平均粒径が10μm以下、配合量が0.5〜5重量%に設定されていることを特徴とする。   That is, the invention described in claims 1 to 3 relates to a resin injection molded product that is injection-molded with a thermoplastic resin in which reinforcing fibers and granular solids are mixed. Of these, the invention described in claim 1 The particulate solid has an aspect ratio of 1 to 5, an average particle size of 10 μm or less, and a blending amount of 0.5 to 5% by weight.

請求項2に記載の発明は、請求項1に記載の発明において、上記粒状固形物は、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the granular solid material includes at least one selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina. It is characterized by.

請求項3に記載の発明は、請求項1に記載の発明において、上記補強繊維は、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つからなることを特徴とする。   The invention according to claim 3 is the invention according to claim 1, wherein the reinforcing fiber is at least one selected from glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker, and aramid fiber. It consists of one.

請求項4〜8に記載の発明は、補強繊維と粒状固形物とを混入した熱可塑性樹脂で樹脂射出成形品を射出成形する成形方法に関するものであり、そのうち、請求項4に記載の発明は、補強繊維の柱状繊維束に熱可塑性樹脂を含浸してなる繊維混入ペレットを成形するペレット成形工程と、上記繊維混入ペレットを射出成形機に投入して溶融させ、当該溶融樹脂を金型に射出して樹脂射出成形品を成形する成形品成形工程と、上記ペレット成形工程時又は成形品成形工程時に、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物を0.5〜5重量%添加する固形物添加工程とを備えていることを特徴とする。   The invention described in claims 4 to 8 relates to a molding method for injection molding a resin injection molded product with a thermoplastic resin in which reinforcing fibers and granular solids are mixed. Of these, the invention described in claim 4 A pellet forming step of forming fiber-mixed pellets obtained by impregnating a columnar fiber bundle of reinforcing fibers with a thermoplastic resin, and the fiber-mixed pellets are put into an injection molding machine and melted, and the molten resin is injected into a mold In the molded product molding process for molding a resin injection molded product, and the pellet molding process or the molded product molding process, a granular solid having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less is set to 0.0. And 5-5% by weight of a solid substance addition step.

請求項5に記載の発明は、熱可塑性樹脂にアスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物を0.5〜5重量%添加するとともに、チョップドストランド状態の補強繊維を分散させてなる繊維混入ペレットを成形するペレット成形工程と、上記繊維混入ペレットを射出成形機に投入して溶融させ、当該溶融樹脂を金型に射出して樹脂射出成形品を成形する成形品成形工程とを備えていることを特徴とする。   In the invention according to claim 5, 0.5 to 5% by weight of a granular solid having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less is added to the thermoplastic resin, and the chopped strand is reinforced. Pellet molding process for molding fiber-mixed pellets in which fibers are dispersed, and molding the resin-mixed pellets into an injection molding machine, and then injecting the molten resin into a mold to mold a resin injection molded product And a product molding step.

請求項6に記載の発明は、二軸押出機に熱可塑性樹脂を投入するとともに、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物を0.5〜5重量%投入し、かつロービング状態の補強繊維を上記二軸押出機に導入して上記熱可塑性樹脂及び粒状固形物の混練過程で切断・解繊した後、上記粒状固形物及び補強繊維が混入された溶融状態の熱可塑性樹脂を射出成形機に押し出して該射出成形機により金型に射出して樹脂射出成形品を成形することを特徴とする。   The invention according to claim 6 introduces a thermoplastic resin into a twin screw extruder, and 0.5 to 5% by weight of a granular solid having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less. Introducing the roving reinforcing fiber into the twin screw extruder, cutting and defibrating in the kneading process of the thermoplastic resin and the granular solid, and then mixing the granular solid and the reinforcing fiber The thermoplastic resin in a state is extruded into an injection molding machine and injected into a mold by the injection molding machine to form a resin injection molded product.

請求項7に記載の発明は、請求項4〜6のいずれか1項に記載の発明において、上記粒状固形物は、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなることを特徴とする。   The invention according to claim 7 is the invention according to any one of claims 4 to 6, wherein the particulate solid is selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina. It consists of at least one.

請求項8に記載の発明は、請求項4〜6のいずれか1項に記載の発明において、上記補強繊維は、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つからなることを特徴とする。   The invention according to claim 8 is the invention according to any one of claims 4 to 6, wherein the reinforcing fiber is made of glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker and aramid fiber. It is characterized by comprising at least one selected from among them.

請求項1,4〜6に係る発明によれば、粒状固形物として、アスペクト比が1〜5、平均粒径が10μm以下、配合量が0.5〜5重量%に設定されているものを採用しているため、補強繊維と熱可塑性樹脂との混練時等に上記粒状固形物が潤滑剤としての役割を果たし、樹脂粘度が高くしかも補強繊維の繊維長が比較的長くても、補強繊維の折損が抑制されて樹脂射出成形品の強度及び面衝撃性が確保される。また、粒状固形物の形状、大きさ及び配合量を特定するだけでよいため、汎用の射出成形機で樹脂射出成形品を射出成形でき、余分な設備投資が不要でコストが低減するとともに、各種の樹脂射出成形品の生産が可能で射出成形機の稼働率を高め生産性が向上する。さらに、流動性を考慮して樹脂粘度を下げるため成形温度を高くする必要もないため、熱可塑性樹脂の熱劣化がなく、熱劣化防止用の抗酸化剤の添加も不要であり、このことによってもコストが低減する。特に、請求項6に係る発明では、ペレット成形工程を省略できるため、成形サイクルが短縮されて生産効率とエネルギー効率が向上する。しかも、原料と補強繊維を混練しその場で直接樹脂射出成形品の射出成形を行うので、請求項4,5に係る発明に比べて混練力の強い二軸押出工程を必要とし、この混練力の強い二軸押出機を用いる場合、補強繊維は折損し易いが、本発明の粒状固形物を添加することで補強繊維の折損抑制効果が大きくなる。   According to the inventions according to claims 1 and 4 to 6, as the granular solid, those having an aspect ratio of 1 to 5, an average particle size of 10 μm or less, and a blending amount of 0.5 to 5% by weight Since the above-mentioned granular solids serve as a lubricant when kneading the reinforcing fiber and the thermoplastic resin, the reinforcing fiber is used even if the resin viscosity is high and the fiber length of the reinforcing fiber is relatively long. The strength and surface impact of the resin injection molded product are ensured. In addition, since it is only necessary to specify the shape, size, and blending amount of granular solids, resin injection molded products can be injection molded with a general-purpose injection molding machine, eliminating the need for extra equipment investment and reducing costs. It is possible to produce plastic injection molded products, increasing the operating rate of injection molding machines and improving productivity. Furthermore, since it is not necessary to increase the molding temperature in order to lower the resin viscosity in consideration of fluidity, there is no thermal degradation of the thermoplastic resin, and no addition of an antioxidant for preventing thermal degradation is necessary. Also reduces costs. In particular, in the invention according to claim 6, since the pellet forming step can be omitted, the forming cycle is shortened and the production efficiency and the energy efficiency are improved. In addition, since the raw material and the reinforcing fiber are kneaded and the injection molding of the resin injection molded product is performed directly on the spot, a biaxial extrusion process having a stronger kneading force than that of the inventions according to claims 4 and 5 is required. When a strong twin screw extruder is used, the reinforcing fibers are easily broken, but the effect of suppressing breakage of the reinforcing fibers is increased by adding the granular solid of the present invention.

請求項2,7に係る発明によれば、粒状固形物が、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなるため、安価でアスペクト比が小さい粒状固形物が容易に得られる。   According to the inventions according to claims 2 and 7, the granular solid is made of at least one selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina, so it is inexpensive and has a low aspect ratio. A granular solid is easily obtained.

請求項3,8に係る発明によれば、補強繊維として、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つを採用しているため、樹脂射出成形品の強度及び面衝撃性を効果的に高めることができる。   According to the third and eighth aspects of the invention, at least one selected from glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker, and aramid fiber is used as the reinforcing fiber. The strength and surface impact property of the resin injection molded product can be effectively increased.

以下、この発明の実施形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図6は、自動車のラジエータコアとラジエータの冷却ファンを覆う,この発明の実施形態に係る樹脂射出成形品としてのシュラウドSを示す。このシュラウドSは、補強繊維と粒状固形物とを混入した熱可塑性樹脂で射出成形されたものであり、特に、強度及び面衝撃性等の物性が優れている。なお、上記シュラウドSは樹脂射出成形品の一例であり、これに限らない。   FIG. 6 shows a shroud S as a resin injection-molded product according to an embodiment of the present invention that covers a radiator core of an automobile and a cooling fan of the radiator. This shroud S is injection-molded with a thermoplastic resin in which reinforcing fibers and granular solids are mixed, and is particularly excellent in physical properties such as strength and surface impact. The shroud S is an example of a resin injection molded product, and is not limited thereto.

上記熱可塑性樹脂は、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、プロピレン−αオレフィン共重合体、ポリブテン、ポリ−4メチルペンテン等のポリ−αオレフィンや、ポリアミド−6、ポリアミド−6,6、ポリアミド−6,10、ポリアミド−12、芳香族系ポリアミド等のポリアミドや、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエステル共重合体等のポリエステルや、他に、ポリスチレン、アクリロニトリル・ブタジエン・スチレン樹脂、ポリアセタール、ポリフェニレンオキサイド、ポリフェニレンサルファイド等である。そのなかでも、特に、大量に使用され安価に入手でき、かつ強度及び面衝撃性が要求される自動車分野等へ適用する観点から、ポリプロピレン、プロピレン−αオレフィン共重合体、ポリアミド−6、ポリアミド−6,6が好ましい。また、上記の2種以上からなる樹脂組成物や2種以上からなるポリマーアロイを採用することも好ましい。さらに、補強繊維との界面接着性を強化するために、不飽和酸あるいは酸無水物、珪素含有化合物等の反応性官能基あるいは極性官能基で改質された樹脂を配合したり、あるいは熱可塑性樹脂の混練過程で反応性官能基あるいは極性官能基を持つ化合物を過酸化物と共に共存させてグラフト重合させることなども有用である。熱可塑性樹脂の配合量は、特に限定されないが、樹脂射出成形品の目的・用途等を考慮して40〜95重量%の範囲で選定することが好ましい。   The thermoplastic resin is not particularly limited. For example, poly-α olefins such as polyethylene, polypropylene, propylene-α olefin copolymer, polybutene, poly-4 methylpentene, polyamide-6, polyamide-6, 6, Polyamide such as polyamide-6,10, polyamide-12, aromatic polyamide, polyester such as polyethylene terephthalate, polybutylene terephthalate, polyester copolymer, polystyrene, acrylonitrile / butadiene / styrene resin, polyacetal, polyphenylene Oxides, polyphenylene sulfide, and the like. Among these, polypropylene, propylene-α-olefin copolymer, polyamide-6, polyamide-, in particular, from the viewpoint of being used in a large amount and available at low cost and applied to the automotive field where strength and surface impact properties are required. 6,6 are preferred. It is also preferable to employ a resin composition comprising two or more of the above and a polymer alloy comprising two or more. Furthermore, in order to reinforce the interfacial adhesion with the reinforcing fiber, a resin modified with a reactive functional group or a polar functional group such as an unsaturated acid or acid anhydride, a silicon-containing compound, or the like is added. It is also useful to graft polymerize a compound having a reactive functional group or a polar functional group together with a peroxide during the kneading process of the resin. The blending amount of the thermoplastic resin is not particularly limited, but is preferably selected in the range of 40 to 95% by weight in consideration of the purpose and application of the resin injection molded product.

上記補強繊維は、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つからなる。また、そのなかでも、特に大量に使用され安価なガラス繊維及び高度な強度を発揮する炭素繊維が好ましい。補強樹脂は、平均直径が5〜30μm、フィラメント集束数が400〜25000のストランドを引き揃えて紐状にしたロービングや、ストランドを3〜20mmに切断したチョップドストランドの形態で使用される。また、必要に応じてストランドをより合わせたヤーンも使用できる。補強繊維の表面は、一般的にフィラメントの束を解繊し易くするためや熱可塑性樹脂との親和性を高めるためにカップリング剤及びサイジング剤で処理されていることが好ましい。補強繊維の配合量は、特に限定されないが、5〜60重量%、好ましくは20〜50重量%である。   The reinforcing fiber is composed of at least one selected from glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker, and aramid fiber. Among them, particularly preferred are glass fibers that are used in large quantities and inexpensive and carbon fibers that exhibit high strength. The reinforcing resin is used in the form of a roving in which strands having an average diameter of 5 to 30 μm and a filament focusing number of 400 to 25000 are aligned to form a string, or a chopped strand in which the strand is cut into 3 to 20 mm. Moreover, the yarn which combined the strand more as needed can also be used. In general, the surface of the reinforcing fiber is preferably treated with a coupling agent and a sizing agent in order to facilitate the opening of filament bundles and to increase the affinity with the thermoplastic resin. The blending amount of the reinforcing fiber is not particularly limited, but is 5 to 60% by weight, preferably 20 to 50% by weight.

上記粒状固形物は、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなる。また、そのなかでも、大量に使用され安価なタルク及び炭酸カルシウムが好ましい。この粒状固形物は、アスペクト比が1〜5、平均粒径が10μm以下、配合量が0.5〜5重量%に設定されている。このことをこの発明の最大の特徴としている。粒状固形物は、板状に近いタルク等はアスペクトが小さく、より球状に近いものほど好ましい。アスペクト比が5を超えると、補強繊維間や補強繊維と押出機や射出成形機のスクリュー及び加熱シリンダ間での潤滑機能を妨げて補強繊維の折損頻度が高くなって樹脂射出成形品中の繊維長が短くなり、物性、特に面衝撃性が低下するため、アスペクト比は5以下に設定している。粒状固形物の平均粒径を10μm以下に設定しているのは、平均粒径が10μmを超えると潤滑機能が低下して補強繊維の折損頻度が高くなって樹脂射出成形品中の繊維長が短くなり、面衝撃性が低下するからであり、配合量を0.5〜5重量%に設定しているのは、配合量が0.5重量%未満では潤滑機能が十分に発揮せず、配合量が5重量%を超えると粒状固形物による熱可塑性樹脂への影響が大きくなり、特に面衝撃性が低下するからである。なお、粒状固形物は熱可塑性樹脂との親和性を保持させるため、例えばステアリンン酸やチタン系カップリング剤等による表面処理等が施されていることが好ましい。また、粒状固形物は予め熱可塑性樹脂中に練り込んだ後、補強繊維を配合してもよく、あるいは補強繊維や熱可塑性樹脂と一緒に練り込んでもよく、さらには補強繊維を含む熱可塑性樹脂を射出成形する際に添加してもよい。   The granular solid consists of at least one selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina. Of these, talc and calcium carbonate, which are used in large quantities and are inexpensive, are preferable. This granular solid has an aspect ratio of 1 to 5, an average particle size of 10 μm or less, and a blending amount of 0.5 to 5% by weight. This is the greatest feature of the present invention. As for the granular solid, a talc or the like close to a plate shape has a small aspect, and the closer to a spherical shape, the more preferable. If the aspect ratio exceeds 5, the lubrication function between the reinforcing fibers and between the reinforcing fibers and the screws and heating cylinders of the extruder and injection molding machine is hindered, and the frequency of breakage of the reinforcing fibers increases, and the fibers in the resin injection molded product The aspect ratio is set to 5 or less because the length is shortened and the physical properties, particularly the surface impact property are lowered. The average particle size of the granular solid is set to 10 μm or less because when the average particle size exceeds 10 μm, the lubrication function is lowered and the breakage frequency of the reinforcing fibers is increased, and the fiber length in the resin injection molded product is increased. This is because the surface impact is reduced, and the amount of blending is set to 0.5 to 5% by weight. If the blending amount is less than 0.5% by weight, the lubrication function cannot be sufficiently achieved. This is because if the blending amount exceeds 5% by weight, the influence of the particulate solid on the thermoplastic resin is increased, and particularly the surface impact is reduced. In order to maintain the affinity of the solid solid material with the thermoplastic resin, it is preferable that surface treatment or the like with stearic acid or a titanium coupling agent is performed. In addition, the granular solid may be kneaded into the thermoplastic resin in advance, and then the reinforcing fiber may be blended, or may be kneaded with the reinforcing fiber or the thermoplastic resin, and further, the thermoplastic resin containing the reinforcing fiber. May be added during injection molding.

その他、必要に応じて耐熱安定剤、耐候安定剤、滑剤、帯電防止剤、スリップ剤等の添加剤や副資材を併用してもよい。   In addition, additives such as heat resistance stabilizers, weather resistance stabilizers, lubricants, antistatic agents, slip agents, and other auxiliary materials may be used in combination as necessary.

上記シュラウドS等、強度及び面衝撃性が要求される樹脂射出成形品の成形方法を3タイプ挙げる。   There are three types of molding methods for resin injection molded products that require strength and surface impact, such as the shroud S.

<第1の成形方法>
この成形方法では、図1に示すペレット成形工程と、図2に示す成形品成形工程とを備えている。
<First molding method>
This molding method includes a pellet molding step shown in FIG. 1 and a molded product molding step shown in FIG.

まず、図1に示すように、押出機1Aのホッパ3Aに熱可塑性樹脂(ペレット)Rと必要に応じて図示しないその他添加剤等を投入する。加熱シリンダ5A内でスクリュー7Aを回転させて熱可塑性樹脂(ペレット)Rを溶融・混練させる。この溶融樹脂を加熱シリンダ5A先端に付設された含浸ダイス9に押し出す。   First, as shown in FIG. 1, a thermoplastic resin (pellet) R and other additives (not shown) as necessary are put into a hopper 3A of an extruder 1A. The screw 7A is rotated in the heating cylinder 5A to melt and knead the thermoplastic resin (pellet) R. This molten resin is extruded into an impregnation die 9 attached to the tip of the heating cylinder 5A.

一方、補強繊維のロービング原反F1からロービングF1−aを含浸ダイス9内に導入し、ロービングF1−aに溶融樹脂を含浸させる。溶融樹脂が含浸したロービングF1−aを含浸ダイス9から引き出して冷却槽11に導入して含浸樹脂を硬化させ、さらに、カッター装置13に導入して所定寸法に切断して繊維混入ペレットP1を成形する。この際、ロービングF1−aが切断され、繊維混入ペレットP1には、補強繊維が柱状繊維束F1−bとなっていて該柱状繊維束F1−bに熱可塑性樹脂が含浸している。   On the other hand, the roving F1-a is introduced into the impregnation die 9 from the reinforcing fiber roving raw fabric F1, and the roving F1-a is impregnated with the molten resin. The roving F1-a impregnated with the molten resin is pulled out from the impregnation die 9 and introduced into the cooling bath 11 to cure the impregnated resin, and further introduced into the cutter device 13 and cut into a predetermined size to form a fiber-mixed pellet P1. To do. At this time, the roving F1-a is cut, and the fiber-mixed pellets P1 have reinforcing fibers as columnar fiber bundles F1-b, and the columnar fiber bundles F1-b are impregnated with a thermoplastic resin.

次に、図2に示すように、射出成形機15Aのホッパ17に繊維混入ペレットP1と、上記ペレット成形工程で用いた熱可塑性樹脂(ペレット)Rと同じ熱可塑性樹脂Rを希釈樹脂として投入するとともに、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物Aを0.5〜5重量%添加投入する。加熱シリンダ19A内でスクリュー21を回転させて熱可塑性樹脂(ペレット)R及び繊維混入ペレットP1を溶融・混練させるとともに、粒状固形物Aを均一に混入する。当該溶融樹脂を金型23のキャビティ23aに射出して樹脂射出成形品を成形する。なお、固形物添加工程は、繊維混入ペレットP1を成形するペレット成形工程時に予め熱可塑性樹脂と共に添加してもよい。   Next, as shown in FIG. 2, the fiber-mixed pellet P1 and the same thermoplastic resin R as the thermoplastic resin (pellet) R used in the pellet molding step are charged as dilution resins into the hopper 17 of the injection molding machine 15A. At the same time, 0.5 to 5% by weight of a granular solid A having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less is added. The screw 21 is rotated in the heating cylinder 19A to melt and knead the thermoplastic resin (pellet) R and the fiber-mixed pellet P1, and the particulate solid A is mixed uniformly. The molten resin is injected into the cavity 23a of the mold 23 to mold a resin injection molded product. In addition, you may add a solid substance addition process with a thermoplastic resin previously at the time of the pellet formation process which shape | molds the fiber mixing pellet P1.

<第2の成形方法>
この成形方法では、図3に示すペレット成形工程と、図4に示す成形品成形工程とを備えている。
<Second molding method>
This molding method includes a pellet molding step shown in FIG. 3 and a molded product molding step shown in FIG.

まず、図3に示すように、二軸押出機1Bの2個のホッパ3B−1,3B−2のうち、一方のホッパ3B−1に熱可塑性樹脂(ペレット)Rを投入するとともに、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物Aを0.5〜5重量%添加投入する。また、他方のホッパ3B−2にチョップドストランド状態の補強繊維F2を投入する。加熱シリンダ5B内で二軸のスクリュー7Bを回転させて熱可塑性樹脂(ペレット)Rと補強繊維F2とを溶融・混練させるとともに、粒状固形物Aを均一に混入し、かつ補強繊維F2を溶融樹脂に均一に分散させる。この溶融樹脂を加熱シリンダ5Bから冷却槽11に押し出して硬化させた後、カッター装置13に導入して所定寸法に切断し、補強繊維F2を分散させてなる繊維混入ペレットP2を成形する。   First, as shown in FIG. 3, among the two hoppers 3B-1 and 3B-2 of the twin-screw extruder 1B, the thermoplastic resin (pellet) R is introduced into one hopper 3B-1, and the aspect ratio is set. 1 to 5 and 0.5 to 5% by weight of a granular solid A having an average particle size set to 10 μm or less is added. Moreover, the reinforced fiber F2 in a chopped strand state is put into the other hopper 3B-2. The biaxial screw 7B is rotated in the heating cylinder 5B to melt and knead the thermoplastic resin (pellet) R and the reinforcing fiber F2, and the particulate solid A is mixed uniformly, and the reinforcing fiber F2 is melted into the molten resin. Disperse evenly. After this molten resin is extruded from the heating cylinder 5B to the cooling tank 11 and cured, the molten resin is introduced into the cutter device 13 and cut into a predetermined size to form a fiber-mixed pellet P2 in which the reinforcing fibers F2 are dispersed.

次に、図4に示すように、上記第1の成形方法で用いたのと同じ射出成形機15Aのホッパ17に繊維混入ペレットP2を投入し、加熱シリンダ19A内でスクリュー21を回転させて繊維混入ペレットP2を溶融・混練させ、当該溶融樹脂を金型23のキャビティ23aに射出して樹脂射出成形品を成形する。   Next, as shown in FIG. 4, the fiber-mixed pellets P2 are put into the hopper 17 of the same injection molding machine 15A as that used in the first molding method, and the screw 21 is rotated in the heating cylinder 19A to produce fibers. The mixed pellet P2 is melted and kneaded, and the molten resin is injected into the cavity 23a of the mold 23 to mold a resin injection molded product.

<第3の成形方法>
この成形方法では、図5に示すように、ペレット成形工程と成形品成形工程とを連続して行うようにしている。
<Third molding method>
In this molding method, as shown in FIG. 5, the pellet molding process and the molded product molding process are continuously performed.

まず、図5に示すように、二軸押出機1Cのホッパ3Cに熱可塑性樹脂(ペレット)R及び必要に応じて図示しないその他添加剤等を投入するとともに、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物Aを0.5〜5重量%添加投入する。加熱シリンダ5C内で二軸のスクリュー7Cを回転させて熱可塑性樹脂(ペレット)Rを溶融・混練させるとともに、粒状固形物Aを均一に混入する。この混練過程で、上記ホッパ3Cの下流側において補強繊維のロービング原反F1からロービングF1−aを加熱シリンダ5C内に導入し、二軸のスクリュー7C外周に設けられたカットギヤ25でロービングF1−aを切断・解繊し、この切断・解繊された補強繊維を溶融樹脂に均一に分散させる。   First, as shown in FIG. 5, a thermoplastic resin (pellet) R and other additives (not shown) are added to a hopper 3C of a twin screw extruder 1C, and an aspect ratio is 1 to 5, Add 0.5 to 5% by weight of granular solid A having a diameter of 10 μm or less. The biaxial screw 7C is rotated in the heating cylinder 5C to melt and knead the thermoplastic resin (pellet) R, and the particulate solid A is mixed uniformly. In this kneading process, the roving F1-a is introduced into the heating cylinder 5C from the roving raw fabric F1 of the reinforcing fiber on the downstream side of the hopper 3C, and the roving F1-a is cut by the cut gear 25 provided on the outer periphery of the biaxial screw 7C. Is cut and defibrated, and the cut and defibrated reinforcing fibers are uniformly dispersed in the molten resin.

次に、上記二軸押出機1Cに連結管27で連結された射出成形機15Cの加熱シリンダ19C内に上記溶融樹脂を押し出してプランジャ29を前進させ、当該溶融樹脂を金型23のキャビティ23aに射出して樹脂射出成形品を成形する。   Next, the molten resin is extruded into a heating cylinder 19C of an injection molding machine 15C connected to the biaxial extruder 1C by a connecting pipe 27 to advance the plunger 29, and the molten resin enters the cavity 23a of the mold 23. The resin injection molded product is molded by injection.

このように樹脂射出成形品の成形原料である熱可塑性樹脂に、アスペクト比が1〜5、平均粒径が10μm以下、配合量が0.5〜5重量%に設定された粒状固形物Aと補強繊維とを添加しているので、これらの混練時等に上記粒状固形物Aが潤滑剤としての役割を果たし、樹脂粘度が高くしかも補強繊維の繊維長が比較的長くても、補強繊維の折損を抑制して樹脂射出成形品中の繊維長を長くし、優れた物性、特に強度や面衝撃性の高い成形品を射出成形することができる。また、混練力の強い二軸押出機を用いる場合、補強繊維は折損し易いが、粒状固形物Aを添加することで補強繊維の折損抑制効果が大きくなる。また、補強繊維の配合量を増やすと溶融物の粘度が急激に高くなり繊維が折損して繊維長が短くなるが、粒状固形物Aを添加することにより補強繊維が高濃度で使用できるようになり強度等の物性向上にも繋がる。   In this way, the thermoplastic resin, which is a molding raw material of the resin injection molded product, has a granular solid A having an aspect ratio of 1 to 5, an average particle size of 10 μm or less, and a blending amount of 0.5 to 5% by weight. Since the reinforcing fibers are added, the above-mentioned granular solid A plays a role as a lubricant during kneading, etc., and even if the resin viscosity is high and the fiber length of the reinforcing fibers is relatively long, It is possible to suppress breakage and lengthen the fiber length in the resin injection molded product, and to injection mold a molded product having excellent physical properties, particularly strength and surface impact. Moreover, when using a twin-screw extruder with a strong kneading force, the reinforcing fiber is easily broken, but the addition of the granular solid A increases the effect of suppressing the breaking of the reinforcing fiber. Moreover, when the compounding amount of the reinforcing fiber is increased, the viscosity of the melt is rapidly increased and the fiber is broken and the fiber length is shortened. However, by adding the granular solid A, the reinforcing fiber can be used at a high concentration. This also leads to improved physical properties such as strength.

また、粒状固形物Aの形状、大きさ及び配合量を特定するだけでよいので、汎用の射出成形機で樹脂射出成形品を射出成形することができて余分な設備投資いらず、各種の樹脂射出成形品を低コストで、しかも射出成形機を効率良く使用することができる。   In addition, since it is only necessary to specify the shape, size, and blending amount of the granular solid A, it is possible to injection-mold resin injection molded products with a general-purpose injection molding machine, and there is no need for extra equipment investment. The injection molded product can be used at low cost and the injection molding machine can be used efficiently.

さらに、流動性を考慮して樹脂粘度を下げるため成形温度を高くする必要もないので、熱可塑性樹脂の熱劣化をなくし、かつ熱劣化防止用の抗酸化剤を添加しなくてよく、このことによってもコストを低減することができる。   Furthermore, since it is not necessary to increase the molding temperature in order to lower the resin viscosity in consideration of fluidity, it is possible to eliminate the thermal deterioration of the thermoplastic resin and not to add an antioxidant for preventing the thermal deterioration. The cost can also be reduced.

特に、第3の成形方法では、第1及び第2の成形方法に比べてペレット成形工程を省略できるので、成形サイクルの短縮化により生産効率及びエネルギー効率の向上を図ることができる。しかも、原料と補強繊維を混練しその場で直接樹脂射出成形品の射出成形を行うので、第1の成形方法及び第2の成形方法に比べて混練力の強い二軸押出工程を必要とし、この混練力の強い二軸押出機1Cを用いる場合、補強繊維は折損し易いが、粒状固形物Aを添加することで補強繊維の折損抑制効果を大きくすることができる。   In particular, in the third molding method, the pellet molding step can be omitted as compared with the first and second molding methods, so that the production efficiency and energy efficiency can be improved by shortening the molding cycle. Moreover, since the raw material and the reinforcing fiber are kneaded and the injection molding of the resin injection molded product is performed directly on the spot, a biaxial extrusion process with a strong kneading force compared to the first molding method and the second molding method is required, When the twin screw extruder 1C having a strong kneading force is used, the reinforcing fibers are easily broken, but the addition of the granular solid A can increase the effect of suppressing the breaking of the reinforcing fibers.

また、粒状固形物Aが、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなるため、安価でアスペクト比が小さい粒状固形物を容易に得ることができる。   Further, since the granular solid A is composed of at least one selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina, it is possible to easily obtain a granular solid having a low aspect ratio at a low cost. it can.

さらに、補強繊維として、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つを採用しているため、樹脂射出成形品中の繊維長を長くすることが可能となり、その結果として、物性のうち特に強度及び面衝撃性を効果的に高めることができる。   Furthermore, since at least one selected from glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker and aramid fiber is adopted as the reinforcing fiber, the fiber length in the resin injection molded product is reduced. As a result, it is possible to effectively increase strength and surface impact among physical properties.

上記のことを実証するために実験を行った。そのデータを表1に示す。   An experiment was conducted to demonstrate the above. The data is shown in Table 1.

なお、表1中、熱可塑性樹脂の種類として、「PP」とはポリプロピレンのことであり、「NY6」とはポリアミド−6のことである。   In Table 1, as the types of thermoplastic resins, “PP” refers to polypropylene, and “NY6” refers to polyamide-6.

補強繊維の種類として、「GF」とは、実施例1〜5及び比較例1〜6で用いたガラス繊維のことであり、「CF」とは、実施例6〜10及び比較例7〜10で用いた炭素繊維のことである。   As the type of reinforcing fiber, “GF” refers to the glass fiber used in Examples 1 to 5 and Comparative Examples 1 to 6, and “CF” refers to Examples 6 to 10 and Comparative Examples 7 to 10. It is the carbon fiber used in.

補強繊維の形状として、「柱状」とは、第1の成形方法で得た樹脂射出成形品中に混入されている補強繊維の形態である。「チョップ状」とは、第2の成形方法で得た樹脂射出成形品中に混入されている補強繊維の形態である。「ロービング状」とは、第3の成形方法で得た樹脂射出成形品中に混入されている補強繊維の形態である。   As the shape of the reinforcing fiber, the “columnar shape” is a form of the reinforcing fiber mixed in the resin injection molded product obtained by the first molding method. The “chopped shape” is a form of reinforcing fibers mixed in the resin injection molded product obtained by the second molding method. The “roving shape” is a form of reinforcing fibers mixed in the resin injection molded product obtained by the third molding method.

成形品の繊維長分布において「短繊維」とは繊維長が0.5mm未満のものを、「中繊維」とは繊維長が0.5mm〜1mmのものを、「長繊維」とは繊維超が1mm超のものをそれぞれ示す。繊維長の測定は、「GF」では、成形品中の樹脂を焼却除去し、篩い分けして重量を測定した後、繊維長を画像解析した。「CF」では、篩い分け時に折れてしまうため篩い分けができず、よって、成形品中の樹脂を焼却(溶解除去も可能)した後、繊維長を直接画像解析した。したがって、CFを用いている実施例6〜10及び比較例7〜10では、表1中に繊維長重量分布を記載していない。   In the fiber length distribution of the molded product, “short fibers” are those having a fiber length of less than 0.5 mm, “medium fibers” are those having a fiber length of 0.5 mm to 1 mm, and “long fibers” are fibers exceeding Are those exceeding 1 mm. Regarding the measurement of the fiber length, in “GF”, the resin in the molded product was removed by incineration, sieved to measure the weight, and then the fiber length was subjected to image analysis. With “CF”, sieving cannot be performed because it breaks during sieving. Therefore, the resin in the molded product was incinerated (dissolved and removed), and the fiber length was directly subjected to image analysis. Therefore, in Examples 6 to 10 and Comparative Examples 7 to 10 using CF, the fiber length weight distribution is not described in Table 1.

成形品物性において「強度」とは、射出成形機にて角板(幅:100mm、長さ:420mm、厚さ:3mm)を成形し、これをJIS K 7171に準拠して曲げ試験を行った。その評価として、◎印は300MPa超、○印は300〜250MPa、△印は250MPa未満〜150MPa、×印は150MPa未満であり、これらを目安にその中間領域も含めて以下の基準で判定した。   In the physical properties of the molded product, “strength” means that a square plate (width: 100 mm, length: 420 mm, thickness: 3 mm) was molded by an injection molding machine, and this was subjected to a bending test in accordance with JIS K 7171. . As the evaluation, the mark ◎ is over 300 MPa, the mark ◯ is 300 to 250 MPa, the mark △ is less than 250 MPa to 150 MPa, and the mark X is less than 150 MPa.

判定:良← ◎>○>○〜△>△>△〜×>× →悪
成形品物性において「面衝撃性」とは、射出成形機にて角板(幅:100mm、長さ:420mm、厚さ:3mm)を成形し、室温下で重さ3.8kgfの鉄製錘を高さを変えて上記角板に落下させ、クラックが発生したときの落下高さを測定した。その評価として、○印は50cm超、△印は50〜40cm、×印は40cm未満であり、これらを目安にその中間領域も含めて以下の基準で判定した。
Judgment: Good ← ◎>○> ○ ~ △>△> △ ~ ×> × → bad In the physical properties of the molded product, “surface impact” is a square plate (width: 100 mm, length: 420 mm, with an injection molding machine). (Thickness: 3 mm) was formed, and an iron weight having a weight of 3.8 kgf was dropped on the square plate at a room temperature, and the drop height when a crack occurred was measured. As the evaluation, the mark ◯ is over 50 cm, the mark Δ is 50 to 40 cm, and the mark x is less than 40 cm.

判定:良← ○>○〜△>△>△〜×>× →悪     Judgment: Good ← ○> ○ to △> △> △ to ×> × → Evil

Figure 2009242616
Figure 2009242616

このデータから以下のことが明らかとなった。   From this data, the following became clear.

<実施例1,2、比較例1〜4:補強繊維の形状が柱状(第1の成形方法)>
実施例1は、粒状固形物のアスペクト比が4で1〜5の範囲内にあり、平均粒径が4.5μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、比較例1に比べて成形品中の短繊維の割合が19重量%と少なくて重量平均繊維長が2.71mmと長くなった。また、強度が△〜○に向上した。
<Examples 1 and 2 and Comparative Examples 1 to 4: The shape of the reinforcing fiber is columnar (first molding method)>
In Example 1, the aspect ratio of the granular solid is 4 and in the range of 1 to 5, the average particle size is 4.5 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 Compared to Comparative Example 1, the proportion of short fibers in the molded product was as low as 19% by weight and the weight average fiber length was as long as 2.71 mm. In addition, the strength was improved from Δ to ○.

実施例2は、粒状固形物のアスペクト比が1で1〜5の範囲内にあり、平均粒径が0.1μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、比較例1に比べて成形品中の短繊維の割合が22重量%と少なくて重量平均繊維長が2.85mmと長くなった。また、強度が○に向上した。   In Example 2, the aspect ratio of the granular solid is 1 and in the range of 1 to 5, the average particle size is 0.1 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 Compared with Comparative Example 1, the proportion of short fibers in the molded product was as small as 22% by weight and the weight average fiber length was as long as 2.85 mm. Further, the strength was improved to ○.

このことは、実施例1,2では、混練時等に粒状固形物が潤滑剤の役割を果たして補強繊維を折れ難くしているからである。   This is because in Examples 1 and 2, the granular solid material plays the role of a lubricant during kneading and makes it difficult to break the reinforcing fibers.

これに対し、比較例1は、粒状固形物を混入しておらず、成形品中の短繊維の割合が43重量%と実施例1,2に比べて多くて重量平均繊維長が1.88mmと短く、面衝撃性は○と良いものの、強度が△と実施例1,2に比べて悪い結果となった。このことは、混練時等に潤滑剤の役割をする粒状固形物がなく、補強繊維が短く折れてしまったからである。   On the other hand, in Comparative Example 1, no granular solid was mixed, and the proportion of short fibers in the molded product was 43% by weight, which was larger than Examples 1 and 2, and the weight average fiber length was 1.88 mm. Although the surface impact property was good as ◯, the strength was Δ, which was worse than that of Examples 1 and 2. This is because there is no granular solid that acts as a lubricant during kneading and the reinforcing fibers are broken short.

比較例2は、粒状固形物のアスペクト比が4で1〜5の範囲内にあり、平均粒径も4.5μmで10μm以下であるが、配合量が10重量%と0.5〜5重量%の範囲を大きく超えているため、比較例1,2に比べて成形品中の短繊維の割合が35重量%と多くて重量平均繊維長が2.06mmと実施例1,2に比べて短く、強度及び面衝撃性が共に実施例1,2に比べて△と悪い結果となった。このことは、潤滑剤の役割を果たす粒状固形物が添加されてはいても、配合量が多過ぎるため、混練時等に樹脂粘度が高くなって補強繊維が短く折れてしまったからである。また、多量の粒状固形物が熱可塑性樹脂の物性、特に面衝撃性を低下させている。   In Comparative Example 2, the aspect ratio of the granular solid is 4 and in the range of 1 to 5, and the average particle size is 4.5 μm and 10 μm or less, but the blending amount is 10 wt% and 0.5 to 5 wt. %, The proportion of short fibers in the molded product is as high as 35% by weight compared to Comparative Examples 1 and 2, and the weight average fiber length is 2.06 mm, compared with Examples 1 and 2. It was short, and both the strength and the surface impact property were bad as compared with Examples 1 and 2. This is because even if a granular solid serving as a lubricant is added, the blending amount is too large, so that the resin viscosity becomes high during kneading and the reinforcing fibers are broken short. In addition, a large amount of granular solids deteriorates the physical properties of the thermoplastic resin, particularly the surface impact property.

比較例3は、粒状固形物の配合量が1.5重量%と0.5〜5重量%の範囲内にあるが、アスペクト比が12で1〜5の範囲を大きく超えており、平均粒径も15μmと10μmを大きく超えているため、成形品中の短繊維の割合が50重量%と非常に多くて重量平均繊維長が1.60mmと実施例1,2に比べて短く、強度が△、面衝撃性も△と共に悪い結果となった。このことは、潤滑剤の役割をする粒状固形物が添加されてはいても、アスペクト比及び平均粒径が共に大きいため、潤滑機能が十分に発揮されず、混練時等に樹脂粘度が高くなって補強繊維が短く折れてしまったからである。   In Comparative Example 3, the amount of the granular solid is in the range of 1.5 wt% and 0.5 to 5 wt%, but the aspect ratio is 12 and greatly exceeds the range of 1 to 5, Since the diameter greatly exceeds 15 μm and 10 μm, the proportion of short fibers in the molded product is very large at 50% by weight, the weight average fiber length is 1.60 mm, which is shorter than those in Examples 1 and 2, and the strength is high. Δ and surface impact were also bad with Δ. This means that even when a granular solid serving as a lubricant is added, both the aspect ratio and the average particle size are large, so that the lubricating function is not fully exhibited, and the resin viscosity becomes high during kneading. This is because the reinforcing fiber was broken shortly.

比較例4は、粒状固形物のアスペクト比が4で1〜5の範囲内にあり、平均粒径も4.5μmで10μm以下であるが、配合量が0.4重量%と0.5〜5重量%の範囲を下回っているため、成形品中の短繊維の割合が42重量%と多くて重量平均繊維長が1.86mmと実施例1,2に比べて短く、面衝撃性は○と良いものの、強度が△と実施例1,2に比べて悪い結果となった。また、粒状固形物を添加していない比較例1とほとんど同程度であり、潤滑剤の役割を果たす粒状固形物が添加されてはいても、配合量が少ないため、混練時等に樹脂粘度が高くなって補強繊維が短く折れて粒状固形物の添加効果を発揮するに至っていないからである。   In Comparative Example 4, the aspect ratio of the granular solid is 4 and in the range of 1 to 5, and the average particle size is 4.5 μm and 10 μm or less, but the blending amount is 0.4% by weight and 0.5 to 0.5%. Since it is below the range of 5% by weight, the proportion of short fibers in the molded product is as high as 42% by weight, the weight average fiber length is 1.86 mm, which is shorter than those in Examples 1 and 2, and the surface impact property is ○ Although it was good, the strength was Δ, which was worse than that of Examples 1 and 2. In addition, it is almost the same as Comparative Example 1 in which no granular solid is added, and even if a granular solid serving as a lubricant is added, since the blending amount is small, the resin viscosity is low during kneading. This is because the reinforcing fiber is not so high that the reinforcing fiber is broken shortly to exhibit the effect of adding the granular solid.

<実施例3,4、比較例5:補強繊維の形状がロービング状(第3の成形方法)>
実施例3は、粒状固形物のアスペクト比が4で1〜5の範囲内にあり、平均粒径が4.5μmで10μm以下であり、配合量が2重量%で0.5〜5重量%の範囲内であって、成形品中の短繊維の割合が20重量%と少なくて重量平均繊維長が2.02mmと長く、強度が△〜○、面衝撃性が○と良い結果が得られた。
<Examples 3 and 4, Comparative Example 5: Reinforcing fiber has a roving shape (third molding method)>
In Example 3, the aspect ratio of the granular solid is 4 and in the range of 1 to 5, the average particle size is 4.5 μm and 10 μm or less, and the blending amount is 2% by weight and 0.5 to 5% by weight. The ratio of the short fibers in the molded product is as low as 20% by weight, the weight average fiber length is as long as 2.02 mm, the strength is Δ to ○, and the surface impact is good. It was.

実施例4は、粒状固形物のアスペクト比が4で1〜5の範囲内にあり、平均粒径が4.5μmで10μm以下であり、配合量が4重量%で0.5〜5重量%の範囲内であって、成形品中の短繊維の割合が20重量%と少なくて重量平均繊維長が2.32mmと長く、強度が△〜○、面衝撃性が○と良い結果が得られた。   In Example 4, the aspect ratio of the granular solid is 4 and in the range of 1 to 5, the average particle size is 4.5 μm and 10 μm or less, and the blending amount is 4% by weight and 0.5 to 5% by weight. The ratio of short fibers in the molded product is as small as 20% by weight, the weight average fiber length is as long as 2.32 mm, the strength is Δ to ○, and the surface impact property is good. It was.

このことは、実施例3,4では、混練時等に粒状固形物が潤滑剤の役割を果たして補強繊維を折れ難くしているからである。   This is because in Examples 3 and 4, the granular solid material plays the role of a lubricant during kneading and makes it difficult to break the reinforcing fibers.

これに対し、比較例5は、粒状固形物を混入しておらず、成形品中の短繊維の割合が49重量%と非常に多くて重量平均繊維長が1.11mmと短く、面衝撃性は○と良いものの、強度が△と実施例3,4に比べて悪い結果となった。このことは、混練時等に潤滑剤の役割を果たす粒状固形物がなく、補強繊維が短く折れてしまったからである。また、実施例1,2及び比較例1の第1の成形方法と比較して、混練力が大きく補強繊維が折損し易い二軸押出機を持つ第3の成形方法の方が粒状固形物の添加効果が大きくなっていた。   On the other hand, Comparative Example 5 does not contain any particulate solids, the proportion of short fibers in the molded product is very large at 49% by weight, the weight average fiber length is as short as 1.11 mm, and surface impact properties Although ◯ was good, the strength was △, which was worse than Examples 3 and 4. This is because there is no granular solid that serves as a lubricant during kneading, and the reinforcing fibers are broken short. Compared to the first molding methods of Examples 1 and 2 and Comparative Example 1, the third molding method having a twin-screw extruder having a large kneading force and the reinforcing fibers easily breaks is more granular. The effect of addition was large.

<実施例5、比較例6:補強繊維の形状がチョップ状(第2の成形方法)>
実施例5は、粒状固形物のアスペクト比が1で1〜5の範囲内にあり、平均粒径が0.1μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、成形品中の短繊維の割合が63重量%と実施例1〜4に比べて多く、重量平均繊維長が0.85mmと実施例1〜4に比べて短かった。したがって、強度及び面衝撃性が共に△という結果になった。しかし、比較例6は、粒状固形物を混入しておらず、成形品中の短繊維の割合が79重量%と実施例5に比べて多く、重量平均繊維長も実施例5に比べて0.35mmと短く、強度及び面衝撃性が共に×という悪い結果になった。このことは、粒状固形物が混練時等に潤滑剤の役割を果たしていることを物語るものであり、粒状固形物を添加していない比較例6は実施例5に比べて補強繊維が短く折れてしまったからである。
<Example 5, Comparative Example 6: The shape of the reinforcing fiber is chopped (second molding method)>
In Example 5, the aspect ratio of the granular solid is 1 and in the range of 1 to 5, the average particle diameter is 0.1 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 Within the range of% by weight, the proportion of short fibers in the molded product is 63% by weight, which is larger than in Examples 1 to 4, and the weight average fiber length is 0.85 mm, which is shorter than in Examples 1 to 4. It was. Accordingly, both the strength and the surface impact property were Δ. However, Comparative Example 6 does not contain any particulate solid, and the proportion of short fibers in the molded product is 79% by weight, which is larger than that of Example 5, and the weight average fiber length is 0 as compared with Example 5. It was as short as .35 mm, and both the strength and the surface impact property were bad. This means that the granular solid plays the role of a lubricant during kneading and the like, and in Comparative Example 6 in which no granular solid is added, the reinforcing fiber breaks shorter than in Example 5. It is because it has stopped.

<実施例6,7、比較例7,8:補強繊維の形状が柱状(第1の成形方法)>
実施例6は、粒状固形物のアスペクト比が4で1〜5の範囲内にあり、平均粒径が4.5μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、成形品中の補強繊維の重量平均繊維長が2.19mmと長く、強度が○、面衝撃性が○〜△と良い結果が得られた。
<Examples 6 and 7, Comparative Examples 7 and 8: Reinforcing fiber has a columnar shape (first molding method)>
In Example 6, the aspect ratio of the granular solid is 4 and in the range of 1 to 5, the average particle size is 4.5 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 The weight average fiber length of the reinforcing fibers in the molded product was as long as 2.19 mm, the strength was good, and the surface impact properties were good to good.

実施例7は、粒状固形物のアスペクト比が1で1〜5の範囲内にあり、平均粒径が0.1μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、成形品中の補強繊維の重量平均繊維長が2.30mmと長く、強度が○、面衝撃性が○〜△と良い結果が得られた。   In Example 7, the aspect ratio of the granular solid is 1 and in the range of 1 to 5, the average particle size is 0.1 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 The weight average fiber length of the reinforcing fibers in the molded product was as long as 2.30 mm, the strength was good, and the surface impact properties were good to good.

このことは、実施例6,7では、混練時等に粒状固形物が潤滑剤の役割を果たして補強繊維を折れ難くしているからである。   This is because in Examples 6 and 7, the granular solid material plays the role of a lubricant during kneading and makes it difficult to break the reinforcing fibers.

これに対し、比較例7,8は共に、粒状固形物を混入しておらず、成形品中の補強繊維の重量平均繊維長が比較例7では1.63mm、比較例8では1.67mmと短く、強度は○と良いものの、面衝撃性が△と実施例6,7に比べて悪い結果となった。このことは、混練時等に潤滑剤の役割を果たす粒状固形物がなく、補強繊維が短く折れてしまったからである。   On the other hand, in both Comparative Examples 7 and 8, granular solids were not mixed, and the weight average fiber length of the reinforcing fibers in the molded product was 1.63 mm in Comparative Example 7 and 1.67 mm in Comparative Example 8. Although it was short and the strength was good as ◯, the surface impact property was △, which was worse than that of Examples 6 and 7. This is because there is no granular solid that serves as a lubricant during kneading, and the reinforcing fibers are broken short.

<実施例8、比較例9:補強繊維の形状がチョップ状(第2の成形方法)>
実施例8は、粒状固形物のアスペクト比が1で1〜5の範囲内にあり、平均粒径が0.1μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、成形品中の補強繊維の重量平均繊維長が0.67mmと実施例1〜7に比べて短かった。したがって、強度が△、面衝撃性が△〜×という結果になった。しかし、比較例9は、粒状固形物を混入しておらず、成形品中の補強繊維の重量平均繊維長が実施例8に比べて0.15mmと短く、強度及び面衝撃性が共に×という悪い結果になった。このことは、粒状固形物が混練時等に潤滑剤の役割を果たしていることを物語るものであり、粒状固形物を添加していない比較例9は実施例8に比べて補強繊維が短く折れてしまったからである。
<Example 8, Comparative Example 9: The shape of the reinforcing fiber is chopped (second molding method)>
In Example 8, the aspect ratio of the granular solid is 1 and in the range of 1 to 5, the average particle size is 0.1 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 Within the range of% by weight, the weight average fiber length of the reinforcing fibers in the molded product was 0.67 mm, which was shorter than in Examples 1-7. Accordingly, the strength was Δ and the surface impact property was Δ˜ ×. However, Comparative Example 9 does not contain any particulate solid, the weight average fiber length of the reinforcing fibers in the molded product is as short as 0.15 mm compared to Example 8, and both the strength and the surface impact property are x. It was a bad result. This means that the granular solid plays a role of a lubricant during kneading and the like, and in Comparative Example 9 in which no granular solid is added, the reinforcing fibers are broken shorter than in Example 8. It is because it has stopped.

<実施例9,10、比較例10:補強繊維の形状が柱状(第1の成形方法)>
実施例9は、粒状固形物のアスペクト比が1で1〜5の範囲内にあり、平均粒径が0.1μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、成形品中の補強繊維の重量平均繊維長が2.01mmと長く、強度が◎、面衝撃性が○〜△と良い結果が得られた。
<Examples 9 and 10, Comparative Example 10: Reinforcing fiber has a columnar shape (first molding method)>
In Example 9, the aspect ratio of the granular solid is 1 and in the range of 1 to 5, the average particle size is 0.1 μm and 10 μm or less, and the blending amount is 0.5 to 5% and 0.5 to 5 The weight average fiber length of the reinforcing fibers in the molded product was as long as 2.01 mm, the strength was excellent, and the surface impact property was good from ◯ to Δ.

実施例10は、粒状固形物のアスペクト比が1で1〜5の範囲内にあり、平均粒径が0.1μmで10μm以下であり、配合量が1.5重量%で0.5〜5重量%の範囲内であって、成形品中の補強繊維の重量平均繊維長が2.15mmと長く、強度が◎、面衝撃性が○〜△と良い結果が得られた。   In Example 10, the aspect ratio of the granular solid is 1 and in the range of 1 to 5, the average particle size is 0.1 μm and 10 μm or less, and the blending amount is 1.5 to 5% by weight and 0.5 to 5 The weight average fiber length of the reinforcing fiber in the molded product was as long as 2.15 mm, the strength was excellent, and the surface impact property was good from ◯ to Δ.

このことは、実施例9,10では、混練時等に粒状固形物が潤滑剤の役割を果たして補強繊維を折れ難くしているからである。   This is because in Examples 9 and 10, the granular solid material plays the role of a lubricant during kneading and makes it difficult to break the reinforcing fibers.

これに対し、比較例10は、粒状固形物を混入しておらず、成形品中の補強繊維の重量平均繊維長が1.61mmと短く、強度は◎と良いものの、面衝撃性が△と実施例9,10に比べて悪い結果となった。このことは、混練時等に潤滑剤の役割を果たす粒状固形物がなく、補強繊維が短く折れてしまったからである。   On the other hand, Comparative Example 10 did not mix granular solids, the weight average fiber length of the reinforcing fibers in the molded article was as short as 1.61 mm, and the strength was good with ◎, but the surface impact property was △. Compared to Examples 9 and 10, the results were bad. This is because there is no granular solid that serves as a lubricant during kneading, and the reinforcing fibers are broken short.

なお、実施例9,10及び比較例10は共に、強度が◎で他の実施例及び比較例に比べて最も良かったが、これは熱可塑性樹脂として採用したNY6(ポリアミド−6)の物性によるものである。   In addition, although both Examples 9 and 10 and Comparative Example 10 were the best in strength compared to other Examples and Comparative Examples, this was due to the physical properties of NY6 (polyamide-6) adopted as a thermoplastic resin. Is.

この発明は、補強繊維を混入した樹脂射出成形品及びその成形方法について有用である。   The present invention is useful for a resin injection molded product in which reinforcing fibers are mixed and a molding method thereof.

第1の成形方法におけるペレット成形工程図である。It is a pellet formation process figure in the 1st forming method. 図1のペレット成形工程で成形されたペレットを用いた成形品成形工程図である。FIG. 2 is a molded product molding process diagram using pellets molded in the pellet molding process of FIG. 1. 第2の成形方法におけるペレット成形工程図である。It is a pellet formation process figure in the 2nd forming method. 図3のペレット成形工程で成形されたペレットを用いた成形品成形工程図である。FIG. 4 is a molded product molding process diagram using pellets molded in the pellet molding process of FIG. 3. 第3の成形方法における成形品成形工程図である。It is a molded article shaping | molding process figure in a 3rd shaping | molding method. 自動車のラジエータに取り付けられるシュラウドの斜視図である。It is a perspective view of the shroud attached to the radiator of a motor vehicle.

符号の説明Explanation of symbols

1B,1C 二軸押出機
15A,15C 射出成形機
23 金型
A 粒状固形物
F1−b 補強繊維(柱状繊維束)
F2 補強繊維
P1,P2 繊維混入ペレット
R 熱可塑性樹脂(ペレット)
S シュラウド(樹脂射出成形品)
1B, 1C Twin screw extruder 15A, 15C Injection molding machine 23 Mold A Granular solid F1-b Reinforcing fiber (columnar fiber bundle)
F2 Reinforcing fiber P1, P2 Fiber mixed pellet R Thermoplastic resin (pellet)
S shroud (resin injection molded product)

Claims (8)

補強繊維と粒状固形物とを混入した熱可塑性樹脂で射出成形された樹脂射出成形品であって、
上記粒状固形物は、アスペクト比が1〜5、平均粒径が10μm以下、配合量が0.5〜5重量%に設定されていることを特徴とする樹脂射出成形品。
A resin injection-molded product that is injection-molded with a thermoplastic resin mixed with reinforcing fibers and granular solids,
The granular solid is a resin injection molded product having an aspect ratio of 1 to 5, an average particle size of 10 μm or less, and a blending amount of 0.5 to 5% by weight.
請求項1に記載の樹脂射出成形品において、
上記粒状固形物は、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなることを特徴とする樹脂射出成形品。
In the resin injection molded product according to claim 1,
The above-mentioned granular solid material is a resin injection molded product comprising at least one selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina.
請求項1に記載の樹脂射出成形品において、
上記補強繊維は、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つからなることを特徴とする樹脂射出成形品。
In the resin injection molded product according to claim 1,
A resin injection molded article, wherein the reinforcing fiber comprises at least one selected from glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker and aramid fiber.
補強繊維と粒状固形物とを混入した熱可塑性樹脂で樹脂射出成形品を射出成形する成形方法であって、
補強繊維の柱状繊維束に熱可塑性樹脂を含浸してなる繊維混入ペレットを成形するペレット成形工程と、
上記繊維混入ペレットを射出成形機に投入して溶融させ、当該溶融樹脂を金型に射出して樹脂射出成形品を成形する成形品成形工程と、
上記ペレット成形工程時又は成形品成形工程時に、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物を0.5〜5重量%添加する固形物添加工程とを備えていることを特徴とする樹脂射出成形品の成形方法。
A molding method in which a resin injection molded article is injection molded with a thermoplastic resin mixed with reinforcing fibers and granular solids,
A pellet molding process for molding fiber-mixed pellets obtained by impregnating thermoplastic fibers into columnar fiber bundles of reinforcing fibers;
A molded product molding step in which the fiber-mixed pellet is put into an injection molding machine and melted, and the molten resin is injected into a mold to mold a resin injection molded product,
A solid addition step of adding 0.5 to 5% by weight of a granular solid having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less at the time of the pellet forming step or the molded product forming step. A method for molding a resin injection molded product, comprising:
補強繊維と粒状固形物とを混入した熱可塑性樹脂で樹脂射出成形品を射出成形する成形方法であって、
熱可塑性樹脂にアスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物を0.5〜5重量%添加するとともに、チョップドストランド状態の補強繊維を分散させてなる樹脂混入ペレットを成形するペレット成形工程と、
上記樹脂混入ペレットを射出成形機に投入して溶融させ、当該溶融樹脂を金型に射出して樹脂射出成形品を成形する成形品成形工程とを備えていることを特徴とする樹脂射出成形品の成形方法。
A molding method in which a resin injection molded article is injection molded with a thermoplastic resin mixed with reinforcing fibers and granular solids,
Resin-mixed pellets obtained by adding 0.5 to 5% by weight of a granular solid having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less to a thermoplastic resin and dispersing reinforcing fibers in a chopped strand state Pellet molding process to mold,
A resin injection molded product comprising: a molded product molding step of charging the resin-mixed pellets into an injection molding machine, melting the resin, and injecting the molten resin into a mold to mold a resin injection molded product Molding method.
補強繊維と粒状固形物とを混入した熱可塑性樹脂で樹脂射出成形品を射出成形する成形方法であって、
二軸押出機に熱可塑性樹脂を投入するとともに、アスペクト比が1〜5、平均粒径が10μm以下に設定された粒状固形物を0.5〜5重量%投入し、かつロービング状態の補強繊維を上記二軸押出機に導入して上記熱可塑性樹脂及び粒状固形物の混練過程で切断・解繊した後、上記粒状固形物及び補強繊維が混入された溶融状態の熱可塑性樹脂を射出成形機に押し出して該射出成形機により金型に射出して樹脂射出成形品を成形することを特徴とする樹脂射出成形品の成形方法。
A molding method in which a resin injection molded article is injection molded with a thermoplastic resin mixed with reinforcing fibers and granular solids,
Reinforcing fibers in which a thermoplastic resin is introduced into a twin-screw extruder and 0.5 to 5% by weight of a granular solid having an aspect ratio of 1 to 5 and an average particle size of 10 μm or less is added. Is introduced into the twin-screw extruder and cut and defibrated in the kneading process of the thermoplastic resin and the granular solid, and then the molten thermoplastic resin mixed with the granular solid and the reinforcing fiber is injected into the injection molding machine. A method for molding a resin injection-molded product, characterized in that the resin injection-molded product is molded by being extruded into a mold by the injection molding machine.
請求項4〜6に記載の樹脂射出成形品の成形方法において、
上記粒状固形物は、タルク、炭酸カルシウム、酸化チタン、シリカ、酸化亜鉛及びアルミナのなかから選ばれた少なくとも1つからなることを特徴とする樹脂射出成形品の成形方法。
In the molding method of the resin injection molded product according to claim 4-6,
The method for molding a resin injection molded article, wherein the granular solid material comprises at least one selected from talc, calcium carbonate, titanium oxide, silica, zinc oxide and alumina.
請求項4〜6に記載の樹脂射出成形品の成形方法において、
上記補強繊維は、ガラス繊維、炭素繊維、ロックウール、石英繊維、金属繊維、ウィスカー及びアラミド繊維のなかから選ばれた少なくとも1つからなることを特徴とする樹脂射出成形品の成形方法。
In the molding method of the resin injection molded product according to claim 4-6,
The method for molding a resin injection molded product, wherein the reinforcing fiber is composed of at least one selected from glass fiber, carbon fiber, rock wool, quartz fiber, metal fiber, whisker, and aramid fiber.
JP2008091361A 2008-03-31 2008-03-31 Resin injection-molded article and its molding method Pending JP2009242616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091361A JP2009242616A (en) 2008-03-31 2008-03-31 Resin injection-molded article and its molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091361A JP2009242616A (en) 2008-03-31 2008-03-31 Resin injection-molded article and its molding method

Publications (1)

Publication Number Publication Date
JP2009242616A true JP2009242616A (en) 2009-10-22

Family

ID=41304900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091361A Pending JP2009242616A (en) 2008-03-31 2008-03-31 Resin injection-molded article and its molding method

Country Status (1)

Country Link
JP (1) JP2009242616A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075996A (en) * 2011-09-30 2013-04-25 Dic Corp High heat radiation polyarylene sulfide resin composition and molded product
WO2013080820A1 (en) * 2011-11-29 2013-06-06 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
KR101397687B1 (en) 2010-08-20 2014-05-23 제일모직주식회사 High modulus composite for emi shielding
JP2015006749A (en) * 2013-06-25 2015-01-15 株式会社日本製鋼所 Production method of fiber-reinforced resin intermediate
WO2015025800A1 (en) 2013-08-23 2015-02-26 株式会社日本製鋼所 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
US11312056B2 (en) 2016-08-04 2022-04-26 The Japan Steel Works, Ltd. Twin screw extruder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294918A (en) * 1995-04-27 1996-11-12 Toray Ind Inc Raw material for manufacturing frtp product and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294918A (en) * 1995-04-27 1996-11-12 Toray Ind Inc Raw material for manufacturing frtp product and manufacture thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397687B1 (en) 2010-08-20 2014-05-23 제일모직주식회사 High modulus composite for emi shielding
JP2013075996A (en) * 2011-09-30 2013-04-25 Dic Corp High heat radiation polyarylene sulfide resin composition and molded product
JPWO2013080820A1 (en) * 2011-11-29 2015-04-27 東レ株式会社 Carbon fiber reinforced thermoplastic resin composition, pellets and molded articles thereof
CN103958612A (en) * 2011-11-29 2014-07-30 东丽株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
WO2013080820A1 (en) * 2011-11-29 2013-06-06 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
EP2787045A4 (en) * 2011-11-29 2015-08-19 Toray Industries Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
TWI553044B (en) * 2011-11-29 2016-10-11 東麗股份有限公司 Carbon fiber tempered thermoplastic resin composition, its pellet and molding product
US9803061B2 (en) 2011-11-29 2017-10-31 Toray Industries, Inc. Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
JP2015006749A (en) * 2013-06-25 2015-01-15 株式会社日本製鋼所 Production method of fiber-reinforced resin intermediate
WO2015025800A1 (en) 2013-08-23 2015-02-26 株式会社日本製鋼所 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
KR20160045111A (en) 2013-08-23 2016-04-26 더 재팬 스틸 워크스 엘티디 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
US10427325B2 (en) 2013-08-23 2019-10-01 The Japan Steel Works, Ltd. Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
US11312056B2 (en) 2016-08-04 2022-04-26 The Japan Steel Works, Ltd. Twin screw extruder

Similar Documents

Publication Publication Date Title
JP5676080B2 (en) Organic fiber reinforced composite resin composition and organic fiber reinforced composite resin molded product
JP5238939B2 (en) Long fiber reinforced composite resin composition and molded product
US20060261509A1 (en) Method for making fiber reinforced polypropylene composites
JP2009242616A (en) Resin injection-molded article and its molding method
WO2007097184A1 (en) Glass-fiber-reinforced thermoplastic resin composition and molded article
JP2012056173A (en) Method for manufacturing fiber-reinforced resin material
JP3584890B2 (en) Thermoplastic resin molded article and method for producing the same
KR101602814B1 (en) Polyamide 66 resin composition reinforced with glass fiber for high tensile strength and manufacturing method thereof
CN1102884C (en) Process for preparation of fiber-filled thermoplastic resin composition
JP2009013331A (en) Filament-reinforced composite resin composition and molded article
JP3579770B2 (en) Crystalline thermoplastic resin columns reinforced with long fibers and plate-like inorganic fillers
JP2005298663A (en) Automobile interior part made of resin
JP2011057811A (en) Propylene based resin composition
JPH0365311A (en) Carbon fiber chop
JP2002085109A (en) Toe core for safety shoes
JP6955506B2 (en) PEEK resin composition molded article
JP2003285323A (en) Fiber reinforced thermoplastic resin pellets, plastication method for pellets and manufacturing method for molded object
JPH01286824A (en) Manufacture of fiber-reinforced thermoplastic resin and its raw material resin composition
JP5238938B2 (en) Long fiber reinforced composite resin composition and molded product
JP2005297338A (en) Resin automotive mechanism component
JP2006016463A (en) Filament-reinforced polyamide resin molding material and method for producing the same
JP3399234B2 (en) Originating composition containing long-fiber reinforced polyolefin crystalline resin and molded article comprising the same
JP4514531B2 (en) A composition for molding a long fiber reinforced polyamide resin and a method for producing a molded body.
JP2002086509A (en) Mold for molding resin composition containing fibrous filler, molding method using the same, and resin molded product
JPH0517631A (en) Long-fiber-reinforced polyolefin resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127