JP2005298663A - Automobile interior part made of resin - Google Patents

Automobile interior part made of resin Download PDF

Info

Publication number
JP2005298663A
JP2005298663A JP2004116384A JP2004116384A JP2005298663A JP 2005298663 A JP2005298663 A JP 2005298663A JP 2004116384 A JP2004116384 A JP 2004116384A JP 2004116384 A JP2004116384 A JP 2004116384A JP 2005298663 A JP2005298663 A JP 2005298663A
Authority
JP
Japan
Prior art keywords
fiber
polyamide
automobile interior
interior part
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116384A
Other languages
Japanese (ja)
Inventor
Keiji Kamimura
敬二 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004116384A priority Critical patent/JP2005298663A/en
Publication of JP2005298663A publication Critical patent/JP2005298663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automobile interior part composed of a molded article made of a fiber-reinforced thermoplastic resin excellent in mechanical strengths, particularly in impact resistance, rigidity at a high temperature, creep characteristics, fatigue characteristics and weld strength. <P>SOLUTION: The automobile interior part is composed of an injection-molded article of the fiber-reinforced thermoplastic resin composition, where reinforcing fibers having a length of 0.8-5.0 mm in the molded article has a weight-average distribution of 5-70%. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、繊維強化熱可塑性樹脂製自動車内装部品に関する。詳しくは、繊維長1.5mm以上の強化用繊維が10%〜60%含まれる繊維強化熱可塑性樹脂組成物を射出成形して得られる成形品であって、成形品の機械的強度特に衝撃性、高温時の剛性、クリープ特性、繰り返し荷重に対する疲労特性およびウエルド強度に優れ、しかも成形加工性に優れる繊維強化熱可塑性樹脂製自動車内装部品に関する。   The present invention relates to an automobile interior part made of fiber reinforced thermoplastic resin. Specifically, it is a molded product obtained by injection molding a fiber reinforced thermoplastic resin composition containing 10% to 60% of reinforcing fibers having a fiber length of 1.5 mm or more, and the mechanical strength of the molded product, particularly impact property. The present invention relates to an automotive interior part made of a fiber reinforced thermoplastic resin, which has excellent rigidity at high temperatures, creep characteristics, fatigue characteristics against repeated loads, and weld strength, and also has excellent moldability.

従来、自動車内装部品は、車両の軽量化、複雑形状を容易に加工できる加工性の面から金属から樹脂素材へと置き換えられてきた。使用される樹脂素材としては機械的性質の向上を目的としてガラス繊維等の繊維状のフィラーで強化されたポリアミド樹脂、飽和ポリエステル樹脂、ポリフェニレンサルファイド樹脂等のエンジンニアリング樹脂やポリプロピレン樹脂等の汎用樹脂が使用されている。特にポリアミド樹脂は、ガラス繊維による補強効果の発現が大きく、成形加工性や耐久性が優れておりこれらの用途に好んで使用されている。しかし、従来市販されているガラス繊維強化材料はペレット中での繊維長が0.5mm程度であり、射出成形による加工時に更に繊維長が短くなり、成形品としての機械的強度特に衝撃性、高温時の剛性が不十分でこの材料を使用できる機構部品が著しく制限されている。   Conventionally, automobile interior parts have been replaced from metals to resin materials from the viewpoint of weight reduction of a vehicle and workability capable of easily processing complicated shapes. The resin materials used include general-purpose resins such as polyamide resins reinforced with fibrous fillers such as glass fibers, saturated polyester resins, polyphenylene sulfide resins, and polypropylene resins for the purpose of improving mechanical properties. in use. In particular, the polyamide resin has a large reinforcing effect due to the glass fiber, has excellent molding processability and durability, and is preferably used for these applications. However, the glass fiber reinforced material that has been commercially available has a fiber length in the pellet of about 0.5 mm, and the fiber length is further shortened during processing by injection molding, and the mechanical strength as a molded product, particularly impact strength, high temperature Mechanical components that can use this material are severely limited due to insufficient rigidity.

近年、上記問題を解決すべく成形品中の繊維長を長くする手法が検討されている。射出成形用材料の代表的なものとして連続した繊維を溶融樹脂に含浸しそのまま引抜いてペレット状にカットしてペレット中の繊維長を8〜20mmにした組成物が市販されているが、これらのペレットは生産効率が低く、このため材料コストが高くなり適用できる部品の分野が大きく制限されている。
一方、これらのペレットを射出成形して得られる成形品の性能は確かに繊維長の比較的長い繊維を含み、ISOやJISに定められた基準の試験を行うような単純な成形品では機械的強度が向上するとともに、異方性も低減される。しかしながら組成物中の繊維長が単分散で8〜20mmと長いため成形流動性が低下し自動車内装部品例えばシフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ等の複雑成形品ではウエルド部の強度も必然的に低下するため、コスト低減のため複数部品一体化による部品形状複雑化に対応できない。
In recent years, methods for increasing the fiber length in a molded product have been studied in order to solve the above problems. As a representative material for injection molding, a composition in which continuous fibers are impregnated into a molten resin, drawn as it is and cut into pellets to make the fiber length in the pellets 8 to 20 mm is commercially available. Pellets have low production efficiency, which increases material costs and greatly limits the field of applicable parts.
On the other hand, the performance of molded products obtained by injection molding of these pellets certainly includes fibers with relatively long fiber lengths, and it is mechanical for simple molded products that perform tests according to the standards defined by ISO and JIS. Strength is improved and anisotropy is reduced. However, since the fiber length in the composition is monodisperse and is as long as 8 to 20 mm, the molding fluidity is lowered and automobile interior parts such as shift lever brackets, steering lock brackets, key cylinders, door inner handles, door handle cowls, interior mirror brackets, In a complex molded product such as an air conditioner switch, the strength of the weld portion is inevitably lowered, so that it is not possible to cope with the complicated shape of the parts by integrating a plurality of parts for cost reduction.

さらに、成形品に材料の許容応力の範囲内で荷重が負荷された時には、成形品中の繊維フィラメント長が長いものほどフィラメント端部への応力が大きくなるため疲労特性をかえって低下させ製品寿命も短くなるという欠点を有している。
これらを解決するため、繊維の平均長を規定した組成物が提案されているが、該組成物では繊維長分布の幅が広く平均長の規定だけでは本発明に上げるような機械的強度と成形加工性との両立が困難であるのが現状である(例えば、特許文献1、2参照。)。
特開2001−179738号公報 特開2001−192466号公報
Furthermore, when a load is applied to the molded product within the allowable stress range of the material, the longer the fiber filament length in the molded product, the greater the stress on the filament end. It has the disadvantage of becoming shorter.
In order to solve these problems, a composition in which the average length of the fibers is defined has been proposed. However, in the composition, the fiber length distribution is wide, and the mechanical strength and molding that can be increased to the present invention only by defining the average length. Currently, it is difficult to achieve compatibility with workability (see, for example, Patent Documents 1 and 2).
JP 2001-179738 A JP 2001-192466 A

本発明の目的は、成形品の機械的強度特に衝撃性、高温時の剛性、クリープ特性、疲労特性およびウエルド強度に優れる繊維強化熱可塑性樹脂製自動車内装部品を提供するものである。   An object of the present invention is to provide an automobile interior part made of a fiber reinforced thermoplastic resin, which is excellent in mechanical strength, particularly impact strength, high temperature rigidity, creep characteristics, fatigue characteristics and weld strength of a molded product.

本発明者らは、上記課題に鑑み鋭意検討した結果、
繊維強化熱可塑性樹脂組成物の射出成形品であって、成形品中の強化用繊維長さ0.8〜5.0mmの重量平均分布が5〜70%を占める自動車機構部成形品がそり変形と機械的強度が両立でき前述の課題を解決できることを見出し、本発明に至った。すなわち、優れた機械的強度を得るために必要な繊維長1.5mm以上の強化用繊維を10〜60%含むことを特徴とする繊維強化熱可塑性樹脂組成物を用いて自動車内装部品を射出成形することにより優れた成形性、高い機械的強度さらには複雑な成形品形状で発生するウエルド強度に優れた成形品が容易に得られる。
As a result of intensive studies in view of the above problems, the present inventors have
An injection molded product of a fiber reinforced thermoplastic resin composition, and a molded product of an automobile mechanism part in which a weight average distribution of reinforcing fiber length of 0.8 to 5.0 mm in the molded product occupies 5 to 70% is warped. And the mechanical strength are compatible, and the above-mentioned problems can be solved and the present invention has been achieved. That is, an automobile interior part is injection-molded using a fiber-reinforced thermoplastic resin composition characterized by containing 10 to 60% of reinforcing fibers having a fiber length of 1.5 mm or more necessary for obtaining excellent mechanical strength. By doing so, a molded product having excellent moldability, high mechanical strength, and excellent weld strength generated in a complicated molded product shape can be easily obtained.

本発明によれば、優れた機械的強度を得るために必要な最低限度の繊維長を含み、成形性、ウエルド強度に優れた自動車内装部品を得ることができる。   According to the present invention, it is possible to obtain an automobile interior part that includes a minimum fiber length necessary for obtaining excellent mechanical strength and is excellent in moldability and weld strength.

以下、本発明について詳細に説明する。
本発明の繊維強化熱可塑性樹脂組成物から得られる自動車内装部品は、通常公知の射出成形機により成形される。
本発明の自動車内装部品は、例えばシフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチである。
本発明の成形品中の強化用繊維は、繊維長0.8〜5.0mmの重量平均分布が5〜70%、好ましくは5〜50%、さらに好ましくは10〜40%である。
Hereinafter, the present invention will be described in detail.
The automobile interior part obtained from the fiber-reinforced thermoplastic resin composition of the present invention is usually molded by a known injection molding machine.
The automobile interior parts of the present invention are, for example, a shift lever bracket, a steering lock bracket, a key cylinder, a door inner handle, a door handle cowl, an indoor mirror bracket, and an air conditioner switch.
The reinforcing fibers in the molded article of the present invention have a weight average distribution with a fiber length of 0.8 to 5.0 mm of 5 to 70%, preferably 5 to 50%, more preferably 10 to 40%.

本発明に用いられるペレット中の強化用繊維は、繊維長1.5mm以上が10〜60%、好ましくは20〜50%、さらに好ましくは30〜50%である。
本発明の組成物に用いられる強化繊維はガラス繊維、炭素繊維、金属繊維等から1種または複数種選ぶことができる。ガラス繊維としては、Eガラス繊維、Cガラス繊維、Aガラス繊維およびSガラス繊維等を溶融紡糸して得られるEガラス繊維がもっとも経済的である。繊維径についてはその取り扱いを考慮すると5〜25μmの繊維が好適であり、補強効果を考慮すると7〜17μmの繊維径が好ましい。また、成形品の機械的強度に大きな影響を有するポリアミド樹脂と強化繊維との界面を効果的にするために各種表面処理剤及び集束剤を使用することができる。
The reinforcing fiber in the pellet used in the present invention has a fiber length of 1.5 mm or more is 10 to 60%, preferably 20 to 50%, more preferably 30 to 50%.
The reinforcing fiber used in the composition of the present invention can be selected from one or more of glass fiber, carbon fiber, metal fiber and the like. As the glass fiber, E glass fiber obtained by melt spinning E glass fiber, C glass fiber, A glass fiber, S glass fiber and the like is most economical. Regarding the fiber diameter, a fiber having a diameter of 5 to 25 μm is preferable in consideration of handling thereof, and a fiber diameter of 7 to 17 μm is preferable in consideration of a reinforcing effect. In addition, various surface treatment agents and sizing agents can be used in order to make the interface between the polyamide resin and the reinforcing fibers having a great influence on the mechanical strength of the molded product effective.

本発明に使用される熱可塑性樹脂は特に限定されるものではなく、成形品の使用環境によってエンジニアリングプラスチックや汎用樹脂が使用できるが、自動車部品の環境温度を考慮するとポリアミド樹脂が性能的にも経済的にも好適である。さらに本発明では各種ポリアミド樹脂単体またはポリアミド樹脂を主成分とした他樹脂との複合材料も使用できる。具体的にはポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6−6、ポリアミド6−10、ポリアミド6−12、メタキシレンジアミンとカプロラクタムを重合してなるポリアミドMXD−6、ヘキサメチレンジアミンとテレフタル酸を重合してなるポリアミド6−T、ヘキサメチレンジアミンとテレフタル酸およびアジピン酸を重合してなるポリアミド6−T−6−6、ヘキサメチレンジアミンとイソフタル酸およびアジピン酸を重合してなるポリアミド6−I−6−6、ヘキサメチレンジアミンとテレフタル酸、イソフタル酸及びアジピン酸を重合してなるポリアミド6−T−6−I−6−6などのポリアミドから少なくとも一種類選ばれるもので、要求特性によってはこれらから複数選んで複合した材料を使用することができる。また、他樹脂との複合についても特に限定されるものではなくポリアミド/ポリプロピレン樹脂、ポリアミド/ポリフェニレン樹脂、ポリアミド/ポリカーボーネート樹脂、ポリアミド/ABS樹脂等が使用できる。また、これらポリアミド樹脂にはアンダーフード部品の使用環境下での製品寿命を考慮して耐空気老化安定剤、例えば銅系化合物やヒンダードアミン系化合物等を添加することができる。   The thermoplastic resin used in the present invention is not particularly limited, and engineering plastics and general-purpose resins can be used depending on the usage environment of the molded product. However, considering the environmental temperature of automobile parts, the polyamide resin is economical and economical. This is also preferable. Further, in the present invention, various polyamide resins alone or composite materials with other resins mainly composed of polyamide resin can be used. Specifically, polyamide 6, polyamide 11, polyamide 12, polyamide 6-6, polyamide 6-10, polyamide 6-12, polyamide MXD-6 obtained by polymerizing metaxylenediamine and caprolactam, hexamethylenediamine and terephthalic acid. Polymerized polyamide 6-T, polyamide 6-T-6-6 obtained by polymerizing hexamethylenediamine, terephthalic acid and adipic acid, polyamide 6-I obtained by polymerizing hexamethylenediamine, isophthalic acid and adipic acid -6-6, at least one selected from polyamides such as polyamide 6-T-6-I-6-6 obtained by polymerizing hexamethylenediamine and terephthalic acid, isophthalic acid and adipic acid, depending on the required properties It is possible to use multiple materials selected from these Kill. The composite with other resins is not particularly limited, and polyamide / polypropylene resin, polyamide / polyphenylene resin, polyamide / polycarbonate resin, polyamide / ABS resin and the like can be used. In addition, an air aging stabilizer such as a copper compound or a hindered amine compound can be added to these polyamide resins in consideration of the product life under the usage environment of the underhood parts.

本発明の自動車内装部品に使用される組成物は、下記の2つの方法によって得ることができる。
第一の方法は、通常の二軸押出機によって熱可塑性樹脂と繊維を溶融混練して得られる組成物である。押出機の第一供給口より熱可塑性樹脂を供給し、第二供給口より強化用繊維を供給、さらに該繊維を切断し、溶融した樹脂と混練して所望の繊維長分布を得、また優れた機械的特性を得るために必要な2mm以上繊維長を持つ繊維の割合を10〜50%に制御する方法である。
第二の方法としては、連続する該繊維に溶融樹脂を含浸させ、そのまま引抜いて固化後、ペレット状に切断する方法である。
The composition used for the automobile interior part of the present invention can be obtained by the following two methods.
The first method is a composition obtained by melt-kneading a thermoplastic resin and fibers with an ordinary twin screw extruder. The thermoplastic resin is supplied from the first supply port of the extruder, the reinforcing fiber is supplied from the second supply port, the fiber is further cut, and kneaded with the molten resin to obtain a desired fiber length distribution. This is a method of controlling the ratio of fibers having a fiber length of 2 mm or more required for obtaining mechanical properties to 10 to 50%.
As a second method, the continuous fiber is impregnated with a molten resin, drawn out as it is, solidified, and then cut into pellets.

本発明の自動車内装部品に使用される組成物は、上に記載された第一の方法で得られるペレット99〜50重量%と第二の方法で得られるペレット1〜50重量%から得ることができる。
本発明の自動車内装部品に使用される組成物は、熱可塑性樹脂40〜90重量%および強化用繊維60〜10重量%から得られ、好ましくは熱可塑性樹脂50〜75%、強化用繊維50〜25%であり、さらに好ましくは熱可塑性樹脂50〜70%、強化用繊維50〜30%である。
本発明の成形品を得るための射出成形には市販されている射出成形機が使用できるが、強化用繊維の溶融流動時の破損を抑える観点から溶融した樹脂組成物の射出時に発生するせん断応力をなるべく小さくするため流動断面積を広くとったデザインが好ましい。
The composition used for the automobile interior parts of the present invention can be obtained from 99 to 50% by weight of the pellets obtained by the first method described above and 1 to 50% by weight of the pellets obtained by the second method. it can.
The composition used for the automobile interior part of the present invention is obtained from 40 to 90% by weight of thermoplastic resin and 60 to 10% by weight of reinforcing fiber, preferably 50 to 75% of thermoplastic resin and 50 to 50% of reinforcing fiber. 25%, more preferably 50 to 70% thermoplastic resin and 50 to 30% reinforcing fiber.
Although a commercially available injection molding machine can be used for injection molding to obtain the molded article of the present invention, shear stress generated during injection of the molten resin composition from the viewpoint of suppressing breakage of the reinforcing fiber during melt flow In order to make the flow as small as possible, a design having a wide flow cross-sectional area is preferable.

以下、実施各例および比較各例によって本発明を具体的に説明するが、本発明はこれらにより何ら限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to each of Examples and Comparative Examples, but the present invention is not limited thereto.

[実施例1]
熱可塑性樹脂として旭化成ケミカルズ株式会社製ポリアミド樹脂レオナ1300S、強化用繊維として繊維径17μmのフィラメント状ガラス繊維約4200本を集束した日本電気硝子株式会社製ロービング状ガラス繊維T−428を用いてガラス繊維強化ポリアミド樹脂組成物(A1)を作成した。
組成物を作成するための押出しはCoperion社製ZSK40MC(スクリュー径φ40mm)2軸押出し機を用いて行い、条件はスクリュー回転数480rpm、吐出量90kg/hr、バレル設定温度295℃、ポリアミド樹脂投入量60kg/hrとした。該押出し機のバレルの樹脂溶融位置より下流側に直接ロービングを導入しφ5mmのダイス出口から押出された長繊維ガラス強化ポリアミド樹脂ストランドを長さ8mmにカットしてガラス繊維33%のガラス繊維強化ポリアミド樹脂ペレット(A1)を得た。
[Example 1]
Glass fiber using Asahi Kasei Chemicals' polyamide resin Leona 1300S as a thermoplastic resin, and Nippon Electric Glass Co., Ltd. roving glass fiber T-428 which bundles about 4200 filament glass fibers having a fiber diameter of 17 μm as reinforcing fibers. A reinforced polyamide resin composition (A1) was prepared.
Extrusion for preparing the composition was carried out using a ZSK40MC (screw diameter φ40 mm) twin screw extruder manufactured by Coperion. The conditions were screw rotation speed 480 rpm, discharge rate 90 kg / hr, barrel set temperature 295 ° C., polyamide resin input amount 60 kg / hr. A glass fiber reinforced polyamide of 33% glass fiber is obtained by introducing a roving directly downstream from the resin melting position of the barrel of the extruder and cutting a long fiber glass reinforced polyamide resin strand extruded from a φ5 mm die outlet into a length of 8 mm. Resin pellets (A1) were obtained.

該ペレット約5gを採取し650℃で2時間加熱してガラス以外の成分を除去した後ガラスフィラメントの長さを画像解析装置にて測定し、強化繊維中に占める繊維長1.5mm以上の比率を測定した。結果を表1に示した。更に該ペレット約8gを用いて90%蟻酸で樹脂分8.4重量%の溶液を作り毛細管型粘度管を用いて蟻酸相対粘度を測定し表1に示した。
また、得られた長繊維ガラス強化ポリアミド樹脂ペレットを成形したときの自動車内装部品適合性を評価するため各種金型を用いて射出成形した。疲労特性の評価は東芝機械株式会社製射出成形機IS80EPNでASTMに定められた引張り試験用ASTM1号ダンベルを成形しJISK7118に準じて株式会社鷺宮製作所製油圧サーボ疲労試験機EHF−50−10−3で周波数20Hzの正弦波にて引張り荷重を負荷し10、000、000回で破壊する応力を測定し表1に示した。このときの成形条件は樹脂設定温度295℃、金型設定温度40℃としスクリュー回転数は100rpmとした。
About 5 g of the pellets were collected and heated at 650 ° C. for 2 hours to remove components other than glass, and then the length of the glass filament was measured with an image analyzer, and the ratio of the fiber length to 1.5 mm or more in the reinforcing fibers Was measured. The results are shown in Table 1. Further, about 8 g of the pellet was used to prepare a solution having a resin content of 8.4% by weight with 90% formic acid, and the relative viscosity of formic acid was measured using a capillary type viscosity tube.
Further, in order to evaluate the compatibility of automobile interior parts when the obtained long fiber glass reinforced polyamide resin pellets were molded, injection molding was performed using various molds. Fatigue properties were evaluated by molding ASTM No. 1 dumbbell for tensile test specified by ASTM with an injection molding machine IS80EPN manufactured by Toshiba Machine Co., Ltd. Table 1 shows the stress measured by applying a tensile load with a sine wave having a frequency of 20 Hz and breaking at 10,000,000 times. The molding conditions at this time were a resin set temperature of 295 ° C., a mold set temperature of 40 ° C., and a screw rotation speed of 100 rpm.

また、機械的強度、ウエルド強度、流動長は日精樹脂工業株式会社製射出成形機FN3000にて射出成形してISO試験片、スパイラルフロー成形品(流動断面積15mm×厚み2mm)を作成し、曲げ試験についてはISO178、シャルピー衝撃試験についてはISO180の基準に則って夫々評価した。ウエルド強度保持率はISO引張り試験片であるダンベル試験片の両端にゲートを設け、試験片の中央部にウエルドが発生するように成形し、通常の試験に用いる試験片との強度比により評価した。このときの樹脂設定温度は295℃、金型設定温度は80℃としスクリュー回転数は60rpmとした。
更に、該成形品から約1gを切り出して650℃で2時間加熱しガラス以外の成分を除去した後、全ガラスフィラメント(n本)の長さ(Li、i=1〜n)を画像解析装置にて測定し、0.1mm毎に本数を集計して、長さ(Li)の本数(ni)を計測し、下記の計算式によりガラス繊維長の重量平均長(Lw)を計算して表1に示した。
Lw=Σ(Li)/ΣLi
また重量平均分布(Lw%)について、下記式を用い、Liが0.8〜5mmの値を集計して、表1に示した。
Lw%=Li*ni/Σ(Li*ni)*100
(ここでΣはi=1からi=nまでの合計)
In addition, mechanical strength, weld strength, and flow length are injection molded by an injection molding machine FN3000 manufactured by Nissei Plastic Industry Co., Ltd. to produce ISO test pieces and spiral flow molded products (flow cross-sectional area 15 mm × thickness 2 mm) and bend The test was evaluated according to ISO 178, and the Charpy impact test was evaluated according to ISO 180. The weld strength retention rate was evaluated by a strength ratio with a test piece used in a normal test by forming gates at both ends of a dumbbell test piece, which is an ISO tensile test piece, and forming a weld at the center of the test piece. . The resin set temperature at this time was 295 ° C., the mold set temperature was 80 ° C., and the screw rotation speed was 60 rpm.
Further, about 1 g is cut out from the molded product and heated at 650 ° C. for 2 hours to remove components other than glass, and then the length (Li, i = 1 to n) of all glass filaments (n) is determined by an image analyzer. The number of the length (Li) is counted every 0.1 mm, the number (ni) of the length (Li) is measured, and the weight average length (Lw) of the glass fiber length is calculated by the following formula. It was shown in 1.
Lw = Σ (Li) 2 / ΣLi
Moreover, about weight average distribution (Lw%), the value of Li 0.8-5mm was totaled using the following formula, and it showed in Table 1.
Lw% = Li * ni / Σ (Li * ni) * 100
(Where Σ is the total from i = 1 to i = n)

[実施例2]
実施例1で用いたガラス繊維強化ポリアミド樹脂ペレットA1に、繊維径17μmのフィラメント状ガラス繊維約4200本を集束したロービングに溶融したポリアミド樹脂を含浸させ、そのまま引抜いたガラス繊維強化ポリアミド樹脂製ストランドを長さ8mmにカットして作成したペレット(B1)を組成物として15重量%加えガラス繊維強化ポリアミド樹脂ペレット(A2)を得た。
実施例1のA1の代わりに該ペレットA2を用いて実施例1と同様の方法でガラス繊維長、疲労強度、機械的強度、ウエルド強度および流動長を測定し表1に記載した。
[Example 2]
The glass fiber reinforced polyamide resin pellet A1 used in Example 1 was impregnated with a melted polyamide resin in a roving in which about 4200 filament glass fibers having a fiber diameter of 17 μm were bundled, and a strand made of glass fiber reinforced polyamide resin was directly drawn. 15% by weight of a pellet (B1) prepared by cutting to a length of 8 mm was added as a composition to obtain a glass fiber reinforced polyamide resin pellet (A2).
Glass pellet length, fatigue strength, mechanical strength, weld strength and flow length were measured in the same manner as in Example 1 using the pellet A2 instead of A1 in Example 1, and are listed in Table 1.

[比較例1]
実施例2で用いたガラス繊維強化ポリアミド樹脂ペレットA1とB1との混合比率を組成物の重量比で1:4で混合して組成物中に2mm以上のガラス繊維が約90%を占めるペレット(A3)を得た。
実施例1のA1の代わりに該ペレットA3を用いて実施例1と同様の方法でガラス繊維長、疲労強度、機械的強度、ウエルド強度および流動長を測定し表1に記載した。
[Comparative Example 1]
The mixing ratio of the glass fiber reinforced polyamide resin pellets A1 and B1 used in Example 2 was mixed at a weight ratio of 1: 4 in the composition, and pellets in which about 2% of glass fibers of 2 mm or more accounted for about 90% in the composition ( A3) was obtained.
Glass pellet length, fatigue strength, mechanical strength, weld strength and flow length were measured in the same manner as in Example 1 using the pellet A3 instead of A1 in Example 1, and are listed in Table 1.

[比較例2]
実施例1で用いたガラス繊維ロービングの代わりに該ロービングを長さ3mmに切りそろえたチョップドストランドを用いて実施例1と同様に押出し成形にてガラス繊維強化ポリアミド樹脂ペレット(C1)を得た。C1に実施例2で得たB1を組成物として5重量%加えて組成物中に2mm以上のガラス繊維が約5%を占めるペレット(A4)を得た。
実施例1のA1の代わりに該ペレットA4を用いて実施例1と同様の方法でガラス繊維長、疲労強度、機械的強度、ウエルド強度および流動長を測定し表1に記載した。
以上の結果から実施例1および2は比較例1および2に比べて優れた機械的強度を保持してなおかつ疲労特性が良好で成形流動性とウエルド強度の高い成形品が得られ、自動車内装部品用材料に好適であることがわかる。
[Comparative Example 2]
Glass fiber reinforced polyamide resin pellets (C1) were obtained by extrusion molding in the same manner as in Example 1 using chopped strands in which the roving was cut to a length of 3 mm instead of the glass fiber roving used in Example 1. 5% by weight of B1 obtained in Example 2 was added to C1 as a composition to obtain pellets (A4) in which about 5% of glass fibers of 2 mm or more were contained in the composition.
Glass pellet length, fatigue strength, mechanical strength, weld strength and flow length were measured in the same manner as in Example 1 using the pellet A4 instead of A1 in Example 1, and are listed in Table 1.
From the above results, Examples 1 and 2 have excellent mechanical strength as compared with Comparative Examples 1 and 2, yet have good fatigue characteristics, and can be obtained molded articles having high molding fluidity and weld strength. It turns out that it is suitable for the material for use.

Figure 2005298663
Figure 2005298663

成形品中の強化繊維長分布を制御することにより優れた機械的強度を得るために必要な最低限度の繊維長を含み、成形性、ウエルド強度に優れた自動車内装部品を得る。   By controlling the reinforcing fiber length distribution in the molded product, an automotive interior part having a minimum fiber length necessary for obtaining excellent mechanical strength and excellent in moldability and weld strength is obtained.

Claims (7)

繊維強化熱可塑性樹脂組成物の射出成形品であって、成形品中の強化用繊維長さ0.8〜5.0mmの重量平均分布が5〜70%であることを特徴とする自動車内装部品。 An automobile interior part characterized by being an injection-molded product of a fiber-reinforced thermoplastic resin composition, wherein the weight average distribution of reinforcing fiber length of 0.8 to 5.0 mm in the molded product is 5 to 70% . 該組成物中の繊維長1.5mm以上の強化繊維が、該繊維の10〜60%であることを特徴とする請求項1に記載の自動車内装部品。 The automobile interior part according to claim 1, wherein the reinforcing fiber having a fiber length of 1.5 mm or more in the composition is 10 to 60% of the fiber. 二軸押出機の第一供給口から熱可塑性樹脂を供給し、さらに該繊維のロービングを第二供給口から導入し、次いで該繊維を押出し機スクリューで切断して溶融した該樹脂へ分散させて得たペレットを、射出成形した成形品であることを特徴とする請求項1または2に記載の自動車内装部品。 A thermoplastic resin is supplied from the first supply port of the twin-screw extruder, and roving of the fiber is introduced from the second supply port. Then, the fiber is cut by an extruder screw and dispersed in the molten resin. The automobile interior part according to claim 1 or 2, wherein the obtained pellet is a molded product obtained by injection molding. 該繊維のロービングに溶融した熱可塑性樹脂を含浸、固化、切断して得られるペレット1〜50重量%および請求項3に記載の該組成物のペレット99〜50重量%から得られることを特徴とする請求項1または2に記載の自動車内装部品。 It is obtained from 1 to 50% by weight of pellets obtained by impregnating, solidifying and cutting a molten thermoplastic resin in the roving of the fibers, and 99 to 50% by weight of pellets of the composition according to claim 3. The automobile interior part according to claim 1 or 2. 熱可塑性樹脂40〜90重量%および強化用繊維60〜10重量%で構成されることを特徴とする該樹脂組成物から得られる請求項1〜4のいずれかに記載の自動車内装部品。 The automobile interior part according to any one of claims 1 to 4, obtained from the resin composition comprising 40 to 90% by weight of a thermoplastic resin and 60 to 10% by weight of reinforcing fibers. 該熱可塑性樹脂が、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6−6、ポリアミド6−10、ポリアミド6−12、ポリアミドMXD−6、ポリアミド6−T、ポリアミド6−T−6−6、ポリアミド6−I−6−6、ポリアミド6−T−6−I−6−6の少なくとも1つから選ばれることを特徴とする請求項1〜5のいずれかに記載の自動車内装部品。 The thermoplastic resin is polyamide 6, polyamide 11, polyamide 12, polyamide 6-6, polyamide 6-10, polyamide 6-12, polyamide MXD-6, polyamide 6-T, polyamide 6-T-6-6, polyamide The automobile interior part according to any one of claims 1 to 5, which is selected from at least one of 6-I-6-6 and polyamide 6-T-6-I-6-6. 該強化用繊維が、ガラス繊維、炭素繊維および金属繊維から選ばれる1種以上であることを特徴とする請求項1〜6のいずれかに記載の自動車内装部品。 The automobile interior part according to any one of claims 1 to 6, wherein the reinforcing fiber is at least one selected from glass fiber, carbon fiber and metal fiber.
JP2004116384A 2004-04-12 2004-04-12 Automobile interior part made of resin Pending JP2005298663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116384A JP2005298663A (en) 2004-04-12 2004-04-12 Automobile interior part made of resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116384A JP2005298663A (en) 2004-04-12 2004-04-12 Automobile interior part made of resin

Publications (1)

Publication Number Publication Date
JP2005298663A true JP2005298663A (en) 2005-10-27

Family

ID=35330600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116384A Pending JP2005298663A (en) 2004-04-12 2004-04-12 Automobile interior part made of resin

Country Status (1)

Country Link
JP (1) JP2005298663A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2008231368A (en) * 2007-03-23 2008-10-02 Nippon Oil Corp Liquid crystal polyester resin composition excellent in light reflectance and hardness
US8299160B2 (en) 2006-04-27 2012-10-30 Asahi Kasei Chemicals Corporation Resin composition and automobile under-hood parts thereof
JP2014015592A (en) * 2012-07-11 2014-01-30 Asahi Kasei Chemicals Corp Long fiber-reinforced polyamide resin composition pellet and molded article
JP2014040576A (en) * 2012-07-23 2014-03-06 Toray Ind Inc Fiber-reinforced resin pellet and method for producing the same
US8993670B2 (en) 2006-02-27 2015-03-31 Asahi Kasei Chemicals Corporation Glass-fiber reinforced thermoplastic resin composition and molded article thereof
WO2015045769A1 (en) * 2013-09-27 2015-04-02 住友理工株式会社 Glass-fibers-reinforced thermoplastic resin molded article and method for producing same
US10279517B2 (en) 2015-03-26 2019-05-07 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
WO2021029276A1 (en) 2019-08-09 2021-02-18 住友化学株式会社 Injection molded product

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993670B2 (en) 2006-02-27 2015-03-31 Asahi Kasei Chemicals Corporation Glass-fiber reinforced thermoplastic resin composition and molded article thereof
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
US8299160B2 (en) 2006-04-27 2012-10-30 Asahi Kasei Chemicals Corporation Resin composition and automobile under-hood parts thereof
JP2008231368A (en) * 2007-03-23 2008-10-02 Nippon Oil Corp Liquid crystal polyester resin composition excellent in light reflectance and hardness
WO2008123263A1 (en) * 2007-03-23 2008-10-16 Nippon Oil Corporation Liquid-crystal polyester resin composition excellent in light reflectance and strength
JP2014015592A (en) * 2012-07-11 2014-01-30 Asahi Kasei Chemicals Corp Long fiber-reinforced polyamide resin composition pellet and molded article
JP2014040576A (en) * 2012-07-23 2014-03-06 Toray Ind Inc Fiber-reinforced resin pellet and method for producing the same
WO2015045769A1 (en) * 2013-09-27 2015-04-02 住友理工株式会社 Glass-fibers-reinforced thermoplastic resin molded article and method for producing same
US10351693B2 (en) 2013-09-27 2019-07-16 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
US10279517B2 (en) 2015-03-26 2019-05-07 Sumitomo Riko Company Limited Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor
WO2021029276A1 (en) 2019-08-09 2021-02-18 住友化学株式会社 Injection molded product

Similar Documents

Publication Publication Date Title
JP4859260B2 (en) Glass fiber reinforced thermoplastic resin composition and molded article
JP3216428B2 (en) Long fiber reinforced polymer alloy resin composition
CN101245185B (en) Continuous fiber reinforcing polyamide/vinyl cyanide-butadiene-vinyl benzene composite material and method for manufacturing same
KR20080066695A (en) Process for forming a reinforced polymeric material and articles formed therewith
JP5292744B2 (en) Long fiber reinforced polyamide resin composition
JP2005298663A (en) Automobile interior part made of resin
JP2009242616A (en) Resin injection-molded article and its molding method
EP3401355A1 (en) Polyamide material
JP2005297338A (en) Resin automotive mechanism component
JP3387215B2 (en) Long fiber reinforced polymer alloy resin column, injection molded article obtained therefrom, and method for producing the same
CN100387654C (en) Process for preparing high-strength wearable polyamide 1012
JP2005532934A (en) Glass fiber reinforced thermoplastics
JP3352121B2 (en) Long fiber reinforced polyamide resin composition and molded article thereof
KR102175062B1 (en) Long fiber reinforced thermoplastic resin composition having excellent weatherability and molded article produced therefrom
JP2005298664A (en) Automobile exterior part made of resin
JP2007106959A (en) Polyamide resin composition
JP2002085109A (en) Toe core for safety shoes
JP2005255733A (en) Molded article of automobile underhood structure part
JP2011201990A (en) Polyamide resin pellet reinforced with long glass fiber
JP4467326B2 (en) Production method
KR102360985B1 (en) Long Fiber Reinforced Thermoplastics Resin Composition And Article Manufactured By Using The Same
JP2003285323A (en) Fiber reinforced thermoplastic resin pellets, plastication method for pellets and manufacturing method for molded object
KR102020606B1 (en) Long fiber reinforced thermoplastic resin composition having excellent weatherability and article comprising the same
JP6259760B2 (en) Thermoplastic resin molded product manufacturing method and thermoplastic resin molded product
JP3736260B2 (en) Organic fiber resin composition and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02