JP4467326B2 - Production method - Google Patents

Production method Download PDF

Info

Publication number
JP4467326B2
JP4467326B2 JP2004035444A JP2004035444A JP4467326B2 JP 4467326 B2 JP4467326 B2 JP 4467326B2 JP 2004035444 A JP2004035444 A JP 2004035444A JP 2004035444 A JP2004035444 A JP 2004035444A JP 4467326 B2 JP4467326 B2 JP 4467326B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
screw
resin composition
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004035444A
Other languages
Japanese (ja)
Other versions
JP2005225051A (en
Inventor
浩史 猿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004035444A priority Critical patent/JP4467326B2/en
Publication of JP2005225051A publication Critical patent/JP2005225051A/en
Application granted granted Critical
Publication of JP4467326B2 publication Critical patent/JP4467326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は、連続した強化繊維を二軸押出機で溶融混練することにより得られる繊維強化熱可塑性樹脂組成物の製造方法に関する。更に詳しくは、生産性に優れ、高温時における強度・剛性と衝撃強度に優れた繊維強化熱可塑性樹脂組成物の製造方法およびその組成物に関する。   The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composition obtained by melt-kneading continuous reinforcing fibers with a twin-screw extruder. More specifically, the present invention relates to a method for producing a fiber-reinforced thermoplastic resin composition excellent in productivity and excellent in strength / rigidity and impact strength at high temperatures and the composition.

繊維強化熱可塑性樹脂はその優れた機械的特性を活かして様々な産業分野で利用されている。一般には、熱可塑性樹脂とチョップドストランド等の短繊維を押出機で混練する繊維強化熱可塑性樹脂の製造が行われている。しかしながら、この方法では押出機での混練中に繊維の折損が避けられないため、高度な機械的特性の要求に応えることはできないという問題がある。
これに対し近年、配合される繊維状強化材が本来有する性能を充分に引き出すための方法として、強化繊維を長くすることが検討されている。このような長繊維強化熱可塑性樹脂としては、例えば、連続した強化繊維のロービングからストランドを引抜きながら樹脂を含浸するプルトルージョン法により得られるものであり、上記短繊維強化熱可塑性樹脂と比較して、高温時における強度・剛性と衝撃強度に優れている(例えば特許文献1参照。)。
Fiber reinforced thermoplastic resins are used in various industrial fields by taking advantage of their excellent mechanical properties. In general, a fiber-reinforced thermoplastic resin is produced by kneading a thermoplastic resin and short fibers such as chopped strands with an extruder. However, this method has a problem that it is impossible to meet demands for high mechanical properties because fiber breakage cannot be avoided during kneading in an extruder.
On the other hand, in recent years, it has been studied to lengthen the reinforcing fibers as a method for fully extracting the performance inherent in the fibrous reinforcing material to be blended. As such a long fiber reinforced thermoplastic resin, for example, it is obtained by a pultrusion method in which a resin is impregnated while drawing a strand from a continuous roving of reinforcing fibers, compared with the short fiber reinforced thermoplastic resin. It has excellent strength / rigidity and impact strength at high temperatures (for example, see Patent Document 1).

しかしながら、このようなプルトルージョン法では、樹脂に含浸させながら連続した強化繊維のストランドを引抜いてペレタイジングするため、ペレット中の繊維長は長いが、生産性が悪く、かつ低粘度の樹脂でなければ強化繊維に十分含浸させることができないという欠点があるばかりか、成形品中の繊維の分散も不均一であるという問題がある。
また、開繊度合を制御して強化繊維を均一に分散させると共に、重量平均繊維長を長く保ったまま、混練作用によって特定の繊維長分布にする事によって、生産性、流動性、機械的性質や表面平滑性等を改善することが提案されている。しかし、この方法では、押出機のスクリュー及び/またはシリンダの内壁の一部に特殊な加工が必要であるため通常の押出機では製造が困難であるという問題点がある(例えば特許文献2参照。)。
特公昭52−3985号公報 特開平07−80834号公報
However, in such a pultrusion method, a continuous reinforcing fiber strand is drawn and pelletized while impregnating the resin, so the fiber length in the pellet is long, but the productivity is poor and the resin is not low viscosity. In addition to the disadvantage that the reinforcing fibers cannot be sufficiently impregnated, there is a problem that the fibers are not uniformly dispersed in the molded product.
In addition, by controlling the degree of opening and uniformly dispersing reinforcing fibers, while maintaining a long weight average fiber length, a specific fiber length distribution is obtained by kneading action, thereby improving productivity, fluidity, and mechanical properties. It has been proposed to improve the surface smoothness and the like. However, this method has a problem that it is difficult to manufacture with an ordinary extruder because special processing is required for a part of the inner wall of the screw and / or cylinder of the extruder (see, for example, Patent Document 2). ).
Japanese Patent Publication No.52-3985 Japanese Patent Application Laid-Open No. 07-80834

本発明は、生産性に優れ、高温時における強度・剛性と衝撃強度に優れた繊維強化熱可塑性樹脂組成物の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the fiber reinforced thermoplastic resin composition which was excellent in productivity, and was excellent in the intensity | strength and rigidity at high temperature, and impact strength.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、熱可塑性樹脂と連続した強化繊維を二軸押出機で溶融混練することにより製造される熱可塑性樹脂組成物の製造方法であって、該組成物中の強化繊維長を制御することで、高温時における強度・剛性と衝撃強度に優れた繊維強化熱可塑性樹脂組成物を優れた生産性で得ることが可能であることを見出し、本発明を完成させるに至った。   As a result of intensive studies in order to solve the above problems, the present inventor is a method for producing a thermoplastic resin composition produced by melt-kneading a reinforcing fiber continuous with a thermoplastic resin with a twin-screw extruder. By controlling the reinforcing fiber length in the composition, it is possible to obtain a fiber-reinforced thermoplastic resin composition excellent in strength, rigidity and impact strength at high temperatures with excellent productivity. The headline and the present invention have been completed.

即ち、本発明は、
.熱可塑性樹脂と連続した強化繊維を二軸押出機で溶融混練することにより製造される繊維強化熱可塑性樹脂組成物の製造方法であって、該強化繊維の供給位置を超えた下流側に連続した強化繊維を切断し強化繊維長を制御する(A)部と、(A)部の下流側に切断された強化繊維を分散させる(B)部を有する二軸押出機を用い、該二軸押出機中の熱可塑性樹脂が溶融状態にある位置より強化繊維を供給し、連続した強化繊維を二軸押出機のバレル全長の最上流を0また最下流を1と定義した場合に、バレル全長の0.75〜0.98の位置に設けられた(A)部で切断し、切断された強化繊維を(B)部で分散させることを特徴とする繊維強化熱可塑性樹脂組成物の製造方法、
That is, the present invention
1 . A method for producing a fiber-reinforced thermoplastic resin composition produced by melt-kneading a thermoplastic resin and continuous reinforcing fibers with a twin-screw extruder, which is continuous downstream of the reinforcing fiber supply position Using a twin-screw extruder having a part (A) for cutting the reinforcing fiber and controlling the reinforcing fiber length and a part (B) for dispersing the reinforcing fiber cut downstream of the part (A) When the reinforcing fiber is supplied from the position where the thermoplastic resin in the machine is in a molten state, and the continuous reinforcing fiber is defined as 0 for the most upstream barrel length of the twin screw extruder and 1 for the most downstream barrel, A method for producing a fiber-reinforced thermoplastic resin composition, characterized by cutting at (A) part provided at a position of 0.75 to 0.98, and dispersing the cut reinforcing fiber at (B) part,

.強化繊維の供給位置を、0.50以上の位置に設けることを特徴とする上記1に記載の繊維強化熱可塑性樹脂組成物の製造方法、
.(A)部がスクリュー軸方向と同方向に強化繊維を切断するための刃を有する形状のパーツで構成され、(B)部がスクリューフライト上に切り欠き部を有する形状のスクリューパーツであることを特徴とする上記1または2に記載の繊維強化熱可塑性樹脂組成物の製造方法、
2 . The reinforcing fiber supply position is set to 0 . The method for producing a fiber-reinforced thermoplastic resin composition according to the above 1, wherein the fiber-reinforced thermoplastic resin composition is provided at a position of 50 or more,
3 . (A) The part is composed of parts having a shape having a blade for cutting the reinforcing fiber in the same direction as the screw axial direction, and the (B) part is a screw part having a shape having a notch on the screw flight. A method for producing a fiber-reinforced thermoplastic resin composition as described in 1 or 2 above,

.(A)部を構成するパーツのブロック長Laと押出機のスクリュー径Daの比(La/Da)が0.3〜1.5、(B)部を構成するスクリューパーツのブロック長Lbと押出機のスクリュー径Dbの比(Lb/Db)が0.3〜4.0であることを特徴とする上記のいずれか1項に記載の繊維強化熱可塑性樹脂組成物の製造方法、
.熱可塑性樹脂100重量部に対して、連続した強化繊維を10〜170重量部添加することを特徴とする上記1〜のいずれか1項に記載の繊維強化熱可塑性樹脂組成物の製造方法、
.熱可塑性樹脂がポリアミド樹脂、強化繊維がガラス繊維であることを特徴とする上記1〜のいずれか1項に記載の繊維強化熱可塑性樹脂組成物の製造方法、
である。
4. (A) The ratio (La / Da) of the block length La of the parts constituting the part to the screw diameter Da of the extruder is 0.3 to 1.5, and the block length Lb of the screw parts constituting the part (B) and the extrusion. The ratio of screw diameter Db of the machine (Lb / Db) is 0.3 to 4.0, the method for producing a fiber-reinforced thermoplastic resin composition according to any one of the above 3 ,
5 . The method for producing a fiber-reinforced thermoplastic resin composition according to any one of the above 1 to 4 , wherein 10 to 170 parts by weight of continuous reinforcing fibers are added to 100 parts by weight of the thermoplastic resin,
6 . The method for producing a fiber-reinforced thermoplastic resin composition according to any one of the above 1 to 5 , wherein the thermoplastic resin is a polyamide resin, and the reinforcing fibers are glass fibers,
It is.

本発明によれば、熱可塑性樹脂と連続した強化繊維からなるストランドあるいはロービングを二軸のスクリュー式押出機により溶融混練することで、強化繊維長を制御した繊維強化熱可塑性樹脂組成物が得られる。従って、高温時における強度・剛性と衝撃強度を必要とする自動車部品等に好適に用いられる。   According to the present invention, a fiber reinforced thermoplastic resin composition with a controlled reinforcing fiber length can be obtained by melt-kneading a strand or roving composed of reinforcing fibers continuous with a thermoplastic resin by a twin screw extruder. . Therefore, it is suitably used for automobile parts and the like that require strength / rigidity and impact strength at high temperatures.

以下に本発明を詳しく説明する。
本発明に用いる二軸押出機は、熱可塑性樹脂が溶融状態で、強化繊維を供給するという観点から、全バレル長Lとバレル径Dの比が(L/D)30以上、120以下の二軸押出機が好ましく、更に好ましくは、30以上、70以下の二軸押出機である。
熱可塑性樹脂の溶融状態を達成できる方法に特に制限はないが、熱可塑性樹脂の劣化の影響が出ない範囲で、強化繊維の供給位置より上流側でのヒーター温度を高める方法や、ニーディングブロックにより剪断発熱させ溶融温度を高める方法が例示できる。
本発明に用いる連続した強化繊維は連続した単繊維を集束したストランドあるいはロービングであれば特に限定されるものではないが、強化繊維と樹脂界面との接着性を向上するためにカップリング剤等の表面処理が施されていることが好ましい。強化繊維としては、通常樹脂の補強用して用いられるものならば特に限定されるものではなく、ガラス繊維、炭素繊維、金属繊維、有機繊維等を使用することが可能であるが、ガラス繊維が最も広範に用いられる。
The present invention is described in detail below.
In the twin-screw extruder used in the present invention, the ratio of the total barrel length L to the barrel diameter D is (L / D) 30 or more and 120 or less, from the viewpoint that the thermoplastic resin is in a molten state and supplies reinforcing fibers. A screw extruder is preferable, and a twin screw extruder of 30 to 70 is more preferable.
There are no particular restrictions on the method that can achieve the molten state of the thermoplastic resin, but within the range that does not affect the deterioration of the thermoplastic resin, a method of increasing the heater temperature upstream of the reinforcing fiber supply position, or a kneading block A method of increasing the melting temperature by generating shear heat can be exemplified.
The continuous reinforcing fiber used in the present invention is not particularly limited as long as it is a strand or roving obtained by bundling continuous single fibers, but a coupling agent or the like is used to improve the adhesion between the reinforcing fiber and the resin interface. It is preferable that surface treatment is performed. The reinforcing fiber is not particularly limited as long as it is usually used for reinforcing a resin, and glass fiber, carbon fiber, metal fiber, organic fiber, etc. can be used. Used most widely.

本発明で好適に用いられるポリアミド樹脂用のガラス繊維はポリアミド樹脂用の集束剤(これはいわゆるサイジングを目的とした集束成分とポリアミド樹脂との接着性を目的とした表面処理成分を含む)で表面処理されているものを用いることができる。集束剤の構成成分は特に限定されるものではないが、無水マレイン酸と不飽和単量体との共重合体とアミノ基含有シランカップリング剤を主たる構成成分とするものが機械的特性向上の観点から最も好ましい。   The glass fiber for polyamide resin preferably used in the present invention has a surface with a sizing agent for polyamide resin (this includes a sizing component for the purpose of sizing and a surface treatment component for the purpose of adhesion between the polyamide resin). What is being processed can be used. The constituents of the sizing agent are not particularly limited, but those containing a copolymer of maleic anhydride and an unsaturated monomer and an amino group-containing silane coupling agent as the main constituents can improve the mechanical properties. Most preferable from the viewpoint.

集束剤を構成する無水マレイン酸と不飽和単量体との共重合体として具体的には、スチレン、α−メチルスチレン、ブタジエン、イソプレン、クロロプレン、2,3−ジクロロブタジエン、1,3−ペンタジエン、シクロオクタジエン等の不飽和単量体と無水マレイン酸との共重合体が挙げられ、その中でもブタジエン、スチレンと無水マレイン酸との共重合体が特に好ましい。更にこれら単量体は2種以上併用してもよいし、例えば、無水マレイン酸とブタジエン共重合体と無水マレイン酸とスチレンの共重合体を混合して使用する等のブレンドによって使用してもかまわない。上記無水マレイン酸と不飽和単量体との共重合体は平均分子量2,000以上であることが好ましい。また、無水マレイン酸と不飽和単量体との割合は特に制限されない。更に無水マレイン酸共重合体に加えてアクリル酸系共重合体やウレタン系ポリマーを併用して用いても何ら差し支えない。   Specific examples of the copolymer of maleic anhydride and unsaturated monomer constituting the sizing agent include styrene, α-methylstyrene, butadiene, isoprene, chloroprene, 2,3-dichlorobutadiene, and 1,3-pentadiene. And a copolymer of an unsaturated monomer such as cyclooctadiene and maleic anhydride. Among them, a copolymer of butadiene, styrene and maleic anhydride is particularly preferable. Further, these monomers may be used in combination of two or more, for example, by using a blend such as a mixture of maleic anhydride and a butadiene copolymer and a maleic anhydride and a styrene copolymer. It doesn't matter. The copolymer of maleic anhydride and unsaturated monomer preferably has an average molecular weight of 2,000 or more. Further, the ratio of maleic anhydride and unsaturated monomer is not particularly limited. Furthermore, in addition to the maleic anhydride copolymer, an acrylic acid copolymer or a urethane polymer may be used in combination.

集束剤を構成するもう一つの成分であるシラン系カップリング剤としては通常ガラス繊維の表面処理に用いられるシラン系カップリング剤がいずれも使用できる。具体的には、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)アミノプロピルトリメトキシシラン、N−β(アミノエチル)アミノプロピルトリエトキシシラン等のアミノシラン系カップリング剤;γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシラン系カップリング剤;γ−メタクリロキプロピルメチルジメトキシシラン、γ−メタクリロキプロピルトリメトキシシラン、γ−メタクリロキプロピルメチルジエトキシシラン、γ−メタクリロキプロピルトリエトキシシラン等のメタクロキシシラン系カップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン等のビニルシラン系カップリング剤などが挙げられる。これらカップリング剤は2種以上併用して用いることもできる。   As the silane coupling agent which is another component constituting the sizing agent, any silane coupling agent which is usually used for the surface treatment of glass fibers can be used. Specifically, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) aminopropyltrimethoxysilane, N -Aminosilane coupling agents such as β (aminoethyl) aminopropyltriethoxysilane; γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, etc. Epoxy silane coupling agents; methacryloxy silanes such as γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane Mosquito Coupling agent; vinyltrimethoxysilane, vinyltriethoxysilane, and the like vinyltris (beta-methoxyethoxy) vinylsilane coupling agents such as silane. Two or more of these coupling agents can be used in combination.

これらの中で特にポリアミド樹脂との親和性からアミノシラン系カップリング剤が最も好ましく、その中でもγ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシランが最も好ましい。上記無水マレイン酸共重合体とシラン系カップリング剤との使用割合は比較的良好な物性バランスを与える前者100重量部に対して後者0.01〜20重量部の割合が好ましい。通常、無水マレイン酸共重合体とシラン系カップリング剤は水溶媒中で混和して集束剤として用いられるが、更に必要に応じて界面活性剤、滑剤、柔軟剤、帯電防止剤などを加えても良い。
また、強化繊維の平均繊維直径は特に限定されるものではなく、集束性の観点から5μm以上で、機械的性質の向上の観点から20μm以下が好ましく、更に平均繊維直径8〜17μmが組成物の機械的性質向上の観点から好ましい。強化繊維の集束本数においても特に限定されるものではないが、繊維モノフィラメントを1000〜10000本集束したストランドあるいはロービングがハンドリングの点から好ましい。
Of these, aminosilane coupling agents are most preferred because of their affinity for polyamide resin, and among them, γ-aminopropyltriethoxysilane and N-β (aminoethyl) γ-aminopropyltriethoxysilane are most preferred. The proportion of the maleic anhydride copolymer and the silane coupling agent used is preferably the proportion of 0.01 to 20 parts by weight of the latter with respect to 100 parts by weight of the former that gives a relatively good balance of physical properties. Normally, maleic anhydride copolymer and silane coupling agent are mixed in an aqueous solvent and used as a sizing agent. If necessary, surfactants, lubricants, softeners, antistatic agents, etc. may be added. Also good.
Further, the average fiber diameter of the reinforcing fibers is not particularly limited, and is preferably 5 μm or more from the viewpoint of convergence, preferably 20 μm or less from the viewpoint of improvement of mechanical properties, and further the average fiber diameter of 8 to 17 μm is the composition. It is preferable from the viewpoint of improving mechanical properties. The number of reinforcing fibers bundled is not particularly limited, but a strand or roving obtained by bundling 1,000 to 10,000 fiber monofilaments is preferable from the viewpoint of handling.

本発明の連続した強化繊維の供給位置は、強化繊維の折損を防止し、良好な機械的性質を得るという観点から、熱可塑性樹脂が溶融状態である位置に設けた供給口より供給する必要があり、熱可塑性樹脂が溶融状態であればその供給位置に制限はないが、バレル全長の0.50を含む下流の位置より供給することが好ましい(最上流を0、最下流を1と定義する。)。
本発明の連続した強化繊維を供給する方法は、具体的には押出機スクリューを回転させることで連続した強化繊維のストランドあるいはロービングを押出機に巻き込むもので、長時間安定的に押出機内に供給するという観点から強化繊維供給管を通じて押出機内に供給することが好ましい。強化繊維供給管とは押出機内に強化繊維を供給する前に複数の強化繊維のロービングが絡み合うのを防ぐことを目的とするもので、特に管の材質は限定されるものではない。
The continuous reinforcing fiber supply position of the present invention needs to be supplied from a supply port provided at a position where the thermoplastic resin is in a molten state from the viewpoint of preventing breakage of the reinforcing fiber and obtaining good mechanical properties. Yes, if the thermoplastic resin is in a molten state, the supply position is not limited, but it is preferable to supply from a downstream position including 0.50 of the total length of the barrel (the most upstream is defined as 0 and the most downstream is defined as 1). .)
The method of supplying continuous reinforcing fibers according to the present invention is specifically a method in which continuous reinforcing fiber strands or rovings are wound into an extruder by rotating an extruder screw, and are stably supplied into the extruder for a long time. From the viewpoint of achieving this, it is preferable to supply the extruder through a reinforcing fiber supply pipe. The reinforcing fiber supply pipe is intended to prevent the roving of a plurality of reinforcing fibers from being entangled before supplying the reinforcing fibers into the extruder, and the material of the pipe is not particularly limited.

本発明の押出機のスクリュー構成において、連続した強化繊維の繊維長を制御し、当該樹脂組成物中に均一に分散させ、良好な機械的性質を得るという観点から、強化繊維供給位置より下流側には(A)連続した強化繊維を切断し、強化繊維長を制御する(A)部と、(B)該(A)部の下流側に切断された強化繊維を分散させる(B)部を設けることが必要である。
ここで(A)部は、スクリュー軸方向と同方向に強化繊維を切断するための刃を持つ形状のパーツで構成され、具体的には押出機中に巻き込まれて、スクリューに巻き付きながら前進してきた連続した強化繊維を、上記(A)部を構成するパーツ同士が噛み合う事によって、強化繊維を切断し、当該組成物中の繊維長を制御する。ここで、(A)部によって切断された強化繊維の繊維長は、(A)部の刃の数、刃と刃の間隔、パーツ数等によって決定されるが、重量平均繊維長が10mm〜300mmとなるように(A)部を構成することが好ましい。
In the screw configuration of the extruder of the present invention, from the viewpoint of controlling the fiber length of continuous reinforcing fibers and uniformly dispersing in the resin composition to obtain good mechanical properties, the downstream side from the reinforcing fiber supply position. (A) a continuous reinforcing fiber is cut and the reinforcing fiber length is controlled (A) part, and (B) the (B) part is dispersed in the downstream of the (A) part. It is necessary to provide it.
Here, part (A) is made up of parts with a shape that has a blade for cutting reinforcing fibers in the same direction as the axial direction of the screw. Specifically, the part (A) is wound in an extruder and moves forward while being wound around the screw. The continuous reinforcing fibers are cut by reinforcing the parts constituting the part (A) so that the reinforcing fibers are cut and the fiber length in the composition is controlled. Here, the fiber length of the reinforcing fiber cut by the part (A) is determined by the number of blades of the part (A), the distance between the blades, the number of parts, etc., but the weight average fiber length is 10 mm to 300 mm. It is preferable to configure the part (A) so that

また、(B)部を構成するスクリューパーツは、具体的にはスクリューフライト上に切り欠き部を持つ形状であることを特徴とし、(A)部で切断された強化繊維を樹脂中に分散させるものであり、該スクリューエレメントは強化繊維の種類、濃度に応じて、順ネジ型、逆ネジ型、またはそれらの組み合わせを用いることができる。なお、該(A)、(B)部を構成するパーツは市販のパーツを用いることができる。(A)部の市販パーツの例として、WERNER&PFLEIDERER製MIXING SCREW ELEMENT HME、(B)部の市販パーツの例として、WERNER&PFLEIDERER製SCREW ELEMENT ZME、SCREW ELEMENT SMEが挙げられる。   Further, the screw parts constituting the part (B) are specifically characterized by a shape having a notch on the screw flight, and the reinforcing fibers cut at the part (A) are dispersed in the resin. The screw element may be a forward screw type, a reverse screw type, or a combination thereof depending on the type and concentration of the reinforcing fiber. In addition, the parts which comprise this (A) and (B) part can use a commercially available part. Examples of commercially available parts in part (A) include MIXING SCREW ELEMENT HME manufactured by WERNER & PFLIDELER, and examples of commercially available parts in part (B) include SCREW ELEMENT ZME and SCREW ELEMENT SME manufactured by WERNER & PFLIDELER.

(A)部を構成するパーツのブロック長Laと押出機のスクリュー径Daの比(La/Da)と(B)部を構成するスクリューパーツのブロック長Lbと押出機のスクリュー径Dbの比(Lb/Db)は、連続した強化繊維の繊維長を制御し、当該樹脂組成物中に均一に分散させると同時に、過大な強化繊維の折損を防止するという観点から、(La/Da)が0.3〜1.5、(Lb/Db)が0.3〜4.0が好ましく、(La/Da)が0.3〜1.0、(Lb/Db)が0.3〜2.0がより好ましい。ここでブロック長とはパーツ長の総計を意味する。
(A)部は、切断された強化繊維が(A)部より下流での折損を最小限にし、(A)部より下流に(B)部を配置するという観点から押出機全長の0.75〜0.98に配置することが好ましく、0.80〜0.98に配置することがより好ましい。ここで(A)部より下流での強化繊維の折損とは、例えば分散不十分な強化繊維が押出機のスクリューと押出機のシリンダの内壁間で擦りあわされることによる折損や、強化繊維同士の接触による折損が原因として考えられる。
The ratio (La / Da) of the block length La of the part constituting the part (A) to the screw diameter Da of the extruder and the ratio of the block length Lb of the screw part constituting the part (B) to the screw diameter Db of the extruder ( Lb / Db) controls the fiber length of continuous reinforcing fibers and uniformly disperses them in the resin composition, and at the same time, prevents (La / Da) from being 0 0.3 to 1.5, (Lb / Db) is preferably 0.3 to 4.0, (La / Da) is 0.3 to 1.0, and (Lb / Db) is 0.3 to 2.0. Is more preferable. Here, the block length means the total part length.
The (A) part is 0.75 of the total length of the extruder from the viewpoint that the cut reinforcing fiber minimizes breakage downstream from the (A) part and the (B) part is arranged downstream from the (A) part. It is preferable to arrange at ˜0.98, more preferably at 0.80 to 0.98. Here, the breakage of the reinforcing fiber downstream from the part (A) is, for example, a breakage caused by rubbing between insufficiently dispersed reinforcing fibers between the screw of the extruder and the inner wall of the cylinder of the extruder, Possible cause is breakage due to contact.

該(A)および(B)部が複数からなるパーツで構成される場合は、上記条件を満たす範囲であれば、該パーツを連続的に設けても良いし、断続的に設けても良い。
強化繊維の供給位置より下流側の(A)、(B)部以外のスクリュー構成に関しては、特に制限はないが、熱可塑性樹脂や、強化繊維の供給に同伴した水分が気化した水蒸気、同伴空気、残留モノマーや添加剤の揮発成分による品質の低下を防止するため、強化繊維供給位置より下流側にベント口を設け、発生ガス成分を減圧除去することが好ましい。減圧除去の際には、強化繊維の供給位置とA)部の間にニーディングディスク等を設け、シールすることが好ましいが、それにより過大な剪断力が強化繊維に加わり、強化繊維の折損が過大とならないよう配慮する必要がある。強化繊維供給位置より上流側のスクリュー構成に関しては、熱可塑性樹脂を可塑化するのに充分な剪断力が与えられれば、特に制限はないが、通常強化繊維供給位置より上流側に、1ヶ所以上の逆方向ネジスクリューを設ける方法が好ましい。
When the parts (A) and (B) are composed of a plurality of parts, the parts may be provided continuously or intermittently as long as the above conditions are satisfied.
The screw configuration other than the parts (A) and (B) on the downstream side of the reinforcing fiber supply position is not particularly limited. However, the thermoplastic resin, the water vapor vaporized by the supply of the reinforcing fiber, the entrained air In order to prevent deterioration in quality due to volatile components of residual monomers and additives, it is preferable to provide a vent port downstream from the reinforcing fiber supply position and remove the generated gas component under reduced pressure. When removing under reduced pressure, it is preferable to provide a kneading disk or the like between the reinforcing fiber supply position and the part A) and seal it. However, an excessive shearing force is applied to the reinforcing fiber, which causes breakage of the reinforcing fiber. It is necessary to take care not to become excessive. The screw structure upstream of the reinforcing fiber supply position is not particularly limited as long as a sufficient shearing force is applied to plasticize the thermoplastic resin, but usually one or more upstream from the reinforcing fiber supply position. A method of providing a reverse screw screw is preferable.

本発明に係わる熱可塑性樹脂はポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスルホン樹脂、ポリフェニレンエーテル樹脂、ポリウレタン樹脂、ポリエーテル樹脂、ポリアセタール樹脂等が挙げられ、これらは単独または2種類以上の熱可塑性樹脂を組み合わせて用いても良い。また、本発明の目的を損なわない範囲に於いて必要に応じて通常の熱可塑性樹脂に添加される酸化防止剤、紫外線吸収剤、熱安定剤、光劣化防止剤、可塑剤、滑剤、離型剤、核剤、難燃剤、着色顔料、染料等を添加することもできる。   Examples of the thermoplastic resin according to the present invention include polyamide resin, polyolefin resin, polyester resin, polycarbonate resin, acrylic resin, polysulfone resin, polyphenylene ether resin, polyurethane resin, polyether resin, polyacetal resin, and the like. A combination of the above thermoplastic resins may also be used. In addition, an antioxidant, an ultraviolet absorber, a heat stabilizer, a photodegradation inhibitor, a plasticizer, a lubricant, a mold release agent, which are added to a normal thermoplastic resin as necessary within the range not impairing the object of the present invention. Agents, nucleating agents, flame retardants, color pigments, dyes, and the like can also be added.

熱可塑性樹脂としては、高温時における強度・剛性に優れるという観点からポリアミド樹脂が最も広範に用いられる。ポリアミド樹脂の具体例としては、例えば、ナイロン6、ナイロン66、ナイロン46、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロンMXD6、ヘキサメチレンジアミンとイソフタル酸を重合してなるナイロン(ナイロン6I)、イソフタル酸とビス(3−メチル−4−アミノシクロヘキシル)メタンを重合してなるナイロン(ナイロンPACMI)などのホモポリマー、アジピン酸とイソフタル酸とへキサメチレンジアミンを重合してなるナイロン(ナイロン66/6I共重合体)、アジピン酸とイソフタル酸とへキサメチレンジアミン、ε−カプロラクタムを重合してなるナイロン(ナイロン66/6I/6共重合体)アジピン酸とテレフタル酸とヘキサメチレンジアミンを重合してなるナイロン(ナイロン66/6T共重合体)が挙げられる。   As the thermoplastic resin, polyamide resin is most widely used from the viewpoint of excellent strength and rigidity at high temperatures. Specific examples of the polyamide resin include, for example, nylon 6, nylon 66, nylon 46, nylon 610, nylon 612, nylon 11, nylon 12, nylon MXD6, nylon obtained by polymerizing hexamethylenediamine and isophthalic acid (nylon 6I). , Homopolymers such as nylon (nylon PACMI) obtained by polymerizing isophthalic acid and bis (3-methyl-4-aminocyclohexyl) methane, nylons obtained by polymerizing adipic acid, isophthalic acid and hexamethylenediamine (nylon 66) Nylon (Nylon 66 / 6I / 6 copolymer) obtained by polymerizing adipic acid, isophthalic acid, hexamethylenediamine, and ε-caprolactam, polymerizing adipic acid, terephthalic acid, and hexamethylenediamine. Nylon (Nairo 66 / 6T copolymer).

また、イソフタル酸とテレフタル酸とヘキサメチレンジアミンを重合してなるナイロン(ナイロン6I/6T共重合体)、テレフタル酸と2,2,4−トリメチルヘキサメチレンジアミンと2,4,4−トリメチルヘキサメチレンジアミンを重合してなるナイロン(ナイロンTMDT共重合体)、イソフタル酸とテレフタル酸とヘキサメチレンジアミンとビス(3−メチル−4−アミノシクロヘキシル)メタンを重合してなる共重合ナイロン、およびイソフタル酸とテレフタル酸とヘキサメチレンジアミンとビス(3−メチル−4−アミノシクロヘキシル)メタンを重合してなる共重合ナイロンとナイロン6の混合物、MXD6ナイロンとナイロン66の混合物等が挙げられる。   Further, nylon (nylon 6I / 6T copolymer) obtained by polymerizing isophthalic acid, terephthalic acid and hexamethylenediamine, terephthalic acid, 2,2,4-trimethylhexamethylenediamine and 2,4,4-trimethylhexamethylene Nylon obtained by polymerizing diamine (nylon TMDT copolymer), copolymer nylon obtained by polymerizing isophthalic acid, terephthalic acid, hexamethylenediamine and bis (3-methyl-4-aminocyclohexyl) methane, and isophthalic acid Examples include a mixture of copolymerized nylon and nylon 6 obtained by polymerizing terephthalic acid, hexamethylenediamine and bis (3-methyl-4-aminocyclohexyl) methane, and a mixture of MXD6 nylon and nylon 66.

本発明の繊維強化熱可塑性樹脂組成物における強化繊維の配合量は熱可塑性樹脂100重量部に対して、強化繊維は機械的性質の面から10重量部以上、繊維の折損等の点から170重量部以下が好ましく、20〜150重量部がより好ましい。
本発明のガラス繊維強化ポリアミド樹脂組成物は、例えば、射出成形、押出成形、ブロー成形、プレス成形等公知の成形加工に用いることができる。射出成形や押出成形に通常用いられるスクリュー式成形機では、強化繊維の破損を押さえるため、ノズルやゲート形状を大きくし、深溝の成形機スクリューを使用することが機械的性質の面から好ましい。
The compounding amount of the reinforcing fiber in the fiber reinforced thermoplastic resin composition of the present invention is 10 parts by weight or more from the viewpoint of mechanical properties and 170 weights from the viewpoint of fiber breakage, etc. with respect to 100 parts by weight of the thermoplastic resin. Part or less is preferable, and 20 to 150 parts by weight is more preferable.
The glass fiber reinforced polyamide resin composition of the present invention can be used in known molding processes such as injection molding, extrusion molding, blow molding, and press molding. In a screw type molding machine usually used for injection molding or extrusion molding, it is preferable from the viewpoint of mechanical properties that a nozzle or gate shape is enlarged and a deep groove molding machine screw is used in order to suppress breakage of reinforcing fibers.

以下の実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例及び比較例に用いた原材料及び測定方法を以下に示す。
<原材料>
[1]ポリアミド樹脂
・PA−1:ポリアミド66、旭化成ケミカルズ(株)製 レオナ1300−001
[2]ガラス繊維
・GF−1:日本電気硝子(株)製、ガラス繊維束(ロービング)、ガラス繊維平均直径13μm、1ロービング当たりの繊維モノフィラメント数4000本、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]
・GF−2:日本電気硝子(株)製、ガラス繊維束(ロービング)、ガラス繊維平均直径17μm、1ロービング当たりの繊維モノフィラメント数4000本、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]
・GF−3:日本電気硝子(株)製、チョップドストランド、ガラス繊維平均直径13μm、ガラス繊維平均長さ3mm、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]
<試験片の作成>
射出成形機(日精樹脂工業(株)社製:FN3000)を用い、金型温度80℃で、ISO 3167に準じた多目的試験片A形を成形し、曲げ試験用試験片、シャルピー衝撃強さ試験用試験片に切削加工した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In addition, the raw material and the measuring method which were used for the Example and the comparative example are shown below.
<Raw materials>
[1] Polyamide resin PA-1: Polyamide 66, Leona 1300-001 manufactured by Asahi Kasei Chemicals Corporation
[2] Glass fiber ・ GF-1: manufactured by Nippon Electric Glass Co., Ltd., glass fiber bundle (roving), glass fiber average diameter 13 μm, number of fiber monofilaments per roving 4000, main component of sizing agent [styrene-anhydrous malein Acid copolymer, γ-aminopropyltriethoxysilane]
GF-2: manufactured by Nippon Electric Glass Co., Ltd., glass fiber bundle (roving), glass fiber average diameter 17 μm, 4000 fiber monofilaments per roving, main component of sizing agent [styrene-maleic anhydride copolymer, γ-aminopropyltriethoxysilane]
GF-3: manufactured by Nippon Electric Glass Co., Ltd., chopped strand, glass fiber average diameter 13 μm, glass fiber average length 3 mm, sizing agent main component [styrene-maleic anhydride copolymer, γ-aminopropyltriethoxysilane ]
<Creation of specimen>
Using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd .: FN3000), a multi-purpose test piece A type conforming to ISO 3167 was molded at a mold temperature of 80 ° C., and a test piece for bending test, Charpy impact strength test The test piece was cut.

[測定方法]
(1)曲げ弾性率、曲げ強度
ISO 178に準じて、試験片をオートグラフ((株)島津製作所社製:AG−5000D形)で、クロスヘッドスピード5mm/min、スパン64mm、周囲温度23℃、150℃の条件下で測定を行った。
(2)シャルピー衝撃強さ
ISO 179に準じて、ノッチあり試験片をシャルピー衝撃強さ試験装置(東洋精機製作所(株):DG−C(A、B)シャルピー法)を用いて周囲温度23℃、−30℃の条件下で測定を行った。
(3)ガラス繊維の重量平均長さ
ガラス繊維強化ポリアミド樹脂組成物1g以上を650℃電気炉内でポリアミド樹脂のみ燃焼させた後、光学顕微鏡下で観察し、画像解析装置を用いて、無作為に選んだガラス繊維400本の長さを測定した値からガラス繊維の重量平均長さを求めた。
[Measuring method]
(1) Flexural modulus, flexural strength According to ISO 178, the test piece was an autograph (manufactured by Shimadzu Corporation: AG-5000D type), crosshead speed 5 mm / min, span 64 mm, ambient temperature 23 ° C. The measurement was performed at 150 ° C.
(2) Charpy impact strength According to ISO 179, the test piece with a notch was subjected to an ambient temperature of 23 ° C. using a Charpy impact strength test device (Toyo Seiki Seisakusho: DG-C (A, B) Charpy method). The measurement was performed under the condition of -30 ° C.
(3) Weight average length of glass fiber 1 g or more of a glass fiber reinforced polyamide resin composition was burned only in a 650 ° C. electric furnace, then observed under an optical microscope, and randomly using an image analyzer. The weight average length of the glass fibers was determined from the value obtained by measuring the length of 400 glass fibers selected in the above.

[実施例1]
押出機として、二軸押出機ZSK40MC(WERNER&PFLEIDERER製)(L/D=48)を用いた。ポリアミド樹脂PA−1を最上流供給口より定重量式フィーダーを用い40kg/hrで供給し、ロービング数5ケの連続したガラス繊維GF−1を、ガラス繊維供給管を通じて、押出機全長の0.82の位置(最上流を0、最下流を1としたとき)より、20kg/hrで溶融したポリアミド樹脂中に供給し、紡口より押し出されたストランドを冷却後、長さ8mm、直径4mmのペレット状に切断、乾燥して、ガラス繊維濃度が33重量%であるガラス繊維強化ポリアミド樹脂組成物を得た。なお、押出機のバレル温度は285℃、スクリュー回転数500rpm、ガラス繊維強化ポリアミド樹脂組成物の吐出量は60kg/hrである。また、スクリュー構成は、押出機全長の0.93の位置に(A)部として、MIXING SCREW ELEMENT HMEを、押出機全長の0.96の位置に(B)部として、SCREW ELEMENT ZMEとSCREW ELEMENT SMEを組み合わせて用いた。また、この時のLa/Da=0.45、Lb/Db=1.13である。得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形し、諸特性を評価した。その結果を表1に示す。比較例1に比べ、高温時の強度・剛性と衝撃強度に優れる。
[Example 1]
As the extruder, a twin screw extruder ZSK40MC (manufactured by WERNER & PFLIDEERER) (L / D = 48) was used. Polyamide resin PA-1 is supplied at 40 kg / hr using a constant-weight feeder from the most upstream supply port, and continuous glass fiber GF-1 having a roving number of 5 is fed through the glass fiber supply pipe to a total length of 0. From the position 82 (when the most upstream is 0 and the most downstream is 1), it is fed into a polyamide resin melted at 20 kg / hr, and the strand extruded from the nozzle is cooled, and then has a length of 8 mm and a diameter of 4 mm. The glass fiber-reinforced polyamide resin composition having a glass fiber concentration of 33% by weight was obtained by cutting into pellets and drying. The barrel temperature of the extruder is 285 ° C., the screw rotation speed is 500 rpm, and the discharge rate of the glass fiber reinforced polyamide resin composition is 60 kg / hr. In addition, the screw configuration is as follows: (A) part at 0.93 position of the total length of the extruder, MIXING SCREW ELEMENT HME as (B) section at 0.96 position of the total length of the extruder, and SCREW ELEMENT ZME and SCREW ELEMENT A combination of SMEs was used. At this time, La / Da = 0.45, and Lb / Db = 1.13. The obtained resin composition was molded by the above-described method at a cylinder temperature of 290 ° C., and various properties were evaluated. The results are shown in Table 1. Compared to Comparative Example 1, it is excellent in strength, rigidity and impact strength at high temperatures.

[実施例2]
ポリアミド樹脂PA−1の供給量を66kg/hr、連続したガラス繊維をGF−2、供給量を33kg/hrとした以外は、実施例1と同様の方法で、ガラス繊維濃度が33重量%であるガラス繊維強化ポリアミド樹脂組成物を吐出量99kg/hrで得て、諸特性を評価した。その結果を表1に示す。比較例1に比べ、高温時の強度・剛性と衝撃強度に優れる。
[Example 2]
The glass fiber concentration was 33% by weight in the same manner as in Example 1 except that the supply amount of the polyamide resin PA-1 was 66 kg / hr, the continuous glass fiber was GF-2, and the supply amount was 33 kg / hr. A glass fiber reinforced polyamide resin composition was obtained at a discharge rate of 99 kg / hr, and various properties were evaluated. The results are shown in Table 1. Compared to Comparative Example 1, it is excellent in strength, rigidity and impact strength at high temperatures.

[実施例3]
ポリアミド樹脂PA−1の供給量を46kg/hr、連続したガラス繊維GF−2のロービング数7ケ、供給量を46kg/hrとした以外は、実施例1と同様の方法で、ガラス繊維濃度が50重量%であるガラス繊維強化ポリアミド樹脂組成物を吐出量60kg/hrで得て、諸特性を評価した。その結果を表2に示す。比較例3に比べ、高温時の強度・剛性と衝撃強度に優れる。
[Example 3]
The glass fiber concentration was adjusted in the same manner as in Example 1 except that the supply amount of the polyamide resin PA-1 was 46 kg / hr, the roving number of continuous glass fibers GF-2 was 7 and the supply amount was 46 kg / hr. A 50% by weight glass fiber reinforced polyamide resin composition was obtained at a discharge rate of 60 kg / hr, and various properties were evaluated. The results are shown in Table 2. Compared to Comparative Example 3, it is excellent in strength, rigidity and impact strength at high temperatures.

[比較例1]
押出機として、二軸押出機TEM35BS(東芝機械(株)製)(L/D=47)を用いた。ポリアミド樹脂PA−1を最上流供給口より定重量式フィーダーを用い34kg/hrで供給し、ガラス繊維GF−3は、押出機全長の0.60の位置(最上流を0、最下流を1としたとき)より、定重量式フィーダーを用い17kg/hrで溶融したポリアミド樹脂中にサイドフィードした。紡口より押し出されたストランドを冷却後、長さ3mm、直径2mmのペレット状に切断、乾燥して、ガラス繊維濃度が33重量%であるガラス繊維強化ポリアミド樹脂組成物を得た。なお、押出機のバレル温度は285℃、スクリュー回転数300rpm、ガラス繊維強化ポリアミド樹脂組成物の吐出量は51kg/hrである。また、スクリュー構成は、ポリアミド樹脂の可塑化のため、ガラス繊維供給位置より上流にL/D=0.80の逆方向ネジを設け、ガラス繊維分散のため、ガラス繊維供給位置より下流にL/D=0.80の逆方向ネジを1ヶ所設けた他は、順ネジのみで構成した。得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形し、評価した。その結果を表1に示す。実施例1に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが短いため、高温時の強度・剛性と衝撃強度に劣る。
[Comparative Example 1]
As the extruder, a twin screw extruder TEM35BS (manufactured by Toshiba Machine Co., Ltd.) (L / D = 47) was used. Polyamide resin PA-1 is supplied at 34 kg / hr from the most upstream supply port using a constant-weight feeder, and the glass fiber GF-3 is 0.60 in the length of the extruder (the most upstream is 0 and the most downstream is 1). Then, side feed was carried out into a polyamide resin melted at 17 kg / hr using a constant-weight feeder. The strand extruded from the spinneret was cooled, then cut into pellets having a length of 3 mm and a diameter of 2 mm and dried to obtain a glass fiber reinforced polyamide resin composition having a glass fiber concentration of 33% by weight. The barrel temperature of the extruder is 285 ° C., the screw rotation speed is 300 rpm, and the discharge amount of the glass fiber reinforced polyamide resin composition is 51 kg / hr. Further, the screw configuration is provided with a reverse screw of L / D = 0.80 upstream from the glass fiber supply position for plasticizing the polyamide resin, and L / D downstream from the glass fiber supply position for glass fiber dispersion. Except for providing one reverse screw with D = 0.80, it was composed of only forward screws. The obtained resin composition was molded under the conditions of a cylinder temperature of 290 ° C. by the method described above and evaluated. The results are shown in Table 1. Compared to Example 1, since the weight average length of the glass fiber in the obtained resin composition is short, the strength / rigidity and impact strength at high temperature are inferior.

[比較例2]
ポリアミド樹脂PA−1とロービング数2ケの連続したガラス繊維GF−1を用いて、295℃のポリアミド樹脂コーティングダイを通過させることで、プルトルージョン法により、長さ8mm、直径3mmのペレット状のガラス繊維濃度が60重量%であるガラス繊維強化ポリアミド樹脂組成物を得た。なお、生産量は10kg/hrであった。得られた樹脂組成物は表1の組成になるようにポリアミド樹脂ペレットPA−1で希釈した後、上述の方法でシリンダ温度290℃の条件で成形し、諸特性を評価した。その結果を表1に示す。実施例1、2と比べても、機械的物性は遜色ないが、この製法による生産性は著しく低い。
[Comparative Example 2]
By using a polyamide resin PA-1 and continuous glass fiber GF-1 having two rovings and passing through a polyamide resin coating die at 295 ° C., a pultrusion method is used to form a pellet having a length of 8 mm and a diameter of 3 mm. A glass fiber reinforced polyamide resin composition having a glass fiber concentration of 60% by weight was obtained. The production amount was 10 kg / hr. The obtained resin composition was diluted with polyamide resin pellets PA-1 so as to have the composition shown in Table 1, and then molded under the conditions of a cylinder temperature of 290 ° C. by the above-described method, and various properties were evaluated. The results are shown in Table 1. Compared with Examples 1 and 2, the mechanical properties are comparable, but the productivity by this production method is remarkably low.

[比較例3]
実施例1と同様に、押出機として、二軸押出機ZSK40MC(WERNER&PFLEIDERER製)(L/D=48)を用いた。ポリアミド樹脂PA−1を最上流供給口より定重量式フィーダーを用い40kg/hrで供給し、ロービング数20ケの連続したガラス繊維GF−2を、ガラス繊維供給管を通じて、押出機全長の0.60の位置(最上流を0、最下流を1としたとき)より、40kg/hrで溶融したポリアミド樹脂中に供給し、紡口より押し出されたストランドを冷却後、長さ8mm、直径4mmのペレット状に切断、乾燥して、ガラス繊維濃度が50重量%であるガラス繊維強化ポリアミド樹脂組成物を得た。なお、押出機のバレル温度は285℃、スクリュー回転数150rpm、ガラス繊維強化ポリアミド樹脂組成物の吐出量は80kg/hrである。また、スクリュー構成は、押出機全長の0.75の位置に(A)部として、La/Da=0.45であるMIXING SCREW ELEMENT HMEパーツを設けた。得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形し、諸特性を評価した。その結果を表2に示す。実施例3に比べ、ガラス繊維の樹脂中への分散性に劣るため、分散不十分な強化繊維が押出機のスクリューと押出機のシリンダの内壁間で擦りあわされることによる折損が原因で繊維長が短くなり、高温時の強度・剛性と衝撃強度に劣る。
[Comparative Example 3]
As in Example 1, as the extruder, a twin-screw extruder ZSK40MC (manufactured by WERNER & PFLEIDERER) (L / D = 48) was used. Polyamide resin PA-1 is supplied at 40 kg / hr from the most upstream supply port using a constant-weight feeder, and continuous glass fiber GF-2 having 20 rovings is fed through the glass fiber supply pipe to a total length of 0. From the position of 60 (when the most upstream is 0 and the most downstream is 1), it is fed into a polyamide resin melted at 40 kg / hr, and the strand extruded from the spout is cooled, and then has a length of 8 mm and a diameter of 4 mm. It was cut into pellets and dried to obtain a glass fiber reinforced polyamide resin composition having a glass fiber concentration of 50% by weight. The barrel temperature of the extruder is 285 ° C., the screw rotation speed is 150 rpm, and the discharge rate of the glass fiber reinforced polyamide resin composition is 80 kg / hr. Moreover, the screw structure provided the MIXING SCREW ELEMENT HME part which is La / Da = 0.45 as a (A) part in the position of 0.75 of the extruder full length. The obtained resin composition was molded by the above-described method at a cylinder temperature of 290 ° C., and various properties were evaluated. The results are shown in Table 2. Compared to Example 3, since the dispersibility of the glass fiber in the resin is inferior, the fiber length due to breakage caused by rubbing between insufficiently dispersed reinforcing fibers between the screw of the extruder and the inner wall of the cylinder of the extruder Becomes short and inferior in strength, rigidity and impact strength at high temperature.

[比較例4]
実施例3と比較して、スクリュー構成に(B)部を設けない以外は、実施例3と同様の方法で、ガラス繊維濃度が50重量%であるガラス繊維強化ポリアミド樹脂組成物の製造を行い、得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形を試みたが、ガラス繊維の分散が不十分であるため、得られたガラス繊維強化ポリアミド樹脂組成物のペレットは外観に劣るだけでなく、成形機で可塑化することができず、諸特性を評価することができなかった。
[Comparative Example 4]
Compared to Example 3, a glass fiber reinforced polyamide resin composition having a glass fiber concentration of 50% by weight was produced in the same manner as in Example 3 except that the (B) part was not provided in the screw configuration. The obtained resin composition was tried to be molded under the condition of the cylinder temperature of 290 ° C. by the above-mentioned method. However, since the dispersion of the glass fiber was insufficient, the obtained glass fiber reinforced polyamide resin composition pellets were In addition, it was not possible to plasticize with a molding machine, and various properties could not be evaluated.

Figure 0004467326
Figure 0004467326

Figure 0004467326
Figure 0004467326

実施例における、ポリアミド樹脂と連続した強化繊維の二軸押出機による溶融混練の概要を示す図である。It is a figure which shows the outline | summary of the melt-kneading by the twin-screw extruder of the reinforced fiber continuous with the polyamide resin in an Example. 比較例3における、ポリアミド樹脂と連続した強化繊維の二軸押出機による溶融混練の概要を示す図である。It is a figure which shows the outline | summary of the melt-kneading by the twin-screw extruder of the reinforced fiber continuous with the polyamide resin in the comparative example 3.

本発明の製造方法によって得られた繊維強化熱可塑性樹脂組成物の成形品は、高温時における強度・剛性と衝撃強度に優れた繊維強化熱可塑性樹脂組成物を優れた生産性で得ることができるため、シリンダーヘッドカバー、ラジエータータンク、タイヤ圧センサー、カーヒータータンク、ウォーターバルブ、ラジエーターパイプ、インテークマニホールド、スロットルボディ、エンジンマウント、ステアリングロック、フロントエンドモジュール、ドアモジュール、ミラーブラケット、ペダル、バンパー、ホイールキャップ、アンダーカバー等の自動車部品や屋外ファン、冷水塔等のインペラー、電動工具、釣具リール、ブレーカー、歯車に好適に用いることができる。   The molded article of the fiber reinforced thermoplastic resin composition obtained by the production method of the present invention can obtain a fiber reinforced thermoplastic resin composition excellent in strength, rigidity and impact strength at high temperatures with excellent productivity. Cylinder head cover, radiator tank, tire pressure sensor, car heater tank, water valve, radiator pipe, intake manifold, throttle body, engine mount, steering lock, front end module, door module, mirror bracket, pedal, bumper, wheel cap It can be suitably used for automobile parts such as under covers, outdoor fans, impellers such as cold water towers, electric tools, fishing tackle reels, breakers, and gears.

Claims (6)

熱可塑性樹脂と連続した強化繊維を二軸押出機で溶融混練することにより製造される繊維強化熱可塑性樹脂組成物の製造方法であって、該強化繊維の供給位置を超えた下流側に連続した強化繊維を切断し強化繊維長を制御する(A)部と、(A)部の下流側に切断された強化繊維を分散させる(B)部を有する二軸押出機を用い、該二軸押出機中の熱可塑性樹脂が溶融状態にある位置より強化繊維を供給し、連続した強化繊維を二軸押出機のバレル全長の最上流を0また最下流を1と定義した場合に、バレル全長の0.75〜0.98の位置に設けられた(A)部で切断し、切断された強化繊維を(B)部で分散させることを特徴とする繊維強化熱可塑性樹脂組成物の製造方法。 A method for producing a fiber-reinforced thermoplastic resin composition produced by melt-kneading a thermoplastic resin and continuous reinforcing fibers with a twin-screw extruder, which is continuous downstream of the reinforcing fiber supply position Using a twin-screw extruder having a part (A) for cutting the reinforcing fiber and controlling the reinforcing fiber length and a part (B) for dispersing the reinforcing fiber cut downstream of the part (A) When the reinforcing fiber is supplied from the position where the thermoplastic resin in the machine is in a molten state, and the continuous reinforcing fiber is defined as 0 for the most upstream barrel length of the twin screw extruder and 1 for the most downstream barrel, A method for producing a fiber-reinforced thermoplastic resin composition, comprising cutting at (A) part provided at a position of 0.75 to 0.98 and dispersing the cut reinforcing fiber at (B) part. 強化繊維の供給位置を、0.50以上の位置に設けることを特徴とする請求項1に記載の繊維強化熱可塑性樹脂組成物の製造方法。 The reinforcing fiber supply position is set to 0 . The method for producing a fiber-reinforced thermoplastic resin composition according to claim 1, wherein the fiber-reinforced thermoplastic resin composition is provided at 50 or more positions. (A)部がスクリュー軸方向と同方向に強化繊維を切断するための刃を有する形状のパーツで構成され、(B)部がスクリューフライト上に切り欠き部を有する形状のスクリューパーツであることを特徴とする請求項1または2に記載の繊維強化熱可塑性樹脂組成物の製造方法。 (A) The part is composed of parts having a shape having a blade for cutting the reinforcing fiber in the same direction as the screw axial direction, and the (B) part is a screw part having a shape having a notch on the screw flight. The manufacturing method of the fiber reinforced thermoplastic resin composition of Claim 1 or 2 characterized by these. (A)部を構成するパーツのブロック長Laと押出機のスクリュー径Daの比(La/Da)が0.3〜1.5、(B)部を構成するスクリューパーツのブロック長Lbと押出機のスクリュー径Dbの比(Lb/Db)が0.3〜4.0であることを特徴とする請求項のいずれか1項に記載の繊維強化熱可塑性樹脂組成物の製造方法。 (A) The ratio (La / Da) of the block length La of the parts constituting the part to the screw diameter Da of the extruder is 0.3 to 1.5, and the block length Lb of the screw parts constituting the part (B) and the extrusion. The ratio (Lb / Db) of screw diameter Db of a machine is 0.3-4.0, The manufacturing method of the fiber reinforced thermoplastic resin composition of any one of Claim 3 characterized by the above-mentioned. 熱可塑性樹脂100重量部に対して、連続した強化繊維を10〜170重量部添加することを特徴とする請求項1〜のいずれか1項に記載の繊維強化熱可塑性樹脂組成物の製造方法。 The method for producing a fiber-reinforced thermoplastic resin composition according to any one of claims 1 to 4 , wherein 10 to 170 parts by weight of continuous reinforcing fibers are added to 100 parts by weight of the thermoplastic resin. . 熱可塑性樹脂がポリアミド樹脂、強化繊維がガラス繊維であることを特徴とする請求項1〜のいずれか1項に記載の繊維強化熱可塑性樹脂組成物の製造方法。 The method for producing a fiber-reinforced thermoplastic resin composition according to any one of claims 1 to 5 , wherein the thermoplastic resin is a polyamide resin, and the reinforcing fibers are glass fibers.
JP2004035444A 2004-02-12 2004-02-12 Production method Expired - Fee Related JP4467326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035444A JP4467326B2 (en) 2004-02-12 2004-02-12 Production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035444A JP4467326B2 (en) 2004-02-12 2004-02-12 Production method

Publications (2)

Publication Number Publication Date
JP2005225051A JP2005225051A (en) 2005-08-25
JP4467326B2 true JP4467326B2 (en) 2010-05-26

Family

ID=35000137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035444A Expired - Fee Related JP4467326B2 (en) 2004-02-12 2004-02-12 Production method

Country Status (1)

Country Link
JP (1) JP4467326B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290979B1 (en) * 2007-01-22 2013-07-30 (주)엘지하우시스 Extruder using roving type reinforced fiber
JP5761871B2 (en) * 2013-08-23 2015-08-12 株式会社日本製鋼所 Twin screw extruder used for manufacturing fiber reinforced resin composition and method for manufacturing fiber reinforced resin composition
JP6821354B2 (en) 2016-08-04 2021-01-27 株式会社日本製鋼所 Biaxial extruder
JP2018079597A (en) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 Method for producing fiber-reinforced resin material

Also Published As

Publication number Publication date
JP2005225051A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP5274244B2 (en) Method for producing glass fiber reinforced polyamide resin composition
JP4859260B2 (en) Glass fiber reinforced thermoplastic resin composition and molded article
JP5294848B2 (en) RESIN COMPOSITION AND AUTOMOBILE UNDERFOOD PARTS PRODUCED BY THE RESIN COMPOSITION
JP4586372B2 (en) Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same
JP4949913B2 (en) Long glass fiber reinforced polyamide resin pellets and molded articles thereof
CN101691445A (en) Alcoholysis resistant PA66 composite material used for automobiles and preparation method thereof
CN110527259B (en) Fiber-reinforced PBT/ASA alloy material with good weldability and preparation method thereof
JP4467326B2 (en) Production method
JP5570703B2 (en) Long glass fiber reinforced polyamide resin composition, resin pellets, and molded articles thereof
JP2007269914A (en) Glass long fiber-reinforced polyamide resin pellet and its molded article
JP4472264B2 (en) Method for producing reinforced polyamide resin composition
JP2005298663A (en) Automobile interior part made of resin
JP2005297206A (en) Method for manufacturing fiber-reinforced thermoplastic resin composition
JP2011062880A (en) Sandwich molding
JP3352121B2 (en) Long fiber reinforced polyamide resin composition and molded article thereof
JP2005297338A (en) Resin automotive mechanism component
KR101621000B1 (en) Polyamide resin composition, molded product using the same and method for preparing the same
JP2002103327A (en) Method for manufacturing glass fiber reinforced polyamide resin
JP5846971B2 (en) Sandwich molding
JP5451522B2 (en) Method for producing long fiber reinforced polyamide resin composition
US20210031418A1 (en) Method for producing injection molded articles from highly-filled fiber-reinforced resin composition
JP4340486B2 (en) Manufacturing method of fiber reinforced resin molding material
JP2008150414A (en) Lightweight fiber-reinforced resin composition excellent in impact resistance and molded article comprising the same
JP3736260B2 (en) Organic fiber resin composition and use thereof
WO1995009893A1 (en) Long-fiber-reinforced polyamide resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees