JPH05162135A - Manufacture of fiber-reinforced thermoplastic resin structure - Google Patents

Manufacture of fiber-reinforced thermoplastic resin structure

Info

Publication number
JPH05162135A
JPH05162135A JP3327426A JP32742691A JPH05162135A JP H05162135 A JPH05162135 A JP H05162135A JP 3327426 A JP3327426 A JP 3327426A JP 32742691 A JP32742691 A JP 32742691A JP H05162135 A JPH05162135 A JP H05162135A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
fibers
roving
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3327426A
Other languages
Japanese (ja)
Other versions
JP3234262B2 (en
Inventor
Atsushi Murakami
敦史 村上
Sadayuki Yakabe
貞行 矢ケ部
Ikutoshi Nakajima
幾敏 中島
Osami Nagaishi
修身 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP32742691A priority Critical patent/JP3234262B2/en
Publication of JPH05162135A publication Critical patent/JPH05162135A/en
Application granted granted Critical
Publication of JP3234262B2 publication Critical patent/JP3234262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a long fiber-reinforced thermoplastic resin structure having excellent adhesion between reinforcing fibers and a thermoplastic resin and superior mechanical characteristic and produced at high productivity. CONSTITUTION:An object can be attained by treating long-fiber roving fibers 1 and a thermoplastic resin through the following processes in reinforcing fibers. (1) the roving fibers 1 are positioned along a bar having a surface made of Teflon, and received by a driving roller having notches along a roll shaft. (2) the roving fibers are preheated at above the melting temperature of the melted thermoplastic resin by a hot-air oven. (3) the preheated roving fibers are covered with the thermoplastic resin, and passed in a die having five projecting sections from a guide eye 2 by 4mm and being heated at 285 deg.C. (4) the fibers are nipped by a press roller by 80kg and received.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化熱可塑性樹脂構
造体の製造方法に関するものであって、より詳しくは強
化繊維と樹脂の密着性に優れ、強化繊維による補強効果
が極めて優れた繊維強化熱可塑性樹脂構造体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin structure, and more specifically to a fiber-reinforced resin having excellent adhesion between the reinforcing fiber and the resin and having an extremely excellent reinforcing effect by the reinforcing fiber. The present invention relates to a method for manufacturing a thermoplastic resin structure.

【0002】[0002]

【従来の技術】従来、繊維によって強化された熱可塑性
樹脂の製造方法としては、次の2つに大別される。 その1つの方法は熱可塑性樹脂に例えば3mm程度
の長さの強化繊維をドライブレンドし、更にこれを押出
機で混練、造粒する方法である。
2. Description of the Related Art Conventionally, methods for producing a thermoplastic resin reinforced with fibers are roughly classified into the following two methods. One of the methods is a method in which a reinforcing fiber having a length of, for example, about 3 mm is dry blended with a thermoplastic resin, and this is further kneaded and granulated with an extruder.

【0003】 他の1つの方法は連続した強化繊維を
ダイス内に通し、押出機で溶融した熱可塑性樹脂を上記
ダイス内に導き、強化繊維を被覆し、冷却後切断する方
法である。 現在、市販されている繊維強化熱可塑性樹脂の多くは
の方法で作られているが、この方法では、押出機のスク
リューで練られることによって、強化繊維が砕かれ、そ
の補強効果は必ずしも十分とは言えない。更に配合でき
る繊維量もせいぜい40重量%程度が限界とされてい
る。
Another method is a method in which continuous reinforcing fibers are passed through a die, a thermoplastic resin melted by an extruder is introduced into the die, the reinforcing fibers are coated, and after cooling, cutting is performed. Currently, most of the commercially available fiber-reinforced thermoplastic resins are manufactured by the method of, but in this method, the reinforcing fibers are crushed by being kneaded by the screw of the extruder, and the reinforcing effect is not always sufficient. I can't say. Further, the amount of fibers that can be blended is limited to about 40% by weight at most.

【0004】一方、の方法は、ペレットにしたときの
繊維長がペレットの長さに等しいため、繊維による補強
効果も著しく優れたものになるはずである。ところが、
粘度の高い溶融熱可塑性樹脂中を強化繊維を通過させた
だけでは、繊維を構成するフィラメントに熱可塑性樹脂
を付着、含浸することは困難であり、製品から強化繊維
が脱落、飛散し、更にこれらの製品から得た成形品は、
強化繊維が均一に分散せず、毛玉となって成形品中に散
在する。そこで均一に分散させるためには成形時、大き
なせん断力が必要なため、強化繊維の切断が顕著で、そ
の補強効果が十分でない、といった問題がある。特公昭
63−37694号公報には、溶融ポリマー中に位置す
るロッドやバーの表面上を引くことで溶融ポリマーを強
化繊維束に含浸する方法が記載されている。しかしなが
らこの方法では、強化繊維の引取速度が高々3m/分と
必ずしも工業的に生産性の高い方法とは言えない。
On the other hand, in the method (1), since the fiber length when pelletized is equal to the length of the pellet, the reinforcing effect by the fiber should be remarkably excellent. However,
It is difficult to attach and impregnate the thermoplastic resin to the filaments constituting the fiber by simply passing the reinforcing fiber through the molten thermoplastic resin having high viscosity, and the reinforcing fiber falls off from the product and scatters. Molded products obtained from
The reinforcing fibers are not evenly dispersed and become pills and are scattered in the molded product. Therefore, since a large shearing force is required at the time of molding in order to disperse the particles uniformly, there is a problem that the reinforcing fibers are severely cut and the reinforcing effect is not sufficient. Japanese Patent Publication No. 63-37694 describes a method of impregnating a reinforcing fiber bundle with a molten polymer by pulling on the surface of a rod or a bar located in the molten polymer. However, with this method, the take-up speed of the reinforcing fibers is at most 3 m / min, which is not necessarily a method with high industrial productivity.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明の目的
は、原理的に優れたの方法を利用して、製品からの繊
維の脱落がなく、成形時の繊維分散性が良好で、優れた
機械的な特性を有する繊維強化熱可塑性樹脂構造体を高
生産性で得られる方法を提供することを課題とするもの
である。
Therefore, the object of the present invention is to use the excellent method in principle, to prevent the fibers from falling out of the product and to have good fiber dispersibility during molding. It is an object of the present invention to provide a method for obtaining a fiber-reinforced thermoplastic resin structure having mechanical properties with high productivity.

【0006】[0006]

【課題を解決するための手段】本発明は連続した強化繊
維を引き取りながら、溶融した熱可塑性樹脂を被覆さ
せ、含浸させる繊維強化熱可塑性樹脂構造体の製造方法
であって、(a)強化繊維に溶融した熱可塑性樹脂を被
覆、含浸する直前に、該強化繊維を熱可塑性樹脂の溶融
温度以上に予熱すること、(b)溶融した熱可塑性樹脂
を強化繊維に被覆させた後、熱可塑性樹脂の融点以上に
加熱された、上下に、互い違いに配置された凸部を有す
る通路中を凸部に接触させて通過させること、(c)そ
の後更に、加圧すること、を特徴とする繊維強化熱可塑
性樹脂構造体の製造方法であり、更には、強化繊維がガ
ラス繊維ロービングの場合では(a)工程の前に、摩擦
による静電気によって繊維幅を拡げることを特徴とする
製造方法である。
The present invention is a method for producing a fiber-reinforced thermoplastic resin structure in which molten thermoplastic resin is coated and impregnated while taking in continuous reinforcing fibers. Immediately before coating and impregnating with the molten thermoplastic resin, the reinforcing fiber is preheated to a temperature not lower than the melting temperature of the thermoplastic resin, and (b) the reinforcing fiber is coated with the thermoplastic resin, A fiber-reinforced heat which is heated to a temperature equal to or higher than the melting point of (3) and which is passed through a passage having convex portions arranged alternately above and below, in contact with the convex portions (c) further pressing. It is a method for producing a plastic resin structure, and further, in the case where the reinforcing fiber is glass fiber roving, before the step (a), the fiber width is expanded by static electricity due to friction.

【0007】以下、図面に基づき、本発明の方法及び構
成を詳細に説明する。図1において、1はロービングボ
ビン8から繰り出されるロービング繊維であって、この
ロービング繊維1としては、ガラス繊維を始め、カーボ
ン繊維、ポリエステル繊維、ナイロン繊維、芳香族ポリ
アミド繊維等のフィラメント繊維(太さが数μ〜数十
μ)の多数本(数十〜数千本)を、一般に少量のバイン
ダーを用いて集束してなるロービング繊維が用いられ
る。バインダーの量はロービング繊維の開繊を容易にす
るため少ない方が好ましいが、強固に束ねられているも
のでも、ロービングボビン8から繰り出して後、ローラ
やバーを多段に配置して、ロービング繊維1に張力を加
えることにより用いることができる。
The method and structure of the present invention will be described in detail below with reference to the drawings. In FIG. 1, reference numeral 1 is a roving fiber fed from a roving bobbin 8. The roving fiber 1 includes glass fiber, filament fiber (carbon fiber, polyester fiber, nylon fiber, aromatic polyamide fiber, etc.) (thickness). A roving fiber obtained by bundling a large number (several tens to several tens of μ) (several tens to thousands) with a small amount of binder is generally used. The amount of the binder is preferably small in order to facilitate the opening of the roving fiber, but even if the binder is tightly bundled, it is fed from the roving bobbin 8 and then rollers and bars are arranged in multiple stages to form the roving fiber 1. It can be used by applying tension to.

【0008】更に、用いるロービング繊維1がガラス繊
維の場合は、図2に示すように、表面材質が、テフロン
等の絶縁材料であるローラーあるいはバー10を多段に
配置し、更に1対のロールのうち、1方がロール軸に平
行に切り欠きを有する。駆動ローラー11で引き取られ
る工程を経る。この工程により、大幅に開繊できる。こ
の効果は、表面材質が、テフロン等の絶縁材料であるロ
ーラーあるいはバー10に通すことで、バインダーによ
るフィラメント間の拘束力を弱める、と同時に張力に比
例した摩擦力によってガラスロービング繊維に静電気が
発生する。更に1対のロールのうち1方が、ロール軸に
平行に矩形の切り欠きを有する、駆動ローラー11によ
って張力の緊張と弛緩が繰り返されることにより、大幅
な開繊が達成できる。
Further, when the roving fiber 1 used is a glass fiber, as shown in FIG. 2, rollers or bars 10 whose surface material is an insulating material such as Teflon are arranged in multiple stages, and further a pair of rolls is used. One of them has a cutout parallel to the roll axis. The process of being taken up by the drive roller 11 is performed. By this process, it is possible to greatly open the fiber. This effect is that the surface material is passed through the roller or bar 10 which is an insulating material such as Teflon to weaken the binding force between the filaments by the binder, and at the same time static electricity is generated in the glass roving fiber by the frictional force proportional to the tension. To do. Further, one of the pair of rolls has a rectangular cutout parallel to the roll axis, and the tension and relaxation of the tension are repeated by the drive roller 11, whereby a large opening can be achieved.

【0009】図1で、ロービングボビン8から繰り出さ
れたロービング繊維1は、櫛状または環状の糸道2に通
されて、所定の形状例えば薄い帯状に引き揃えられ、そ
の後予熱炉3に導入される。予熱炉3は一般に利用され
るニクロム線ヒーター等の輻射熱や熱風、遠赤外線ヒー
ター、更には加熱されたダイ等が利用される。予熱炉3
の出口でロービング繊維1は、被覆される熱可塑性樹脂
9の溶融温度以上に加熱されることにより、ロービング
繊維1への溶融した熱可塑性樹脂9の含浸が促進され、
ロービング繊維1の引取速度が速くでき、高生産性が達
成できる。
In FIG. 1, a roving fiber 1 fed from a roving bobbin 8 is passed through a comb-shaped or annular yarn path 2 to be aligned in a predetermined shape, for example, a thin strip shape, and then introduced into a preheating furnace 3. It As the preheating furnace 3, radiant heat or hot air of a commonly used nichrome wire heater, a far infrared heater, or a heated die is used. Preheating furnace 3
At the outlet of the roving fiber 1, the roving fiber 1 is heated above the melting temperature of the thermoplastic resin 9 to be coated, whereby the impregnation of the roving fiber 1 with the molten thermoplastic resin 9 is promoted,
The take-up speed of the roving fiber 1 can be increased, and high productivity can be achieved.

【0010】熱可塑性樹脂9の溶融温度以上に加熱され
たロービング繊維1は、コーティングダイ4に導入さ
れ、押出機7により可塑化、溶融された熱可塑性樹脂に
より被覆される。本発明に使用できる熱可塑性樹脂は、
強化繊維より、柔らかく、低融点であれば、特に限定さ
れず、強化繊維との組み合わせでどのようなものでも用
いられるが、例えば具体的には、ポリアミド、ポリプロ
ピレン、ポリエステル、ポリアリレンサルファイド、ポ
リアセタール等であり、これらに本発明の製造方法によ
って得られる繊維強化熱可塑性樹脂構造体の特性を損な
わない範囲で、他の樹脂、エラストマー、無機質充填
材、着色剤、熱安定剤、可塑剤、滑剤、離型剤、難燃剤
等を添加することができる。
The roving fibers 1 heated to a temperature higher than the melting temperature of the thermoplastic resin 9 are introduced into the coating die 4 and covered with the thermoplastic resin which is plasticized and melted by the extruder 7. The thermoplastic resin that can be used in the present invention,
It is not particularly limited as long as it is softer than the reinforcing fiber and has a low melting point, and any one can be used in combination with the reinforcing fiber. Specific examples include polyamide, polypropylene, polyester, polyarylene sulfide, and polyacetal. And the like, to the extent that the properties of the fiber-reinforced thermoplastic resin structure obtained by the production method of the present invention are not impaired, other resins, elastomers, inorganic fillers, colorants, heat stabilizers, plasticizers, lubricants, etc. , A release agent, a flame retardant, etc. can be added.

【0011】押出機7は一般に熱可塑性樹脂に利用され
る押出機であり、コーティングダイ4に可塑化、溶融し
た熱可塑性樹脂を吐出むらなく安定した状態で供給でき
るものであればどのような押出機でも使用できる。コー
ティングダイ4は、ロービング繊維1に溶融熱可塑性樹
脂を被覆するためのダイで、ごく普通に電線被覆等に利
用されるダイでも良いが、櫛状あるいは環状の糸道2に
よって、所定の形状例えば薄い帯状を維持して、溶融し
た熱可塑性樹脂の浴に導入され、溶融した熱可塑性樹脂
で被覆され、そのままの形状を維持して引き出すことの
できる構造のコーティングダイが好ましい。更に、コー
ティングダイの構造は、生産スピードにもよるが、樹脂
内圧が高くなるように、また樹脂の押し出される圧力
が、溶融した熱可塑性樹脂で被覆されたロービング繊維
の引き取り力を軽減する方向に作用するような構造のダ
イが好ましい。該コーディングダイで被覆される熱可塑
性樹脂の量としては、30〜80重量%である。30重
量%未満では、樹脂の含浸が不十分で、強化繊維による
十分な効果が発現しない。また80重量%を越えると、
強化繊維による補強効果が小さく、本発明の目的とする
ところではない。
The extruder 7 is an extruder generally used for a thermoplastic resin, and any extruder can be used as long as it can stably supply the plasticized and melted thermoplastic resin to the coating die 4 without uneven discharge. Can also be used on a machine. The coating die 4 is a die for coating the roving fibers 1 with the molten thermoplastic resin, and may be a die which is commonly used for coating electric wires, but a predetermined shape such as a comb-shaped or annular yarn path 2 is used. A coating die having a structure in which it is introduced into a bath of a molten thermoplastic resin while being maintained in a thin strip shape, is coated with the molten thermoplastic resin, and can be drawn while maintaining its shape is preferable. Furthermore, the structure of the coating die depends on the production speed, so that the internal pressure of the resin becomes high, and the pressure of the resin extruded tends to reduce the take-up force of the roving fiber coated with the molten thermoplastic resin. A die that is structured to work is preferred. The amount of the thermoplastic resin coated with the coding die is 30 to 80% by weight. If it is less than 30% by weight, the resin is not sufficiently impregnated and the reinforcing fiber does not exhibit a sufficient effect. If it exceeds 80% by weight,
The reinforcing effect of the reinforcing fibers is small and is not the object of the present invention.

【0012】溶融した熱可塑性樹脂で被覆されたロービ
ング繊維は、該熱可塑性樹脂の融点以上、分解度以下に
加熱された、上下に、互い違いに配置された凸部を有す
る凸ダイ5に導入され、凸部に接触させて通過させる。
概略図を図3に示す。該凸ダイ5中の凸部の数は多い方
が、また糸道からの凸度合いは大きい方が、ロービング
繊維中への溶融した熱可塑性樹脂の含浸を促進できるの
で好ましいが、被覆した熱可塑性樹脂の粘度や、量にも
よるが、ロービング繊維の毛羽立ち、さらには切断、ま
たは引取速度の減少、引取張力の増大といった点から、
最適に設定される。
The roving fiber coated with the molten thermoplastic resin is introduced into a convex die 5 having convex portions arranged alternately above and below, which is heated to a temperature above the melting point of the thermoplastic resin and below the decomposition degree. , Touch the convex part and let it pass.
A schematic diagram is shown in FIG. It is preferable that the number of convex portions in the convex die 5 is large, and the convex degree from the yarn path is large, because impregnation of the molten thermoplastic resin into the roving fibers can be promoted, but the coated thermoplastic resin is preferable. Depending on the viscosity and amount of the resin, roving fiber fluffing, cutting, or reduction in take-up speed, increase in take-up tension,
Optimal setting.

【0013】溶融した熱可塑性樹脂で被覆し、凸ダイ5
を通過したロービング繊維は、バネや圧縮空気等を利用
した加圧機能を具備し、引き出し時に溶融した熱可塑性
樹脂が固化できる温度に保持された、少なくとも1対の
駆動プレスローラー6によりニップされる。以上の方法
によって、強化繊維が引取方向にほぼ平行に配列し、熱
可塑性樹脂が含浸し、強化繊維と熱可塑性樹脂との密着
性に優れた繊維強化熱可塑性樹脂構造体が得られる。
The convex die 5 is coated with a molten thermoplastic resin.
The roving fibers that have passed through are nipped by at least one pair of driving press rollers 6 that have a pressing function using a spring, compressed air, or the like, and that are held at a temperature at which the molten thermoplastic resin can be solidified when pulled out. .. By the above method, the reinforcing fibers are arranged substantially parallel to the take-up direction and impregnated with the thermoplastic resin, and a fiber-reinforced thermoplastic resin structure having excellent adhesion between the reinforcing fibers and the thermoplastic resin is obtained.

【0014】更に、射出成形用にペレットに加工するた
め、上記駆動プレスローラー6によってニップされた
後、連続的に、被覆、含浸した熱可塑性樹脂が劣化、着
色しない温度、あるいは雰囲気に保持された軟化炉(図
示せず)に導入して、該熱可塑性樹脂を軟化状態にせし
め、成形ノズルのような穿孔を有する金型によって、ス
トランド状に成形後、冷却固化し、該ストランドは所望
の長さに切断される。
Further, in order to process into pellets for injection molding, after being nipped by the driving press roller 6, the thermoplastic resin impregnated or impregnated is continuously maintained at a temperature or atmosphere at which it is not deteriorated or colored. It is introduced into a softening furnace (not shown) to make the thermoplastic resin in a softened state, and after being formed into a strand by a die having a perforation such as a forming nozzle, the strand is cooled and solidified to obtain a desired length. Be cut off.

【0015】[0015]

【実施例】以下、実施例で本発明の繊維強化熱可塑性樹
脂構造体の製造方法を、熱可塑性樹脂としてナイロン6
/6、強化繊維ロービングとしてガラス繊維を利用した
場合を例にして詳述する。これらの例は、例示のために
示すもので本発明はこれらに限定されない。
[Examples] In the following, the method for producing a fiber-reinforced thermoplastic resin structure of the present invention will be described with reference to Examples in which nylon 6
/ 6, a case of using glass fiber as the reinforcing fiber roving will be described in detail as an example. These examples are provided by way of illustration and the invention is not limited thereto.

【0016】なお、実施例に記載した繊維強化熱可塑性
樹脂構造体の評価は、次の方法に従って実施した。 (1)ロービング繊維含有率 繊維強化熱可塑性樹脂構造体を、650℃の電気炉に4
5分間投入して、樹脂分を焼却し、その前後の重量より
算出した。 (2)ロービング繊維脱落率 熱可塑性樹脂のロービング繊維への含浸度合いを定量化
するため、下記に示すサンプルを約1g秤量し、100
ミリリットルの三角フラスコに投入し、5分間振とうす
る。次に、振とうによって繊維が脱落したサンプルをフ
ラスコより取り出し、その前後の重量より、脱落した繊
維量を算出する。次に下式によってロービング繊維脱落
率(ES)とした。
The fiber-reinforced thermoplastic resin structures described in the examples were evaluated according to the following methods. (1) Content of roving fiber The fiber reinforced thermoplastic resin structure was placed in an electric furnace at 650 ° C.
The resin content was incinerated for 5 minutes, and the weight was calculated before and after the incineration. (2) Dropping rate of roving fiber In order to quantify the degree of impregnation of the roving fiber with the thermoplastic resin, about 1 g of the sample shown below was weighed to obtain 100
Place in a milliliter Erlenmeyer flask and shake for 5 minutes. Next, the sample from which the fibers have fallen off by shaking is taken out from the flask, and the amount of fibers dropped off is calculated from the weight before and after that. Next, the roving fiber drop-off rate (ES) was calculated by the following formula.

【0017】 ES(%)=(Mf/Ms)/Wf×10000 ここで、Mf:脱落した繊維量(g) Ms:サンプル量(g) Wf:ロービング繊維含有量(g) である。ES (%) = (Mf / Ms) / Wf × 10000 Here, Mf is the amount of fibers dropped (g) Ms is the amount of sample (g) Wf is the content of roving fibers (g).

【0018】次にサンプルの調整方法を示す。 (a)プレスローラーから引き出された帯状構造物繊維
が並んでいる(引き出した)方向と直角に5mmの長さ
に切断した。 (b)ペレット 繊維が並んでいる(引き取った)方向と直角に5mmの
長さに切断し、更に繊維が並んでいる方向に沿って、ペ
レット断面を1/2に切断し、断面が半円状の長さ5m
mのものをサンプルとした。 (3)機械的特性 ペレット化したサンプルにつき、(株)日本製鋼所製N
−70BII射出成形機を用いて、厚さ3mmのダンベ
ルとタンザクのテストピースを成形した。次にASTM
D638、D790、D256に従って、引っ張り試
験、曲げ試験、ノッチ付きアイゾット衝撃試験を行っ
た。更に、東芝機械(株)製IS150E射出成形機を
用いて、130mm×130mm×3mmのプレートを
成形し、流動方向と、流動方向と直角な方向でASTM
D790に従ってテストピースを切り出し、曲げ試験
を実施し、その比から異方性の評価とした。
Next, a method for adjusting the sample will be described. (A) It was cut into a length of 5 mm at a right angle to the direction in which the band-shaped structure fibers pulled out from the press roller were arranged (drawn). (B) Pellet Cut into a length of 5 mm at right angles to the direction in which the fibers are lined up (taken out), and then cut the pellet cross section in half along the direction in which the fibers are lined up, and the cross section is a semicircle. Shape length 5m
m was used as a sample. (3) Mechanical properties For pelletized samples, N made by Japan Steel Works Ltd.
Using a -70BII injection molding machine, dumbbell and tanzaque test pieces having a thickness of 3 mm were molded. Next ASTM
A tensile test, a bending test, and a notched Izod impact test were performed according to D638, D790, and D256. Further, using an IS150E injection molding machine manufactured by Toshiba Machine Co., Ltd., a 130 mm × 130 mm × 3 mm plate is molded, and ASTM is applied in a flow direction and a direction perpendicular to the flow direction.
A test piece was cut out according to D790 and a bending test was performed, and the anisotropy was evaluated from the ratio.

【0019】[0019]

【実施例1】本実施例では、図1に示す方法で、薄い帯
状の繊維強化熱可塑性樹脂構造体を製造した。まず、ガ
ラスロービング繊維(2200tex、旭ファイバーグ
ラス(株)製、径16μ、FT594)のロービングボ
ビンを2ロール用意した。このロービングからガラスロ
ービング繊維を繰り出し、テフロンシートを巻いた、2
5mm径のバー4個にジグザグ状に這わせ、更に上部ロ
ールが約102mm径で、2mm深さ、幅55mmの切
り欠きを3個等間隔で有する駆動ローラーで引き取っ
た。この時2本のガラスロービング繊維はそれぞれ、5
mmの幅が35mmから最大120mmに開繊した。次
いで該ガラスロービング繊維を熱風式予熱炉に導入し
て、約300℃に加熱した。
Example 1 In this example, a thin band-shaped fiber-reinforced thermoplastic resin structure was manufactured by the method shown in FIG. First, two rolls of roving bobbins made of glass roving fiber (2200 tex, manufactured by Asahi Fiber Glass Co., Ltd., diameter 16 μ, FT594) were prepared. A glass roving fiber was unwound from this roving and wrapped with a Teflon sheet.
It was laid in a zigzag shape on four 5 mm-diameter bars, and was further taken up by a drive roller having three notches each having an upper roll diameter of about 102 mm and a depth of 2 mm and a width of 55 mm. At this time, the two glass roving fibers are 5
The width of mm was opened from 35 mm to a maximum of 120 mm. Then, the glass roving fiber was introduced into a hot air type preheating furnace and heated to about 300 ° C.

【0020】一方、旭化成工業(株)製レオナ1200
(ナイロン6/6、融点263℃)を単軸押出機を用い
て可塑化、溶融し、コーティングダイへ供給した。該ダ
イに上記のガラスロービング繊維2本を導入し、ナイロ
ン6/6で被覆し、次いで、凸数5、糸道からの凸度合
いが4mm、表面温度285℃に設定された凸ダイ中を
通過させ、更に常温の駆動プレスローラーで80kgの
ニップ力で引き取り、帯状のガラス繊維化ナイロン6/
6を得た。引取速度は18m/分であった。該サンプル
を上述の方法で評価した結果を表1に示す。
On the other hand, Leona 1200 manufactured by Asahi Kasei Corporation
(Nylon 6/6, melting point 263 ° C.) was plasticized and melted using a single-screw extruder and supplied to a coating die. The above-mentioned two glass roving fibers were introduced into the die, covered with nylon 6/6, and then passed through a convex die set to a convex number of 5, a convexity of 4 mm from the yarn path, and a surface temperature of 285 ° C. Then, it is taken up by a driving press roller at room temperature with a nip force of 80 kg, and a belt-shaped glass fiber nylon 6 /
Got 6. The take-up speed was 18 m / min. Table 1 shows the results of evaluation of the sample by the above method.

【0021】[0021]

【比較例1】熱風式予熱炉で加熱しない以外は、実施例
1の方法と同様の方法で、帯状のガラス繊維強化ナイロ
ン6/6を得た。引取速度は18m/分であった。該サ
ンプルを上述の方法で評価した結果を表1に示す。
Comparative Example 1 A belt-shaped glass fiber reinforced nylon 6/6 was obtained in the same manner as in Example 1 except that it was not heated in a hot air type preheating furnace. The take-up speed was 18 m / min. Table 1 shows the results of evaluation of the sample by the above method.

【0022】[0022]

【実施例2】引取速度が12m/分である以外は、実施
例1の方法と同様の方法で、帯状のガラス繊維強化ナイ
ロン6/6を得た。該サンプルを上述の方法で評価した
結果を表1に示す。
Example 2 A belt-shaped glass fiber reinforced nylon 6/6 was obtained in the same manner as in Example 1 except that the take-up speed was 12 m / min. Table 1 shows the results of evaluation of the sample by the above method.

【0023】[0023]

【比較例2】凸ダイを通過させる工程を省いた以外は、
実施例2と同様の方法で、帯状のガラス繊維強化ナイロ
ン6/6を得た。該サンプルを上述の方法で評価した結
果を表1に示す。
[Comparative Example 2] Except that the step of passing through the convex die was omitted
In the same manner as in Example 2, a belt-shaped glass fiber reinforced nylon 6/6 was obtained. Table 1 shows the results of evaluation of the sample by the above method.

【0024】[0024]

【比較例3】駆動プレスローラーでニップして引き取る
工程を省いた以外は、実施例2と同様の方法で、帯状の
ガラス繊維強化ナイロン6/6を得た。該サンプルを上
述の方法で評価した結果を表1に示した。
Comparative Example 3 A belt-shaped glass fiber reinforced nylon 6/6 was obtained in the same manner as in Example 2 except that the step of nipping with a driving press roller and omitting it were omitted. The results of evaluation of the sample by the above method are shown in Table 1.

【0025】[0025]

【実施例3】実施例2で得た、帯状のガラス繊維強化ナ
イロン6/6を、連続で、先端出口に3mm径の成形ノ
ズルを付帯した熱風式軟化炉に導入して、ストランド状
に成形した。次いで水で冷却して固化させ、長さ約10
mmに切断して、ペレット状のガラス繊維強化ナイロン
6/6を得た。本ペレットのガラス繊維含有率は59重
量%であった。該サンプルを上述の方法で評価した結果
を表2に示す。
[Example 3] The strip-shaped glass fiber reinforced nylon 6/6 obtained in Example 2 was continuously introduced into a hot air softening furnace having a 3 mm diameter forming nozzle at the tip exit, and formed into a strand. did. It is then cooled with water to solidify and is about 10
After cutting into mm, pellets of glass fiber reinforced nylon 6/6 were obtained. The glass fiber content of this pellet was 59% by weight. Table 2 shows the results of evaluation of the sample by the above method.

【0026】[0026]

【比較例4】凸ダイを通過する工程を省いた以外は、実
施例3と同様の方法で、ペレット状のガラス繊維強化ナ
イロン6/6を得た。本ペレットのガラス繊維含有率は
61重量%であった。しかし、該ペレットはカッティン
グ不良が著しく、ペレット端面からガラス繊維がはみ出
ており、射出成形機のホッパーからシリンダー内に食い
込まず成形できなかった。該サンプルを上述の方法で評
価した結果を表2に示す。
Comparative Example 4 Pellet-shaped glass fiber reinforced nylon 6/6 was obtained in the same manner as in Example 3 except that the step of passing through the convex die was omitted. The glass fiber content of this pellet was 61% by weight. However, the pellets had a remarkable cutting failure, and the glass fibers protruded from the end faces of the pellets, and the pellets could not be molded without biting into the cylinder from the hopper of the injection molding machine. Table 2 shows the results of evaluation of the sample by the above method.

【0027】[0027]

【参考例1】旭化成工業(株)製レオナ1300ペレッ
トとガラス繊維チョップドストランド(旭ファイバーグ
ラス(株)製、フィラメント径13μ、長さ3mm)を
ドライブレンドして、単軸押出機で、従来のの方法に
よるガラス繊維強化ナイロン6/6ペレットを得た。本
ペレットのガラス繊維含有率は60重量%であった。本
ペレットの製造においては、ベントアップや、脈流が観
察され、運転は不安定であった。該サンプルを上述の方
法で評価した結果を表2に示す。
[Reference Example 1] Leona 1300 pellets manufactured by Asahi Kasei Kogyo Co., Ltd. and glass fiber chopped strands (Asahi Fiber Glass Co., Ltd., filament diameter 13 μ, length 3 mm) were dry-blended, and a conventional single-screw extruder was used. Glass fiber reinforced nylon 6/6 pellets were obtained by the method described in 1. The glass fiber content of the pellets was 60% by weight. Vent-up and pulsating flow were observed in the production of the pellets, and the operation was unstable. Table 2 shows the results of evaluation of the sample by the above method.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明の方法によれば、強化繊維と樹脂
の密着性に優れ、強化繊維による補強効果が非常に優れ
た繊維強化熱可塑性樹脂構造体を、高生産性で得られる
という効果を有する。
According to the method of the present invention, it is possible to obtain a fiber-reinforced thermoplastic resin structure having excellent adhesion between the reinforcing fiber and the resin and very excellent reinforcing effect by the reinforcing fiber with high productivity. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で用いる装置の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an apparatus used in a method of the present invention.

【図2】本発明の強化繊維がガラスロービング繊維の時
に予熱工程((a)工程)の前に挿入される開繊装置の
構成を示す図である。
FIG. 2 is a diagram showing a configuration of a fiber-spreading device that is inserted before the preheating step (step (a)) when the reinforcing fibers of the present invention are glass roving fibers.

【図3】本発明で用いられる凸ダイの構造の1例を示す
図である。
FIG. 3 is a diagram showing an example of a structure of a convex die used in the present invention.

【符号の説明】[Explanation of symbols]

1 ロービング繊維 2 糸道 3 予熱炉 4 コーティングダイ 5 凸ダイ 6 駆動プレスローラー 7 押出機 8 ロービング繊維ボビン 9 熱可塑性樹脂 10 表面材質が絶縁材料であるバー 11 ロール軸方向に切り欠きを有する駆動ローラー DESCRIPTION OF SYMBOLS 1 roving fiber 2 yarn path 3 preheating furnace 4 coating die 5 convex die 6 driving press roller 7 extruder 8 roving fiber bobbin 9 thermoplastic resin 10 bar whose surface material is an insulating material 11 driving roller having a notch in the roll axial direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永石 修身 宮崎県延岡市旭町6丁目4100番地 旭化成 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Nagaishi 6-4100 Asahi-cho, Nobeoka-shi, Miyazaki Prefecture Asahi Kasei Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続した強化繊維を引き取りながら、溶
融した熱可塑性樹脂を被覆させ、含浸させる繊維強化熱
可塑性樹脂構造体の製造方法であって、(a)強化繊維
に溶融した熱可塑性樹脂を被覆、含浸する直前に、該強
化繊維を熱可塑性樹脂の溶融温度以上に予熱すること、
(b)溶融した熱可塑性樹脂を強化繊維に被覆させた
後、熱可塑性樹脂の融点以上に加熱された、上下に、互
い違いに配置された凸部を有する通路中を凸部に接触さ
せて通過させること(c)その後更に、加圧することを
特徴とする繊維強化熱可塑性樹脂構造体の製造方法。
1. A method for producing a fiber-reinforced thermoplastic resin structure in which a molten thermoplastic resin is coated and impregnated while taking continuous reinforcing fibers, wherein (a) the molten resin is melted into the reinforcing fibers. Immediately before coating or impregnating, preheating the reinforcing fiber to a temperature above the melting temperature of the thermoplastic resin,
(B) After the molten thermoplastic resin is coated on the reinforcing fibers, the protrusions are passed through a passage having protrusions arranged alternately above and below, which are heated above the melting point of the thermoplastic resin. (C) A method for producing a fiber-reinforced thermoplastic resin structure, characterized by further applying pressure.
【請求項2】 連続した強化繊維がガラス繊維ロービン
グであり、(a)工程の前に摩擦によってガラス繊維に
静電気を発生させ、その幅を拡げることを特徴とする請
求項1記載の繊維強化熱可塑性樹脂構造体の製造方法。
2. The fiber-reinforced heat according to claim 1, wherein the continuous reinforcing fibers are glass fiber rovings, and static electricity is generated in the glass fibers by friction before the step (a) to expand the width thereof. A method for producing a plastic resin structure.
【請求項3】 (c)工程の後加熱して熱可塑性樹脂を
軟化状態にし、ストランド状に成形した後、冷却し切断
することを特徴とする請求項1または請求項2記載の繊
維強化熱可塑性樹脂構造体の製造方法。
3. The fiber-reinforced heat according to claim 1 or 2, wherein after the step (c), the thermoplastic resin is made into a softened state, formed into a strand shape, and then cooled and cut. A method for producing a plastic resin structure.
JP32742691A 1991-12-11 1991-12-11 Method for producing fiber-reinforced thermoplastic resin structure Expired - Fee Related JP3234262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32742691A JP3234262B2 (en) 1991-12-11 1991-12-11 Method for producing fiber-reinforced thermoplastic resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32742691A JP3234262B2 (en) 1991-12-11 1991-12-11 Method for producing fiber-reinforced thermoplastic resin structure

Publications (2)

Publication Number Publication Date
JPH05162135A true JPH05162135A (en) 1993-06-29
JP3234262B2 JP3234262B2 (en) 2001-12-04

Family

ID=18199037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32742691A Expired - Fee Related JP3234262B2 (en) 1991-12-11 1991-12-11 Method for producing fiber-reinforced thermoplastic resin structure

Country Status (1)

Country Link
JP (1) JP3234262B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143440A (en) * 1992-11-02 1994-05-24 Asahi Chem Ind Co Ltd Manufacture of fiber-reinforced thermoplastic resin structural body
JP2006016463A (en) * 2004-06-30 2006-01-19 Asahi Fiber Glass Co Ltd Filament-reinforced polyamide resin molding material and method for producing the same
WO2007125792A1 (en) 2006-04-28 2007-11-08 Kabushiki Kaisha Kobe Seiko Sho Apparatus for production of fiber-reinforced resin strand
CN102328374A (en) * 2011-09-08 2012-01-25 广州励进新技术有限公司 Production process and device of high-fiber ultra-thin plastic-covered reinforcing band
CN115287785A (en) * 2022-09-13 2022-11-04 江苏先诺新材料科技有限公司 Polyimide chopped fiber production equipment
KR102509614B1 (en) * 2022-08-09 2023-03-13 김학수 Method and apparatus of manufacturing nonwoven fabric panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143440A (en) * 1992-11-02 1994-05-24 Asahi Chem Ind Co Ltd Manufacture of fiber-reinforced thermoplastic resin structural body
JP2006016463A (en) * 2004-06-30 2006-01-19 Asahi Fiber Glass Co Ltd Filament-reinforced polyamide resin molding material and method for producing the same
JP4666571B2 (en) * 2004-06-30 2011-04-06 オーウェンスコーニング製造株式会社 Long glass fiber reinforced polyamide resin molding material and method for producing the same
WO2007125792A1 (en) 2006-04-28 2007-11-08 Kabushiki Kaisha Kobe Seiko Sho Apparatus for production of fiber-reinforced resin strand
CN102328374A (en) * 2011-09-08 2012-01-25 广州励进新技术有限公司 Production process and device of high-fiber ultra-thin plastic-covered reinforcing band
KR102509614B1 (en) * 2022-08-09 2023-03-13 김학수 Method and apparatus of manufacturing nonwoven fabric panel
CN115287785A (en) * 2022-09-13 2022-11-04 江苏先诺新材料科技有限公司 Polyimide chopped fiber production equipment

Also Published As

Publication number Publication date
JP3234262B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP3670321B2 (en) Crosshead die and method for producing long fiber reinforced resin structure
JP3584065B2 (en) Manufacturing apparatus and manufacturing method for long fiber reinforced resin structure
US5433419A (en) Method for forming fiber-reinforced molding pellets
JP2847807B2 (en) Extrusion impregnation equipment
JP3572101B2 (en) Long fiber reinforced thermoplastic resin structure and method for producing the same
US20030086995A1 (en) Continuous fiber granulate and procedure and device for manufacturing a long-fiber granulate
JP3330402B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JPH05162135A (en) Manufacture of fiber-reinforced thermoplastic resin structure
JP2007038599A (en) Process and apparatus for manufacturing filament-reinforced thermoplastic resin molding material
JP3315444B2 (en) Fiber reinforced thermoplastic resin structure and method for producing the same
JP3492416B2 (en) Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
JPH06114830A (en) Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
JPS63132036A (en) Manufacture of fiber reinforced composite material
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JPH0623742A (en) Continuous glass fiber reinforced thermoplastic resin pellet and production thereof
JPH0768544A (en) Impregnation of fiber bundle with resin
JPH031907A (en) Production of fiber reinforced composite material
JPH0691637A (en) Manufacture of pellet composed of fiber bundle coated with thermoplastic resin and device for coating fiber bundle with thermoplastic resin
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
JPH06246740A (en) Granule of fiber-reinforced thermoplastic resin
JP3027540B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin composite
JP4477925B2 (en) Manufacturing method of long fiber reinforced resin molding material and impregnation die for molding
JP2952977B2 (en) Molding method of fiber reinforced resin
JPH06254855A (en) Manufacture of filament reinforced synthetic resin strand

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

LAPS Cancellation because of no payment of annual fees