JP3330402B2 - Method for producing fiber-reinforced thermoplastic resin structure - Google Patents

Method for producing fiber-reinforced thermoplastic resin structure

Info

Publication number
JP3330402B2
JP3330402B2 JP29438292A JP29438292A JP3330402B2 JP 3330402 B2 JP3330402 B2 JP 3330402B2 JP 29438292 A JP29438292 A JP 29438292A JP 29438292 A JP29438292 A JP 29438292A JP 3330402 B2 JP3330402 B2 JP 3330402B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
roving
reinforced thermoplastic
resin structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29438292A
Other languages
Japanese (ja)
Other versions
JPH06143440A (en
Inventor
敦史 村上
幾敏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP29438292A priority Critical patent/JP3330402B2/en
Publication of JPH06143440A publication Critical patent/JPH06143440A/en
Application granted granted Critical
Publication of JP3330402B2 publication Critical patent/JP3330402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は繊維強化熱可塑性樹脂構
造体の製造方法に関するものであって、より詳しくは強
化繊維と樹脂の密着性に優れ、強化繊維による補強効果
が極めて優れた繊維強化熱可塑性樹脂構造体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin structure, and more particularly, to a fiber-reinforced thermoplastic resin having excellent adhesion between a reinforcing fiber and a resin and an extremely excellent reinforcing effect by the reinforcing fiber. The present invention relates to a method for manufacturing a thermoplastic resin structure.

【0002】[0002]

【従来の技術】従来、繊維によって強化された熱可塑性
樹脂の製造方法としては、次の2つに大別される。
2. Description of the Related Art Conventionally, a method for producing a thermoplastic resin reinforced by fibers is roughly classified into the following two methods.

【0003】(1)その1つの方法は熱可塑性樹脂に例
えば3mm程度の長さの強化繊維をドライブレンドし、
更にこれを押出機で混練、造粒する方法である。 (2)他の1つの方法は連続な強化繊維をダイス内に通
し、押出機で溶融した熱可塑性樹脂を上記ダイス内に導
き、強化繊維を被覆し、冷却後切断する方法である。
(1) One of the methods is to dry blend a reinforcing fiber having a length of, for example, about 3 mm into a thermoplastic resin,
Further, this is a method of kneading and granulating the mixture with an extruder. (2) Another method is a method in which continuous reinforcing fibers are passed through a die, a thermoplastic resin melted by an extruder is guided into the die, the reinforcing fibers are coated, and after cooling, cut.

【0004】現在、市販されている繊維強化熱可塑性樹
脂の多くは(1)の方法で作られているが、この方法で
は、押出機のスクリューで練られることによって、強化
繊維が砕かれ、その補強効果は必ずしも十分とは言えな
い。更に配合できる繊維量もせいぜい40重量%程度が
限界とされている。
At present, most commercially available fiber reinforced thermoplastic resins are produced by the method (1). In this method, the reinforcing fibers are crushed by kneading with a screw of an extruder, and the reinforced fibers are crushed. The reinforcing effect is not always sufficient. Further, the amount of fibers that can be blended is limited to at most about 40% by weight.

【0005】一方、(2)の方法は、ペレットにしたと
きの繊維長がペレットの長さに等しいため、繊維による
補強効果も著しく優れたものになるはずである。ところ
が、粘度の高い溶融熱可塑性樹脂中を強化繊維を通過さ
せただけでは、繊維を構成するフィラメントに熱可塑性
樹脂を被覆、含浸させることは困難であり、ペレットか
ら強化繊維が脱落、飛散し、更にこれらのペレットから
得た成形品は、強化繊維が均一に分散しておらず、毛玉
となって成形品中に散在する問題がある。又、(2)の
方法で得られたペレットの補強繊維を、均一に分散させ
るためには成形時、大きな剪断力が必要である。このた
め強化繊維の切断が顕著で、その補強効果が十分でな
い、といった問題がある。特公昭63−37694号公
報には、溶融ポリマー中に位置するロッドやバーの表面
上を引くことで溶融ポリマーを強化繊維束に含浸する方
法が記載されている。しかしながらこの方法では、強化
繊維の引取速度が高々3m/minと必ずしも工業的に
生産性の高い方法とは言えず、又ロッドやバーの空隙部
に滞留する溶融ポリマーの熱劣化によって、本来持ち合
わせている優れた機械的な特性を損なう恐れがある。
[0005] On the other hand, in the method (2), since the fiber length of the pellets is equal to the length of the pellets, the reinforcing effect by the fibers should be extremely excellent. However, it is difficult to cover and impregnate the filaments constituting the fibers with the thermoplastic resin only by passing the reinforcing fibers through the high-viscosity molten thermoplastic resin, and the reinforcing fibers fall off the pellets and scatter. Further, the molded products obtained from these pellets have a problem that the reinforcing fibers are not uniformly dispersed and become pills and are scattered throughout the molded products. Further, in order to uniformly disperse the reinforcing fibers of the pellet obtained by the method (2), a large shearing force is required at the time of molding. For this reason, there is a problem that the cutting of the reinforcing fibers is remarkable and the reinforcing effect is not sufficient. JP-B-63-37694 describes a method of impregnating a reinforcing fiber bundle with a molten polymer by pulling the surface of a rod or bar located in the molten polymer. However, in this method, the take-up speed of the reinforcing fiber is at most 3 m / min, which is not necessarily an industrially high-productivity method. Good mechanical properties may be impaired.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、原
理的に優れた(2)の方法を利用して、ポリマーの熱劣
化が少なく、且つ繊維強化構造体からの繊維の脱落がな
く、成形時の繊維分散性が良好で、優れた機械的な特性
を有する繊維強化熱可塑性樹脂構造体を高い生産性で得
られる方法を提供することを目的とするものである。
Therefore, the present invention utilizes the method (2), which is excellent in principle, to reduce the thermal degradation of the polymer and to prevent the fibers from falling off from the fiber reinforced structure. It is an object of the present invention to provide a method for obtaining a fiber-reinforced thermoplastic resin structure having good fiber dispersibility during molding and excellent mechanical properties with high productivity.

【0007】[0007]

【課題を解決するための手段】本発明の繊維強化熱可塑
性樹脂構造体の製造方法は、特定の製造工程、即ち (a)強化繊維に溶融した熱可塑性樹脂を被覆、含浸す
る直前に、該強化繊維を熱可塑性樹脂の溶融温度以上に
予熱すること (b)溶融した熱可塑性樹脂を強化繊維に被覆させた
後、熱可塑性樹脂の溶融温度以上に加熱された、上下に
互い違いに配置された8個以上の凸部を有する通路中の
凸部に接触させて通過させること 更には、強化繊維がガラス繊維の場合では(a)工程の
前に、摩擦による静電気によって繊維幅を広げることを
特徴とするものであり、これらの工程を組み合わせるこ
とによって上記の課題が達成される。
The method for producing a fiber-reinforced thermoplastic resin structure according to the present invention comprises a specific production step, namely, (a) immediately before coating and impregnating a reinforcing fiber with a molten thermoplastic resin. Preheating the reinforcing fibers above the melting temperature of the thermoplastic resin. (B) After coating the molten thermoplastic resin on the reinforcing fibers, the reinforcing fibers are heated above the melting temperature of the thermoplastic resin and arranged alternately up and down. In the case where the reinforcing fibers are glass fibers, the fiber width is widened by static electricity due to friction before the step (a) when the reinforcing fibers are glass fibers. The above object is achieved by combining these steps.

【0008】以下、図面に基づき、本発明の方法及び構
成を詳細に説明する。
Hereinafter, the method and structure of the present invention will be described in detail with reference to the drawings.

【0009】図1において、2はロービングボビン1か
ら繰り出されるロービング繊維であって、このロービン
グ繊維2としては、ガラス繊維を始め、カーボン繊維、
ポリエステル繊維、ナイロン繊維、芳香族ポリアミド繊
維等のフィラメント繊維(太さが数μ〜数十μ)の多数
本(数十〜数千本)を、一般に少量のバインダーを用い
て集束してなるロービング繊維が用いられる。バインダ
ーの量はロービング繊維の開繊を容易にするため少ない
方が好ましいが、バインダーの量が多くて強固に束ねら
れているものでも、ロービングボビン1から繰り出して
後、ローラーやバーを多段に配置して、ロービング繊維
2に張力を加えることにより用いることができる。
In FIG. 1, reference numeral 2 denotes a roving fiber fed out from a roving bobbin 1. The roving fiber 2 includes glass fiber, carbon fiber, and the like.
Roving in which a large number (several tens to thousands) of filament fibers (several μ to several tens μ) of polyester fiber, nylon fiber, aromatic polyamide fiber and the like are bundled using a small amount of binder in general. Fiber is used. It is preferable that the amount of the binder is small to facilitate the opening of the roving fiber. However, even if the amount of the binder is large and tightly bundled, the rollers and bars are arranged in multiple stages after being unwound from the roving bobbin 1. Then, the roving fiber 2 can be used by applying tension thereto.

【0010】更に、用いるロービング繊維2がガラス繊
維の場合は、図2に示すように、表面材質が、テフロン
等の絶縁材料であるローラーあるいはバー11を多段に
配置し、更に1対のロールのうち、1方がロール軸に平
行に矩形の切り欠きを有する。駆動ローラー12で引き
取られる工程を経ることにより、大幅に開繊できる。こ
れは表面材質が、テフロン等の絶縁材料であるローラー
あるいはバー11に通すことで、バインダーによるフィ
ラメント間の拘束力を弱めると同時に張力に比例した摩
擦力によってガラスロービング繊維に静電気が発生し、
更に1対のロールのうち1方が、ロール軸に平行に矩形
の切り欠きを有する、駆動ローラー12によって張力の
緊張と弛緩が繰り返されることにより、大幅な開繊が達
成できるのである。
Further, when the roving fibers 2 to be used are glass fibers, as shown in FIG. 2, rollers or bars 11 whose surface material is an insulating material such as Teflon are arranged in multiple stages, and a pair of rolls is further provided. One of them has a rectangular notch parallel to the roll axis. Through the process of being taken by the drive roller 12, the fiber can be greatly opened. This is because the surface material is passed through a roller or bar 11, which is an insulating material such as Teflon, so that the binding force between the filaments by the binder is weakened, and at the same time, static electricity is generated in the glass roving fiber by a frictional force proportional to the tension,
Further, one of the pair of rolls has a rectangular cutout parallel to the roll axis, and the tension and relaxation of the tension are repeated by the drive roller 12, whereby a large fiber opening can be achieved.

【0011】図1で、ロービングボビン1から繰り出さ
れたロービング繊維2は、櫛状または環状の糸道3に通
されて、所定の形状例えば薄い帯状に引き揃えられ、そ
の後予熱炉4に導入される。予熱炉4は一般に利用され
るニクロム線ヒーター等の輻射熱や熱風、遠赤外線ヒー
ター、更には加熱されたダイ等が利用され。予熱炉4の
出口でロービング繊維2は、被覆される熱可塑性樹脂8
の溶融温度以上に加熱されることにより、ロービング繊
維2への溶融した熱可塑性樹脂8の含浸が促進され、ロ
ービング繊維2の引取速度が速くでき、高生産性が達成
できる。
In FIG. 1, a roving fiber 2 fed from a roving bobbin 1 is passed through a comb-like or annular yarn path 3 and aligned in a predetermined shape, for example, a thin strip, and then introduced into a preheating furnace 4. You. The preheating furnace 4 uses radiant heat such as a commonly used nichrome wire heater, hot air, a far infrared heater, and a heated die. At the outlet of the preheating furnace 4, the roving fibers 2 are coated with a thermoplastic resin 8
, The impregnation of the roving fiber 2 with the molten thermoplastic resin 8 is promoted, the speed of taking off the roving fiber 2 can be increased, and high productivity can be achieved.

【0012】熱可塑性樹脂8の溶融温度以上に加熱され
たロービング繊維2は、コーティングダイ5に導入さ
れ、押出機7により可塑化、溶融された熱可塑性樹脂に
より被覆される。
The roving fiber 2 heated to a temperature higher than the melting temperature of the thermoplastic resin 8 is introduced into a coating die 5 and is covered with the thermoplastic resin melted and plasticized by an extruder 7.

【0013】本発明に使用できる熱可塑性樹脂は、強化
繊維より、柔らかく、低融点であれば特に限定されず、
強化繊維との組み合わせでどのようなものでも用いられ
るが、例えば具体的には、ポリアミド、ポリプロピレ
ン、ポリエステル、ポリアリレンサルファイド、ポリア
セタール等であり、これらに本発明の製造方法によって
得られる繊維強化熱可塑性樹脂構造体の特性を損なわな
い範囲で、他の樹脂、エラストマー、無機質充填材、着
色剤、熱安定剤、可塑剤、滑剤、離型剤、難燃剤等を添
加することができる。
The thermoplastic resin usable in the present invention is not particularly limited as long as it is softer and has a lower melting point than the reinforcing fibers.
Any material may be used in combination with the reinforcing fiber, for example, specifically, polyamide, polypropylene, polyester, polyarylene sulfide, polyacetal, etc., and fiber reinforced heat obtained by the production method of the present invention. Other resins, elastomers, inorganic fillers, coloring agents, heat stabilizers, plasticizers, lubricants, release agents, flame retardants, etc. can be added as long as the properties of the plastic resin structure are not impaired.

【0014】押出機7は一般に熱可塑性樹脂に利用され
る押出機であり、コーティングダイ5に可塑化、溶融し
た熱可塑性樹脂を、吐出むらなく安定した状態で供給で
きるものであればどのような押出機でも使用できる。
The extruder 7 is an extruder generally used for thermoplastic resin, and any extruder capable of supplying the plasticized and molten thermoplastic resin to the coating die 5 in a stable state without discharge unevenness. Extruders can also be used.

【0015】コーティングダイ5は、ロービング繊維2
に溶融熱可塑性樹脂を被覆するためのダイで、ごく普通
に電線被覆等に利用されるダイでも良いが、櫛状あるい
は環状の糸道3によって、所定の形状例えば薄い帯状を
維持して、溶融した熱可塑性樹脂の浴に導入され、溶融
した熱可塑性樹脂で被覆され、そのままの形状を維持し
て引き出すことのできる構造のコーティングダイが好ま
しい。更に、コーティングダイの構造は、生産スピード
にもよるが、樹脂内圧が高くなるように、また樹脂の押
し出され圧が、該溶融した熱可塑性樹脂で被覆されたロ
ービング繊維の引き取り力を軽減する方向に作用するよ
うな構造のダイが好ましい。該コーティングダイで被覆
される熱可塑性樹脂の量としては、30〜80重量%で
ある。30重量%未満では、樹脂の含浸が不十分で、強
化繊維による十分な効果が発現しない。また80重量%
を越えると、強化繊維による補強効果が小さく、本発明
の目的とするところではない。
The coating die 5 is a roving fiber 2
This is a die for coating a molten thermoplastic resin, and may be a die usually used for covering an electric wire, etc., but a predetermined shape, for example, a thin band shape is maintained by a comb-shaped or annular yarn path 3 to melt the resin. It is preferable to use a coating die that is introduced into a bath of a thermoplastic resin that has been melted, is coated with a molten thermoplastic resin, and has a structure that can be pulled out while maintaining its shape. Furthermore, depending on the production speed, the structure of the coating die is such that the internal pressure of the resin is increased, and the pressure of the extruded resin is reduced in the direction of reducing the pulling force of the roving fiber coated with the molten thermoplastic resin. A die having such a structure as to act on is preferable. The amount of the thermoplastic resin coated with the coating die is 30 to 80% by weight. If the content is less than 30% by weight, the resin impregnation is insufficient, and the sufficient effect of the reinforcing fiber is not exhibited. 80% by weight
If the ratio exceeds, the reinforcing effect of the reinforcing fibers is small, and is not the object of the present invention.

【0016】溶融した熱可塑性樹脂で被覆されたロービ
ング繊維は、該熱可塑性樹脂の溶融温度以上、分解温度
以下に加熱された、上下に互い違いに配置された凸部を
有する凹凸ダイ6に導入され、凸部に接触させて通過さ
せる。その凹凸ダイの概略図を図3に示す。図3中、1
3は凹凸ダイ凸部、14は溶融樹脂で被覆された繊維の
通路である。該凹凸ダイ6中の糸道からの凸度合い(下
側凸と上側凸との高低差)は大きい方が、ロービング繊
維中への溶融した熱可塑性樹脂の含浸を促進できるので
好ましいが、被覆した熱可塑性樹脂の粘度や、量にもよ
るが、ロービング繊維の毛羽立ち、さらには切断、また
は引取速度の減少、引取張力の増大といった点から、余
り大きくは出来ない。しかし凹凸ダイ6中の凸部の数を
増やすことによって、凸度合いが小さくてもロービング
繊維中への溶融した熱可塑性樹脂の含浸を促進できる。
凸部の数は8個以上が好ましく、それ以下では凸度合い
をさらに大きくしないと、期待した熱可塑性樹脂の含浸
が得られず、上記のようにロービング繊維の毛羽立ち、
さらには切断、または、引取張力の増大が起こる。また
該ダイの凸部13の形状、並びに配置は、溶融樹脂で被
覆された強化繊維を傷つけないように設定される。例え
ば凸半径12.5から25mmの凸を10mmから50
mm間隔で配置するのが好ましい。
The roving fiber coated with the molten thermoplastic resin is introduced into an uneven die 6 having convex portions arranged alternately up and down and heated to a temperature higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature. , And contact with and pass through the convex portion. FIG. 3 shows a schematic view of the concavo-convex die. In FIG. 3, 1
Reference numeral 3 denotes an uneven die convex portion, and 14 denotes a fiber passage covered with a molten resin. It is preferable that the degree of protrusion from the yarn path in the concavo-convex die 6 (the difference in height between the lower convex and the upper convex) is large because the impregnation of the molten thermoplastic resin into the roving fiber can be promoted. Although it depends on the viscosity and amount of the thermoplastic resin, it cannot be too large in terms of fluffing of the roving fiber, further cutting or reduction of the take-up speed, and increase of the take-up tension. However, by increasing the number of protrusions in the concave and convex die 6, even if the degree of protrusion is small, it is possible to promote the impregnation of the roving fiber with the molten thermoplastic resin.
The number of the convex portions is preferably 8 or more, and below that, unless the degree of convexity is further increased, the expected impregnation of the thermoplastic resin cannot be obtained, and the fluffing of the roving fiber as described above,
Furthermore, cutting or an increase in take-off tension occurs. The shape and arrangement of the projections 13 of the die are set so as not to damage the reinforcing fibers coated with the molten resin. For example, a convex with a convex radius of 12.5 to 25 mm is changed to a convex of 10 mm to 50 mm.
It is preferable to arrange them at mm intervals.

【0017】本発明の製造法により、凹凸ダイ6の出口
の形状に応じて、強化繊維と熱可塑性樹脂とからなる強
化繊維が平行に配列したテープ、紐、シート等の繊維強
化熱可塑性樹脂構造体が得られる。
According to the manufacturing method of the present invention, a fiber-reinforced thermoplastic resin structure such as a tape, a string, or a sheet in which reinforcing fibers composed of reinforcing fibers and a thermoplastic resin are arranged in parallel according to the shape of the outlet of the concavo-convex die 6. The body is obtained.

【0018】特に溶融した熱可塑性樹脂で被覆し、凹凸
ダイ6を通過したロービング繊維は、該熱可塑性樹脂の
溶融温度以上、分解温度以下に加熱された、成形ノズル
のような穿孔を有する金型によって、ストランド状に成
形後冷却装置9により冷却固化され、該ストランドはカ
ッター10により所望の長さに切断される。
In particular, the roving fiber coated with the molten thermoplastic resin and passed through the concavo-convex die 6 is a mold having a perforation such as a forming nozzle, which is heated to a temperature higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature. After being formed into a strand, it is cooled and solidified by the cooling device 9, and the strand is cut into a desired length by the cutter 10.

【0019】[0019]

【実施例】以下、実施例で本発明の繊維強化熱可塑性樹
脂構造体の製造方法を、熱可塑性樹脂としてポリアミド
6/6、強化繊維ロービングとしてガラス繊維を利用し
た場合を例にして詳述する。これらの例は、例示のため
に示すもので本発明はこれらに限定されない。
EXAMPLES The method for producing the fiber-reinforced thermoplastic resin structure of the present invention will be described in detail in the following examples, taking as an example the case where polyamide 6/6 is used as the thermoplastic resin and glass fiber is used as the reinforcing fiber roving. . These examples are given by way of illustration and the invention is not limited thereto.

【0020】なお、実施例に記載した繊維強化熱可塑性
樹脂構造体の評価は、次の方法に従って実施した。
The evaluation of the fiber-reinforced thermoplastic resin structure described in the examples was carried out according to the following method.

【0021】(1)ロービング繊維含有量 繊維強化熱可塑性樹脂構造体を、650℃の電気炉に4
5分間投入して、樹脂分を焼却し、その前後の重量より
算出した。
(1) Roving fiber content The fiber-reinforced thermoplastic resin structure was placed in an electric furnace at 650 ° C for 4 hours.
After charging for 5 minutes, the resin content was incinerated and calculated from the weight before and after that.

【0022】(2)ロービング繊維脱落率 熱可塑性樹脂のロービング繊維への含浸度合いを定量化
するため、下記に示す方法で得られたサンプルを約1g
秤量し、100mlの三角フラスコに投入し5分間振と
うする。
(2) Dropping rate of roving fiber In order to quantify the degree of impregnation of the roving fiber with the thermoplastic resin, about 1 g of a sample obtained by the following method was used.
Weigh, put into a 100 ml Erlenmeyer flask and shake for 5 minutes.

【0023】次に、振とうによって繊維が脱落したサン
プルをフラスコより取り出し、その前後の重量より、脱
落した繊維量を算出する。次の式によってロービング繊
維脱落率とした。
Next, the sample from which the fibers have fallen off by shaking is taken out of the flask, and the amount of the fibers that have fallen off is calculated from the weights before and after that. The roving fiber shedding rate was determined by the following equation.

【0024】 ES(%)=(Mf/Ms)/Wf×10000 ここで、Mf:脱落した繊維量(g) Ms:サンプル量(g) Wf:ロービング繊維含有量(%) である。ES (%) = (Mf / Ms) / Wf × 10000 where Mf: amount of dropped fibers (g) Ms: sample amount (g) Wf: roving fiber content (%)

【0025】次にサンプルの調製方法を示す。ストラン
ドを切断して得られたペレットを、繊維が並んでいる
(引き取った)方向と直角に5mmの長さに切断し、更
に繊維が並んでいる方向に沿って、ペレット断面を1/
2に切断し、断面が半円状の長さ5mmのものをサンプ
ルとした。
Next, a method for preparing a sample will be described. The pellet obtained by cutting the strand is cut at a length of 5 mm at right angles to the direction in which the fibers are arranged (taken), and the pellet cross section is reduced by 1 / along the direction in which the fibers are arranged.
2 and a sample having a semicircular section with a length of 5 mm was used.

【0026】(3)機械的特性 東芝機械(株)製IS150E射出成形機を用いて、厚
さ3mmのダンベルとタンザクのテストピースを成形し
た。次にASTM D638,D790,D256に従
って、引っ張り試験、曲げ試験、ノッチ付きアイゾット
衝撃試験を行った。
(3) Mechanical Properties Using a IS150E injection molding machine manufactured by Toshiba Machine Co., Ltd., dumbbells having a thickness of 3 mm and test pieces of tanzaku were molded. Next, a tensile test, a bending test, and a notched Izod impact test were performed according to ASTM D638, D790, and D256.

【0027】実施例1 本実施例では、図1に示す装置で、ペレット状の繊維強
化熱可塑性樹脂構造体を製造した。
Example 1 In this example, a pellet-shaped fiber-reinforced thermoplastic resin structure was manufactured using the apparatus shown in FIG.

【0028】まず、ガラスロービング繊維[1150t
ex、旭ファイバーグラス(株)製、径16μ、FT5
94]のロービングボビンを4ロール用意した。このロ
ービングボビンからガラスロービング繊維を繰り出し、
テフロンシートを巻いた、25mm径のバー4個にジグ
ザグ状に這わせ、更に上部ロールが約102mm径で、
2mm深さ、幅55mmの切り欠きを3個等間隔で有す
る駆動ローラーで引き取った。この時4本のガラスロー
ビング繊維はそれぞれ、5mmの幅が35mmから最大
120mmに開繊した。次いで該ガラスロービング繊維
を熱風式予熱炉に導入して、約300℃に加熱した。
First, glass roving fiber [1150 t
ex, Asahi Fiberglass Co., Ltd., diameter 16μ, FT5
94], and four roving bobbins were prepared. Feed out glass roving fiber from this roving bobbin,
Zigzag wrapped around four 25 mm diameter bars with Teflon sheet wound, and the upper roll was about 102 mm diameter,
It was pulled up by a driving roller having three notches of 2 mm depth and 55 mm width at equal intervals. At this time, each of the four glass roving fibers was spread from a width of 5 mm to a maximum of 120 mm from a width of 35 mm. Next, the glass roving fiber was introduced into a hot air preheating furnace and heated to about 300 ° C.

【0029】一方、旭化成工業(株)製レオナ1200
(ポリアミド6/6、融点263℃)を単軸押出機を用
いて可塑化、溶融し、コーティングダイへ供給した。該
ダイに上記のガラスロービング繊維4本を導入し、溶融
ポリアミド6/6で被覆し、次いで、凹凸ダイの数1
2、糸道からの凸度合いが3mm、凸半径12.5m
m、凸間距離12.5mm、表面温度285℃に設定さ
れた凹凸ダイ中を通過させ、更に表面温度290℃に設
定された先端穴径3mmのノズルを通しストランド状に
成形後、水で冷却して固化させ、長さ約10mmに切断
して、ペレット状のガラス繊維強化ポリアミド6/6を
得た。取引速度は20m/minであった。該サンプル
を上述の方法で評価した結果を表1に示す。
On the other hand, Leona 1200 manufactured by Asahi Kasei Corporation
(Polyamide 6/6, melting point: 263 ° C.) was plasticized and melted using a single screw extruder, and supplied to a coating die. The above-mentioned four glass roving fibers are introduced into the die, and coated with molten polyamide 6/6.
2. The degree of protrusion from the yarn path is 3 mm and the protrusion radius is 12.5 m
m, the distance between the protrusions is 12.5 mm, and it passes through an uneven die set at a surface temperature of 285 ° C., and is further formed into a strand through a nozzle having a tip hole diameter of 3 mm set at a surface temperature of 290 ° C., and then cooled with water. Then, the mixture was solidified and cut into a length of about 10 mm to obtain a glass fiber reinforced polyamide 6/6 in a pellet form. The transaction speed was 20 m / min. Table 1 shows the results of the evaluation of the sample by the method described above.

【0030】比較例1 凹凸ダイの凸数を7に減らした以外は、実施例1の方法
と同様の方法で、ペレット状のガラス繊維強化ポリアミ
ド6/6を得た。引取速度は20m/minであった。
しかし、該ペレットはカッティング不良が著しく、ペレ
ット端面からガラス繊維がはみ出ており、射出成形機の
ホッパーからシリンダー内に食い込まず成形できなかっ
た。該サンプルを上述の方法で評価した結果を表1に示
す。
Comparative Example 1 A pellet-shaped glass fiber reinforced polyamide 6/6 was obtained in the same manner as in Example 1 except that the number of protrusions of the concave-convex die was reduced to 7. The take-off speed was 20 m / min.
However, the pellets suffered severe cutting defects, glass fibers protruded from the end faces of the pellets, and could not be molded because they did not cut into the cylinder from the hopper of the injection molding machine. Table 1 shows the results of the evaluation of the sample by the method described above.

【0031】比較例2 凹凸ダイの凸数を7に減らし引取速度が10m/min
である以外は、実施例1の方法と同様の方法で、ペレッ
ト状のガラス繊維強化ポリアミド6/6を得た。しか
し、該ペレットは比較例1と同様にカッティング不良が
著しく、成形できなかった。該サンプルを上述の方法で
評価した結果を表1に示す。
Comparative Example 2 The number of protrusions of the concavo-convex die was reduced to 7, and the take-off speed was 10 m / min.
A pellet-like glass fiber reinforced polyamide 6/6 was obtained in the same manner as in Example 1 except that However, as in Comparative Example 1, the pellets were significantly defective in cutting and could not be molded. Table 1 shows the results of the evaluation of the sample by the method described above.

【0032】実施例2 凹凸ダイの凸数を9、引取速度が10m/minである
以外は、実施例1の方法と同様の方法で、ペレット状の
ガラス繊維強化ポリアミド6/6を得た。該サンプルを
上述の方法で評価した結果を表1に示す。
Example 2 A pellet-shaped glass fiber reinforced polyamide 6/6 was obtained in the same manner as in Example 1 except that the number of protrusions of the concave-convex die was 9, and the take-off speed was 10 m / min. Table 1 shows the results of the evaluation of the sample by the method described above.

【0033】比較例3 凹凸ダイの凸数を7に減らし、凸度4mm、引取速度が
10m/minである以外は、実施例1の方法と同様の
方法で、ペレット状のガラス繊維強化ポリアミド6/6
を得ようとしたが、毛羽が多く、又引張張力の増大によ
ると思われる、ストランドの切断が起こり成形できる程
のサンプルが得られなかった。該サンプルを上述の方法
で評価した結果を表1に示す。
Comparative Example 3 A pellet-shaped glass fiber reinforced polyamide 6 was prepared in the same manner as in Example 1 except that the number of protrusions of the concavo-convex die was reduced to 7, the degree of protrusion was 4 mm, and the take-off speed was 10 m / min. / 6
However, the strand was cut, which was considered to be due to a large amount of fluff and an increase in tensile tension, and a sample that could be molded was not obtained. Table 1 shows the results of the evaluation of the sample by the method described above.

【0034】参考例1 旭化成工業(株)製レオナ1300ペレットとガラス繊
維チョップドストランド[旭ファイバーグラス(株)
製、フィラメント径13μ、長さ3mm]をドライブレ
ンドして、単軸押出機で、従来のの方法によるガラス
繊維強化ポリアミド6/6ペレットを得た。本ペレット
のガラス繊維含有量は60重量%であった。本ペレット
の製造においては、ベントアップや、脈流が観察され、
運転は不安定であった。該サンプルを上述の方法で評価
した結果を表1に示す。
Reference Example 1 Leona 1300 pellets and glass fiber chopped strands manufactured by Asahi Kasei Kogyo Co., Ltd. [Asahi Fiber Glass Co., Ltd.]
And a filament diameter of 13 μm and a length of 3 mm] were dry-blended to obtain glass fiber-reinforced polyamide 6/6 pellets by a conventional method using a single screw extruder. The glass fiber content of the pellet was 60% by weight. In the production of this pellet, vent up and pulsation are observed,
Driving was unstable. Table 1 shows the results of the evaluation of the sample by the method described above.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の方法によれば、強化繊維と樹脂
の密着性に優れ、強化繊維による補強効果が非常に優れ
た繊維強化熱可塑性樹脂構造体を、高生産性で得られる
という効果を有する。
According to the method of the present invention, a fiber-reinforced thermoplastic resin structure having excellent adhesion between a reinforcing fiber and a resin and having a very excellent reinforcing effect by the reinforcing fiber can be obtained with high productivity. Having.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で用いる装置の構成を示す概略図で
ある。
FIG. 1 is a schematic diagram showing the configuration of an apparatus used in the method of the present invention.

【図2】強化繊維がガラスロービング繊維の時に予熱工
程[(a)工程]の前に挿入される開繊装置の構成を示
す概略図である。
FIG. 2 is a schematic diagram showing the configuration of a fiber opening device inserted before a preheating step (step (a)) when reinforcing fibers are glass roving fibers.

【図3】本発明で用いられる凹凸ダイの構造の1例を示
す概略図である。
FIG. 3 is a schematic view showing one example of a structure of a concavo-convex die used in the present invention.

【符号の説明】 1 ロービング繊維ボビン 2 ロービング繊維 3 糸道 4 予熱炉 5 コーティングダイ 6 凹凸ダイ 7 押出機 8 熱可塑性樹脂 9 冷却装置 10 カッター 11 表面材質が絶縁材料であるバー 12 ロール軸方向に切り欠きを有する駆動ローラー 13 凹凸ダイ、凸部 14 溶融樹脂で被覆された繊維の通路[Description of Signs] 1 Roving fiber bobbin 2 Roving fiber 3 Yarn 4 Preheating furnace 5 Coating die 6 Concavo-convex die 7 Extruder 8 Thermoplastic resin 9 Cooling device 10 Cutter 11 Bar whose surface material is insulating material 12 In the roll axis direction Drive roller having notch 13 Uneven die, convex part 14 Fiber passage covered with molten resin

フロントページの続き (56)参考文献 特開 平5−162135(JP,A) 特開 昭63−264326(JP,A) 特開 平3−230943(JP,A) 特開 平3−183531(JP,A) 特開 平2−151407(JP,A) 特開 平4−138219(JP,A) 特開 平6−47825(JP,A) 特開 昭63−37694(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 70/00 - 70/88 B29B 11/00 - 11/16 B29B 13/00 - 13/10 B29B 15/00 - 15/14 Continuation of front page (56) References JP-A-5-162135 (JP, A) JP-A-63-264326 (JP, A) JP-A-3-230943 (JP, A) JP-A-3-183353 (JP) JP-A-2-151407 (JP, A) JP-A-4-138219 (JP, A) JP-A-6-47825 (JP, A) JP-A-63-37694 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) B29C 70/00-70/88 B29B 11/00-11/16 B29B 13/00-13/10 B29B 15/00-15/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続した強化繊維を引きながら、溶融し
た熱可塑性樹脂を被覆させ、含浸させる繊維強化熱可塑
性樹脂構造体の製造方法であって (a)強化繊維に溶融した熱可塑性樹脂を被覆、含浸す
る直前に、該強化繊維を熱可塑性樹脂の溶融温度以上に
予熱すること、 (b)溶融した熱可塑性樹脂を強化繊維に被覆させた
後、熱可塑性樹脂の溶融温度以上に加熱された、上下
に、互い違いに配置された8個以上の凸部を有する通路
中の凸部に接触させて通過させることを特徴とする繊維
強化熱可塑性樹脂構造体の製造方法。
1. A method for producing a fiber-reinforced thermoplastic resin structure in which a molten thermoplastic resin is coated and impregnated while pulling continuous reinforcing fibers, wherein (a) the reinforcing fiber is coated with the molten thermoplastic resin. Preheating the reinforcing fiber to a temperature equal to or higher than the melting temperature of the thermoplastic resin immediately before impregnation; (b) heating the reinforcing fiber with the molten thermoplastic resin to a temperature equal to or higher than the melting temperature of the thermoplastic resin; A method of producing a fiber-reinforced thermoplastic resin structure, wherein the fiber-reinforced thermoplastic resin structure is caused to contact with and pass through a convex part in a passage having eight or more convex parts arranged alternately above and below.
【請求項2】 連続した強化繊維ガラスが繊維ロービン
グであり、上記(a)工程の前に、摩擦によってガラス
繊維に静電気を発生させ、その幅を広げることを特徴と
する請求項1記載の繊維強化熱可塑性樹脂構造体の製造
方法。
2. The fiber according to claim 1, wherein the continuous reinforcing fiber glass is fiber roving, and before the step (a), static electricity is generated in the glass fiber by friction to increase the width thereof. A method for producing a reinforced thermoplastic resin structure.
【請求項3】 上記(b)工程の後、ストランド状に成
形し冷却切断することを特徴とする請求項1または2記
載の繊維強化熱可塑性樹脂構造体の製造方法。
3. The method for producing a fiber-reinforced thermoplastic resin structure according to claim 1, wherein after the step (b), the fiber-reinforced thermoplastic resin structure is formed into a strand and cooled and cut.
JP29438292A 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure Expired - Fee Related JP3330402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29438292A JP3330402B2 (en) 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29438292A JP3330402B2 (en) 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure

Publications (2)

Publication Number Publication Date
JPH06143440A JPH06143440A (en) 1994-05-24
JP3330402B2 true JP3330402B2 (en) 2002-09-30

Family

ID=17807006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29438292A Expired - Fee Related JP3330402B2 (en) 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure

Country Status (1)

Country Link
JP (1) JP3330402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210066360A (en) * 2019-11-28 2021-06-07 (주)엘지하우시스 Pet based continuous fiber complex and method of preparing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732495A (en) * 1994-08-19 1995-02-03 Polyplastics Co Manufacture of long fiber-reinforced thermoplastic resin composition
US5948473A (en) * 1995-11-30 1999-09-07 Chisso Corporation Method and apparatus for preparing resin-impregnated structures reinforced by continuous fibers
JP4633514B2 (en) * 2005-03-30 2011-02-16 オーウェンスコーニング製造株式会社 Cooling device for long fiber reinforced thermoplastic rod
BR112013025217B8 (en) 2011-04-12 2021-03-23 Ticona Llc composite shank and method for forming a composite shank
JP2013049793A (en) * 2011-08-31 2013-03-14 Unitika Ltd Semiaromatic polyamide resin composition pellet, and molded form obtained by molding the same
JP6730043B2 (en) * 2016-02-22 2020-07-29 積水化学工業株式会社 Fiber reinforced resin prepreg sheet
CN109385083B (en) * 2018-10-19 2021-08-31 江苏苏能新材料科技有限公司 Continuous basalt fiber reinforced polyamide unidirectional prepreg tape and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337694A (en) * 1986-07-31 1988-02-18 松下電工株式会社 Manufacture of circuit board
FR2613661B1 (en) * 1987-04-09 1989-10-06 Atochem PROCESS FOR PRODUCING CONTINUOUS FIBER REINFORCED THERMOPLASTIC RESIN PROFILES, APPARATUS FOR OBTAINING SAME
DE3835574A1 (en) * 1988-10-19 1990-04-26 Bayer Ag EXTRUSIONSIMPRAEGNIERWERKZEUG
JP2829323B2 (en) * 1989-12-14 1998-11-25 出光石油化学株式会社 Equipment for manufacturing fiber-reinforced resin molding materials
JPH03230943A (en) * 1990-02-06 1991-10-14 Polyplastics Co Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor
JPH04138219A (en) * 1990-09-28 1992-05-12 Showa Denko Kk Manufacture of long fiber-contained resin composition
JP3234262B2 (en) * 1991-12-11 2001-12-04 旭化成株式会社 Method for producing fiber-reinforced thermoplastic resin structure
JPH0647825A (en) * 1992-07-31 1994-02-22 Shimadzu Corp Composite material manufacture device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210066360A (en) * 2019-11-28 2021-06-07 (주)엘지하우시스 Pet based continuous fiber complex and method of preparing same
KR102515115B1 (en) * 2019-11-28 2023-03-29 (주)엘엑스하우시스 Pet based continuous fiber complex and method of preparing same

Also Published As

Publication number Publication date
JPH06143440A (en) 1994-05-24

Similar Documents

Publication Publication Date Title
JP3670321B2 (en) Crosshead die and method for producing long fiber reinforced resin structure
US5206085A (en) Preformed yarn useful for forming composite articles and process for producing same
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP3330402B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JP3572101B2 (en) Long fiber reinforced thermoplastic resin structure and method for producing the same
JP2847807B2 (en) Extrusion impregnation equipment
JP3235833B2 (en) Long fiber reinforced thermoplastic resin composition and method for producing the same
JP2524945B2 (en) Method for producing continuous glass fiber reinforced thermoplastic resin pellets
EP0303499A1 (en) Preformed yarn useful for forming composite articles and process of producing same
JP3234262B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
JPH06114832A (en) Fibber-reinforced thermoplastic resin structure and manufacture thereof
JPH06254857A (en) Manufacture of fiber reinforced thermoplastic resin composition and apparatus for making the same
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JP3492416B2 (en) Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
JPH03183531A (en) Method and device for producing frp molding stock
JPH06254856A (en) Manufacture of filament reinforced synthetic resin strand
JPH0691637A (en) Manufacture of pellet composed of fiber bundle coated with thermoplastic resin and device for coating fiber bundle with thermoplastic resin
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
JP2003192911A (en) Long-glass-fiber-reinforced thermoplastic resin molding material and method for producing the same
JPH031907A (en) Production of fiber reinforced composite material
JPH06246740A (en) Granule of fiber-reinforced thermoplastic resin
JP3027540B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin composite
JP3210694B2 (en) Method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020628

LAPS Cancellation because of no payment of annual fees