JPH04138219A - Manufacture of long fiber-contained resin composition - Google Patents
Manufacture of long fiber-contained resin compositionInfo
- Publication number
- JPH04138219A JPH04138219A JP2261630A JP26163090A JPH04138219A JP H04138219 A JPH04138219 A JP H04138219A JP 2261630 A JP2261630 A JP 2261630A JP 26163090 A JP26163090 A JP 26163090A JP H04138219 A JPH04138219 A JP H04138219A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fibers
- fiber bundle
- long fiber
- resin powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000835 fiber Substances 0.000 claims abstract description 88
- 229920005989 resin Polymers 0.000 claims abstract description 81
- 239000011347 resin Substances 0.000 claims abstract description 81
- 239000000843 powder Substances 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- -1 polypropylene Polymers 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 239000004952 Polyamide Substances 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 4
- 239000008188 pellet Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims 1
- 239000004417 polycarbonate Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 18
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 230000035939 shock Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000002990 reinforced plastic Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は繊維強化樹脂組成物の製造方法であって、この
樹脂組成物は耐クリープ、耐衝撃性を有する自動車、建
材ならびに産業資材分野の部品に利用される。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is a method for producing a fiber-reinforced resin composition. Used for parts.
[従来の技術]
産業資材分野の用途に用いられるプラスチックにおいて
、耐クリープ、耐衝撃性を要求される際には、繊維強化
プラスチックが用いられ、これは繊維束をプルトルージ
ョン法で樹脂を被覆する製造法あるいはマット状繊維に
樹脂を含浸する方法が採用されている。[Prior art] Fiber-reinforced plastics are used when creep resistance and impact resistance are required for plastics used in the industrial materials field, and these are made by coating fiber bundles with resin using the pultrusion method. A manufacturing method or a method of impregnating mat-like fibers with resin is adopted.
プルトルージョン法により樹脂を被覆するためには、製
造上の制約から製造される製品に装入される繊維束のす
べてを数個に分けて束ねたものを使わざるを得す、樹脂
の繊維束中の各単繊維に対してまで被覆が充分に行なわ
れず問題があった。In order to coat resin using the pultrusion method, it is necessary to divide all the fiber bundles charged into the manufactured product into several bundles due to manufacturing constraints.Resin fiber bundles There was a problem in that each single fiber inside was not sufficiently coated.
その結果として、強化のための繊維と樹脂の間の接着が
不充分となり、強化プラスチック全体の剛性や引張り強
度への補強繊維の寄与が低く、強化不足となり易い欠点
があった。As a result, the adhesion between the reinforcing fibers and the resin becomes insufficient, and the contribution of the reinforcing fibers to the overall stiffness and tensile strength of the reinforced plastic is low, resulting in a disadvantage that reinforcement tends to be insufficient.
このため、各単繊維間への樹脂の浸透を図るLめマトリ
ックスとなる樹脂の分子量をさげ、Gfpl粘度を低く
して繊維束中への浸透性を改良し、イ充分ではあるがこ
の問題の解決を図っている。For this reason, it is sufficient to reduce the molecular weight of the resin that serves as the L matrix that allows the resin to penetrate between each single fiber, and to lower the Gfpl viscosity to improve the permeability into the fiber bundle. We are trying to find a solution.
しかしながら、樹脂の分子量を下げることは。However, lowering the molecular weight of the resin is not possible.
樹脂の繊維束への浸透の問題の解決が不充分でよるだけ
でなく、製品の長期のクリープ強度を著しく低下させ、
材料の信頼性を損なうことを招いている。Not only is the problem of resin penetration into the fiber bundle insufficiently resolved, but it also significantly reduces the long-term creep strength of the product.
This results in loss of reliability of the material.
また、後者のマット状繊維に樹脂を含浸する場合にも、
同様にマット状繊維に対する樹脂の浸透を図り、結果と
して接着強度を改善するには、樹脂の分子量をさげる溶
融粘度の低下を必要とし、上記と同様の未解決の問題を
抱えている。Also, when impregnating the latter matte fiber with resin,
Similarly, in order to improve the penetration of the resin into the mat fibers and, as a result, to improve the adhesive strength, it is necessary to lower the melt viscosity by lowering the molecular weight of the resin, which poses the same unresolved problems as above.
[発明が解決しようとする課題]
本発明では、繊維強化プラスチックの耐クリープ性と耐
衝撃性の改善を図るため、各単繊維に対する樹脂の被覆
をより完全−にすると共に、従来使われている分子量よ
り高い分子量の材料を用いられるように製造工程を工夫
した長繊維含有樹脂組成物の製造方法に関する9
[課題を解決するための手段]
本発明は、長繊維束を帯電させて開繊した後、樹脂粉末
を付着させ、ついで加熱して樹脂粉末を溶融させ、樹脂
で長繊維を被覆させることを特徴とする長繊維含有樹脂
組成物の製造方法に間する。[Problems to be Solved by the Invention] In the present invention, in order to improve the creep resistance and impact resistance of fiber reinforced plastics, each single fiber is coated more completely with resin and [Means for Solving the Problems] The present invention relates to a method for manufacturing a long fiber-containing resin composition in which the manufacturing process is devised so that a material with a molecular weight higher than the molecular weight can be used. Thereafter, a method for producing a long fiber-containing resin composition, which is characterized in that a resin powder is attached, and then heated to melt the resin powder and coat the long fibers with the resin.
なお、第1図は本発明の一つの実施態様であり、これに
限定されることはないが理解を容易にするためこれを用
いて説明する。Note that FIG. 1 shows one embodiment of the present invention, and although the present invention is not limited thereto, the description will be made using this figure for ease of understanding.
すなわち、繊維束は帯電装置(1)で帯電させられ、次
に樹脂粉末が充填されている流動層(2)に送られる8
ここでは被覆される樹脂が粉末状で空気によって流動層
を形成しており、帯電繊維を通過させると帯電された繊
維に樹脂粉末は付着される。ついで樹脂粉末を付着した
繊維束は加熱器を通過させることにより繊維表面に付着
した樹脂を繊維に溶融被覆させる。このようにして樹脂
被覆長繊維束が出来るが、この際必要に応し加熱ダイス
(3b)では溶融付着された繊維が束ねられる。その際
にプルトルージョン法と同じ目的でストランドにしたい
場合には、引き取り穴が円形のダイスを用いて引き取り
、冷却サイプ(4)を通過させ形状固定を行なう。That is, the fiber bundle is charged with a charging device (1), and then sent to a fluidized bed (2) filled with resin powder (8).
Here, the resin to be coated is in powder form and forms a fluidized bed with air, and when the charged fibers are passed through, the resin powder is attached to the charged fibers. Next, the fiber bundle with the resin powder attached thereto is passed through a heater to melt and coat the fibers with the resin attached to the fiber surface. In this way, a resin-coated long fiber bundle is produced, and at this time, if necessary, the melted and adhered fibers are bundled using a heating die (3b). At that time, if you want to make a strand for the same purpose as the pultrusion method, you can take it out using a die with a circular take-off hole and pass it through a cooling sipe (4) to fix the shape.
一方、シート、板状あるいはL字型等特定の断面形状の
ものが必要な場合には、必要な幅と厚みに見合う被覆繊
維の束を目的の製品の形状をしたダイス、またパイプが
必要なら中空円筒型のダイスに通過させるに
の方法によって得られた各種形状の樹脂組成物は、繊維
が均一に分布しており、また一方向に配向しているため
配向方向には高い耐クリープ性、引張り強度、剛性、耐
衝撃性を示す。On the other hand, if you need something with a specific cross-sectional shape, such as a sheet, plate, or L-shape, you can cut a bundle of coated fibers with the required width and thickness into a die in the shape of the desired product, or if you need a pipe. The resin compositions in various shapes obtained by the method of passing through a hollow cylindrical die have fibers uniformly distributed and oriented in one direction, so they have high creep resistance in the direction of orientation. Indicates tensile strength, stiffness, and impact resistance.
また、ペレットとする場合には、適当な太さのダイスを
通してから適宜の長さに切断することにより、繊維が均
一に分布した、特に押出機やインジェクションに際して
均一分散のため可塑化のときに繊維の切断が少なく、分
散の均一性が高いので成形体の強度、耐衝撃性について
補強効果の高い繊維含有樹脂組成物を得ることが出来る
。In addition, when making pellets, the fibers are uniformly distributed by passing them through a die of an appropriate thickness and cutting them to an appropriate length.Especially when using an extruder or injection machine, the fibers can be uniformly dispersed during plasticization. Since there is less cutting and the uniformity of dispersion is high, it is possible to obtain a fiber-containing resin composition that has a high reinforcing effect on the strength and impact resistance of molded articles.
本発明で帯電させるための帯電装置の加電圧は、モノフ
ィラメントの材質、繊度、繊維束の本数等種々な因子が
あるため特定することは困難であるが、一番簡便な手段
は処理すべき繊維束を通して開繊するか否か、開繊した
繊維に樹脂粉末の付着具合を見て調節するのが一番良い
ようである。The applied voltage of the charging device for charging in the present invention is difficult to specify because it depends on various factors such as the material of the monofilament, the fineness, the number of fiber bundles, etc., but the simplest method is to It seems best to adjust whether or not to spread the fibers through the bundle by checking the degree of adhesion of the resin powder to the spread fibers.
本発明で用いる長繊維は、ガラス繊維、カーボン繊維、
金属繊維、無1a#化物繊維が挙げられる。The long fibers used in the present invention include glass fibers, carbon fibers,
Examples include metal fibers and 1a-free compound fibers.
モノフィラメントは5〜15ミクロンの径のものがよく
、望ましくは8〜13ミクロンのものが良い。また各繊
維束は普通20〜2000本のモノフィラメントを結束
剤でまとめられているが。The monofilament preferably has a diameter of 5 to 15 microns, preferably 8 to 13 microns. Furthermore, each fiber bundle usually consists of 20 to 2000 monofilaments held together with a binding agent.
これを強く帯電させることによっておたがいが反発し合
い、結束した束はこの帯電によって開繊され、全体のモ
ノフィラメントが均等に空間的に分散される。By strongly electrifying the monofilaments, they repel each other, and the bound bundle is opened by this electrification, and the entire monofilament is evenly distributed spatially.
この状態で樹脂付着帯、通常は樹脂粉末の流動浸漬層に
導かれ、該流動層で静電気のため繊維表面にむらなく均
一に樹脂粉末を付着することが出来る。In this state, it is guided to a resin adhesion zone, usually a fluidized immersion layer of resin powder, and in the fluidized bed, the resin powder can be evenly and uniformly adhered to the fiber surface due to static electricity.
このように繊維束が開繊されると、樹脂粉末のモノフィ
ラメントへの付着も全位置になり、かつ加熱の際の温度
を速く上げられるので、加熱工程の時間を短くすること
ができ、生産効率を上げられるばかりでなく、樹脂と繊
維との付着を均一にさせる上でも望ましい。When the fiber bundle is opened in this way, the resin powder adheres to the monofilament at all positions, and the temperature during heating can be raised quickly, so the heating process time can be shortened, increasing production efficiency. It is desirable not only to increase the temperature, but also to ensure uniform adhesion between the resin and the fibers.
しかしながら、生産性を上げるため引き取り速度を速く
する場合には繊維束はモノフィラメント2000本位を
上限とするが、好ましくは50本から500本位の範囲
で結束したものを用いた方が良い。50本より少ないと
きは高速で引き取るときに切断し易く、逆に2000本
以上の繊維束では開繊がうまく行かず流動浸漬の際に樹
脂粉末が各モノフィラメントに均等に付着せず不均一に
なり易い6
樹脂の付着帯は流動層に限定されるわけでないが、付着
の均一性や操作の容易性から主として用いられる。ここ
では樹脂の粉末が空圧によって流動層を形成されている
。流動層の安定性及びコーティングされたときの均一な
溶着は、樹脂粉末の粒度の平均径(D5゜)と粒度分布
ならびに粒子のアスペクト比が大きく左右している。粒
度はタイラーのふるいを用いて200グラムを振どう機
でふるい分けする。ふるい目開きの上に残った重量を粗
い方から積算して重量平均で50%を中心粒度D5゜と
じた。この方法で中心粒度は40ミクロンから125ミ
クロン程度が良い。またその粒度分布は対数確率紙にプ
ロットすると粒度勾配から求められる。それをD w
/ D nで表わすと15から5の範囲がよいが望まし
くは出来れば3以下が良い。However, when increasing the take-up speed to increase productivity, the upper limit of the fiber bundle is about 2,000 monofilaments, but it is preferable to use a bundle of about 50 to 500 monofilaments. When the fiber bundle is less than 50, it is easy to break when taking it off at high speed, but on the other hand, when the fiber bundle is more than 2,000, the opening is not successful and the resin powder does not adhere evenly to each monofilament during fluid dipping, resulting in non-uniformity. Easy 6 Although the resin adhesion zone is not limited to a fluidized bed, it is mainly used because of the uniformity of adhesion and ease of operation. Here, resin powder is formed into a fluidized bed by air pressure. The stability of the fluidized bed and uniform welding when coated are largely influenced by the average diameter (D5°) and particle size distribution of the resin powder particles, as well as the aspect ratio of the particles. The particle size is determined by sifting 200 grams using a Tyler sieve with a shaker. The weight remaining on the sieve opening was integrated from the coarsest to the coarsest, and 50% of the weight average was determined to have a center particle size of D5°. In this method, the center particle size is preferably about 40 microns to 125 microns. Further, the particle size distribution can be determined from the particle size gradient when plotted on logarithmic probability paper. Dw that
/D When expressed as n, it is preferably in the range of 15 to 5, but preferably 3 or less.
粒度分布が狭いほど、流動層の安定ばかりでなく、モノ
フィラメントに付着した樹脂粉末が、均一に溶けて外観
が滑らかでかつ均一にコーティングされ、後の工程の加
熱ダイスでストランド状あるいは任意の形状の製品とす
る際に未溶融物を含まないように管理し易い。粒度分布
が広いと付着した樹脂粉末間に溶けるまでの時間差が生
し、部に完全に溶融7る前に加熱炉から引き出され未溶
融物がモノフィラメント上に残存する危険がある。未溶
融物は加熱ダイスで束ねられる際に、ダイスで加熱を充
分性なっても再渚融することは困難となり長繊維含有樹
脂組成物の欠陥としてのこり製品の強度を著しく低下す
る原因となり得る。The narrower the particle size distribution, the more stable the fluidized bed, and the more uniformly the resin powder adhering to the monofilament will be melted and coated with a smooth and uniform appearance. It is easy to control the product so that it does not contain unmelted substances. If the particle size distribution is wide, there will be a time difference between the adhering resin powders until they melt, and there is a risk that unmelted materials will remain on the monofilament because they are pulled out of the heating furnace before they are completely melted. When the unmelted material is bundled with a heating die, it is difficult to re-melt it even if the heat is sufficiently applied with the die, and the residue remains as a defect in the long fiber-containing resin composition, which can significantly reduce the strength of the product.
モノフィラメントに付着した樹脂パウダーはついで加熱
により溶融され、繊維を被覆する。この際加熱は樹脂が
充分に溶融し、モノフィラメントを被覆することができ
ればその加熱方法は問わない。しかし、操作の容易性、
安定性等の見地からは加熱炉が好ましい。The resin powder attached to the monofilament is then melted by heating and coats the fiber. At this time, any heating method may be used as long as the resin can be sufficiently melted and the monofilament can be coated. However, ease of operation,
From the viewpoint of stability etc., a heating furnace is preferable.
加熱炉は耐火材で組まれた電気炉が一般的であり、発熱
体ニクロムあるいはカンタル線が一例としてあげられる
。繊維を加熱する温度は、その後の樹脂が溶融付着する
に充分な温度にする必要がある。例えばポリオレフィン
では200°Cか6230℃程度が望ましく、ポリアミ
ドでは260℃から290℃が良(、帯留時間は0.3
〜3秒程度(温度と樹脂の種類により変わる。)である
。The heating furnace is generally an electric furnace made of refractory material, and examples include nichrome or kanthal wire as the heating element. The temperature at which the fibers are heated needs to be high enough for the subsequent resin to melt and adhere. For example, a temperature of about 200°C to 6230°C is desirable for polyolefins, and a temperature of 260°C to 290°C is good for polyamides (retention time is 0.3°C).
~3 seconds (varies depending on temperature and type of resin).
加熱ダイスを通過させる場合には、ダイスの温度は繊維
束の太さ、付着樹脂量、ダイス間隙、樹脂粉末の種類等
により影響されるが、おおよそ加熱炉の温度±30”C
位であり、簡単なテストで求めることが出来る。When passing through a heating die, the temperature of the die is affected by the thickness of the fiber bundle, the amount of resin attached, the die gap, the type of resin powder, etc., but it is approximately the temperature of the heating furnace ±30"C.
It can be determined by a simple test.
また、カーボン繊維では、加熱炉を通過する区間、繊維
自体に通電することによって繊維自体を発熱させ、加熱
炉そのものの長さを短縮することも出来る。この方法は
均一な加熱も行なえる利点がある。Furthermore, in the case of carbon fibers, the length of the heating furnace itself can be shortened by energizing the fiber itself in the section where it passes through the heating furnace, thereby causing the fiber itself to generate heat. This method has the advantage of being able to perform uniform heating.
本発明に用いられる合成樹脂としては、特に制限はない
が、−M的には高密度ポリエチレン、ポリプロピレン等
のポリオレフィン、ポリアミド(PA)、 ポ+)ヵー
ポネー)−(PC)、PCとABS又はPCとPAとの
ブレンド物、またはポリオキシメチレン及びPAとのブ
レンド物等が挙げられる。The synthetic resin used in the present invention is not particularly limited, but in terms of -M, polyolefins such as high-density polyethylene and polypropylene, polyamide (PA), poly(carbonate)-(PC), PC and ABS, or PC are used. and a blend of polyoxymethylene and PA, and a blend of polyoxymethylene and PA.
従来の製造方法であるプルトルージョン法やマット状繊
維に樹脂を含浸させる場合は、繊維束又はマット状繊維
の中に溶融状態の高粘度の合成樹脂を圧入する形をとる
ため、樹脂そのものの粘度を低くして含浸を容易にする
必要があるところから比較的低分子量の樹脂の使用が要
求され、且つそれでもなお含浸が完全でなく、また繊維
の切断や偏在が避けることは出来なかった。In conventional manufacturing methods such as the pultrusion method or when mat-like fibers are impregnated with resin, a molten high-viscosity synthetic resin is press-fitted into fiber bundles or mat-like fibers, so the viscosity of the resin itself Since it is necessary to lower the molecular weight and facilitate impregnation, it is necessary to use a relatively low molecular weight resin, and even then, impregnation is not complete and cutting and uneven distribution of fibers cannot be avoided.
これに対し、以上の説明から容易に理解される如く、本
発明方法においては繊維束を帯電させることにより束は
効率よく開繊され、またこ辺開繊された繊維束に対して
粉末の形で樹脂粉末をモノフィラメントに付着させ、こ
れを溶融して繊維含有樹脂組成物とするのであるから、
理論的に言えば樹脂の溶融粘度は繊維への樹脂含浸につ
いては考慮する必要がないわけであって、その後の成形
加工に適切な溶融粘度のものを選ぶことが可能となった
。On the other hand, as can be easily understood from the above explanation, in the method of the present invention, the fiber bundle is efficiently opened by charging the fiber bundle, and the opened fiber bundle is formed into powder. The resin powder is attached to the monofilament and then melted to form a fiber-containing resin composition.
Theoretically speaking, it is not necessary to consider the melt viscosity of the resin with respect to resin impregnation into the fibers, and it is now possible to select a resin with a melt viscosity appropriate for the subsequent molding process.
このため、従来強化プラスチック製品への繊維補強性が
樹脂の低分子化と共に剛性、引張り強度等の面で不充分
であったが、本発明方法ではマドノックス樹脂も充分な
強度を持つものを選ぶことが可能となった上、マトリッ
クス樹脂への繊維の分散の均一性が高く、強度の高い製
品を得ることが出来ることとなった。For this reason, conventional fiber reinforcement properties for reinforced plastic products have been insufficient in terms of rigidity, tensile strength, etc. due to the lower molecular weight of resins, but with the method of the present invention, Madnox resins that have sufficient strength can also be selected. In addition to this, it has become possible to obtain a product with high uniformity of fiber dispersion in the matrix resin and high strength.
[作 用]
本発明は、モノフィラメントの束を高電圧をかけて帯電
させ、これにより各モノフィラメント間の反発を利用し
て効率よく開繊させると共に、その帯電を利用して樹脂
粉末を効率よく均一に付着させ、ついでこれを加熱溶融
し、繊維を樹脂コーティングすることにより繊維束内部
まで均一に樹脂を浸透させる方法である。[Function] In the present invention, a bundle of monofilaments is charged by applying a high voltage, and thereby the repulsion between each monofilament is used to efficiently spread the fibers, and the charge is used to efficiently and uniformly spread the resin powder. This is a method in which the resin is applied to the fiber bundle, and then heated and melted to coat the fibers with a resin, thereby allowing the resin to uniformly penetrate into the inside of the fiber bundle.
[実施例]
(実施例1)
繊維直径が10ミクロンで1500本から構成されたガ
ラス繊維束(GF)を、第1図に示すような装置におい
て一30kVで帯電させ開繊した。ついでこれを樹脂粉
末の流動層に導入させる。流動層を形成している樹脂は
ポリプロピレン粉末(pp)であって、JIS K 7
113に規定する230℃でのメルトフローレートで1
.5g/10分である。平均粒子径は70ミクロン、粒
度分布はI) w / D nで2であった。[Example] (Example 1) A glass fiber bundle (GF) composed of 1500 fibers with a diameter of 10 microns was charged at -30 kV and opened in an apparatus as shown in FIG. This is then introduced into a fluidized bed of resin powder. The resin forming the fluidized bed is polypropylene powder (PP), and is JIS K 7
1 at the melt flow rate at 230°C specified in 113.
.. 5g/10 minutes. The average particle size was 70 microns and the particle size distribution was I) w/D n of 2.
流動層から出たポリプロピレン粉末を付着した繊維束は
加熱炉で200℃で加熱され、次にシート状の加熱ダイ
ス(230℃)を通過した後、冷却サイザーで形状保持
をされ成形体とした。The fiber bundle with polypropylene powder adhered to it that came out of the fluidized bed was heated in a heating furnace at 200°C, then passed through a sheet-shaped heating die (230°C), and then held in shape with a cooling sizer to form a compact.
成形体は厚さ1.5mm、幅15mmで25mmの長さ
に切断した。この時の灰分分析を行なうと、ガラスの含
量は37%であった。これをJISに7113に規定す
る試験法で曲げ試験を行なうと1弾性率は93. O
O0Kg70m2であって、理論平均弾性率の69%で
あった。これを再加熱してプレスで圧縮成形すると60
.000Kg/am2で理論弾性率の42%であった。The molded body had a thickness of 1.5 mm, a width of 15 mm, and was cut into a length of 25 mm. Ash analysis at this time revealed that the glass content was 37%. When this was subjected to a bending test using the test method specified in JIS 7113, the elastic modulus was 93. O
The weight was O0Kg70m2, which was 69% of the theoretical average elastic modulus. When this is reheated and compression molded with a press, it becomes 60.
.. The elastic modulus was 42% of the theoretical elasticity at 000 kg/am2.
成形品よりJIS K 7113で規定するJIS 2
号ダンベルの試験片を切り出し、130℃、150℃及
び170℃の雰囲気で30 Kg/ cm”の静荷重を
かけクリープ性能を測定し、片対数のグラフに縦軸に2
m mまで変化する時間を、横軸に測定した絶対温度
の逆数をプロットし、それより60℃、100℃におけ
る2 m mの変位のクリープする時間を外挿法により
求めたところそれぞれ32)000時間及び378時間
であった。また先端の曲率が6.35mmのヘッドの落
錘試験を行なうと位置のエネルギーで破壊強度を測定し
たところ305 Kg/ cm″であり、高い衝撃性を
示した6(実施例2〜5)
第1表に示すような樹脂粉末メルトフローの低い材料を
用いてガラス繊維の長繊維含有樹脂組成物を製造し、こ
れを用いて実施例1と同じように成形を行ない、サンプ
ルを作りテストしたところ高いクリープ性能と耐衝撃性
を示した。JIS 2 specified by JIS K 7113 for molded products
A test piece of No. 1 dumbbell was cut out, and the creep performance was measured by applying a static load of 30 kg/cm" in an atmosphere of 130°C, 150°C, and 170°C.
The reciprocal of the measured absolute temperature was plotted on the horizontal axis for the time it took to change to 2 mm, and the creep time for a displacement of 2 mm at 60°C and 100°C was calculated by extrapolation. time and 378 hours. In addition, when a drop weight test was performed on a head with a tip curvature of 6.35 mm, the breaking strength was measured using potential energy and was 305 Kg/cm'', indicating high impact resistance.6 (Examples 2 to 5) A resin composition containing long glass fibers was manufactured using a material with a low resin powder melt flow as shown in Table 1, and this was molded in the same manner as in Example 1, and samples were made and tested. It showed high creep performance and impact resistance.
(比較例1)
実施例Iにおいて、樹脂粉末のメルトフローレートを3
0g/I 0分のポリプロピレンを用いた他は同様に成
形体を成形し、ついでプレスで試験片を作成し、クリー
プ強度を測定したところ2mmの変位に達する時間は6
0℃で1200時間であり、100℃では30分であっ
た。耐クリープ強度は大幅に低下した。(Comparative Example 1) In Example I, the melt flow rate of the resin powder was set to 3.
A molded body was molded in the same manner except that 0g/I 0 minute polypropylene was used, and then a test piece was created using a press and the creep strength was measured.The time required to reach a displacement of 2mm was 6.
It was 1200 hours at 0°C and 30 minutes at 100°C. Creep resistance was significantly reduced.
また衝撃強度は樹脂の分子量が低下したため220Kg
−cmであって、いずれも実施例1より低い結果であっ
た。In addition, the impact strength was 220 kg due to the lower molecular weight of the resin.
-cm, and both results were lower than those of Example 1.
(比較例2)
実施例1と同しメルトフローレートのポリプロピレンを
用い、プルトルージョン法にてストランド状に引き取り
を行なったが、樹脂の溶融粘度が高く、繊維束内への樹
脂の浸透がうまく行かず成形は出来なかった。(Comparative Example 2) Using polypropylene with the same melt flow rate as in Example 1, it was drawn into strands using the pultrusion method, but the melt viscosity of the resin was high and the resin did not penetrate well into the fiber bundle. I couldn't go and mold it.
(以下余白)
[発明の効果]
本発明の長繊維含有樹脂組成物の製造方法はモノフィラ
メントの東を、帯電させることにより開繊し、この開繊
した繊維にその静電力を利用して樹脂微粉末を一旦付着
させた後、溶融してモノフィラメントを樹脂で被覆する
ため、高分子量の熱可塑性樹脂で内部まで均一にコーテ
ィングされており、これを成形して得られる長繊維を含
有する樹脂組成物成形品は、従来のプルトルージョン法
やマット状繊維含浸樹脂から得られた原料の成形品と比
較したとき、■マトリックス樹脂の分子量を大幅に高分
子量の樹脂を用いることが可能となったこと、■単繊維
に対する樹脂被覆の状態を大幅に改善できたこと、■樹
脂組成物に含まれるモノフィラメントは組成物製造に際
して折損がないこと等のため、本発明の成形品はクリー
プ特性、引張り強度、耐衝撃強度を大幅に改善でき、繊
維強化プラスチツク分野の新しい用途面へのその利用が
待たれるものである。(The following is a blank space) [Effects of the Invention] The method for producing a long fiber-containing resin composition of the present invention involves opening the east end of a monofilament by electrically charging it, and applying the electrostatic force to the opened fibers to infuse resin particles into the fibers. After the powder is once attached, the monofilament is coated with resin by melting, so the inside is uniformly coated with a high molecular weight thermoplastic resin, and the resin composition containing long fibers obtained by molding this. When compared to molded products made from raw materials obtained using conventional pultrusion methods or matte fiber-impregnated resins, the molecular weight of the matrix resin has been significantly increased. The molded products of the present invention have excellent creep properties, tensile strength, Impact strength can be significantly improved, and its use in new applications in the field of fiber-reinforced plastics is eagerly awaited.
第1図は長繊維樹脂被覆装置の一例である。 FIG. 1 shows an example of a long fiber resin coating device.
Claims (4)
着させ、ついて加熱して樹脂粉末を溶融させ、樹脂て長
繊維を被覆させることを特徴とする長繊維含有樹脂組成
物の製造方法。(1) A long fiber-containing resin composition characterized in that after a long fiber bundle is charged and opened, a resin powder is attached thereto, the resin powder is melted by heating, and the long fibers are covered with the resin. Production method.
成形した樹脂組成物を切断してペレットとする長繊維含
有樹脂組成物の製造方法。(2) A method for producing a long fiber-containing resin composition according to claim 1, in which a resin composition molded into strands is cut into pellets.
状にして繊維が一方向に配向するように成形した長繊維
含有樹脂組成物の製造方法。(3) A method for producing a long fiber-containing resin composition according to claim 1, which is formed into a sheet or plate shape so that the fibers are oriented in one direction.
プロピレン、ポリアミドまたはポリカーボネートである
特許請求の範囲第1項の長繊維含有樹脂組成物の製造方
法。(4) The method for producing a long fiber-containing resin composition according to claim 1, wherein the long fiber bundle is a glass fiber bundle and the resin powder is polypropylene, polyamide, or polycarbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2261630A JPH04138219A (en) | 1990-09-28 | 1990-09-28 | Manufacture of long fiber-contained resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2261630A JPH04138219A (en) | 1990-09-28 | 1990-09-28 | Manufacture of long fiber-contained resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04138219A true JPH04138219A (en) | 1992-05-12 |
Family
ID=17364564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2261630A Pending JPH04138219A (en) | 1990-09-28 | 1990-09-28 | Manufacture of long fiber-contained resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04138219A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06143440A (en) * | 1992-11-02 | 1994-05-24 | Asahi Chem Ind Co Ltd | Manufacture of fiber-reinforced thermoplastic resin structural body |
US9359463B2 (en) | 2010-08-19 | 2016-06-07 | Coatex | Amphiphilic and non-water soluble (meth)acrylic comb polymers |
WO2018015594A1 (en) * | 2016-07-20 | 2018-01-25 | Torres Martinez M | Method for treating fibres, installation for treating fibres and thus obtained tape made of treated fibres |
JP2022512439A (en) * | 2018-12-18 | 2022-02-03 | アルケマ フランス | How to make a fibrous material impregnated with a thermoplastic polymer |
IT202200006308A1 (en) * | 2022-03-30 | 2023-09-30 | Spherecube S R L | PROCEDURE FOR THE PRODUCTION OF A FILAMENT IN COMPOSITE MATERIAL AND RELATED SYSTEM |
-
1990
- 1990-09-28 JP JP2261630A patent/JPH04138219A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06143440A (en) * | 1992-11-02 | 1994-05-24 | Asahi Chem Ind Co Ltd | Manufacture of fiber-reinforced thermoplastic resin structural body |
US9359463B2 (en) | 2010-08-19 | 2016-06-07 | Coatex | Amphiphilic and non-water soluble (meth)acrylic comb polymers |
WO2018015594A1 (en) * | 2016-07-20 | 2018-01-25 | Torres Martinez M | Method for treating fibres, installation for treating fibres and thus obtained tape made of treated fibres |
CN109641372A (en) * | 2016-07-20 | 2019-04-16 | 曼努埃尔·托里斯马丁内斯 | Handle fiber method, handle fiber equipment and it is thus obtained through processing fiber made of band |
US11267165B2 (en) | 2016-07-20 | 2022-03-08 | Manuel Torres Martinez | Method for treating fibres, installation for treating fibres and thus obtained tape made of treated fibres |
JP2022512439A (en) * | 2018-12-18 | 2022-02-03 | アルケマ フランス | How to make a fibrous material impregnated with a thermoplastic polymer |
IT202200006308A1 (en) * | 2022-03-30 | 2023-09-30 | Spherecube S R L | PROCEDURE FOR THE PRODUCTION OF A FILAMENT IN COMPOSITE MATERIAL AND RELATED SYSTEM |
WO2023187588A1 (en) * | 2022-03-30 | 2023-10-05 | Spherecube S.R.L. | Process for the manufacture of a filament made of composite material and related system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5409757A (en) | Flexible multiply towpreg tape from powder fusion coated towpreg | |
US4169186A (en) | Molding material structure | |
US5198281A (en) | Non-woven flexible multiply towpreg fabric | |
FI91617C (en) | Composite materials with marketable characteristics which are prepared by pre-impregnating a continuous fiber and product made from this | |
US5094883A (en) | Flexible multiply towpreg and method of production therefor | |
US5171630A (en) | Flexible multiply towpreg | |
NO130864B (en) | ||
CN106794638A (en) | Mixing enhancing assembling thing | |
US5302419A (en) | Towpregs from recycled plastics by powder fusion coating and method of production therefor | |
JPH04138219A (en) | Manufacture of long fiber-contained resin composition | |
JP2821004B2 (en) | Method for producing glass fiber reinforced thermoplastic resin molding material | |
JP2000141502A (en) | Manufacture of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet | |
CN109333859B (en) | Preparation method of 3D printing component and 3D printing space component | |
US5360661A (en) | Towpregs from recycled plastics by powder fusion coating | |
JP3330402B2 (en) | Method for producing fiber-reinforced thermoplastic resin structure | |
JP3234262B2 (en) | Method for producing fiber-reinforced thermoplastic resin structure | |
WO2002098961A1 (en) | Polymer powder coated roving for making structural composite | |
DE4317649A1 (en) | Glass fiber reinforced composite material and method for its production | |
JPH031907A (en) | Production of fiber reinforced composite material | |
CN109049672B (en) | 3D printing material and preparation method and application thereof | |
JPS61220808A (en) | Manufacture of prepreg | |
JP3311807B2 (en) | Method for producing fiber-reinforced thermoplastic resin composition | |
JPH06246740A (en) | Granule of fiber-reinforced thermoplastic resin | |
JPH0762246A (en) | Production of filament-reinforced thermoplastic resin composition and its apparatus | |
JPH10166362A (en) | Manufacture of fiber reinforced thermoplastic resin sheet |