JPH06143440A - Manufacture of fiber-reinforced thermoplastic resin structural body - Google Patents

Manufacture of fiber-reinforced thermoplastic resin structural body

Info

Publication number
JPH06143440A
JPH06143440A JP4294382A JP29438292A JPH06143440A JP H06143440 A JPH06143440 A JP H06143440A JP 4294382 A JP4294382 A JP 4294382A JP 29438292 A JP29438292 A JP 29438292A JP H06143440 A JPH06143440 A JP H06143440A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced
molten
roving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4294382A
Other languages
Japanese (ja)
Other versions
JP3330402B2 (en
Inventor
Atsushi Murakami
敦史 村上
Ikutoshi Nakajima
幾敏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP29438292A priority Critical patent/JP3330402B2/en
Publication of JPH06143440A publication Critical patent/JPH06143440A/en
Application granted granted Critical
Publication of JP3330402B2 publication Critical patent/JP3330402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fiber-reinforced thermoplastic resin structual body at a high productivity which is superior in adhesion between a reinforcing fiber and thermoplastic resin and has excellent mechanical properties. CONSTITUTION:This is a method for manufacturing a fiber-reinforced thermoplastic resin structual body wherein continuing reinforcing fiber is coated and impregnated with molten thermoplastic resin while pulling a continuing reinforcing fiber. This is a method for manufacturing the fiber-reinforced thermoplastic resin structural body wherein (a) directly before coating and impregnation of the reinforcing fiber with the molten thermoplastic resin, the reinforcing fiber is preheated at a teperature of at least the melting point of the thermo- plastic resin, (b) after the rinforcing fiber is coated with the molten thermoplastic resin, the same is passed through by bringing into contact with a protrusion in a passage having at least eight protrusions affanged alternately and vertically, which are heated at the melting point of the thermoplastic resin or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化熱可塑性樹脂構
造体の製造方法に関するものであって、より詳しくは強
化繊維と樹脂の密着性に優れ、強化繊維による補強効果
が極めて優れた繊維強化熱可塑性樹脂構造体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin structure, and more specifically to a fiber-reinforced resin having excellent adhesion between the reinforcing fiber and the resin and having an extremely excellent reinforcing effect by the reinforcing fiber. The present invention relates to a method for manufacturing a thermoplastic resin structure.

【0002】[0002]

【従来の技術】従来、繊維によって強化された熱可塑性
樹脂の製造方法としては、次の2つに大別される。
2. Description of the Related Art Conventionally, methods for producing a thermoplastic resin reinforced with fibers are roughly classified into the following two methods.

【0003】(1)その1つの方法は熱可塑性樹脂に例
えば3mm程度の長さの強化繊維をドライブレンドし、
更にこれを押出機で混練、造粒する方法である。 (2)他の1つの方法は連続な強化繊維をダイス内に通
し、押出機で溶融した熱可塑性樹脂を上記ダイス内に導
き、強化繊維を被覆し、冷却後切断する方法である。
(1) One of the methods is to dry-blend a thermoplastic resin with a reinforcing fiber having a length of, for example, about 3 mm,
Further, this is a method of kneading and granulating with an extruder. (2) Another method is a method in which continuous reinforcing fibers are passed through a die, the thermoplastic resin melted by an extruder is introduced into the die, the reinforcing fibers are coated, and the fibers are cooled and then cut.

【0004】現在、市販されている繊維強化熱可塑性樹
脂の多くは(1)の方法で作られているが、この方法で
は、押出機のスクリューで練られることによって、強化
繊維が砕かれ、その補強効果は必ずしも十分とは言えな
い。更に配合できる繊維量もせいぜい40重量%程度が
限界とされている。
Most of the fiber-reinforced thermoplastic resins currently on the market are produced by the method (1). In this method, the reinforcing fibers are crushed by kneading with the screw of the extruder, The reinforcing effect is not always sufficient. Furthermore, the amount of fibers that can be blended is limited to about 40% by weight at most.

【0005】一方、(2)の方法は、ペレットにしたと
きの繊維長がペレットの長さに等しいため、繊維による
補強効果も著しく優れたものになるはずである。ところ
が、粘度の高い溶融熱可塑性樹脂中を強化繊維を通過さ
せただけでは、繊維を構成するフィラメントに熱可塑性
樹脂を被覆、含浸させることは困難であり、ペレットか
ら強化繊維が脱落、飛散し、更にこれらのペレットから
得た成形品は、強化繊維が均一に分散しておらず、毛玉
となって成形品中に散在する問題がある。又、(2)の
方法で得られたペレットの補強繊維を、均一に分散させ
るためには成形時、大きな剪断力が必要である。このた
め強化繊維の切断が顕著で、その補強効果が十分でな
い、といった問題がある。特公昭63−37694号公
報には、溶融ポリマー中に位置するロッドやバーの表面
上を引くことで溶融ポリマーを強化繊維束に含浸する方
法が記載されている。しかしながらこの方法では、強化
繊維の引取速度が高々3m/minと必ずしも工業的に
生産性の高い方法とは言えず、又ロッドやバーの空隙部
に滞留する溶融ポリマーの熱劣化によって、本来持ち合
わせている優れた機械的な特性を損なう恐れがある。
On the other hand, in the method (2), since the fiber length when pelletized is equal to the length of the pellet, the reinforcing effect by the fiber should be remarkably excellent. However, by simply passing the reinforcing fiber through the molten thermoplastic resin having a high viscosity, it is difficult to coat and impregnate the filament-constituting filament with the thermoplastic resin, and the reinforcing fiber falls off from the pellets and scatters, Further, the molded product obtained from these pellets has a problem that the reinforcing fibers are not uniformly dispersed and become pills and are scattered in the molded product. Also, in order to uniformly disperse the reinforcing fibers of the pellet obtained by the method (2), a large shearing force is required at the time of molding. Therefore, there is a problem that the reinforcing fibers are severely cut and the reinforcing effect is not sufficient. JP-B-63-37694 describes a method of impregnating a reinforcing fiber bundle with a molten polymer by pulling on the surface of a rod or bar located in the molten polymer. However, in this method, the take-up speed of the reinforcing fiber is 3 m / min at the most, which is not necessarily industrially high in productivity. Also, due to the thermal deterioration of the molten polymer staying in the voids of the rod or bar, it is possible to bring it together. It may impair the excellent mechanical properties.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、原
理的に優れた(2)の方法を利用して、ポリマーの熱劣
化が少なく、且つ繊維強化構造体からの繊維の脱落がな
く、成形時の繊維分散性が良好で、優れた機械的な特性
を有する繊維強化熱可塑性樹脂構造体を高い生産性で得
られる方法を提供することを目的とするものである。
Therefore, the present invention utilizes the method (2), which is excellent in principle, to reduce the thermal deterioration of the polymer and to prevent the fibers from falling out of the fiber-reinforced structure. An object of the present invention is to provide a method for obtaining a fiber-reinforced thermoplastic resin structure having good fiber dispersibility during molding and excellent mechanical properties with high productivity.

【0007】[0007]

【課題を解決するための手段】本発明の繊維強化熱可塑
性樹脂構造体の製造方法は、特定の製造工程、即ち (a)強化繊維に溶融した熱可塑性樹脂を被覆、含浸す
る直前に、該強化繊維を熱可塑性樹脂の溶融温度以上に
予熱すること (b)溶融した熱可塑性樹脂を強化繊維に被覆させた
後、熱可塑性樹脂の溶融温度以上に加熱された、上下に
互い違いに配置された8個以上の凸部を有する通路中の
凸部に接触させて通過させること 更には、強化繊維がガラス繊維の場合では(a)工程の
前に、摩擦による静電気によって繊維幅を広げることを
特徴とするものであり、これらの工程を組み合わせるこ
とによって上記の課題が達成される。
The method for producing a fiber-reinforced thermoplastic resin structure according to the present invention comprises a specific production step, that is, (a) immediately before coating and impregnating the reinforced fiber with the molten thermoplastic resin, Preheating the reinforced fibers above the melting temperature of the thermoplastic resin (b) After coating the reinforced fibers with the melted thermoplastic resin, the reinforced fibers are heated above the melting temperature of the thermoplastic resin and are staggered vertically Contacting a convex portion in a passage having eight or more convex portions and passing the convex portion. Further, when the reinforcing fiber is a glass fiber, the fiber width is widened by static electricity due to friction before the step (a). The above problems can be achieved by combining these steps.

【0008】以下、図面に基づき、本発明の方法及び構
成を詳細に説明する。
The method and structure of the present invention will be described in detail below with reference to the drawings.

【0009】図1において、2はロービングボビン1か
ら繰り出されるロービング繊維であって、このロービン
グ繊維2としては、ガラス繊維を始め、カーボン繊維、
ポリエステル繊維、ナイロン繊維、芳香族ポリアミド繊
維等のフィラメント繊維(太さが数μ〜数十μ)の多数
本(数十〜数千本)を、一般に少量のバインダーを用い
て集束してなるロービング繊維が用いられる。バインダ
ーの量はロービング繊維の開繊を容易にするため少ない
方が好ましいが、バインダーの量が多くて強固に束ねら
れているものでも、ロービングボビン1から繰り出して
後、ローラーやバーを多段に配置して、ロービング繊維
2に張力を加えることにより用いることができる。
In FIG. 1, reference numeral 2 denotes a roving fiber fed from a roving bobbin 1. The roving fiber 2 includes glass fiber, carbon fiber,
Roving made by bundling a large number (tens to thousands) of filament fibers (thickness: several μ to several tens μ) such as polyester fibers, nylon fibers, aromatic polyamide fibers, etc., generally using a small amount of binder. Fiber is used. It is preferable that the amount of the binder is small in order to facilitate the opening of the roving fiber, but even if the amount of the binder is large and the binder is tightly bundled, after unrolling from the roving bobbin 1, the rollers and bars are arranged in multiple stages. Then, it can be used by applying tension to the roving fiber 2.

【0010】更に、用いるロービング繊維2がガラス繊
維の場合は、図2に示すように、表面材質が、テフロン
等の絶縁材料であるローラーあるいはバー11を多段に
配置し、更に1対のロールのうち、1方がロール軸に平
行に矩形の切り欠きを有する。駆動ローラー12で引き
取られる工程を経ることにより、大幅に開繊できる。こ
れは表面材質が、テフロン等の絶縁材料であるローラー
あるいはバー11に通すことで、バインダーによるフィ
ラメント間の拘束力を弱めると同時に張力に比例した摩
擦力によってガラスロービング繊維に静電気が発生し、
更に1対のロールのうち1方が、ロール軸に平行に矩形
の切り欠きを有する、駆動ローラー12によって張力の
緊張と弛緩が繰り返されることにより、大幅な開繊が達
成できるのである。
Further, when the roving fiber 2 used is a glass fiber, as shown in FIG. 2, rollers or bars 11 whose surface material is an insulating material such as Teflon are arranged in multiple stages, and a pair of rolls is further provided. One of them has a rectangular cutout parallel to the roll axis. By the process of being taken up by the driving roller 12, the fiber can be greatly opened. By passing the surface material through a roller or bar 11 which is an insulating material such as Teflon, the binding force between the filaments by the binder is weakened, and at the same time static electricity is generated in the glass roving fiber by the frictional force proportional to the tension.
Further, one of the pair of rolls has a rectangular notch parallel to the roll axis, and the tension and relaxation of the tension are repeated by the drive roller 12, whereby a large opening can be achieved.

【0011】図1で、ロービングボビン1から繰り出さ
れたロービング繊維2は、櫛状または環状の糸道3に通
されて、所定の形状例えば薄い帯状に引き揃えられ、そ
の後予熱炉4に導入される。予熱炉4は一般に利用され
るニクロム線ヒーター等の輻射熱や熱風、遠赤外線ヒー
ター、更には加熱されたダイ等が利用され。予熱炉4の
出口でロービング繊維2は、被覆される熱可塑性樹脂8
の溶融温度以上に加熱されることにより、ロービング繊
維2への溶融した熱可塑性樹脂8の含浸が促進され、ロ
ービング繊維2の引取速度が速くでき、高生産性が達成
できる。
In FIG. 1, the roving fibers 2 fed from the roving bobbin 1 are passed through a comb-shaped or annular yarn path 3 and aligned in a predetermined shape, for example, a thin strip shape, and then introduced into a preheating furnace 4. It As the preheating furnace 4, radiant heat or hot air of a commonly used nichrome wire heater, a far infrared heater, or a heated die is used. At the exit of the preheating furnace 4, the roving fiber 2 is coated with the thermoplastic resin 8
By heating to above the melting temperature of, the impregnation of the molten thermoplastic resin 8 into the roving fibers 2 is promoted, the take-up speed of the roving fibers 2 can be increased, and high productivity can be achieved.

【0012】熱可塑性樹脂8の溶融温度以上に加熱され
たロービング繊維2は、コーティングダイ5に導入さ
れ、押出機7により可塑化、溶融された熱可塑性樹脂に
より被覆される。
The roving fibers 2 heated above the melting temperature of the thermoplastic resin 8 are introduced into the coating die 5 and covered with the thermoplastic resin which is plasticized and melted by the extruder 7.

【0013】本発明に使用できる熱可塑性樹脂は、強化
繊維より、柔らかく、低融点であれば特に限定されず、
強化繊維との組み合わせでどのようなものでも用いられ
るが、例えば具体的には、ポリアミド、ポリプロピレ
ン、ポリエステル、ポリアリレンサルファイド、ポリア
セタール等であり、これらに本発明の製造方法によって
得られる繊維強化熱可塑性樹脂構造体の特性を損なわな
い範囲で、他の樹脂、エラストマー、無機質充填材、着
色剤、熱安定剤、可塑剤、滑剤、離型剤、難燃剤等を添
加することができる。
The thermoplastic resin usable in the present invention is not particularly limited as long as it is softer than the reinforcing fiber and has a low melting point.
Any material may be used in combination with the reinforcing fiber, for example, specifically, polyamide, polypropylene, polyester, polyarylene sulfide, polyacetal, etc., and fiber-reinforced heat obtained by the production method of the present invention. Other resins, elastomers, inorganic fillers, colorants, heat stabilizers, plasticizers, lubricants, release agents, flame retardants and the like can be added within the range that does not impair the characteristics of the plastic resin structure.

【0014】押出機7は一般に熱可塑性樹脂に利用され
る押出機であり、コーティングダイ5に可塑化、溶融し
た熱可塑性樹脂を、吐出むらなく安定した状態で供給で
きるものであればどのような押出機でも使用できる。
The extruder 7 is an extruder generally used for a thermoplastic resin, and any extruder can be used as long as it can supply the thermoplastic resin which has been plasticized and melted to the coating die 5 in a stable state without uneven discharge. It can also be used in an extruder.

【0015】コーティングダイ5は、ロービング繊維2
に溶融熱可塑性樹脂を被覆するためのダイで、ごく普通
に電線被覆等に利用されるダイでも良いが、櫛状あるい
は環状の糸道3によって、所定の形状例えば薄い帯状を
維持して、溶融した熱可塑性樹脂の浴に導入され、溶融
した熱可塑性樹脂で被覆され、そのままの形状を維持し
て引き出すことのできる構造のコーティングダイが好ま
しい。更に、コーティングダイの構造は、生産スピード
にもよるが、樹脂内圧が高くなるように、また樹脂の押
し出され圧が、該溶融した熱可塑性樹脂で被覆されたロ
ービング繊維の引き取り力を軽減する方向に作用するよ
うな構造のダイが好ましい。該コーティングダイで被覆
される熱可塑性樹脂の量としては、30〜80重量%で
ある。30重量%未満では、樹脂の含浸が不十分で、強
化繊維による十分な効果が発現しない。また80重量%
を越えると、強化繊維による補強効果が小さく、本発明
の目的とするところではない。
The coating die 5 comprises roving fibers 2
It is a die for coating the molten thermoplastic resin on, and may be a die which is usually used for coating electric wires, etc., but it can be melted while maintaining a predetermined shape, for example, a thin strip shape, by the comb-shaped or annular thread path 3. A coating die having a structure which is introduced into a bath of the thermoplastic resin and coated with the molten thermoplastic resin and which can be drawn out while maintaining its shape is preferable. Further, the structure of the coating die is such that the internal pressure of the resin becomes high and the pressure of the resin extruded reduces the take-up force of the roving fiber coated with the molten thermoplastic resin, depending on the production speed. A die having a structure that acts on is preferred. The amount of the thermoplastic resin coated with the coating die is 30 to 80% by weight. When it is less than 30% by weight, the resin is not sufficiently impregnated, and the sufficient effect of the reinforcing fiber is not exhibited. 80% by weight
If it exceeds, the reinforcing effect by the reinforcing fibers is small, which is not the object of the present invention.

【0016】溶融した熱可塑性樹脂で被覆されたロービ
ング繊維は、該熱可塑性樹脂の溶融温度以上、分解温度
以下に加熱された、上下に互い違いに配置された凸部を
有する凹凸ダイ6に導入され、凸部に接触させて通過さ
せる。その凹凸ダイの概略図を図3に示す。図3中、1
3は凹凸ダイ凸部、14は溶融樹脂で被覆された繊維の
通路である。該凹凸ダイ6中の糸道からの凸度合い(下
側凸と上側凸との高低差)は大きい方が、ロービング繊
維中への溶融した熱可塑性樹脂の含浸を促進できるので
好ましいが、被覆した熱可塑性樹脂の粘度や、量にもよ
るが、ロービング繊維の毛羽立ち、さらには切断、また
は引取速度の減少、引取張力の増大といった点から、余
り大きくは出来ない。しかし凹凸ダイ6中の凸部の数を
増やすことによって、凸度合いが小さくてもロービング
繊維中への溶融した熱可塑性樹脂の含浸を促進できる。
凸部の数は8個以上が好ましく、それ以下では凸度合い
をさらに大きくしないと、期待した熱可塑性樹脂の含浸
が得られず、上記のようにロービング繊維の毛羽立ち、
さらには切断、または、引取張力の増大が起こる。また
該ダイの凸部13の形状、並びに配置は、溶融樹脂で被
覆された強化繊維を傷つけないように設定される。例え
ば凸半径12.5から25mmの凸を10mmから50
mm間隔で配置するのが好ましい。
The roving fiber coated with the molten thermoplastic resin is introduced into an uneven die 6 having convex portions arranged alternately above and below, which are heated to a melting temperature of the thermoplastic resin or higher and a decomposition temperature or lower. , Touch the convex part and let it pass. A schematic view of the uneven die is shown in FIG. In FIG. 3, 1
Reference numeral 3 is a convex / concave die convex portion, and 14 is a fiber passage coated with a molten resin. It is preferable that the degree of convexity from the yarn path in the concave-convex die 6 (the difference in height between the lower convex side and the upper convex side) is large because the impregnation of the molten thermoplastic resin into the roving fiber can be promoted. Although it depends on the viscosity and amount of the thermoplastic resin, it cannot be made too large in terms of fluffing of the roving fiber, further cutting, or reduction of the take-up speed and increase of the take-up tension. However, by increasing the number of convex portions in the concave-convex die 6, the impregnation of the molten thermoplastic resin into the roving fibers can be promoted even if the convexity is small.
The number of convex portions is preferably 8 or more, and if it is less than this, unless the convexity is further increased, the expected impregnation of the thermoplastic resin cannot be obtained, and fluffing of the roving fiber occurs as described above.
Furthermore, cutting or an increase in take-up tension occurs. Further, the shape and arrangement of the convex portion 13 of the die are set so as not to damage the reinforcing fiber coated with the molten resin. For example, a convex with a convex radius of 12.5 to 25 mm is projected from 10 mm to 50 mm.
It is preferable to arrange them at mm intervals.

【0017】本発明の製造法により、凹凸ダイ6の出口
の形状に応じて、強化繊維と熱可塑性樹脂とからなる強
化繊維が平行に配列したテープ、紐、シート等の繊維強
化熱可塑性樹脂構造体が得られる。
According to the manufacturing method of the present invention, a fiber-reinforced thermoplastic resin structure such as a tape, a string or a sheet in which reinforcing fibers composed of reinforcing fibers and a thermoplastic resin are arranged in parallel according to the shape of the outlet of the uneven die 6. The body is obtained.

【0018】特に溶融した熱可塑性樹脂で被覆し、凹凸
ダイ6を通過したロービング繊維は、該熱可塑性樹脂の
溶融温度以上、分解温度以下に加熱された、成形ノズル
のような穿孔を有する金型によって、ストランド状に成
形後冷却装置9により冷却固化され、該ストランドはカ
ッター10により所望の長さに切断される。
Particularly, the roving fiber coated with the melted thermoplastic resin and passed through the concave-convex die 6 is heated to a temperature above the melting temperature of the thermoplastic resin and below the decomposition temperature thereof, and has a perforation such as a molding nozzle. Then, after being formed into a strand shape, it is cooled and solidified by a cooling device 9, and the strand is cut into a desired length by a cutter 10.

【0019】[0019]

【実施例】以下、実施例で本発明の繊維強化熱可塑性樹
脂構造体の製造方法を、熱可塑性樹脂としてポリアミド
6/6、強化繊維ロービングとしてガラス繊維を利用し
た場合を例にして詳述する。これらの例は、例示のため
に示すもので本発明はこれらに限定されない。
EXAMPLES In the following, the method for producing the fiber-reinforced thermoplastic resin structure of the present invention will be described in detail with reference to examples in which polyamide 6/6 is used as the thermoplastic resin and glass fibers are used as the reinforcing fiber rovings. . These examples are provided by way of illustration and the invention is not limited thereto.

【0020】なお、実施例に記載した繊維強化熱可塑性
樹脂構造体の評価は、次の方法に従って実施した。
The fiber-reinforced thermoplastic resin structures described in the examples were evaluated according to the following methods.

【0021】(1)ロービング繊維含有量 繊維強化熱可塑性樹脂構造体を、650℃の電気炉に4
5分間投入して、樹脂分を焼却し、その前後の重量より
算出した。
(1) Roving fiber content The fiber reinforced thermoplastic resin structure was placed in an electric furnace at 650 ° C.
The resin content was incinerated for 5 minutes, and the weight was calculated from the weight before and after the incineration.

【0022】(2)ロービング繊維脱落率 熱可塑性樹脂のロービング繊維への含浸度合いを定量化
するため、下記に示す方法で得られたサンプルを約1g
秤量し、100mlの三角フラスコに投入し5分間振と
うする。
(2) Dropping rate of roving fiber In order to quantify the degree of impregnation of the roving fiber with the thermoplastic resin, about 1 g of the sample obtained by the following method was used.
Weigh, put in a 100 ml Erlenmeyer flask, and shake for 5 minutes.

【0023】次に、振とうによって繊維が脱落したサン
プルをフラスコより取り出し、その前後の重量より、脱
落した繊維量を算出する。次の式によってロービング繊
維脱落率とした。
Next, the sample from which the fibers have fallen off by shaking is taken out from the flask, and the amount of fibers dropped off is calculated from the weight before and after that. The roving fiber dropout rate was calculated by the following formula.

【0024】 ES(%)=(Mf/Ms)/Wf×10000 ここで、Mf:脱落した繊維量(g) Ms:サンプル量(g) Wf:ロービング繊維含有量(%) である。ES (%) = (Mf / Ms) / Wf × 10000 Here, Mf is the amount of fibers dropped (g) Ms is the amount of sample (g) Wf is the content of roving fibers (%).

【0025】次にサンプルの調製方法を示す。ストラン
ドを切断して得られたペレットを、繊維が並んでいる
(引き取った)方向と直角に5mmの長さに切断し、更
に繊維が並んでいる方向に沿って、ペレット断面を1/
2に切断し、断面が半円状の長さ5mmのものをサンプ
ルとした。
Next, a method for preparing a sample will be described. The pellet obtained by cutting the strand is cut into a length of 5 mm at right angles to the direction in which the fibers are arranged (taken), and the pellet cross section is 1 /
The sample was cut into 2 pieces and had a semicircular cross section and a length of 5 mm.

【0026】(3)機械的特性 東芝機械(株)製IS150E射出成形機を用いて、厚
さ3mmのダンベルとタンザクのテストピースを成形し
た。次にASTM D638,D790,D256に従
って、引っ張り試験、曲げ試験、ノッチ付きアイゾット
衝撃試験を行った。
(3) Mechanical Properties Using a IS150E injection molding machine manufactured by Toshiba Machine Co., Ltd., dumbbells and tanzaku test pieces having a thickness of 3 mm were molded. Next, a tensile test, a bending test, and a notched Izod impact test were performed according to ASTM D638, D790, and D256.

【0027】実施例1 本実施例では、図1に示す装置で、ペレット状の繊維強
化熱可塑性樹脂構造体を製造した。
Example 1 In this example, a pellet-shaped fiber-reinforced thermoplastic resin structure was manufactured using the apparatus shown in FIG.

【0028】まず、ガラスロービング繊維[1150t
ex、旭ファイバーグラス(株)製、径16μ、FT5
94]のロービングボビンを4ロール用意した。このロ
ービングボビンからガラスロービング繊維を繰り出し、
テフロンシートを巻いた、25mm径のバー4個にジグ
ザグ状に這わせ、更に上部ロールが約102mm径で、
2mm深さ、幅55mmの切り欠きを3個等間隔で有す
る駆動ローラーで引き取った。この時4本のガラスロー
ビング繊維はそれぞれ、5mmの幅が35mmから最大
120mmに開繊した。次いで該ガラスロービング繊維
を熱風式予熱炉に導入して、約300℃に加熱した。
First, glass roving fiber [1150t
ex, Asahi Fiberglass Co., Ltd., diameter 16μ, FT5
94], 4 rolls of roving bobbins were prepared. Glass roving fibers are fed from this roving bobbin,
Crawling in a zigzag shape on four 25 mm diameter bars wrapped with a Teflon sheet, and with an upper roll of about 102 mm diameter,
It was pulled by a driving roller having three notches each having a depth of 2 mm and a width of 55 mm at equal intervals. At this time, each of the four glass roving fibers was opened with a width of 5 mm from 35 mm to a maximum of 120 mm. Then, the glass roving fiber was introduced into a hot air type preheating furnace and heated to about 300 ° C.

【0029】一方、旭化成工業(株)製レオナ1200
(ポリアミド6/6、融点263℃)を単軸押出機を用
いて可塑化、溶融し、コーティングダイへ供給した。該
ダイに上記のガラスロービング繊維4本を導入し、溶融
ポリアミド6/6で被覆し、次いで、凹凸ダイの数1
2、糸道からの凸度合いが3mm、凸半径12.5m
m、凸間距離12.5mm、表面温度285℃に設定さ
れた凹凸ダイ中を通過させ、更に表面温度290℃に設
定された先端穴径3mmのノズルを通しストランド状に
成形後、水で冷却して固化させ、長さ約10mmに切断
して、ペレット状のガラス繊維強化ポリアミド6/6を
得た。取引速度は20m/minであった。該サンプル
を上述の方法で評価した結果を表1に示す。
On the other hand, Leona 1200 manufactured by Asahi Kasei Corporation
(Polyamide 6/6, melting point 263 ° C.) was plasticized and melted using a single-screw extruder and supplied to a coating die. The above-mentioned four glass roving fibers were introduced into the die, coated with molten polyamide 6/6, and then the number of concave and convex dies was 1
2, the degree of convexity from the yarn path is 3mm, the convex radius is 12.5m
m, convex distance 12.5 mm, surface temperature 285 ° C. Pass through an uneven die, and further, after forming a strand shape through a nozzle with a tip hole diameter of 3 mm set surface temperature 290 ° C., cool with water The mixture was solidified, cut into a length of about 10 mm, and pelletized glass fiber reinforced polyamide 6/6 was obtained. The transaction speed was 20 m / min. Table 1 shows the results of evaluation of the sample by the above method.

【0030】比較例1 凹凸ダイの凸数を7に減らした以外は、実施例1の方法
と同様の方法で、ペレット状のガラス繊維強化ポリアミ
ド6/6を得た。引取速度は20m/minであった。
しかし、該ペレットはカッティング不良が著しく、ペレ
ット端面からガラス繊維がはみ出ており、射出成形機の
ホッパーからシリンダー内に食い込まず成形できなかっ
た。該サンプルを上述の方法で評価した結果を表1に示
す。
Comparative Example 1 Pellet-shaped glass fiber reinforced polyamide 6/6 was obtained in the same manner as in Example 1 except that the number of projections of the uneven die was reduced to 7. The take-up speed was 20 m / min.
However, the pellets had a remarkable cutting failure, and the glass fibers protruded from the end faces of the pellets, and the pellets could not be molded without biting into the cylinder from the hopper of the injection molding machine. Table 1 shows the results of evaluation of the sample by the above method.

【0031】比較例2 凹凸ダイの凸数を7に減らし引取速度が10m/min
である以外は、実施例1の方法と同様の方法で、ペレッ
ト状のガラス繊維強化ポリアミド6/6を得た。しか
し、該ペレットは比較例1と同様にカッティング不良が
著しく、成形できなかった。該サンプルを上述の方法で
評価した結果を表1に示す。
Comparative Example 2 The number of protrusions of the concave-convex die was reduced to 7 and the take-up speed was 10 m / min.
A glass fiber reinforced polyamide 6/6 in the form of pellets was obtained by the same method as in Example 1 except that However, as in Comparative Example 1, the pellets were significantly defective in cutting and could not be molded. Table 1 shows the results of evaluation of the sample by the above method.

【0032】実施例2 凹凸ダイの凸数を9、引取速度が10m/minである
以外は、実施例1の方法と同様の方法で、ペレット状の
ガラス繊維強化ポリアミド6/6を得た。該サンプルを
上述の方法で評価した結果を表1に示す。
Example 2 Pellet-shaped glass fiber reinforced polyamide 6/6 was obtained in the same manner as in Example 1 except that the convex / concave die had a convex number of 9 and the take-up speed was 10 m / min. Table 1 shows the results of evaluation of the sample by the above method.

【0033】比較例3 凹凸ダイの凸数を7に減らし、凸度4mm、引取速度が
10m/minである以外は、実施例1の方法と同様の
方法で、ペレット状のガラス繊維強化ポリアミド6/6
を得ようとしたが、毛羽が多く、又引張張力の増大によ
ると思われる、ストランドの切断が起こり成形できる程
のサンプルが得られなかった。該サンプルを上述の方法
で評価した結果を表1に示す。
Comparative Example 3 Pellet-shaped glass fiber reinforced polyamide 6 was prepared in the same manner as in Example 1 except that the convex / concave die had a convex number of 7 and the convexity was 4 mm and the take-up speed was 10 m / min. / 6
However, a sample having a large number of fluffs and possibly due to an increase in tensile tension was not obtained to the extent that strand breakage occurred and molding was possible. Table 1 shows the results of evaluation of the sample by the above method.

【0034】参考例1 旭化成工業(株)製レオナ1300ペレットとガラス繊
維チョップドストランド[旭ファイバーグラス(株)
製、フィラメント径13μ、長さ3mm]をドライブレ
ンドして、単軸押出機で、従来のの方法によるガラス
繊維強化ポリアミド6/6ペレットを得た。本ペレット
のガラス繊維含有量は60重量%であった。本ペレット
の製造においては、ベントアップや、脈流が観察され、
運転は不安定であった。該サンプルを上述の方法で評価
した結果を表1に示す。
Reference Example 1 Asahi Kasei Kogyo Co., Ltd.'s Leona 1300 pellets and glass fiber chopped strands [Asahi Fiber Glass Co., Ltd.
Manufactured, filament diameter 13 μ, length 3 mm] were dry blended to obtain glass fiber reinforced polyamide 6/6 pellets by a conventional method with a single-screw extruder. The glass fiber content of the pellets was 60% by weight. In the production of this pellet, bent-up and pulsating flow were observed,
Driving was unstable. Table 1 shows the results of evaluation of the sample by the above method.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の方法によれば、強化繊維と樹脂
の密着性に優れ、強化繊維による補強効果が非常に優れ
た繊維強化熱可塑性樹脂構造体を、高生産性で得られる
という効果を有する。
According to the method of the present invention, it is possible to obtain a fiber-reinforced thermoplastic resin structure having excellent adhesion between the reinforcing fiber and the resin and very excellent reinforcing effect by the reinforcing fiber with high productivity. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法で用いる装置の構成を示す概略図で
ある。
FIG. 1 is a schematic diagram showing the configuration of an apparatus used in the method of the present invention.

【図2】強化繊維がガラスロービング繊維の時に予熱工
程[(a)工程]の前に挿入される開繊装置の構成を示
す概略図である。
FIG. 2 is a schematic diagram showing a configuration of a fiber opening device that is inserted before the preheating step [(a) step] when the reinforcing fiber is glass roving fiber.

【図3】本発明で用いられる凹凸ダイの構造の1例を示
す概略図である。
FIG. 3 is a schematic view showing an example of the structure of a relief die used in the present invention.

【符号の説明】 1 ロービング繊維ボビン 2 ロービング繊維 3 糸道 4 予熱炉 5 コーティングダイ 6 凹凸ダイ 7 押出機 8 熱可塑性樹脂 9 冷却装置 10 カッター 11 表面材質が絶縁材料であるバー 12 ロール軸方向に切り欠きを有する駆動ローラー 13 凹凸ダイ、凸部 14 溶融樹脂で被覆された繊維の通路[Explanation of symbols] 1 roving fiber bobbin 2 roving fiber 3 yarn path 4 preheating furnace 5 coating die 6 uneven die 7 extruder 8 thermoplastic resin 9 cooling device 10 cutter 11 bar whose surface material is an insulating material 12 roll axial direction Drive roller having notch 13 Concavo-convex die, convex portion 14 Passage of fiber coated with molten resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続した強化繊維を引きながら、溶融し
た熱可塑性樹脂を被覆させ、含浸させる繊維強化熱可塑
性樹脂構造体の製造方法であって (a)強化繊維に溶融した熱可塑性樹脂を被覆、含浸す
る直前に、該強化繊維を熱可塑性樹脂の溶融温度以上に
予熱すること、 (b)溶融した熱可塑性樹脂を強化繊維に被覆させた
後、熱可塑性樹脂の溶融温度以上に加熱された、上下
に、互い違いに配置された8個以上の凸部を有する通路
中の凸部に接触させて通過させることを特徴とする繊維
強化熱可塑性樹脂構造体の製造方法。
1. A method for producing a fiber-reinforced thermoplastic resin structure in which a molten thermoplastic resin is coated and impregnated while pulling continuous reinforcing fibers, comprising: (a) coating the molten fiber with the molten thermoplastic resin. Immediately before impregnation, the reinforcing fiber is preheated to the melting temperature of the thermoplastic resin or higher, (b) the molten fiber is coated with the molten thermoplastic resin, and then heated to the melting temperature of the thermoplastic resin or higher. A method for producing a fiber-reinforced thermoplastic resin structure, characterized in that the fiber-reinforced thermoplastic resin structure is made to come into contact with and pass through the protrusions in a passage having eight or more protrusions that are alternately arranged on the top and bottom.
【請求項2】 連続した強化繊維ガラスが繊維ロービン
グであり、上記(a)工程の前に、摩擦によってガラス
繊維に静電気を発生させ、その幅を広げることを特徴と
する請求項1記載の繊維強化熱可塑性樹脂構造体の製造
方法。
2. The fiber according to claim 1, wherein the continuous reinforced fiber glass is a fiber roving, and static electricity is generated in the glass fiber by friction before the step (a) to widen its width. A method for manufacturing a reinforced thermoplastic resin structure.
【請求項3】 上記(b)工程の後、ストランド状に成
形し冷却切断することを特徴とする請求項1または2記
載の繊維強化熱可塑性樹脂構造体の製造方法。
3. The method for producing a fiber-reinforced thermoplastic resin structure according to claim 1 or 2, wherein after the step (b), it is formed into a strand shape and cooled and cut.
JP29438292A 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure Expired - Fee Related JP3330402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29438292A JP3330402B2 (en) 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29438292A JP3330402B2 (en) 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure

Publications (2)

Publication Number Publication Date
JPH06143440A true JPH06143440A (en) 1994-05-24
JP3330402B2 JP3330402B2 (en) 2002-09-30

Family

ID=17807006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29438292A Expired - Fee Related JP3330402B2 (en) 1992-11-02 1992-11-02 Method for producing fiber-reinforced thermoplastic resin structure

Country Status (1)

Country Link
JP (1) JP3330402B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005956A1 (en) * 1994-08-19 1996-02-29 Polyplastics Co., Ltd. Method for producing long fiber-reinforced thermoplastic resin composition
US5948473A (en) * 1995-11-30 1999-09-07 Chisso Corporation Method and apparatus for preparing resin-impregnated structures reinforced by continuous fibers
JP2006272868A (en) * 2005-03-30 2006-10-12 Owens Corning Seizo Kk Cooling device for continuous fiber-reinforced thermoplastic resin rod
JP2013049793A (en) * 2011-08-31 2013-03-14 Unitika Ltd Semiaromatic polyamide resin composition pellet, and molded form obtained by molding the same
JP2014516822A (en) * 2011-04-12 2014-07-17 ティコナ・エルエルシー Thermoplastic rod reinforced with continuous fiber and extrusion process for its production
JP2017148960A (en) * 2016-02-22 2017-08-31 積水化学工業株式会社 Fiber-reinforced resin prepreg sheet
CN109385083A (en) * 2018-10-19 2019-02-26 江苏苏能新材料科技有限公司 Continuous basalt fiber reinforced polyamide unidirectional prepreg tape and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515115B1 (en) * 2019-11-28 2023-03-29 (주)엘엑스하우시스 Pet based continuous fiber complex and method of preparing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337694A (en) * 1986-07-31 1988-02-18 松下電工株式会社 Manufacture of circuit board
JPS63264326A (en) * 1987-04-09 1988-11-01 エルフ アトケム ソシエテ アノニム Method and device for manufacturing deformed sectional material made of thermoplastic resin reinforced by continuous long fiber
JPH02151407A (en) * 1988-10-19 1990-06-11 Bayer Ag Extruding and impregnating device
JPH03183531A (en) * 1989-12-14 1991-08-09 Idemitsu Petrochem Co Ltd Method and device for producing frp molding stock
JPH03230943A (en) * 1990-02-06 1991-10-14 Polyplastics Co Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor
JPH04138219A (en) * 1990-09-28 1992-05-12 Showa Denko Kk Manufacture of long fiber-contained resin composition
JPH05162135A (en) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd Manufacture of fiber-reinforced thermoplastic resin structure
JPH0647825A (en) * 1992-07-31 1994-02-22 Shimadzu Corp Composite material manufacture device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337694A (en) * 1986-07-31 1988-02-18 松下電工株式会社 Manufacture of circuit board
JPS63264326A (en) * 1987-04-09 1988-11-01 エルフ アトケム ソシエテ アノニム Method and device for manufacturing deformed sectional material made of thermoplastic resin reinforced by continuous long fiber
JPH02151407A (en) * 1988-10-19 1990-06-11 Bayer Ag Extruding and impregnating device
JPH03183531A (en) * 1989-12-14 1991-08-09 Idemitsu Petrochem Co Ltd Method and device for producing frp molding stock
JPH03230943A (en) * 1990-02-06 1991-10-14 Polyplastics Co Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor
JPH04138219A (en) * 1990-09-28 1992-05-12 Showa Denko Kk Manufacture of long fiber-contained resin composition
JPH05162135A (en) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd Manufacture of fiber-reinforced thermoplastic resin structure
JPH0647825A (en) * 1992-07-31 1994-02-22 Shimadzu Corp Composite material manufacture device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005956A1 (en) * 1994-08-19 1996-02-29 Polyplastics Co., Ltd. Method for producing long fiber-reinforced thermoplastic resin composition
US5788908A (en) * 1994-08-19 1998-08-04 Polyplastics Co., Ltd. Method for producing long fiber-reinforced thermoplastic resin composition
US5948473A (en) * 1995-11-30 1999-09-07 Chisso Corporation Method and apparatus for preparing resin-impregnated structures reinforced by continuous fibers
JP2006272868A (en) * 2005-03-30 2006-10-12 Owens Corning Seizo Kk Cooling device for continuous fiber-reinforced thermoplastic resin rod
JP4633514B2 (en) * 2005-03-30 2011-02-16 オーウェンスコーニング製造株式会社 Cooling device for long fiber reinforced thermoplastic rod
JP2014516822A (en) * 2011-04-12 2014-07-17 ティコナ・エルエルシー Thermoplastic rod reinforced with continuous fiber and extrusion process for its production
US10676845B2 (en) 2011-04-12 2020-06-09 Ticona Llc Continuous fiber reinforced thermoplastic rod and pultrusion method for its manufacture
JP2013049793A (en) * 2011-08-31 2013-03-14 Unitika Ltd Semiaromatic polyamide resin composition pellet, and molded form obtained by molding the same
JP2017148960A (en) * 2016-02-22 2017-08-31 積水化学工業株式会社 Fiber-reinforced resin prepreg sheet
CN109385083A (en) * 2018-10-19 2019-02-26 江苏苏能新材料科技有限公司 Continuous basalt fiber reinforced polyamide unidirectional prepreg tape and preparation method thereof
CN109385083B (en) * 2018-10-19 2021-08-31 江苏苏能新材料科技有限公司 Continuous basalt fiber reinforced polyamide unidirectional prepreg tape and preparation method thereof

Also Published As

Publication number Publication date
JP3330402B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
JP3670321B2 (en) Crosshead die and method for producing long fiber reinforced resin structure
JP3584065B2 (en) Manufacturing apparatus and manufacturing method for long fiber reinforced resin structure
KR920001646B1 (en) Maruko chiaki
JP3330402B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JP3572101B2 (en) Long fiber reinforced thermoplastic resin structure and method for producing the same
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP2847807B2 (en) Extrusion impregnation equipment
JP3234262B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JPH06114830A (en) Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
JP3492416B2 (en) Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JP2003305779A (en) Device and method for manufacturing filament- reinforced thermoplastic resin material
JPH06114832A (en) Fibber-reinforced thermoplastic resin structure and manufacture thereof
JPH03183531A (en) Method and device for producing frp molding stock
JP4646108B2 (en) Method and apparatus for producing long fiber reinforced resin molding material
JPH0691637A (en) Manufacture of pellet composed of fiber bundle coated with thermoplastic resin and device for coating fiber bundle with thermoplastic resin
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
JP3027540B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin composite
JP4477925B2 (en) Manufacturing method of long fiber reinforced resin molding material and impregnation die for molding
JPH06254850A (en) Manufacture of filament reinforced synthetic resin strand
JP4332020B2 (en) DIE FOR PRODUCING LONG FIBER REINFORCED THERMOPLASTIC RESIN STRUCTURE AND METHOD FOR PRODUCING THE STRUCTURE
JP3335388B2 (en) Glass long fiber reinforced polyamide resin pellets
JP2952977B2 (en) Molding method of fiber reinforced resin
JPH07227915A (en) Manufacture of fiber-reinforced thermoplastic resin composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020628

LAPS Cancellation because of no payment of annual fees