JP2009032926A - Compound substrate and its printed circuit board - Google Patents

Compound substrate and its printed circuit board Download PDF

Info

Publication number
JP2009032926A
JP2009032926A JP2007195792A JP2007195792A JP2009032926A JP 2009032926 A JP2009032926 A JP 2009032926A JP 2007195792 A JP2007195792 A JP 2007195792A JP 2007195792 A JP2007195792 A JP 2007195792A JP 2009032926 A JP2009032926 A JP 2009032926A
Authority
JP
Japan
Prior art keywords
insulating layer
printed circuit
circuit board
clad laminate
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007195792A
Other languages
Japanese (ja)
Other versions
JP5077661B2 (en
Inventor
Yosuke Kato
陽祐 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2007195792A priority Critical patent/JP5077661B2/en
Publication of JP2009032926A publication Critical patent/JP2009032926A/en
Application granted granted Critical
Publication of JP5077661B2 publication Critical patent/JP5077661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound board and its printed circuit board with less solder cracks in a connecting lands and fewer cracks in electronic components, and the like, and superior in connecting reliability in the printed circuit board, under a high-temperature atmosphere, when the electronic components are mounted on the printed circuit board. <P>SOLUTION: The compound board has a core substrate with its coefficient of thermal expansion in the thickness direction and lower than its glass transition temperature and lower than 45 ppm/°C, and an insulating layer having a glass cloth arranged at one side or both sides of the core substrate. A coefficient of elasticity in the insulating layer is smaller than that in the insulating substrate, and the rate of a resinous component in the insulating layer lies in a range of 65% and 93%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は接続信頼性の高い複合基板およびそのプリント配線板に関する。   The present invention relates to a composite substrate having high connection reliability and a printed wiring board thereof.

自動車のエンジンルーム等の高温環境下では、従来、耐熱性の高いセラミック配線板が主に用いられているが、近年の低価格化の要求により、プリント配線板への代替が検討されている。しかし、プリント配線板における銅配線や実装部品と配線板との間の熱膨張率差が大きく、高温環境下において、スルーホール内クラック、はんだクラック、表層回路の断線が発生し易く、接続信頼性が低下してしまう。   Conventionally, a high-heat-resistant ceramic wiring board has been mainly used in a high-temperature environment such as an engine room of an automobile. However, an alternative to a printed wiring board is being studied due to the recent demand for lower prices. However, the thermal expansion coefficient difference between the copper wiring and the mounted components and the wiring board on the printed wiring board is large, and cracks in the through-holes, solder cracks, and surface layer circuits are likely to occur in a high temperature environment. Will fall.

そこで、高温環境下においてクラックなどの不具合が発生し難く、高い接続信頼性を有するプリント配線板の要求が高まっている。   Therefore, there is an increasing demand for a printed wiring board having high connection reliability, which is unlikely to cause defects such as cracks in a high temperature environment.

プリント配線板におけるスルーホールクラックの発生を予防する方法として、配線板の樹脂組成物中に多量の無機充填材を配合し、樹脂組成物の熱膨張係数をさげて銅の熱膨張係数に近づける方法が挙げられるが、無機充填材を多量に配合した樹脂組成物は、その弾性率が高いため、部品と配線板の熱膨張率差に起因して発生するストレスをより多くはんだ部分にかけることとなり、はんだクラックが発生し易くなってしまう。
そのため、電子部品とプリント配線板の熱膨張率差に起因して発生するストレスを低減する手段として、弾性率の低い樹脂組成物をプリント配線板の表面に設ける方法(特許文献1)が提案されている。この方法により、はんだクラックが発生しにくくなる。
特開2006−315391号公報
As a method of preventing the occurrence of through-hole cracks in a printed wiring board, a method of blending a large amount of an inorganic filler in the resin composition of the wiring board and reducing the thermal expansion coefficient of the resin composition so as to approach the thermal expansion coefficient of copper However, since the resin composition containing a large amount of inorganic filler has a high elastic modulus, it will apply more stress to the solder part due to the difference in thermal expansion coefficient between the component and the wiring board. , Solder cracks are likely to occur.
Therefore, a method of providing a resin composition having a low elastic modulus on the surface of the printed wiring board (Patent Document 1) has been proposed as a means for reducing the stress caused by the difference in thermal expansion coefficient between the electronic component and the printed wiring board. ing. This method makes it difficult for solder cracks to occur.
JP 2006-315391 A

しかし、弾性率の低い樹脂組成物は熱膨張が大きく、表層回路の断線等が発生しやすい。つまり、プリント配線板の樹脂組成物中に多量の無機充填材を配合する方法もしくは弾性率の低い樹脂組成物をプリント配線板の表面に設ける方法だけでは、プリント配線板の接続信頼性に対する要求に十分応えることはできない。
本発明は、高温環境下においてスルーホールクラック、はんだクラック、表層回路の断線等の発生が少なく、接続信頼性に優れた複合基板およびそのプリント配線板を目的とする。
However, a resin composition having a low elastic modulus has a large thermal expansion, and a disconnection of the surface layer circuit is likely to occur. In other words, only the method of blending a large amount of inorganic filler in the resin composition of the printed wiring board or the method of providing a resin composition having a low elastic modulus on the surface of the printed wiring board is a requirement for the connection reliability of the printed wiring board. I can't respond enough.
An object of the present invention is to provide a composite substrate excellent in connection reliability and a printed wiring board thereof with less occurrence of through-hole cracks, solder cracks, surface layer circuit breakage, and the like in a high-temperature environment.

上記課題を解決するために、板厚方向の熱膨張係数が、ガラス転移温度以下で45ppm/℃未満のコア基板と、このコア基板の片面又は両面に配置されたガラスクロスを有する絶縁層とを備え、上記絶縁層の弾性率が、上記コア基板の弾性率よりも小さい複合基板にあって、上記絶縁層中の樹脂分の割合が、65%から93%であることを特徴とする複合基板を提供する。
また、上記絶縁層の弾性率が、10GPa以下であることを特徴とする上記複合基板を提供する。
また、上記複合基板を使用した回路を有するプリント配線板を提供する。
In order to solve the above problems, a core substrate having a thermal expansion coefficient in the plate thickness direction of less than 45 ppm / ° C. below the glass transition temperature, and an insulating layer having a glass cloth disposed on one or both surfaces of the core substrate A composite substrate wherein the elastic modulus of the insulating layer is smaller than the elastic modulus of the core substrate, and the resin content in the insulating layer is 65% to 93% I will provide a.
Further, the present invention provides the composite substrate, wherein the elastic modulus of the insulating layer is 10 GPa or less.
Moreover, the printed wiring board which has a circuit using the said composite substrate is provided.

本発明によれば、高温環境下において、スルーホールクラックやはんだクラックだけではなく、表層回路の断線等の発生が少ない、接続信頼性に優れたプリント配線板およびそのプリント配線板の製造が可能となる。   According to the present invention, in a high-temperature environment, not only through-hole cracks and solder cracks but also the occurrence of surface layer circuit disconnection and the like can be produced, and a printed wiring board excellent in connection reliability and its printed wiring board can be manufactured. Become.

本発明に述べるコア基板は、板厚方向の熱膨張係数が、ガラス転移温度以下で45ppm/℃未満である基板で、片面又は両面にガラスクロスを有する絶縁層を配置させる基板である。板厚方向で45ppm/℃以上であると、スルーホールクラック発生の要因となるため好ましくない。   The core substrate described in the present invention is a substrate having a thermal expansion coefficient in the plate thickness direction of less than 45 ppm / ° C. below the glass transition temperature, and an insulating layer having a glass cloth on one or both sides. If it is 45 ppm / ° C. or more in the thickness direction, it is not preferable because it causes a through-hole crack.

また、130℃以下での、X−Y方向(板面方向)で20ppm/℃を越えると実装部品の熱膨張係数との差が大きくなりクラック発生の要因となりやすく好ましくない。また、コア基板の厚みは、一般的な厚みでよく、特に限定されないが、0.2〜3.2mmの範囲であることが好ましい。   Further, if it exceeds 20 ppm / ° C. in the XY direction (plate surface direction) at 130 ° C. or lower, the difference from the thermal expansion coefficient of the mounted component becomes large, which is not preferable because it tends to cause cracks. Moreover, the thickness of a core board | substrate may be common thickness, and although it does not specifically limit, It is preferable that it is the range of 0.2-3.2 mm.

上記コア基板の具体的なものとしては、例えば、ガラスエポキシ銅張積層板であるMCL−E−679FやMCL−BE−67G(H)(いずれも日立化成工業株式会社製、商品名)等を用いることができる。また、内層回路を有するものであってもよい。   Specific examples of the core substrate include, for example, MCL-E-679F and MCL-BE-67G (H) which are glass epoxy copper clad laminates (both manufactured by Hitachi Chemical Co., Ltd., trade names) and the like. Can be used. Moreover, you may have an inner layer circuit.

本発明に述べる絶縁層は、ガラスクロスを有する樹脂含浸基材(プリプレグ)であり、上記コア基板の片面又は両面に設けるものである。室温での弾性率が10GPa以下であることが好ましい。この弾性率が10GPaを越えると、高温環境下において発生するストレスを十分に緩和することができず、はんだクラック等の発生を十分に防止することが難しくなる。   The insulating layer described in the present invention is a resin-impregnated base material (prepreg) having a glass cloth, and is provided on one side or both sides of the core substrate. The elastic modulus at room temperature is preferably 10 GPa or less. When this elastic modulus exceeds 10 GPa, the stress generated under a high temperature environment cannot be sufficiently relaxed, and it becomes difficult to sufficiently prevent the occurrence of solder cracks and the like.

絶縁層の樹脂組成物としては、特に限定されないが、例えば、エポキシ樹脂等の絶縁性樹脂、アクリロニトリルブタジエンゴム等のゴム、フェノール樹脂等の硬化剤、2−エチル−4−メチルイミダゾール等の硬化促進剤、難燃剤、可塑剤、充填剤、溶剤等を含むものを用いることができ、各組成の配合量や溶剤の量を適宜調整することで、絶縁層の弾性率を調整することができる。   The resin composition of the insulating layer is not particularly limited. For example, an insulating resin such as an epoxy resin, a rubber such as acrylonitrile butadiene rubber, a curing agent such as a phenol resin, and a curing acceleration such as 2-ethyl-4-methylimidazole. An agent, a flame retardant, a plasticizer, a filler, a solvent, etc. can be used, and the elasticity modulus of an insulating layer can be adjusted by adjusting the compounding quantity of each composition, and the quantity of a solvent suitably.

上記絶縁層の樹脂分は、65%から93%であることが必要である。この樹脂分の割合が65%未満であると高温環境下において発生するストレスを十分に緩和することができず、はんだクラックが発生しやすくなり、93%を越えると、Z方向の熱膨張係数が大きくなり過ぎる傾向にある。
絶縁層の樹脂分とは、ガラスクロスを樹脂組成物に含浸し、150℃で10分間乾燥し、樹脂含浸基材(プリプレグ)にした状態での、絶縁層全体積に対する樹脂の体積割合を指す。
また、ガラスクロスを有さない樹脂付き銅箔ではX−Y方向の熱膨張係数が樹脂のそれに依存するため大きくなり、表層回路の断線が発生しやすくなる。
The resin content of the insulating layer needs to be 65% to 93%. If the resin content is less than 65%, the stress generated in a high temperature environment cannot be sufficiently relaxed, and solder cracks are likely to occur. If the resin content exceeds 93%, the thermal expansion coefficient in the Z direction is increased. It tends to be too big.
The resin content of the insulating layer refers to the volume ratio of the resin to the total volume of the insulating layer when the resin composition is impregnated with a glass cloth and dried at 150 ° C. for 10 minutes to form a resin-impregnated base material (prepreg). .
Moreover, in the copper foil with resin which does not have a glass cloth, since the thermal expansion coefficient of an XY direction depends on that of resin, it becomes easy to generate | occur | produce the disconnection of a surface layer circuit.

本発明に述べる複合基板は、上記コア基板の片面又は両面に上記絶縁層を配置した基板で、上記絶縁層を上記コア基板に積層し、加熱加圧などして形成する。このときの加熱加圧条件は、温度150〜180℃、圧力9〜20MPa程度の条件で行うことが好ましいが、積層板の特性や絶縁樹脂組成物の反応性、プレス機の能力、目的の積層板の厚み等を考慮して適宜決定することができ、特に限定されない。
The composite substrate described in the present invention is a substrate in which the insulating layer is disposed on one side or both sides of the core substrate, and the insulating layer is stacked on the core substrate and formed by heating and pressing. The heating and pressing conditions at this time are preferably performed under conditions of a temperature of 150 to 180 ° C. and a pressure of about 9 to 20 MPa. However, the characteristics of the laminate, the reactivity of the insulating resin composition, the capability of the press, and the desired lamination The thickness can be appropriately determined in consideration of the thickness of the plate, and is not particularly limited.

本発明の複合基板は、必要に応じて片面または両面に金属層が形成されていて、この金属層は、例えば、銅箔などの金属箔を積層板の片面または両面に配し、加熱加圧することで形成することができる。なお、上記加熱加圧は、温度150〜180℃、圧力9〜20MPa程度の条件で行うことが好ましいが、積層板の特性や絶縁樹脂組成物の反応性、プレス機の能力、目的の積層板の厚み等を考慮して適宜決定することができ、特に限定されない。   In the composite substrate of the present invention, a metal layer is formed on one side or both sides as necessary. For example, a metal foil such as a copper foil is placed on one side or both sides of the laminated plate and heated and pressed. Can be formed. The heating and pressurization is preferably performed under conditions of a temperature of 150 to 180 ° C. and a pressure of about 9 to 20 MPa. However, the characteristics of the laminated board, the reactivity of the insulating resin composition, the ability of the press, and the desired laminated board The thickness can be appropriately determined in consideration of the thickness of the material, and is not particularly limited.

また、本発明の複合基板は(1)コア基板の金属層をエッチングして回路を形成する工程、(2)前記回路上に絶縁層と金属箔を順次積層した後、加熱加圧する工程、および(3)最外層となる金属層をエッチングして回路を形成する工程により製造することができ、(2)および(3)工程を繰り返すことで、所望層数の多層プリント配線板を得ることができる。上記工程以外にもスルーホール形成工程やめっき工程等、多層プリント配線板を製造する加工工程を必要に応じて行うことができる。   The composite substrate of the present invention includes (1) a step of forming a circuit by etching the metal layer of the core substrate, (2) a step of heating and pressing after sequentially laminating an insulating layer and a metal foil on the circuit, and (3) It can be manufactured by a process of forming a circuit by etching a metal layer as the outermost layer, and a multilayer printed wiring board having a desired number of layers can be obtained by repeating steps (2) and (3). it can. In addition to the above steps, processing steps for producing a multilayer printed wiring board, such as a through-hole forming step and a plating step, can be performed as necessary.

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(実施例1)
<銅張積層板の作製>
厚み1.0mmのガラスエポキシ銅張積層板MCL−E−679F(日立化成工業株式会社製商品名)をエッチングにて回路形成を行い、コア基板を作製した。
Example 1
<Preparation of copper-clad laminate>
A circuit board was formed by etching a glass epoxy copper clad laminate MCL-E-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 1.0 mm, and a core substrate was produced.

次に、弾性率が7〜10GPaであるエポキシ樹脂系の絶縁樹脂組成物Aのワニスをガラスクロス1078タイプ(IPC規格)に含浸し、150℃の乾燥機中で10〜15分間乾燥した樹脂分65%のBステージ状態のプリプレグTCP−300(日立化成工業株式会社製商品名)を上記コア基板と銅箔の間に挟みこむようにして真空下、圧力3.0MPaで185℃、70分加熱加圧して積層し、評価用銅張積層板を作製した。   Next, a resin component obtained by impregnating a glass cloth 1078 type (IPC standard) with a varnish of an epoxy resin-based insulating resin composition A having an elastic modulus of 7 to 10 GPa and drying for 10 to 15 minutes in a dryer at 150 ° C. A 65% B-stage prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was sandwiched between the core substrate and the copper foil and heated and pressurized at 185 ° C. for 70 minutes under a vacuum of 3.0 MPa. A copper clad laminate for evaluation was produced.

(実施例2)
ガラスクロスに1037タイプを使用し、絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を78%とした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Example 2)
By using the same method as in Example 1 except that 1037 type glass cloth was used and the resin content of prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with insulating resin composition A was 78%. A copper clad laminate for evaluation was produced.

(実施例3)
ガラスクロスに1027タイプを使用し、絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を85%とした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Example 3)
By using the same method as in Example 1 except that 1027 type glass cloth was used and the resin content of prepreg TCP-300 impregnated with insulating resin composition A (trade name, manufactured by Hitachi Chemical Co., Ltd.) was 85%. A copper clad laminate for evaluation was produced.

(実施例4)
ガラスクロスに1015タイプを使用し、絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を93%とした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
Example 4
By using the same method as in Example 1 except that 1015 type glass cloth was used and the resin content of prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with insulating resin composition A was 93%. A copper clad laminate for evaluation was produced.

(実施例5)
厚みが1.0mm、ガラスエポキシ銅張積層板MCL−BE−67G(J)(日立化成工業株式会社製商品名)の銅箔をエッチングにて回路形成を行い、このコア基板と銅箔の間に1078タイプのガラスクロスを使用し樹脂分65%の絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)を挟みこむようにして真空下、圧力3.0MPaで185℃、70分加熱加圧して積層し、評価用銅張積層板を作製した。
(Example 5)
A circuit is formed by etching a copper foil of a glass epoxy copper clad laminate MCL-BE-67G (J) (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 1.0 mm, and between this core substrate and the copper foil A prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with a 1078 type glass cloth and impregnated with an insulating resin composition A having a resin content of 65% is sandwiched between 185 ° C. and a pressure of 3.0 MPa under vacuum. The laminate was heated and pressed for 70 minutes to produce a copper clad laminate for evaluation.

(実施例6)
ガラスクロスに1037タイプを使用し、絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を78%とした以外は、実施例4と同様の方法により評価用銅張積層板を作製した。
(Example 6)
By using the same method as in Example 4, except that 1037 type glass cloth was used and the resin content of prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with insulating resin composition A was 78%. A copper clad laminate for evaluation was produced.

(実施例7)
ガラスクロスに1027タイプを使用し、絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を85%とした以外は、実施例4と同様の方法により評価用銅張積層板を作製した。
(Example 7)
By using the same method as in Example 4 except that 1027 type glass cloth was used and the resin content of prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with insulating resin composition A was 85%. A copper clad laminate for evaluation was produced.

(実施例8)
ガラスクロスに1078タイプを使用し、弾性率が21〜25GPaであるエポキシ樹脂系の絶縁樹脂組成物Bを含浸したプリプレグGEA−67(日立化成工業株式会社製商品名)の樹脂分を65%とした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Example 8)
Using a 1078 type glass cloth, the resin content of prepreg GEA-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with an epoxy resin-based insulating resin composition B having an elastic modulus of 21 to 25 GPa is 65%. A copper clad laminate for evaluation was produced in the same manner as in Example 1 except that.

(比較例1)
コア材となるガラスエポキシ銅張積層板にMCL−E−679F(日立化成工業株式会社製商品名)、プリプレグにGEA−679F(日立化成工業株式会社製商品名)を用いて、実施例1と同様の方法で真空下、圧力3.0MPaで185℃、150分加熱加圧して積層し、評価用銅張積層板を作製した。
(Comparative Example 1)
Example 1 using MCL-E-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) as the glass epoxy copper clad laminate as the core material and GEA-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) as the prepreg A copper clad laminate for evaluation was produced by heating and pressing at 185 ° C. for 150 minutes at a pressure of 3.0 MPa under vacuum in the same manner.

(比較例2)
ガラスクロスに1080タイプを使用し、絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を62%とした以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 2)
By the same method as in Example 1 except that 1080 type glass cloth was used and the resin content of prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with insulating resin composition A was 62%. A copper clad laminate for evaluation was produced.

(比較例3)
絶縁樹脂組成物Aのワニスを、銅箔に乾燥後樹脂膜厚が60μmとなるように塗布・乾燥(150℃、10分)して得た銅箔付き絶縁樹脂組成物フィルムTCP−300(日立化成工業株式会社製商品名)を絶縁層に用いた以外は、実施例1と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 3)
Insulating resin composition film TCP-300 (Hitachi with copper foil) obtained by applying and drying the varnish of insulating resin composition A onto a copper foil so that the resin film thickness becomes 60 μm and drying (150 ° C., 10 minutes). A copper clad laminate for evaluation was produced in the same manner as in Example 1 except that Kasei Kogyo Co., Ltd. trade name) was used for the insulating layer.

(比較例4)
コア板として厚み1.0mmのMCL−E−67(日立化成工業株式会社製商品名)のガラスエポキシ銅張り積層板を用い、絶縁樹脂組成物Aを樹脂分65%で含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)を用い、実施例1と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 4)
A prepreg TCP-300 impregnated with an insulating resin composition A at a resin content of 65% using a glass epoxy copper-clad laminate of MCL-E-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 1.0 mm as a core plate. A copper clad laminate for evaluation was prepared in the same manner as in Example 1 using (trade name, manufactured by Hitachi Chemical Co., Ltd.).

(比較例5)
絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を78%とした以外は、比較例4と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 5)
A copper clad laminate for evaluation was produced in the same manner as in Comparative Example 4 except that the resin content of prepreg TCP-300 impregnated with insulating resin composition A (trade name, manufactured by Hitachi Chemical Co., Ltd.) was 78%. .

(比較例6)
絶縁樹脂組成物Aを含浸したプリプレグTCP−300(日立化成工業株式会社製商品名)の樹脂分を85%とした以外は、比較例4と同様の方法により評価用銅張積層板を作製した。
(Comparative Example 6)
A copper clad laminate for evaluation was prepared in the same manner as in Comparative Example 4 except that the resin content of the prepreg TCP-300 (trade name, manufactured by Hitachi Chemical Co., Ltd.) impregnated with the insulating resin composition A was 85%. .

(比較例7)
コア材となるガラスエポキシ銅張積層板にMCL−E−67(日立化成工業株式会社製商品名)、プリプレグにGEA−67(日立化成工業株式会社製商品名)を用いて、実施例1と同様の方法で真空下、圧力2.5MPaで180℃、60分加熱加圧して積層し、評価用銅張積層板を作製した。
(Comparative Example 7)
Example 1 using MCL-E-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) as the glass epoxy copper clad laminate as the core material, and GEA-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) as the prepreg A copper clad laminate for evaluation was prepared by heating and pressing at a pressure of 2.5 MPa at 180 ° C. for 60 minutes in a similar manner under vacuum.

<銅張積層板の評価>
(貫通穴(TH)及び非貫通穴(IVH)の接続信頼性)
各評価用銅張積層板に0.3mmの貫通穴をドリルによりあけ、非貫通穴をCOレーザーによりあけ、穴内及び銅張積層板表面に厚み約20μmの銅めっきを施した後、不要部分の表面銅をエッチングして回路形成を行った。その後ソルダーレジスト形成、仕上げ処理としてフラックスを塗布し、サンプルを完成させた。
ついで、上記で得た各サンプルを温度サイクル試験機に投入し、−45℃、30分と125℃、30分の繰返しを1サイクルとして、500サイクル毎に接続抵抗値を測定し、4000サイクルまで接続抵抗値が試験機投入前の初期抵抗値に対し±10%を越えた場合には、断面観察によりクラックの有無を確認した。表1および2には、接続抵抗値が初期抵抗値に対し±10%を越えるまでの合格サイクル数を示す。判定基準は3000サイクル以上で良、3000サイクル未満で不良とした。
<Evaluation of copper clad laminate>
(Connection reliability of through hole (TH) and non-through hole (IVH))
After drilling 0.3mm through holes in each evaluation copper-clad laminate, drilling non-through holes with CO 2 laser, and applying copper plating with a thickness of about 20μm on the inside and on the surface of the copper-clad laminate, unnecessary parts The surface copper was etched to form a circuit. Thereafter, flux was applied as a solder resist formation and finishing treatment to complete the sample.
Next, each sample obtained above is put into a temperature cycle tester, and the connection resistance value is measured every 500 cycles with -45 ° C, 30 minutes and 125 ° C, 30 minutes repeated as one cycle, and up to 4000 cycles. When the connection resistance value exceeded ± 10% with respect to the initial resistance value before the introduction of the testing machine, the presence or absence of cracks was confirmed by cross-sectional observation. Tables 1 and 2 show the number of acceptable cycles until the connection resistance value exceeds ± 10% with respect to the initial resistance value. Judgment criteria were good at 3000 cycles or more, and bad at less than 3000 cycles.

(表層回路(パターン)断線)
各評価用銅張積層板に厚み約20μmの銅めっきを施し、エッチングにて幅100μm、75μm、50μmの回路を作製した。その後ソルダーレジスト形成、仕上げ処理としてフラックスを塗布し、サンプルを完成させた。次に、上記で得た各サンプルを温度サイクル試験機に投入し、−45℃、30分と125℃、30分の繰返しを1サイクルとして、500サイクル毎にパターンの接続抵抗値を測定し、4000サイクルまでに接続抵抗値が試験機投入前の初期抵抗値に対し±10%を越えた場合には、表面観察により回路断線の有無を確認した。表1および2には、接続抵抗値が初期抵抗値に対し±10%を越えるまでの合格サイクル数を示す。判定基準は3000サイクル以上で良、3000サイクル未満で不良とした。
(Surface layer circuit (pattern) disconnection)
Each evaluation copper-clad laminate was subjected to copper plating having a thickness of about 20 μm, and a circuit having widths of 100 μm, 75 μm, and 50 μm was produced by etching. Thereafter, flux was applied as a solder resist formation and finishing treatment to complete the sample. Next, each sample obtained above was put into a temperature cycle testing machine, and the connection resistance value of the pattern was measured every 500 cycles, with -45 ° C, 30 minutes and 125 ° C, 30 minutes repeated as one cycle, When the connection resistance value exceeded ± 10% with respect to the initial resistance value before the introduction of the testing machine by 4000 cycles, the presence or absence of circuit disconnection was confirmed by surface observation. Tables 1 and 2 show the number of acceptable cycles until the connection resistance value exceeds ± 10% with respect to the initial resistance value. Judgment criteria were good at 3000 cycles or more, and bad at less than 3000 cycles.

(はんだクラック)
各評価用銅張積層板をエッチングにて回路形成を行い、チップ搭載用の電極を形成した。その後ソルダーレジスト形成、仕上げ処理としてフラックスを塗布した。その後、この電極上にはんだペーストを塗布し、1005、1608、2125、3216の各サイズのチップを電極上に搭載し、リフロー炉に投入して上記チップを銅張積層板にはんだ付けしサンプルを完成させた。その後、チップが搭載されたサンプルを温度サイクル試験機に投入し、−45℃、30分と125℃、30分の繰返しを1サイクルとして、500サイクル毎にサンプルを取り出して、断面観察によりはんだクラックの有無を確認した(最大4000サイクル)。はんだクラックの発生判定基準は、クラックの大きさが部品とはんだの接続長の50%以上のものを不合格としている。表1および2にはんだクラックが発生するまでの合格サイクル数を示す。判定基準は2500サイクル以上で良、2500サイクル未満で不良とした。
(Solder crack)
Each evaluation copper-clad laminate was subjected to circuit formation by etching to form a chip mounting electrode. Thereafter, flux was applied as solder resist formation and finishing treatment. After that, a solder paste is applied onto the electrode, and chips of sizes 1005, 1608, 2125, and 3216 are mounted on the electrode, put into a reflow furnace, and the chip is soldered to a copper-clad laminate to prepare a sample. Completed. After that, the sample on which the chip is mounted is put into a temperature cycle testing machine, and the sample is taken out every 500 cycles with -45 ° C, 30 minutes and 125 ° C, 30 minutes repeated as one cycle, and solder cracks are observed by cross-sectional observation. Was confirmed (maximum 4000 cycles). The criterion for determining the occurrence of solder cracks is that the crack size is 50% or more of the connection length between the component and the solder. Tables 1 and 2 show the number of acceptable cycles until a solder crack occurs. Judgment criteria were good at 2500 cycles or more, and bad at less than 2500 cycles.

Figure 2009032926
Figure 2009032926

Figure 2009032926
Figure 2009032926

表1と表2を比較するとおり、本発明による実施例1から8においては、スルーホールクラックやはんだクラックだけではなく、表層回路の断線等の発生が少ない、接続信頼性に優れたプリント配線板およびそのプリント配線板の製造が可能となる。特に、絶縁層の弾性率を10GPa以下にした実施例1から7において、耐はんだクラック性がより向上する。   As shown in Table 1 and Table 2, in Examples 1 to 8 according to the present invention, not only through-hole cracks and solder cracks, but also printed circuit boards with excellent connection reliability that are less likely to cause surface layer circuit breakage and the like. And the manufacture of the printed wiring board is attained. In particular, in Examples 1 to 7 in which the elastic modulus of the insulating layer is 10 GPa or less, the solder crack resistance is further improved.

Claims (3)

板厚方向の熱膨張係数が、ガラス転移温度以下で45ppm/℃未満のコア基板と、このコア基板の片面又は両面に配置されたガラスクロスを有する絶縁層とを備え、上記絶縁層の弾性率が、上記コア基板の弾性率よりも小さい複合基板にあって、上記絶縁層中の樹脂分の割合が、65%から93%であることを特徴とする複合基板。   A core substrate having a coefficient of thermal expansion in the plate thickness direction of less than 45 ppm / ° C. below the glass transition temperature, and an insulating layer having a glass cloth disposed on one or both surfaces of the core substrate, and the elastic modulus of the insulating layer However, the composite substrate is smaller than the elastic modulus of the core substrate, and the ratio of the resin component in the insulating layer is 65% to 93%. 上記絶縁層の弾性率が、10GPa以下であることを特徴とする請求項1の複合基板。   The composite substrate according to claim 1, wherein the elastic modulus of the insulating layer is 10 GPa or less. 請求項1、または2の複合基板を使用した回路を有するプリント配線板。   A printed wiring board having a circuit using the composite substrate according to claim 1.
JP2007195792A 2007-07-27 2007-07-27 Composite board and printed wiring board Active JP5077661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195792A JP5077661B2 (en) 2007-07-27 2007-07-27 Composite board and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195792A JP5077661B2 (en) 2007-07-27 2007-07-27 Composite board and printed wiring board

Publications (2)

Publication Number Publication Date
JP2009032926A true JP2009032926A (en) 2009-02-12
JP5077661B2 JP5077661B2 (en) 2012-11-21

Family

ID=40403122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195792A Active JP5077661B2 (en) 2007-07-27 2007-07-27 Composite board and printed wiring board

Country Status (1)

Country Link
JP (1) JP5077661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155083A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Onboard printed circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204171A (en) * 2002-01-04 2003-07-18 Karentekku:Kk Build-up multi-layer board
JP2006315391A (en) * 2005-04-12 2006-11-24 Hitachi Chem Co Ltd Laminated plate and printed circuit board using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204171A (en) * 2002-01-04 2003-07-18 Karentekku:Kk Build-up multi-layer board
JP2006315391A (en) * 2005-04-12 2006-11-24 Hitachi Chem Co Ltd Laminated plate and printed circuit board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155083A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Onboard printed circuit board

Also Published As

Publication number Publication date
JP5077661B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JPWO2004064467A1 (en) Multilayer wiring board, manufacturing method thereof, and manufacturing method of fiber reinforced resin substrate
JPWO2008044552A1 (en) Resin composition, insulating sheet with substrate, prepreg, multilayer printed wiring board, and semiconductor device
KR20090103542A (en) Insulating sheet and manufacturing method thereof and printed circuit board with insulating sheet and manufacturing method thereof
JP4924871B2 (en) Composite board and wiring board
JP2006152261A (en) Composite, prepreg, metal foil-clad laminated plate, and multilayer printed wiring board and manufacturing method thereof
KR20120006012A (en) Printed circuit board, manufacturing method therefor, multilayer printed circuit board, and semiconductor package
JP5056787B2 (en) Laminated board, multilayer printed wiring board, and semiconductor device
KR100957220B1 (en) Method for manufacturing insulating sheet and method for manufacturing laminated plate clad with metal foil and printed circuit board thereof using the same
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP2006315391A (en) Laminated plate and printed circuit board using the same
KR20190015229A (en) Method for manufacturing a multilayer wiring board
JP5077661B2 (en) Composite board and printed wiring board
JP2011126963A (en) Resin sheet, printed-wiring board and semiconductor device
JP4804671B2 (en) Prepreg
JP2006306977A (en) Composite, prepreg, metal foil-clad laminated board, printed-wiring board, multilayer printed-wiring board and manufacturing method thereof
JPH05261861A (en) Laminated sheet
JP2006348225A (en) Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
JP7430494B2 (en) Connection hole forming method for multilayer wiring board and method for manufacturing multilayer wiring board using the same
JP2004179202A (en) Multilayered printed board and insulating sheet with metal foil for manufacturing the same
JP2000277917A (en) Multilayer printed wiring board and manufacture of the same
JP2003086941A (en) Printed wiring board
JP2003347695A (en) Method of manufacturing printed wiring board
KR20100028209A (en) Printed circuit board
KR101101565B1 (en) Manufacturing method of metal PCB improved in heat conduction and adhesion
JPH11214844A (en) Production of multilayer board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5077661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250