JP5344022B2 - Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device - Google Patents

Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device Download PDF

Info

Publication number
JP5344022B2
JP5344022B2 JP2011250226A JP2011250226A JP5344022B2 JP 5344022 B2 JP5344022 B2 JP 5344022B2 JP 2011250226 A JP2011250226 A JP 2011250226A JP 2011250226 A JP2011250226 A JP 2011250226A JP 5344022 B2 JP5344022 B2 JP 5344022B2
Authority
JP
Japan
Prior art keywords
resin composition
epoxy resin
printed wiring
wiring board
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011250226A
Other languages
Japanese (ja)
Other versions
JP2013104029A (en
Inventor
晃彦 飛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2011250226A priority Critical patent/JP5344022B2/en
Publication of JP2013104029A publication Critical patent/JP2013104029A/en
Application granted granted Critical
Publication of JP5344022B2 publication Critical patent/JP5344022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition having a high glass transition temperature and a low thermal expansion coefficient, suppressing the warpage of a printed wiring board overall when used for the printed wiring board, corresponding to the further thinning of the printed wiring board, and excelling in the reliability such as insulation reliability when applied to the thin printed wiring board, and to provide a prepreg, a laminated plate, a resin sheet, the printed wiring board, and a semiconductor device using the same. <P>SOLUTION: The epoxy resin composition includes a specific epoxy compound described in the specification, a bismaleimide compound, and an inorganic filler. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、電子部品材料用途に好適に用いられるエポキシ樹脂組成物、ならびにこれを用いたプリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置に関する。   The present invention relates to an epoxy resin composition suitably used for electronic component material applications, and a prepreg, a laminate, a resin sheet, a printed wiring board, and a semiconductor device using the same.

近年、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、さらには高密度実装化が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して小型化・薄型化、かつ高密度化が進んでいる。   In recent years, with the demand for higher functionality of electronic devices, etc., the integration of electronic components and the mounting of high-density packaging have been progressing. In addition to this, miniaturization, thinning, and high density are progressing.

一般に、プリント配線板を薄型化すると、実装信頼性の低下、プリント配線板の反りが大きくなるという問題が生じるため、用いられる樹脂組成物の熱膨張率を下げ、ガラス転移温度を上昇させる方法が様々検討されている。   Generally, when the printed wiring board is made thinner, there is a problem that the mounting reliability is lowered and the warpage of the printed wiring board is increased. Therefore, there is a method of lowering the thermal expansion coefficient of the resin composition used and raising the glass transition temperature. Various studies have been made.

特許文献1に、低熱膨張率と高ガラス転移温度を兼ね備えた樹脂組成物として、ナフタレン環を含有するエポキシ樹脂を用いることが記載されている。特許文献1によると、このようなエポキシ樹脂を用いることで、吸湿時の耐熱性が高く、熱膨張率が小さいプリプレグ、積層板及びプリント配線板が提供される。   Patent Document 1 describes that an epoxy resin containing a naphthalene ring is used as a resin composition having a low coefficient of thermal expansion and a high glass transition temperature. According to Patent Document 1, by using such an epoxy resin, a prepreg, a laminated board, and a printed wiring board having high heat resistance during moisture absorption and a low coefficient of thermal expansion are provided.

特開2001−302761号公報JP 2001-302761 A

特許文献1に記載の樹脂組成物は、分子内にナフタレン環を有するため、ナフタレン環同士の分子間相互作用により、硬化後の熱膨張係数を小さくすることができる。しかし、特許文献1に記載のエポキシ樹脂は、1つのナフタレン環から2つ以上のエポキシ基が結合しているため、エポキシ基同士の距離が短く、硬化後の架橋密度が高くなる。このため樹脂組成物の硬化収縮が大きくなり、結果、硬化後の歪が大きくなる。したがって、樹脂組成物の硬化物自体の熱膨張率が低くても、プリント配線板の反りを抑えることができない。本発明は、このような技術状態に鑑み、プリント配線板の反りを抑え、プリント配線板の更なる薄型化に対応し得るエポキシ樹脂組成物を提供することを目的とする。   Since the resin composition described in Patent Document 1 has a naphthalene ring in the molecule, the thermal expansion coefficient after curing can be reduced by the intermolecular interaction between the naphthalene rings. However, since the epoxy resin of patent document 1 has two or more epoxy groups couple | bonded from one naphthalene ring, the distance of epoxy groups is short and the crosslinking density after hardening becomes high. For this reason, the curing shrinkage of the resin composition increases, and as a result, the strain after curing increases. Therefore, even if the coefficient of thermal expansion of the cured product of the resin composition itself is low, the warp of the printed wiring board cannot be suppressed. In view of such a technical state, an object of the present invention is to provide an epoxy resin composition that can suppress warping of a printed wiring board and cope with further thinning of the printed wiring board.

上記目的は、下記[1]〜[1]項に記載の本発明により達成される。
[1] 下記一般式(1)で表されるナフチレンエーテル型エポキシ化合物と、ビスマレイミド化合物と、無機充填剤とを含んでなるエポキシ樹脂組成物であって、
熱硬化後のエポキシ樹脂組成物の25℃におけるヤング率が1〜10GPaの範囲内にあるエポキシ樹脂組成物。
The object is achieved by the present invention described in the following items [1] to [1 4 ].
[1] An epoxy resin composition comprising a naphthylene ether type epoxy compound represented by the following general formula (1), a bismaleimide compound, and an inorganic filler ,
An epoxy resin composition having a Young's modulus at 25 ° C. of 1 to 10 GPa of the epoxy resin composition after thermosetting.


(式中、nは1〜20の整数である。Rはそれぞれ独立に水素原子、ベンジル基、アルキ
ル基、下式(2)である。)

(In the formula, n is an integer of 1 to 20. Each R is independently a hydrogen atom, a benzyl group, an alkyl group, or the following formula (2).)


(式中、Arはそれぞれ独立的にフェニレン基、ナフチレン基であり、mは1又は2の整数である。)

(In the formula, Ar is each independently a phenylene group or a naphthylene group, and m is an integer of 1 or 2.)

[2] 熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)が160℃以上213℃以下である第[1]項に記載のエポキシ樹脂組成物。
[3] 熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)未満における線膨張係数が40ppm/℃未満である第[1]項又は第[2]項に記載のエポキシ樹脂組成物
[4] 上記無機充填剤が平均粒子径10nm〜150nmのシリカナノ粒子を含む第[1]項〜第[]項のいずれか1項に記載のエポキシ樹脂組成物。
] 上記無機充填剤が平均粒子径1μm〜10μmのシリコーンゴム微粒子を含む第[1]項〜第[]項のいずれか1項に記載のエポキシ樹脂組成物。
[6] 上記エポキシ樹脂組成物中の上記ビスマレイミド化合物の含有量は、エポキシ樹脂組成物全体から上記無機充填剤を除いた組成物中の35%〜55質量%である第[1]項〜第[5]項のいずれか1項に記載のエポキシ樹脂組成物。
[7] 上記エポキシ樹脂組成物中の上記ナフチレンエーテル型エポキシ化合物の含有量は、エポキシ樹脂組成物全体から上記無機充填剤を除いた組成物に対して、30〜55質量%の範囲内である第[1]項〜第[6]項のいずれか1項に記載のエポキシ樹脂組成物。
[8] 上記無機充填剤の含有量は、溶剤を除くエポキシ樹脂組成物の総量に対して30〜75質量%の範囲内である第[1]項〜第[7]項のいずれか1項に記載のエポキシ樹脂組成物。
] 第[1]項〜第[]項のいずれか1項に記載のエポキシ樹脂組成物を基材に含浸させてなるプリプレグ。
10] 第[]項に記載のプリプレグの少なくとも片面上に金属層を配置してなる積層板。
11] 第[]項に記載のプリプレグを2枚以上積層したプリプレグ積層体の少なくとも片面上に金属層を配置してなる積層板。
[1] 第[1]項〜第[]項のいずれか1項に記載のエポキシ樹脂組成物を支持フィルム又は金属箔上に配置してなる樹脂シート。
[1] 第[]項に記載のプリプレグ、第[10]項もしくは第[11]項に記載の積層板、又は第[1]項に記載の樹脂シートから形成されたプリント配線板。
[1] 第[1]項に記載のプリント配線板に半導体素子を搭載してなる半導体装置。
[2] The epoxy resin composition according to item [1], wherein the epoxy resin composition after thermosetting has a glass transition temperature (Tg) of 160 ° C. or higher and 213 ° C. or lower .
[3] The linear expansion coefficient of less than the glass transition temperature (Tg) of the epoxy resin composition after heat curing is less than 40 ppm / ° C. [1] section or the [2] The epoxy resin composition according to item.
[4 ] The epoxy resin composition according to any one of [1] to [ 3 ], wherein the inorganic filler contains silica nanoparticles having an average particle diameter of 10 nm to 150 nm.
[ 5 ] The epoxy resin composition according to any one of [1] to [ 4 ], wherein the inorganic filler contains silicone rubber fine particles having an average particle diameter of 1 μm to 10 μm.
[6] The content of the bismaleimide compound in the epoxy resin composition is 35% to 55% by mass in the composition obtained by removing the inorganic filler from the entire epoxy resin composition. The epoxy resin composition according to any one of items [5].
[7] The content of the naphthylene ether type epoxy compound in the epoxy resin composition is within a range of 30 to 55 mass% with respect to the composition excluding the inorganic filler from the entire epoxy resin composition. The epoxy resin composition according to any one of [1] to [6].
[8] The content of the inorganic filler is any one of items [1] to [7], which is within a range of 30 to 75% by mass with respect to the total amount of the epoxy resin composition excluding the solvent. The epoxy resin composition described in 1.
[ 9 ] A prepreg obtained by impregnating a base material with the epoxy resin composition according to any one of items [1] to [ 8 ].
[ 10 ] A laminate obtained by disposing a metal layer on at least one surface of the prepreg according to the item [ 9 ].
[ 11 ] A laminate comprising a metal layer disposed on at least one surface of a prepreg laminate in which two or more prepregs according to the item [ 9 ] are laminated.
[1 2 ] A resin sheet obtained by disposing the epoxy resin composition according to any one of items [1] to [ 8 ] on a support film or a metal foil.
[1 3 ] A printed wiring board formed from the prepreg according to the item [ 9 ], the laminate according to the item [ 10 ] or [ 11 ], or the resin sheet according to the item [1 2 ]. .
[1 4 ] A semiconductor device in which a semiconductor element is mounted on the printed wiring board according to the item [1 3 ].

本発明によるエポキシ樹脂組成物は、ガラス転移温度が高く、かつ、熱膨張率が低く、プリント配線板に用いた場合に、総合的にプリント配線板の反りを抑えることができる。   The epoxy resin composition according to the present invention has a high glass transition temperature and a low coefficient of thermal expansion, and when used in a printed wiring board, it can comprehensively suppress warping of the printed wiring board.

(エポキシ樹脂組成物)
はじめに、本発明によるエポキシ樹脂組成物について説明する。本発明によるエポキシ樹脂組成物は、下記一般式(1)で表されるナフチレンエーテル型エポキシ化合物と、ビスマレイミド化合物と、無機充填剤とを含んでなる。
(Epoxy resin composition)
First, the epoxy resin composition according to the present invention will be described. The epoxy resin composition according to the present invention comprises a naphthylene ether type epoxy compound represented by the following general formula (1), a bismaleimide compound, and an inorganic filler.

本発明によるエポキシ樹脂組成物は、下記一般式(1)で表されるナフチレンエーテル型エポキシ化合物を含むことができる。   The epoxy resin composition by this invention can contain the naphthylene ether type epoxy compound represented by following General formula (1).


(式中、nは1〜20の整数であり、1〜10の整数がより好ましい。Rはそれぞれ独立に水素原子、ベンジル基、アルキル基、下式(2)である。)

(In the formula, n is an integer of 1 to 20, and more preferably an integer of 1 to 10. R is independently a hydrogen atom, a benzyl group, an alkyl group, or the following formula (2).)


(式中、Arはそれぞれ独立的にフェニレン基、ナフチレン基であり、mは1又は2の整数である。)

(In the formula, Ar is each independently a phenylene group or a naphthylene group, and m is an integer of 1 or 2.)

一般式(1)で表されるナフチレンエーテル型エポキシ化合物は、分子内にナフタレン環を有するため、ナフタレン環同士の分子間相互作用により、分子運動が抑えられるため、これを用いたエポキシ樹脂組成物の硬化後の熱膨張率が小さくなる。また、一般式(1)で表されるエポキシ化合物は、ナフタレン環1つにつき、エポキシ基が1つだけ結合しているため、エポキシ基同士の距離が長く、これを用いたエポキシ樹脂組成物の硬化後の架橋密度が極度に高くならない。このため、エポキシ樹脂組成物の硬化収縮が大きくならず、結果、硬化後の歪を抑えることができる。また、一般式(1)で表されるナフチレンエーテル型エポキシ化合物は、ナフタレン構造同士が酸素原子でつながれているため、適度な柔軟性を有し、これを用いたエポキシ樹脂組成物の成形時の歪を抑えることができるため、硬化物の反りが低減する。   Since the naphthylene ether type epoxy compound represented by the general formula (1) has a naphthalene ring in the molecule, the molecular motion is suppressed by the intermolecular interaction between the naphthalene rings. The coefficient of thermal expansion after curing of the product is reduced. Moreover, since the epoxy compound represented by General formula (1) has only one epoxy group couple | bonded with respect to one naphthalene ring, the distance of epoxy groups is long, and the epoxy resin composition using this is long. The crosslinking density after curing does not become extremely high. For this reason, the curing shrinkage of the epoxy resin composition does not increase, and as a result, distortion after curing can be suppressed. Further, the naphthylene ether type epoxy compound represented by the general formula (1) has appropriate flexibility because the naphthalene structures are connected to each other by oxygen atoms, and at the time of molding an epoxy resin composition using the naphthylene ether type epoxy compound. Warping of the cured product is reduced.

一般式(1)で表されるナフチレンエーテル型エポキシ化合物は、例えば、特開2007−231083に記載の方法で合成することができる。   The naphthylene ether type epoxy compound represented by the general formula (1) can be synthesized by, for example, a method described in JP-A-2007-231083.

一般式(1)で表されるナフチレンエーテル型エポキシ化合物は、一般式(3)で表されるものが例としてあげられる。   Examples of the naphthylene ether type epoxy compound represented by the general formula (1) include those represented by the general formula (3).


(式中、nは1〜20の整数であり、1〜10の整数がより好ましい。Rはそれぞれ独立に水素原子もしくは下式(4)である。)

(In the formula, n is an integer of 1 to 20, and more preferably an integer of 1 to 10. Each R is independently a hydrogen atom or the following formula (4).)


(式中、mは1又は2の整数である。)

(In the formula, m is an integer of 1 or 2.)

一般式(3)で表されるナフチレンエーテル型エポキシ化合物は、例えば下式(5)〜(8)で表されるものが例としてあげられる。



Examples of the naphthylene ether type epoxy compound represented by the general formula (3) include those represented by the following formulas (5) to (8).



本発明においては、一般式(1)で表されるナフチレンエーテル型エポキシ化合物の混合による所期の効果を損なわない範囲で、その他のエポキシ化合物を併用することもできる。併用できるエポキシ化合物としては、例えば、ノボラック型エポキシ化合物、フェニレン骨格を有するフェノールアラルキル型エポキシ化合物、ビフェニレン骨格を有するフェノールアラルキル型エポキシ化合物、ナフトール型エポキシ化合物、アントラセン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物、トリアジン核含有エポキシ化合物、ジシクロペンタジエン変性フェノール型エポキシ化合物等が挙げられるがこの限りではない。これらのエポキシ化合物を併用する場合は、エポキシ樹脂組成物の熱膨張係数が大きくならないように、併用するその他のエポキシ化合物をエポキシ化合物総量に対して30質量%以下に抑えることが好ましい。   In the present invention, other epoxy compounds may be used in combination as long as the desired effect of mixing the naphthylene ether type epoxy compound represented by the general formula (1) is not impaired. Examples of the epoxy compound that can be used in combination include a novolak type epoxy compound, a phenol aralkyl type epoxy compound having a phenylene skeleton, a phenol aralkyl type epoxy compound having a biphenylene skeleton, a naphthol type epoxy compound, an anthracene type epoxy compound, and an alkyl-modified triphenolmethane type. Examples thereof include, but are not limited to, epoxy compounds, triazine nucleus-containing epoxy compounds, dicyclopentadiene-modified phenol type epoxy compounds, and the like. When using these epoxy compounds together, it is preferable to suppress other epoxy compounds used together to 30 mass% or less with respect to the total amount of epoxy compounds so that the thermal expansion coefficient of the epoxy resin composition does not increase.

上記一般式(1)で表されるナフチレンエーテル型エポキシ化合物の総含有量(上記その他のエポキシ化合物を含む場合にはそれらも含む総含有量)は、特に限定されないが、エポキシ樹脂組成物全体から無機充填剤を除いた組成物に対して、好ましくは25〜60質量%、より好ましくは30〜55質量%の範囲内である。エポキシ化合物の総含有量が上記下限値未満であると、エポキシ樹脂組成物の硬化後の熱膨張率(特に、線膨張係数)の低減が不十分となる場合がある。反対にエポキシ化合物の総含有量が上記上限値を超えると、エポキシ樹脂組成物の硬化後の耐熱性が低下する場合がある。   Although the total content of the naphthylene ether type epoxy compound represented by the general formula (1) (the total content including the above-mentioned other epoxy compounds when including the other epoxy compounds) is not particularly limited, the entire epoxy resin composition Preferably it is 25-60 mass% with respect to the composition remove | excluding the inorganic filler from the range of 30-55 mass% more preferably. When the total content of the epoxy compound is less than the above lower limit, the thermal expansion coefficient (particularly, the linear expansion coefficient) after curing of the epoxy resin composition may be insufficiently reduced. On the contrary, when the total content of the epoxy compound exceeds the above upper limit, the heat resistance after curing of the epoxy resin composition may decrease.

本発明によるエポキシ樹脂組成物は、ビスマレイミド化合物を含むことができる。本発明によるエポキシ樹脂組成物に含有されるビスマレイミド化合物は、分子内に少なくとも2つのマレイミド基を有する化合物である。ビスマレイミド化合物のマレイミド基は、5員環の平面構造を有し、マレイミド基の二重結合が分子間で相互作用しやすく極性が高いため、マレイミド基、ベンゼン環、その他の平面構造を有する化合物等と強い分子間相互作用を示し、分子運動を抑制することができる。そのため、これを用いた本発明によるエポキシ樹脂組成物は、硬化後の熱膨張率を下げることが可能となり、さらに、耐熱性に優れることとなる。   The epoxy resin composition according to the present invention may contain a bismaleimide compound. The bismaleimide compound contained in the epoxy resin composition according to the present invention is a compound having at least two maleimide groups in the molecule. The maleimide group of the bismaleimide compound has a five-membered planar structure, and since the double bond of the maleimide group easily interacts between molecules and has high polarity, the compound has a maleimide group, a benzene ring, and other planar structures. It shows strong intermolecular interaction and can suppress molecular motion. Therefore, the epoxy resin composition according to the present invention using the same can lower the coefficient of thermal expansion after curing, and further has excellent heat resistance.

本発明によるエポキシ樹脂組成物に含有されるビスマレイミド化合物は、特に限定されることはないが、例えば、4,4’−ジフェニルメタンビスマレイミド、m−フェニレンビスマレイミド、p−フェニレンビスマレイミド、2,2’−[4−(4−マレイミドフェノキシ)フェニル]プロパン、ビス−(3−エチル−5−メチル−4−マレイミドフェニル)メタン、4−メチル−1,3−フェニレンビスマレイミド、N,N’−エチレンジマレイミド、N,N’−ヘキサメチレンジマレイミド等が挙げられ、ポリマレイミドとしては、ポリフェニルメタンマレイミド等が挙げられる。   The bismaleimide compound contained in the epoxy resin composition according to the present invention is not particularly limited. For example, 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, 2, 2 ′-[4- (4-maleimidophenoxy) phenyl] propane, bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane, 4-methyl-1,3-phenylenebismaleimide, N, N ′ -Ethylene dimaleimide, N, N'-hexamethylene dimaleimide etc. are mentioned, As polymaleimide, polyphenyl methane maleimide etc. are mentioned.

本発明によるエポキシ樹脂組成物に含有されるビスマレイミド化合物は、次の一般式(9)で表される化合物であることが好ましい。   The bismaleimide compound contained in the epoxy resin composition according to the present invention is preferably a compound represented by the following general formula (9).


(その式中、R〜Rは水素又は炭素数1〜4の置換もしくは無置換の炭化水素基であり、Rは−CH−、−O−、置換もしくは無置換の芳香族炭化水素基、又は下式(10)で表される構造である。)

(In the formula, R 1 to R 4 are hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 4 carbon atoms, and R 5 is —CH 2 —, —O—, substituted or unsubstituted aromatic carbonization. (It is a hydrogen group or a structure represented by the following formula (10).)


(その式中、R〜Rは水素又は炭素数1〜4の置換もしくは無置換の炭化水素基である。)

(In the formula, R 6 to R 9 are hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 4 carbon atoms.)

一般式(9)で表される化合物の中でも、R〜Rが水素であるビスマレイミド化合物が、硬化剤との反応性において、反応性が高く好ましい。 Among the compounds represented by the general formula (9), a bismaleimide compound in which R 1 to R 4 are hydrogen is preferable because of its high reactivity with the curing agent.

以下に、本発明によるエポキシ樹脂組成物に含有される好ましいビスマレイミドの具体的例示化合物を示すが、本発明はこれらの化合物に限定されることはない。   Specific examples of preferable bismaleimides contained in the epoxy resin composition according to the present invention are shown below, but the present invention is not limited to these compounds.

低吸水率等を考慮すると、2,2’−ビス−[4−(4−マレイミドフェノキシ)フェニル]プロパン(例示化合物13)、ビス−(3−エチル−5−メチル−4−マレイミドフェニル)メタン(例示化合物12)が好ましい。   Considering low water absorption, etc., 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (Exemplary Compound 13), bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane (Exemplary Compound 12) is preferred.

本発明によるエポキシ樹脂組成物に含有されるビスマレイミド化合物は、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。   1 type may be used for the bismaleimide compound contained in the epoxy resin composition by this invention, and it may use it in combination of 2 or more type.

本発明によるエポキシ樹脂組成物中のビスマレイミド化合物の含有量は、特に限定されないが、エポキシ樹脂組成物全体から無機充填剤を除いた組成物中の30〜60質量%であることが好ましく、35〜55質量%であることがより好ましい。   The content of the bismaleimide compound in the epoxy resin composition according to the present invention is not particularly limited, but is preferably 30 to 60% by mass in the composition excluding the inorganic filler from the entire epoxy resin composition, 35 More preferably, it is -55 mass%.

上記のように、ビスマレイミド化合物を適切に含有させることにより、本発明による熱硬化性樹脂組成物は、効果的に低線膨張係数を発現させることができる。ビスマレイミド化合物の含有量が上記の下限値未満であると線膨張係数が十分に低くならないことがあり、実装信頼性が低下するか、プリント配線板の反りが大きくなる場合がある。そして、上記の上限値を超えると、導体回路と樹脂層との密着性に関するピール強度が低下する場合がある。   As described above, by appropriately containing the bismaleimide compound, the thermosetting resin composition according to the present invention can effectively exhibit a low coefficient of linear expansion. When the content of the bismaleimide compound is less than the above lower limit value, the linear expansion coefficient may not be sufficiently lowered, and the mounting reliability may be lowered or the warpage of the printed wiring board may be increased. And when said upper limit is exceeded, the peel strength regarding the adhesiveness of a conductor circuit and a resin layer may fall.

本発明のエポキシ樹脂組成物は、必要に応じて、フェノール樹脂系硬化剤を含有していてもよい。フェノール樹脂としては、例えば、フェノールノボラック樹脂、o−クレゾールノボラック樹脂、p−クレゾールノボラック樹脂、p−t−ブチルフェノールノボラック樹脂、ヒドロキシナフタレンノボラック樹脂、ビスフェノールAノボラック樹脂、ビスフェノールFノボラック樹脂、テルペン変性ノボラック樹脂、ジシクロペンタジエン変性ノボラック樹脂、及びポリブタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂等が挙げられる。フェノール樹脂系硬化剤の配合量は、上記一般式(1)で表されるナフチレンエーテル型エポキシ化合物の総含有量(上記その他のエポキシ化合物を含む場合にはそれらも含む総含有量)のエポキシ官能価に対する当量比で0.8〜1.2の範囲内とすることが好ましい。   The epoxy resin composition of this invention may contain the phenol resin type hardening | curing agent as needed. Examples of the phenol resin include phenol novolak resin, o-cresol novolak resin, p-cresol novolak resin, pt-butylphenol novolak resin, hydroxynaphthalene novolak resin, bisphenol A novolak resin, bisphenol F novolak resin, and terpene modified novolak resin. , Dicyclopentadiene-modified novolak resin, polybutadiene-modified phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, and the like. The compounding amount of the phenol resin-based curing agent is an epoxy having the total content of the naphthylene ether type epoxy compound represented by the general formula (1) (the total content including the above-mentioned other epoxy compounds). It is preferable that the equivalent ratio with respect to the functionality falls within the range of 0.8 to 1.2.

フェノール樹脂系硬化剤の含有量は、特に限定されないが、エポキシ樹脂組成物全体から無機充填剤を除いた組成物中の0〜25質量%であることが好ましく、特に0〜15質量%であることが好ましい。   The content of the phenol resin-based curing agent is not particularly limited, but is preferably 0 to 25% by mass, particularly 0 to 15% by mass in the composition excluding the inorganic filler from the entire epoxy resin composition. It is preferable.

本発明のエポキシ樹脂組成物は、必要に応じて、芳香族ジアミン系硬化剤を含有していてもよい。芳香族ジアミン系硬化剤は、分子内に2つのアミノ基を有し、かつ芳香族環構造を有する化合物であれば特に限定されない。芳香族ジアミン系硬化剤の例として、m−フェニレンジアミン、p−フェニレンジアミン、o−キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、1,5−ジアミノナフタレン、4,4’−(p−フェニレンジイソプロピリデン)ジアニリン等が挙げられるが、これらに限定はされない。特に低熱膨張率を発現する点からは、4,4’−ジアミノジフェニルスルホン及び3,3’−ジアミノジフェニ
ルスルホンの使用が好ましい。芳香族ジアミン系硬化剤の配合量は、上記一般式(1)で表されるナフチレンエーテル型エポキシ化合物の総含有量(上記その他のエポキシ化合物を含む場合にはそれらも含む総含有量)のエポキシ官能価に対する当量比で0.8〜1.2の範囲内とすることが好ましい。
The epoxy resin composition of this invention may contain the aromatic diamine type hardening | curing agent as needed. The aromatic diamine curing agent is not particularly limited as long as it is a compound having two amino groups in the molecule and having an aromatic ring structure. Examples of aromatic diamine curing agents include m-phenylenediamine, p-phenylenediamine, o-xylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, Examples include 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 1,5-diaminonaphthalene, 4,4 ′-(p-phenylenediisopropylidene) dianiline, but are not limited thereto. . In particular, the use of 4,4′-diaminodiphenyl sulfone and 3,3′-diaminodiphenyl sulfone is preferable from the viewpoint of exhibiting a low coefficient of thermal expansion. The blending amount of the aromatic diamine-based curing agent is the total content of the naphthylene ether type epoxy compound represented by the general formula (1) (when the other epoxy compounds are included, the total content including them). It is preferable that the equivalent ratio with respect to the epoxy functionality is within the range of 0.8 to 1.2.

芳香族ジアミン系硬化剤の含有量は、特に限定されないが、エポキシ樹脂組成物全体から無機充填剤を除いた組成物中の0〜25質量%であることが好ましく、特に0〜15質量%であることが好ましい。   Although content of an aromatic diamine type hardening | curing agent is not specifically limited, It is preferable that it is 0-25 mass% in the composition remove | excluding the inorganic filler from the whole epoxy resin composition, and it is 0-15 mass% especially. Preferably there is.

本発明によるエポキシ樹脂組成物は、無機充填剤を含むことができる。本発明によるエポキシ樹脂組成物に含まれる無機充填剤としては、本発明の所期の目的・作用効果を損なわないものであれば、いかなる材料でも使用することができ、例えば、シリカ、水酸化アルミニウム、水酸化マグネシウム、アルミナ、タルク、マイカ、窒化ホウ素、窒化アルミナ等が挙げられる。無機充填剤の含有量は、溶剤を除くエポキシ樹脂組成物の総量に対して30〜75質量%の範囲内にあることが好ましい。無機充填剤の含有量が上記下限値未満であると、熱膨張率が十分に低くならず、反対に上記上限値を超えると、導体回路に対する密着性が低下する場合がある。     The epoxy resin composition according to the present invention may contain an inorganic filler. As the inorganic filler contained in the epoxy resin composition according to the present invention, any material can be used as long as it does not impair the intended purpose and effect of the present invention. For example, silica, aluminum hydroxide , Magnesium hydroxide, alumina, talc, mica, boron nitride, alumina nitride and the like. It is preferable that content of an inorganic filler exists in the range of 30-75 mass% with respect to the total amount of the epoxy resin composition except a solvent. If the content of the inorganic filler is less than the above lower limit value, the coefficient of thermal expansion is not sufficiently low. On the contrary, if the content exceeds the upper limit value, the adhesion to the conductor circuit may be lowered.

本発明において特に好適に用いられる無機充填剤として、平均粒子径10nm〜150nmのシリカナノ粒子が挙げられる。このようなシリカナノ粒子は、基材のフィラメント間に入り込むことができ、エポキシ樹脂組成物の基材への含浸性が向上する。また、従来の充填剤を用いた場合に比べ、積層板表面に微細な粗面を形成することができるため、従来より微細な配線を形成することができる。そのようなシリカナノ粒子として、例えば、VMC(Vaporized Metal Combustion)法、PVS(Physical Vapor Synthesis)法等の燃焼法、破砕シリカを火炎溶融する溶融法、沈降法、ゲル法等の方法によって製造したものが挙げられる。これらの中でもVMC法が特に好ましい。VMC法とは、酸素含有ガス中で形成させた化学炎中にシリコン粉末を投入し、燃焼させた後、冷却することで、シリカ微粒子を形成させる方法である。VMC法では、投入するシリコン粉末の粒子径、投入量、火炎温度等を制御することにより、得られるシリカ微粒子の粒子径を調整することができる。また、シリカナノ粒子としては、NSS−5N(トクヤマ(株)製)、Sicastar43−00−501(Micromod社製)等の市販品を用いることもできる。   Examples of the inorganic filler that is particularly preferably used in the present invention include silica nanoparticles having an average particle diameter of 10 nm to 150 nm. Such silica nanoparticles can penetrate between the filaments of the base material, and the impregnation property of the epoxy resin composition into the base material is improved. In addition, since a fine rough surface can be formed on the surface of the laminated board as compared with the case where a conventional filler is used, a finer wiring can be formed than before. As such silica nanoparticles, for example, those produced by a combustion method such as VMC (Vaporized Metal Combustion) method, PVS (Physical Vapor Synthesis) method, a melting method in which crushed silica is flame-melted, a precipitation method, a gel method, etc. Is mentioned. Among these, the VMC method is particularly preferable. The VMC method is a method in which silica fine particles are formed by putting silicon powder into a chemical flame formed in an oxygen-containing gas, burning it, and then cooling it. In the VMC method, the particle diameter of the silica fine particles to be obtained can be adjusted by controlling the particle diameter of the silicon powder to be input, the input amount, the flame temperature, and the like. Moreover, as a silica nanoparticle, commercial items, such as NSS-5N (made by Tokuyama Co., Ltd.) and Sicastar 43-00-501 (made by Micromod), can also be used.

本発明において特に好適に用いられる別の無機充填剤として、平均粒子径1μm〜10μmのシリコーンゴム微粒子が挙げられる。このようなシリコーンゴム微粒子は、そのゴム成分が応力緩和を起こすため、プリント配線板の反りを一層低減することができる。また、ドリル加工性が向上し、積層板を作製した際、積層板表面のスジ状ムラ等がなくなり見た目も良好な積層板を得ることができる。シリコーンゴム微粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であれば特に限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、及びシリコーンゴムからなるコア部をシリコーン樹脂で被覆したコアシェル構造粒子等が挙げられる。シリコーンゴム微粒子として、KMP−605、KMP−600、KMP−597、KMP−594(信越化学(株)製)、トレフィルE−500、トレフィルE−600(東レ・ダウコーニング(株)製)等の市販品を用いることができる。   Another inorganic filler particularly preferably used in the present invention includes silicone rubber fine particles having an average particle diameter of 1 μm to 10 μm. Such silicone rubber fine particles can further reduce the warpage of the printed wiring board because the rubber component causes stress relaxation. Further, when the drilling process is improved and a laminated board is produced, a stripe-like unevenness on the surface of the laminated board is eliminated, and a laminated board having a good appearance can be obtained. The silicone rubber fine particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane. For example, the fine particles made of silicone rubber (organopolysiloxane crosslinked elastomer) itself and the core portion made of silicone rubber are made of silicone resin. Examples include coated core-shell structured particles. As silicone rubber fine particles, KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.

本発明によるエポキシ樹脂組成物には、本発明の所期の目的・作用効果を損なわない限り、臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤;カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;エポキシシラン、メルカ
プトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤;カーボンブラック、ベンガラ等の着色剤;ブタジエンゴム、アクリロニトリル変性ブタジエンゴム、シリコーンオイル、シリコーンゴム等の低応力化成分;イオン性不純物低減のための無機イオン交換体等、種々の添加剤を適宜配合することができる。
The epoxy resin composition according to the present invention includes a brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, as long as the intended purpose and effect of the present invention are not impaired. Flame retardants such as: natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, mold release agents such as higher fatty acids such as stearic acid and zinc stearate and their metal salts or paraffin; epoxy silane, mercaptosilane, aminosilane, alkyl Silane coupling agents such as silane, ureido silane, vinyl silane, titanate coupling agents, aluminum coupling agents, coupling agents such as aluminum / zirconium coupling agents; colorants such as carbon black and bengara; butadiene rubber, It can be blended inorganic ion exchangers such as for ionic impurities reduced, various additives as appropriate; Rironitoriru modified butadiene rubber, silicone oil, low-stress ingredients such as silicone rubber.

本発明によるエポキシ樹脂組成物は、その熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)が160℃以上であることが好ましい。このガラス転移温度(Tg)が160℃以上であることにより、後述の低い線膨張係数及びヤング率と相まって、総合的にプリント配線板の反りを抑えることができる。本発明による熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)は、170℃以上であることがより好ましい。   As for the epoxy resin composition by this invention, it is preferable that the glass transition temperature (Tg) of the epoxy resin composition after the thermosetting is 160 degreeC or more. When this glass transition temperature (Tg) is 160 ° C. or higher, it is possible to comprehensively suppress the warpage of the printed wiring board in combination with the low linear expansion coefficient and Young's modulus described later. The glass transition temperature (Tg) of the epoxy resin composition after thermosetting according to the present invention is more preferably 170 ° C. or higher.

本発明によるエポキシ樹脂組成物は、熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)未満における線膨張係数が40ppm/℃未満であることが好ましい。熱硬化後のエポキシ樹脂組成物のガラス状態での線膨張係数が40ppm/℃未満であることにより、上記ガラス転移温度(Tg)及び後述のヤング率と相まって、総合的にプリント配線板の反りを抑えることができる。本発明による熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)未満における線膨張係数は、35ppm/℃以下であることがより好ましい。   The epoxy resin composition according to the present invention preferably has a linear expansion coefficient of less than 40 ppm / ° C. at less than the glass transition temperature (Tg) of the epoxy resin composition after heat curing. When the linear expansion coefficient in the glass state of the epoxy resin composition after thermosetting is less than 40 ppm / ° C., combined with the glass transition temperature (Tg) and Young's modulus described later, the printed wiring board is comprehensively warped. Can be suppressed. The linear expansion coefficient at a temperature lower than the glass transition temperature (Tg) of the epoxy resin composition after thermosetting according to the present invention is more preferably 35 ppm / ° C. or less.

本発明によるエポキシ樹脂組成物は、熱硬化後のエポキシ樹脂組成物の25℃における弾性率(ヤング率)が1〜10GPaの範囲内にあることが好ましい。このヤング率が10GPa以下であることにより、上記ガラス転移温度(Tg)及び線膨張係数と相まって、総合的にプリント配線板の反りを抑えることができる。本発明による熱硬化後のエポキシ樹脂組成物の25℃におけるヤング率は、3〜9GPaの範囲内にあることがより好ましい。   As for the epoxy resin composition by this invention, it is preferable that the elastic modulus (Young's modulus) in 25 degreeC of the epoxy resin composition after thermosetting exists in the range of 1-10 GPa. When this Young's modulus is 10 GPa or less, combined with the glass transition temperature (Tg) and the linear expansion coefficient, it is possible to comprehensively suppress warpage of the printed wiring board. The Young's modulus at 25 ° C. of the epoxy resin composition after thermosetting according to the present invention is more preferably in the range of 3 to 9 GPa.

本発明によるエポキシ樹脂組成物においては、上述した一般式(1)で表されるナフチレンエーテル型エポキシ化合物の種類と含有量、ビスマレイミド化合物の種類と含有量、ならびに、無機充填剤の種類と含有量を上述した範囲内で適宜調整することにより、熱硬化後のエポキシ樹脂組成物のガラス転移温度、線膨張係数及びヤング率を上述の範囲とすることができる。   In the epoxy resin composition according to the present invention, the kind and content of the naphthylene ether type epoxy compound represented by the general formula (1), the kind and content of the bismaleimide compound, and the kind of inorganic filler By appropriately adjusting the content within the above-described range, the glass transition temperature, the linear expansion coefficient, and the Young's modulus of the epoxy resin composition after thermosetting can be set within the above-described range.

(プリプレグ)
次に、本発明によるプリプレグについて説明する。本発明によるプリプレグは、上記エポキシ樹脂組成物を基材に含浸させてなるものである。基材は、特に限定されることはないが、例えばガラス繊布、ガラス不繊布等のガラス繊維基材、ガラス以外の無機化合物を成分とする繊布、不繊布等の無機繊維基材、芳香族ポリアミド樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等の有機繊維で構成される有機繊維基材等が挙げられる。強度、吸水率の観点から、ガラス繊布、ガラス不繊布等のガラス繊維基材が好ましい。
(Prepreg)
Next, the prepreg according to the present invention will be described. The prepreg according to the present invention is obtained by impregnating a base material with the epoxy resin composition. The substrate is not particularly limited. For example, a glass fiber substrate such as glass fiber cloth or glass non-woven cloth, an inorganic fiber substrate such as a fiber cloth or non-woven cloth containing an inorganic compound other than glass, an aromatic polyamide. Examples thereof include organic fiber base materials composed of organic fibers such as resins, polyamide resins, aromatic polyester resins, polyester resins, polyimide resins, and fluororesins. From the viewpoints of strength and water absorption, glass fiber base materials such as glass fiber cloth and glass fiber cloth are preferable.

上記エポキシ樹脂組成物を基材に含浸させる方法に特に制限はなく、例えば、上記エポキシ樹脂組成物に基材を浸漬する方法、エポキシ樹脂組成物を基材に各種コーターで塗布し、又はスプレーで吹き付ける方法等が挙げられる。中でも、基材に対する組成物の含浸性が向上するため、浸漬法が好ましい。上記エポキシ樹脂組成物を基材に含浸させるに際しては、通常の含浸塗布設備を使用することができる。また、減圧の適用により含浸性を更に向上させることもできる。   There is no particular limitation on the method of impregnating the base material with the epoxy resin composition. For example, the base material is immersed in the epoxy resin composition, the epoxy resin composition is applied to the base material with various coaters, or sprayed. The method of spraying etc. are mentioned. Especially, since the impregnation property of the composition with respect to a base material improves, the immersion method is preferable. In impregnating the base material with the epoxy resin composition, a normal impregnation coating facility can be used. Moreover, the impregnation property can be further improved by applying a reduced pressure.

(積層板)
次に、本発明による積層板について説明する。本発明による積層板は、上記プリプレグを含む成形品である。例えば、本発明による積層板は、上記プリプレグの少なくとも片面上に金属層を配置してなるものであることができる。また、上記積層板は、上記プリプレグを2枚以上積層したプリプレグ積層体の少なくとも片面上に金属層を配置してなるものであってもよい。本発明による積層板は、上記プリプレグの片面又は上下両面に金属箔及び/又は支持フィルムを重ねてよい。さらに、本発明による積層板は、少なくとも2枚の上記プリプレグが積層されたプリプレグ積層体の片面又は最も外側の上下両面に、金属箔及び/又は支持フィルムを重ねてよい。本発明による積層体は、誘電率及び誘電正接が低く、耐熱性及び密着性に優れる。
(Laminated board)
Next, the laminated board by this invention is demonstrated. The laminated board by this invention is a molded article containing the said prepreg. For example, the laminate according to the present invention can be formed by disposing a metal layer on at least one surface of the prepreg. Moreover, the said laminated board may arrange | position a metal layer on the at least single side | surface of the prepreg laminated body which laminated | stacked two or more of the said prepregs. In the laminate according to the present invention, a metal foil and / or a support film may be laminated on one side or both upper and lower sides of the prepreg. Furthermore, in the laminate according to the present invention, a metal foil and / or a support film may be laminated on one side or the outermost upper and lower sides of a prepreg laminate in which at least two prepregs are laminated. The laminate according to the present invention has a low dielectric constant and dielectric loss tangent, and is excellent in heat resistance and adhesion.

支持フィルムは、取扱いが容易であるものを選択することができる。支持フィルムの具体例として、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂フィルム、フッ素系樹脂、ポリイミド樹脂等の耐熱性を有する熱可塑性樹脂フィルム等が挙げられる。中でも、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂フィルムが好ましい。支持フィルムの厚さに特に制限はないが、取扱い性の観点から、1〜100μmの範囲内が好ましく、更に3〜50μmの範囲内がより好ましい。   As the support film, one that can be easily handled can be selected. Specific examples of the support film include polyester resin films such as polyethylene terephthalate and polybutylene terephthalate, and thermoplastic resin films having heat resistance such as fluororesin and polyimide resin. Among these, polyester resin films such as polyethylene terephthalate and polybutylene terephthalate are preferable. Although there is no restriction | limiting in particular in the thickness of a support film, From the viewpoint of handleability, the inside of the range of 1-100 micrometers is preferable, and the inside of the range of 3-50 micrometers is more preferable.

金属箔の例として、銅及び/又は銅系合金、アルミ及び/又はアルミ系合金、鉄及び/又は鉄系合金、銀及び/又は銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系合金、錫及び錫系合金等が挙げられる。金属箔の厚さに特に制限はないが、0.1〜70μmの範囲内が好ましく、1〜35μmの範囲内がより好ましく、更に1.5〜18μmの範囲内が好ましい。金属箔の厚さが上記下限値未満であると、金属箔が傷つき易く、ピンホールが発生し易い上、金属箔をエッチングし導体回路として用いた場合に、回路パターン成形時のメッキのバラツキ、回路断線、エッチング液やデスミア液等の薬液の染み込み等が発生することがある。金属箔の厚さが上記上限値を超えると、金属箔の厚さのバラツキや、金属箔粗化面の表面粗さのバラツキが大きくなることがある。   Examples of metal foils include copper and / or copper alloys, aluminum and / or aluminum alloys, iron and / or iron alloys, silver and / or silver alloys, gold and gold alloys, zinc and zinc alloys, Examples thereof include nickel and nickel-based alloys, tin and tin-based alloys. Although there is no restriction | limiting in particular in the thickness of metal foil, The inside of the range of 0.1-70 micrometers is preferable, The inside of the range of 1-35 micrometers is more preferable, Furthermore, the inside of the range of 1.5-18 micrometers is preferable. If the thickness of the metal foil is less than the above lower limit value, the metal foil is easily damaged, pinholes are easily generated, and when the metal foil is etched and used as a conductor circuit, variation in plating during circuit pattern molding, Circuit breakage, penetration of chemicals such as etching liquid and desmear liquid may occur. When the thickness of the metal foil exceeds the above upper limit value, the variation in the thickness of the metal foil and the variation in the surface roughness of the roughened metal foil may be increased.

また、金属箔は、キャリア箔付き極薄金属箔を用いてもよい。キャリア箔付き極薄金属箔とは、剥離可能なキャリア箔と極薄金属箔とを張り合わせた金属箔である。キャリア箔付き極薄金属箔を用いることでプリプレグの両面に極薄金属箔層を形成できることから、例えば、セミアディティブ法等で回路を形成する場合、無電解メッキを行うことなく、極薄金属箔を直接給電層として電解メッキすることで、回路を形成後、極薄銅箔をフラッシュエッチングすることができる。キャリア箔付き極薄金属箔を用いることによって、厚さ10μm以下の極薄金属箔でも、例えばプレス工程での極薄金属箔のハンドリング性の低下や、極薄銅箔の割れや切れを防ぐことができる。極薄金属箔の厚さは、0.1〜10μmの範囲内が好ましく、0.5〜5μmの範囲内がより好ましく、1〜3μmの範囲内が更に好ましい。極薄金属箔の厚さが0.1μm未満であると、キャリア箔剥離後の極薄金属箔の傷つき、極薄金属箔のピンホールの発生、ピンホールの発生による回路パターン成形時のメッキのバラツキ、回路配線の断線、エッチング液やデスミア液等の薬液の染み込み等が発生する場合がある。極薄金属箔の厚さが10μm超であると、極薄金属箔の厚さのバラツキや、極薄金属箔粗化面の表面粗さのバラツキが大きくなる場合がある。通常、キャリア箔付き極薄金属箔は、プレス成形後の積層板に回路パターン形成する前にキャリア箔を剥離する。 The metal foil may be an ultrathin metal foil with a carrier foil. The ultrathin metal foil with a carrier foil is a metal foil obtained by laminating a peelable carrier foil and an ultrathin metal foil. Since an ultra-thin metal foil layer can be formed on both sides of a prepreg by using an ultra-thin metal foil with a carrier foil, for example, when forming a circuit by a semi-additive method, etc., an ultra-thin metal foil without performing electroless plating By directly electroplating as a power feeding layer, the ultrathin copper foil can be flash etched after the circuit is formed. By using an ultra-thin metal foil with a carrier foil, even with an ultra-thin metal foil having a thickness of 10 μm or less, for example, a reduction in handling properties of the ultra-thin metal foil in a pressing process, and cracking or cutting of the ultra-thin copper foil are prevented. Can do. The thickness of the ultrathin metal foil is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.5 to 5 μm, and still more preferably in the range of 1 to 3 μm. If the thickness of the ultra-thin metal foil is less than 0.1 μm, the ultra-thin metal foil is damaged after the carrier foil is peeled off, pinholes are generated in the ultrathin metal foil, Variations, disconnection of circuit wiring, penetration of chemicals such as etching liquid and desmear liquid may occur. When the thickness of the ultrathin metal foil is more than 10 μm, the variation in the thickness of the ultrathin metal foil or the variation in the surface roughness of the roughened surface of the ultrathin metal foil may increase. Usually, an ultrathin metal foil with a carrier foil peels off the carrier foil before forming a circuit pattern on the press-molded laminate.

プリプレグと金属箔及び/又は支持フィルムとを重ねたものを加熱、加圧して成形することで本発明の積層板を得ることができる。加熱温度は、150〜240℃が好ましく、180〜220℃がより好ましい。加圧力は、2〜5MPaが好ましく、2.5〜4MPaがより好ましい。   The laminated sheet of the present invention can be obtained by heating and pressurizing a laminate of a prepreg and a metal foil and / or a support film. The heating temperature is preferably 150 to 240 ° C, and more preferably 180 to 220 ° C. The applied pressure is preferably 2 to 5 MPa, more preferably 2.5 to 4 MPa.

(樹脂シート)
次に、本発明による樹脂シートについて説明する。本発明による樹脂シートは、上記エポキシ樹脂組成物を支持フィルム又は金属箔上に配置してなるものである。上記樹脂シートは、上記エポキシ樹脂組成物の固形分からなる絶縁層を支持フィルム又は金属箔上に形成することにより得られる。樹脂シートを形成する場合、上記エポキシ樹脂組成物の固形分は、好ましくは45〜85質量%、より好ましくは55〜75質量%の範囲内である。上記エポキシ樹脂組成物を、各種塗工装置を用いて、支持フィルム上及び/又は金属箔上に塗工した後乾燥するか、又は上記エポキシ樹脂組成物をスプレー装置により支持フィルム又は金属箔に噴霧塗工した後乾燥することにより、樹脂シートを作製することができる。樹脂シートに用いる支持フィルム及び金属箔は、上記積層板について説明したものと同じものを使用することができる。
(Resin sheet)
Next, the resin sheet according to the present invention will be described. The resin sheet by this invention arrange | positions the said epoxy resin composition on a support film or metal foil. The said resin sheet is obtained by forming the insulating layer which consists of solid content of the said epoxy resin composition on a support film or metal foil. When forming a resin sheet, the solid content of the epoxy resin composition is preferably in the range of 45 to 85 mass%, more preferably in the range of 55 to 75 mass%. The epoxy resin composition is coated on a support film and / or metal foil using various coating apparatuses and then dried, or the epoxy resin composition is sprayed onto the support film or metal foil by a spray device. A resin sheet can be produced by drying after coating. The support film and metal foil used for the resin sheet can be the same as those described for the laminate.

樹脂シートを作製するための塗工装置は、ボイドがなく、均一な絶縁層の厚みを有する樹脂シートを効率よく製造することができるものであれば、特に限定されないが、例えば、ロールコーター、バーコーター、ナイフコーター、グラビアコーター、ダイコーター、コンマコーター、カーテンコーター等が挙げられる。これらの中でも、ダイコーター、ナイフコーター及びコンマコーターが好ましい。   The coating apparatus for producing the resin sheet is not particularly limited as long as it has no voids and can efficiently produce a resin sheet having a uniform insulating layer thickness. For example, a roll coater, a bar Examples include coaters, knife coaters, gravure coaters, die coaters, comma coaters, curtain coaters, and the like. Among these, a die coater, a knife coater, and a comma coater are preferable.

(プリント配線板)
次に、本発明によるプリント配線板について説明する。本発明によるプリント配線板は、上記プリプレグ、上記積層板又は上記樹脂シートから形成されるものである。本発明によるプリント配線板の製造方法は、特に限定されることはないが、例えば、以下のように製造することができる。
(Printed wiring board)
Next, the printed wiring board according to the present invention will be described. The printed wiring board by this invention is formed from the said prepreg, the said laminated board, or the said resin sheet. Although the manufacturing method of the printed wiring board by this invention is not specifically limited, For example, it can manufacture as follows.

両面に銅箔を有する積層板を用意し、ドリル等によりスルーホールを形成し、メッキにより上記スルーホールを充填した後、積層板の両面に、エッチング等により所定の導体回路(内層回路)を形成し、導体回路を黒化処理等の粗化処理することにより内層回路基板を作製する。本発明のエポキシ樹脂組成物を用いた場合、従来に比べ微細スルーホールを歩留まり良好で形成することができ、さらに、従来に比べスルーホール形成後の壁の凹凸が非常に小さなものとなる。   Prepare a laminated board with copper foil on both sides, form through-holes with a drill, etc., fill the through-holes with plating, and then form a predetermined conductor circuit (inner layer circuit) on both sides of the laminated board by etching etc. Then, the inner circuit board is produced by subjecting the conductor circuit to a roughening process such as a blackening process. When the epoxy resin composition of the present invention is used, fine through-holes can be formed with a good yield as compared with the prior art, and the unevenness of the wall after forming the through-hole is very small as compared with the conventional case.

次に内層回路基板の上下面に、本発明の樹脂シート、又は本発明のプリプレグを形成し、加熱加圧成形する。具体的には、本発明の樹脂シート、又は本発明のプリプレグと内層回路基板とを合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形させる。その後、熱風乾燥装置等で加熱硬化させることにより内層回路基板上に絶縁層を形成することができる。ここで加熱加圧成形する条件としては、特に限定されないが、一例を挙げると、温度60〜160℃、圧力0.2〜3MPaで実施することができる。また、加熱硬化させる条件としては特に限定されないが、一例を挙げると、温度140〜240℃、時間30〜120分間で実施することができる。   Next, the resin sheet of the present invention or the prepreg of the present invention is formed on the upper and lower surfaces of the inner layer circuit board, and is heated and pressed. Specifically, the resin sheet of the present invention, or the prepreg of the present invention and the inner circuit board are combined and vacuum-heated and pressure-molded using a vacuum-pressure laminator apparatus or the like. Thereafter, the insulating layer can be formed on the inner circuit board by heat-curing with a hot air drying device or the like. Although it does not specifically limit as conditions to heat-press form here, If an example is given, it can implement at the temperature of 60-160 degreeC, and the pressure of 0.2-3 MPa. Moreover, it is although it does not specifically limit as conditions to heat-harden, If an example is given, it can implement in temperature 140-240 degreeC and time 30-120 minutes.

別法として、本発明の樹脂シート、又は本発明のプリプレグを内層回路基板に重ね合わせ、これを、平板プレス装置等を用いて加熱加圧成形することにより内層回路基板上に絶縁層を形成することもできる。ここで加熱加圧成形する条件としては、特に限定されないが、一例を挙げると、温度140〜240℃、圧力1〜4MPaで実施することができる。   As another method, the resin sheet of the present invention or the prepreg of the present invention is overlaid on the inner circuit board, and this is heated and pressed using a flat plate press or the like to form an insulating layer on the inner circuit board. You can also. Although it does not specifically limit as conditions to heat-press form here, If an example is given, it can implement at the temperature of 140-240 degreeC, and the pressure of 1-4 MPa.

本発明の積層体は、絶縁層表面を過マンガン酸塩、重クロム酸塩等の酸化剤などにより粗化処理した後、金属メッキにより新たな導電配線回路を形成することができる。   The laminated body of the present invention can form a new conductive wiring circuit by metal plating after roughening the surface of the insulating layer with an oxidizing agent such as permanganate or dichromate.

本発明の熱硬化性組成物を用いた場合、従来に比べ微細配線加工に優れ、導体回路を形成した際の導体幅(ライン)、及び導体間(スペース)が非常に狭い配線を歩留まり良く形成することができる。   When the thermosetting composition of the present invention is used, it is excellent in fine wiring processing compared to the prior art, and the conductor width (line) when forming the conductor circuit and the wiring between the conductors (space) are formed with high yield. can do.

その後、絶縁層を加熱することにより硬化させる。硬化させる温度は、特に限定されないが、例えば、160℃〜240℃の範囲で硬化してよく、180℃〜200℃の範囲で硬化させることが好ましい。   Thereafter, the insulating layer is cured by heating. Although the temperature to harden | cure is not specifically limited, For example, you may harden | cure in the range of 160 to 240 degreeC, and it is preferable to harden in the range of 180 to 200 degreeC.

次に、絶縁層に、炭酸レーザー装置を用いて開口部を設け、電解銅めっきにより絶縁層表面に外層回路形成を行い、外層回路と内層回路との導通を図る。なお、外層回路には、半導体素子を実装するための接続用電極部を設ける。その後、最外層にソルダーレジストを形成し、露光・現像により半導体素子が実装できるよう接続用電極部を露出させ、ニッケル金メッキ処理を施し、所定の大きさに切断し、多層プリント配線板を得ることができる。 Next, an opening is provided in the insulating layer by using a carbonic acid laser device, and an outer layer circuit is formed on the surface of the insulating layer by electrolytic copper plating to achieve conduction between the outer layer circuit and the inner layer circuit. The outer layer circuit is provided with a connection electrode portion for mounting a semiconductor element. After that, a solder resist is formed on the outermost layer, the connection electrode part is exposed so that a semiconductor element can be mounted by exposure / development, nickel gold plating treatment is performed, and it is cut into a predetermined size to obtain a multilayer printed wiring board. Can do.

(半導体装置)
次に、本発明による半導体装置について説明する。本発明による半導体装置は、本発明のプリント配線板に半導体素子を搭載してなるものである。半導体装置は、本発明のプリント配線板に半導体素子を実装し、製造することができる。半導体素子の実装方法、封止方法は特に限定されない。例えば、半導体素子とプリント配線板とを用い、フリップチップボンダーなどを用いて多層プリント配線板上の接続用電極部と半導体素子の半田バンプの位置合わせを行う。その後、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、プリント配線板と半田バンプとを溶融接合することにより接続する。そして、プリント配線板と半導体素子との間に液状封止樹脂を充填し、硬化させることで半導体装置を得ることができる。
(Semiconductor device)
Next, a semiconductor device according to the present invention will be described. The semiconductor device according to the present invention is obtained by mounting a semiconductor element on the printed wiring board of the present invention. A semiconductor device can be manufactured by mounting a semiconductor element on the printed wiring board of the present invention. The mounting method and the sealing method of the semiconductor element are not particularly limited. For example, a semiconductor element and a printed wiring board are used, and the connection electrode part on the multilayer printed wiring board and the solder bump of the semiconductor element are aligned using a flip chip bonder or the like. Thereafter, the solder bump is heated to the melting point or higher by using an IR reflow device, a hot plate, or other heating device, and the printed wiring board and the solder bump are connected by fusion bonding. And a semiconductor device can be obtained by filling and hardening a liquid sealing resin between a printed wiring board and a semiconductor element.

本発明のエポキシ樹脂組成物を用いると、半導体素子を実装する約260℃の温度においてもプリント配線板の反りを抑制できるので実装性に優れる。   When the epoxy resin composition of the present invention is used, since the warpage of the printed wiring board can be suppressed even at a temperature of about 260 ° C. where the semiconductor element is mounted, the mounting property is excellent.

なお、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   In addition, this invention is not limited to the above-mentioned embodiment, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.

以下、本発明を実施例及び比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、部はとくに特定しない限り質量部を表す。
実施例1
[1]樹脂ワニスの調製
一般式(3)で表されるナフチレンエーテル型エポキシ化合物(DIC製、HP−6000、エポキシ当量273、一般式(3)において、Rがいずれも水素原子で、n=1である成分とn=2である成分との混合物)14.4質量部;ビスマレイミド化合物として2,2’−ビス−[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成製、BMI−80)14.9質量部;フェノール樹脂系硬化剤としてフェノールノボラック樹脂(DIC製、TD−2090、水酸基当量105)5.6質量部;硬化促進剤として2−フェニルイミダゾール(四国化成製2PZ)0.1質量部;無機充填剤として溶融シリカ粒子(アドマテックス製、SO−25R、平均粒径0.5μm)65.0質量部に、N−メチルピロリドンを固形分が65質量%となるように加えて混合し、エポキシ樹脂組成物からなる樹脂ワニス(500グラム)を調製した。
Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these. In addition, in an Example, unless otherwise specified, a part represents a mass part.
Example 1
[1] Preparation of resin varnish Naphthylene ether type epoxy compound represented by general formula (3) (manufactured by DIC, HP-6000, epoxy equivalent 273, in general formula (3), R is a hydrogen atom, n = 1 and n = 2) 24.4 parts by weight; 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (Kay-Isei Chemical Co., Ltd.) as bismaleimide compound BMI-80) 14.9 parts by mass; phenol novolac resin (DIC, TD-2090, hydroxyl equivalent 105) 5.6 parts by mass as a phenolic resin curing agent; 2-phenylimidazole (Shikoku Chemicals) as a curing accelerator Manufactured by 2PZ) 0.1 parts by mass; as an inorganic filler, fused silica particles (manufactured by Admatex, SO-25R, average particle size 0.5 μm), 65.0 parts by mass, N -Methyl pyrrolidone was added and mixed so that solid content might be 65 mass%, and the resin varnish (500 grams) which consists of an epoxy resin composition was prepared.

[2]プリプレグの製造
上記樹脂ワニスを用いて、ガラス繊布(長さ530mm、幅530mm、厚さ0.18
mm、日東紡績社製)100質量部に対して、樹脂ワニスを固形分で80質量部含浸させて、190℃の乾燥炉で7分間乾燥させ、樹脂含有量44.4質量%のプリプレグを作製した。
[2] Manufacture of prepreg Using the above resin varnish, a glass fabric (length 530 mm, width 530 mm, thickness 0.18)
mm, manufactured by Nitto Boseki Co., Ltd.) 100 parts by mass of resin varnish is impregnated with 80 parts by mass of solid and dried in a drying oven at 190 ° C. for 7 minutes to produce a prepreg having a resin content of 44.4% by mass. did.

[3]樹脂シートの製造
上記樹脂ワニスを、剥離可能なキャリア箔層と電解銅箔層とを張り合わせた銅箔(三井金属鉱山社製、マイクロシンEx−3、キャリア箔層:銅箔(18μm)、電解銅箔層(3μm))の電解銅箔層に、コンマコーターを用いて乾燥後の樹脂層が40μmとなるように塗工し、これを150℃の乾燥装置で10分間乾燥して、樹脂シートを製造した。
[3] Manufacture of Resin Sheet Copper foil (Mitsui Metal Mining Co., Ltd., Microcin Ex-3, carrier foil layer: copper foil (18 μm) obtained by bonding the above resin varnish to a peelable carrier foil layer and an electrolytic copper foil layer. ), Apply the electrolytic copper foil layer of the electrolytic copper foil layer (3 μm) using a comma coater so that the resin layer after drying is 40 μm, and dry it for 10 minutes with a drying apparatus at 150 ° C. A resin sheet was manufactured.

[4]積層板の製造
上記プリプレグを2枚重ねたプリプレグ積層体の表裏に、長さ560mm、幅560mm、厚さ18μmの電解銅箔(日本電解製YGP−18)を重ねて、圧力4MPa、温度220℃で180分間加熱加圧成形を行い、厚さ0.4mmの両面銅張積層板を得た。
[4] Manufacture of laminated plate On the front and back of the prepreg laminate in which the two prepregs are stacked, an electrolytic copper foil (YGP-18 manufactured by Nippon Electrolytic Co., Ltd.) having a length of 560 mm, a width of 560 mm, and a thickness of 18 μm is stacked, and a pressure of 4 MPa, Heat pressing was performed at a temperature of 220 ° C. for 180 minutes to obtain a double-sided copper clad laminate having a thickness of 0.4 mm.

[5]プリント配線板の作製
上記積層板に、0.1mmのドリルビットを用いてスルーホール加工を行った後、メッキによりスルーホールを充填した。さらに、両面をエッチングにより回路形成し、内層回路基板として用いた。上記内層回路基板の表裏に、上記樹脂シートを重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させた。これを、熱風乾燥装置にて170℃で60分間加熱し硬化させて、積層体を得た。
[5] Production of Printed Wiring Board After the through-hole processing was performed on the laminated board using a 0.1 mm drill bit, the through-hole was filled by plating. Further, a circuit was formed on both sides by etching and used as an inner layer circuit board. The resin sheet was superposed on the front and back of the inner layer circuit board, and this was subjected to vacuum heating and pressure molding at a temperature of 100 ° C. and a pressure of 1 MPa using a vacuum pressurizing laminator apparatus. This was heated and cured at 170 ° C. for 60 minutes in a hot air drying apparatus to obtain a laminate.

次に、表面の電解銅箔層に黒化処理を施した後、炭酸ガスレーザーで、層間接続用のφ60μmのビアホールを形成した。次いで、70℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に15分浸漬後、中和してビアホール内のデスミア処理を行った。次に、フラッシュエッチングにより電解銅箔層表面を1μm程度エッチングした後、無電解銅メッキを厚さ0.5μmで行い、電解銅メッキ用レジスト層を厚さ18μm形成しパターン銅メッキし、温度200℃時間60分加熱してポストキュアした。次いで、メッキレジストを剥離し全面をフラッシュエッチングして、L/S=20/20μmのパターンを形成した。最後に回路表面にソルダーレジスト(太陽インキ社製PSR4000/AUS308)を厚さ20μm形成しプリント配線板を得た。   Next, the surface electrolytic copper foil layer was subjected to blackening treatment, and a φ60 μm via hole for interlayer connection was formed by a carbon dioxide gas laser. Next, it is immersed in a swelling solution at 70 ° C. (Atotech Japan Co., Swelling Dip Securigant P) for 5 minutes, and further immersed in an aqueous solution of potassium permanganate at 80 ° C. (Concentrate Compact CP, manufactured by Atotech Japan) for 15 minutes. Then, it neutralized and the desmear process in a via hole was performed. Next, after the surface of the electrolytic copper foil layer is etched by about 1 μm by flash etching, electroless copper plating is performed with a thickness of 0.5 μm, a resist layer for electrolytic copper plating is formed with a thickness of 18 μm, and pattern copper plating is performed. The film was post-cured by heating at 60 ° C. for 60 minutes. Next, the plating resist was peeled off and the entire surface was flash etched to form a pattern of L / S = 20/20 μm. Finally, a solder resist (PSR4000 / AUS308 manufactured by Taiyo Ink Co., Ltd.) having a thickness of 20 μm was formed on the circuit surface to obtain a printed wiring board.

[6]半導体装置の製造
プリント配線板は、上記プリント配線板であって、半導体素子の半田バンプ配列に相当するニッケル金メッキ処理が施された接続用電極部を配したものを50mm×50mmの大きさに切断し使用した。半導体素子(TEGチップ、サイズ15mm×15mm、厚み0.8mm)は、Sn/Pb組成の共晶で形成された半田バンプを有し、半導体素子の回路保護膜はポジ型感光性樹脂(住友ベークライト社製CRC−8300)で形成されたものを使用した。半導体装置の組み立ては、まず、半田バンプにフラックス材を転写法により均一に塗布し、次にフリップチップボンダー装置を用い、多層プリント配線板上に加熱圧着により搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP−4152S)を充填し、液状封止樹脂を硬化させることで半導体装置を得た。尚、液状封止樹脂の硬化条件は、温度150℃、120分の条件であった。
[6] Manufacture of semiconductor device The printed wiring board is the above-mentioned printed wiring board, and has a size of 50 mm × 50 mm provided with a connection electrode portion subjected to nickel gold plating corresponding to the solder bump arrangement of the semiconductor element. It was cut and used. A semiconductor element (TEG chip, size 15 mm × 15 mm, thickness 0.8 mm) has a solder bump formed of a eutectic of Sn / Pb composition, and a circuit protective film of the semiconductor element is a positive photosensitive resin (Sumitomo Bakelite). What was formed by company CRC-8300) was used. In assembling the semiconductor device, first, a flux material was uniformly applied to the solder bumps by a transfer method, and then mounted on a multilayer printed wiring board by thermocompression bonding using a flip chip bonder device. Next, after solder bumps were melt-bonded in an IR reflow furnace, a liquid sealing resin (manufactured by Sumitomo Bakelite Co., Ltd., CRP-4152S) was filled and the liquid sealing resin was cured to obtain a semiconductor device. The curing condition of the liquid sealing resin was a temperature of 150 ° C. and 120 minutes.

実施例2
ビスマレイミド化合物としてビス−(3−エチル−5−メチル−4−マレイミドフェニ
ル)メタン(ケイ・アイ化成製、BMI−70)14.9質量部とした以外は、実施例1と同様にして樹脂ワニスを調製し、プリプレグ、積層板、樹脂シート、プリント配線板、及び半導体装置を得た。
Example 2
Resin in the same manner as in Example 1, except that 14.9 parts by mass of bis- (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-70, manufactured by Kay Chemical Co., Ltd.) was used as the bismaleimide compound. A varnish was prepared to obtain a prepreg, a laminate, a resin sheet, a printed wiring board, and a semiconductor device.

実施例3
フェノール樹脂系硬化剤としてビスフェノールAノボラック樹脂(DIC製、VH−4240、水酸基当量110)5.6質量部とした以外は、実施例1と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Example 3
A resin varnish was prepared in the same manner as in Example 1 except that 5.6 parts by mass of bisphenol A novolak resin (manufactured by DIC, VH-4240, hydroxyl group equivalent 110) was used as a phenol resin-based curing agent, and a prepreg, a resin sheet, A laminated board, a printed wiring board, and a semiconductor device were obtained.

実施例4
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を12.2質量部とし、かつ、フェノール樹脂系硬化剤としてフェノールアラルキル樹脂(三井化学製、XLC−LL、水酸基当量175)7.8質量部とした以外は、実施例1と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Example 4
12.2 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) and 7.8 parts by mass of a phenol aralkyl resin (manufactured by Mitsui Chemicals, XLC-LL, hydroxyl group equivalent 175) as a phenol resin curing agent A resin varnish was prepared in the same manner as in Example 1 except that the prepreg was used, and a prepreg, a resin sheet, a laminate, a printed wiring board, and a semiconductor device were obtained.

実施例5
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)16.3質量部;ビスマレイミド化合物として2,2’−ビス−[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成製、BMI−80)14.9質量部;芳香族ジアミン系硬化剤として4,4’−ジアミノジフェニルスルホン(三井化学ファイン製、4,4’−DAS、硬化剤当量62)3.7質量部;硬化促進剤として2−フェニルイミダゾール(四国化成製2PZ)0.1質量部;無機充填剤として溶融シリカ粒子(アドマテックス製、SO−25R、平均粒径0.5μm)65.0質量部に、N−メチルピロリドンを固形分が65質量%となるように加えて混合し、エポキシ樹脂組成物からなる樹脂ワニス(500グラム)を調製した以外は、実施例1と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Example 5
16.3 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000); 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (manufactured by Kay Chemical Co., Ltd.) as a bismaleimide compound BMI-80) 14.9 parts by mass; 4,4′-diaminodiphenylsulfone (Mitsui Chemicals Fine, 4,4′-DAS, curing agent equivalent 62) as an aromatic diamine-based curing agent, 3.7 parts by mass; curing 0.1 parts by mass of 2-phenylimidazole (2PZ made by Shikoku Kasei) as an accelerator; 65.0 parts by mass of fused silica particles (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler, N -Methyl pyrrolidone was added so as to have a solid content of 65% by mass and mixed to prepare a resin varnish (500 grams) made of an epoxy resin composition. Example 1 The resin varnish was prepared in the same manner as to give a prepreg, a resin sheet, a laminated board, printed wiring board, and a semiconductor device.

実施例6
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を16.9質量部とし、かつ、芳香族ジアミン系硬化剤を4,4’−ジアミノジフェニルメタン(東京化成製、硬化剤当量49.5)3.1質量部とした以外は、実施例5と同様にして樹脂ワニスを調製し、プリプレグ、積層板、樹脂シート、プリント配線板、及び半導体装置を得た。
Example 6
16.9 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) and 4,4′-diaminodiphenylmethane (manufactured by Tokyo Chemical Industry, 49.5 curing agent equivalent) A resin varnish was prepared in the same manner as in Example 5 except that the content was 3.1 parts by mass to obtain a prepreg, a laminate, a resin sheet, a printed wiring board, and a semiconductor device.

実施例7
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を16.2質量部とし、かつ、芳香族ジアミン系硬化剤を3,3’−ジエチル−4,4’−ジアミノジフェニルメタン(日本化薬製カヤハードA−A、硬化剤当量63.5)3.8質量部とした以外は、実施例5と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Example 7
16.2 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) and an aromatic diamine-based curing agent of 3,3′-diethyl-4,4′-diaminodiphenylmethane (manufactured by Nippon Kayaku) A resin varnish was prepared in the same manner as in Example 5 except that Kayahard AA, curing agent equivalent 63.5) 3.8 parts by mass, and a prepreg, resin sheet, laminate, printed wiring board, and semiconductor device were prepared. Got.

実施例8
無機充填剤を溶融シリカ粒子(アドマテックス製、SO−25R、平均粒径0.5μm)32質量部とシリカナノ粒子(トクヤマ(株)製、NSS−5N、平均粒子径70nm)3質量部とシリコーンゴム微粒子(信越化学工業(株)製、KMP−600、平均粒子径5μm)30質量部との組合せとした以外は、実施例1と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Example 8
32 parts by mass of fused silica particles (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) and 3 parts by mass of silica nanoparticles (manufactured by Tokuyama Corporation, NSS-5N, average particle size 70 nm) and silicone A resin varnish was prepared in the same manner as in Example 1 except that it was combined with 30 parts by mass of rubber fine particles (manufactured by Shin-Etsu Chemical Co., Ltd., KMP-600, average particle size 5 μm), and a prepreg, resin sheet, and laminate were prepared. A board, a printed wiring board, and a semiconductor device were obtained.

実施例9
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を10.4質量部とし、ビスマレイミド化合物として2,2’−ビス−[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成製、BMI−80)22.6質量部かつ、芳香族ジアミン系硬化剤を4,4’−ジアミノジフェニルメタン(東京化成製、硬化剤当量49.5)1.9質量部とした以外は、実施例6と同様にして樹脂ワニスを調製し、プリプレグ、積層板、樹脂シート、プリント配線板、及び半導体装置を得た。
Example 9
10.4 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000), and 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (K-I Kasei) as a bismaleimide compound Manufactured, BMI-80) 22.6 parts by mass and the aromatic diamine-based curing agent was changed to 1.9 parts by mass of 4,4′-diaminodiphenylmethane (manufactured by Tokyo Kasei Co., Ltd., curing agent equivalent 49.5). A resin varnish was prepared in the same manner as in Example 6 to obtain a prepreg, a laminate, a resin sheet, a printed wiring board, and a semiconductor device.

実施例10
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を19.7質量部とし、ビスマレイミド化合物として2,2’−ビス−[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成製、BMI−80)11.6質量部かつ、芳香族ジアミン系硬化剤を4,4’−ジアミノジフェニルメタン(東京化成製、硬化剤当量49.5)3.6質量部とした以外は、実施例6と同様にして樹脂ワニスを調製し、プリプレグ、積層板、樹脂シート、プリント配線板、及び半導体装置を得た。
Example 10
19.7 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) and 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (Kay-Isei Chemical) as a bismaleimide compound Manufactured, BMI-80) 11.6 parts by mass and the aromatic diamine-based curing agent was changed to 3.6 parts by mass of 4,4′-diaminodiphenylmethane (Tokyo Kasei Co., Ltd., curing agent equivalent 49.5). A resin varnish was prepared in the same manner as in Example 6 to obtain a prepreg, a laminate, a resin sheet, a printed wiring board, and a semiconductor device.

比較例1
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)に代えて、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタン(DIC製、HP−4700、エポキシ当量165)を12.5質量部とし、かつ、フェノール樹脂系硬化剤としてフェノールノボラック樹脂(DIC製、TD−2090、水酸基当量105)7.5質量部とした以外は、実施例1と同様にして樹脂ワニスを調製しプリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 1
Instead of the naphthylene ether type epoxy compound (DIC, HP-6000), 1,1-bis (2,7-diglycidyloxy-1-naphthyl) methane (DIC, HP-4700, epoxy equivalent 165) is used. The resin varnish was used in the same manner as in Example 1 except that the content was 12.5 parts by mass and the phenolic novolak resin (DIC, TD-2090, hydroxyl group equivalent 105) was 7.5 parts by mass as the phenol resin-based curing agent. The prepared prepreg, resin sheet, laminate, printed wiring board, and semiconductor device were obtained.

比較例2
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)に代えて、1,6−ジグリシジルオキシナフタレン(DIC製 HP−4032、エポキシ当量140)を11.4質量部とし、かつ、フェノール樹脂系硬化剤としてフェノールノボラック樹脂(DIC製、TD−2090、水酸基当量105)8.6質量部とした以外は、実施例1と同様にして樹脂ワニスを調製しプリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 2
Instead of the naphthylene ether type epoxy compound (DIC, HP-6000), 1,6-diglycidyloxynaphthalene (DIC, HP-4032, epoxy equivalent 140) is 11.4 parts by mass, and a phenol resin type A resin varnish was prepared in the same manner as in Example 1 except that 8.6 parts by mass of a phenol novolak resin (manufactured by DIC, TD-2090, hydroxyl group equivalent 105) was used as a curing agent, and a prepreg, a resin sheet, a laminate, a printed wiring A plate and a semiconductor device were obtained.

比較例3
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)に代えて1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタン(DIC製、HP−4700)を14.7質量部とし、かつ、芳香族ジアミン系硬化剤として4,4’−ジアミノジフェニルスルホン(三井化学ファイン製、4,4’−DAS、硬化剤当量62)5.3質量部とした以外は、実施例5と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 3
14.7 parts by mass of 1,1-bis (2,7-diglycidyloxy-1-naphthyl) methane (manufactured by DIC, HP-4700) instead of naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) And 4,5′-diaminodiphenylsulfone (Mitsui Chemicals Fine, 4,4′-DAS, curing agent equivalent 62) as an aromatic diamine-based curing agent was used in an amount of 5.3 parts by weight. A resin varnish was prepared in the same manner as described above to obtain a prepreg, a resin sheet, a laminate, a printed wiring board, and a semiconductor device.

比較例4
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)に代えて、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタン(DIC製、HP−4700)を12.5質量部とし、フェノール樹脂系硬化剤としてフェノールノボラック樹脂(DIC製、TD−2090、水酸基当量105)7.5質量部とした以外は、実施例2と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 4
12.5 mass of 1,1-bis (2,7-diglycidyloxy-1-naphthyl) methane (manufactured by DIC, HP-4700) instead of naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) The resin varnish was prepared in the same manner as in Example 2 except that 7.5 parts by mass of phenol novolac resin (manufactured by DIC, TD-2090, hydroxyl group equivalent 105) was used as the phenol resin-based curing agent. Sheets, laminates, printed wiring boards, and semiconductor devices were obtained.

比較例5
ビスマレイミド化合物を用いず、ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を25.2質量部とし、かつフェノール樹脂系硬化剤としてフェノールノ
ボラック樹脂(DIC製、TD−2090、水酸基当量105)9.7質量部とした以外は、実施例1と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 5
Without using a bismaleimide compound, 25.2 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) and a phenol novolac resin (manufactured by DIC, TD-2090, hydroxyl equivalent of 105) as a phenol resin-based curing agent. ) A resin varnish was prepared in the same manner as in Example 1 except that the amount was 9.7 parts by mass to obtain a prepreg, a resin sheet, a laminate, a printed wiring board, and a semiconductor device.

比較例6
ビスマレイミド化合物を用いず、ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を28.4質量部とし、かつ、芳香族ジアミン系硬化剤として4,4’−ジアミノジフェニルスルホン(三井化学ファイン製、4,4’−DAS、硬化剤当量62)6.5質量部とした以外はとした以外は、実施例5と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 6
Without using a bismaleimide compound, 28.4 parts by mass of a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) and 4,4′-diaminodiphenylsulfone (Mitsui Chemical Fine) as an aromatic diamine-based curing agent Resin varnish was prepared in the same manner as in Example 5 except that it was made except for 4,4'-DAS, curing agent equivalent 62) 6.5 parts by mass, and a prepreg, resin sheet, laminate, print A wiring board and a semiconductor device were obtained.

比較例7
ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)に代えて1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタン(DIC製、HP−4700)を9.5質量部とし、ビスマレイミド化合物として2,2’−ビス−[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成製、BMI−80)22.6質量部かつ、芳香族ジアミン系硬化剤として4,4’−ジアミノジフェニルメタン(東京化成製、硬化剤当量49.5)2.8質量部とした以外は、実施例6と同様にして樹脂ワニスを調製し、プリプレグ、樹脂シート、積層板、プリント配線板、及び半導体装置を得た。
Comparative Example 7
9.5 parts by mass of 1,1-bis (2,7-diglycidyloxy-1-naphthyl) methane (manufactured by DIC, HP-4700) instead of naphthylene ether type epoxy compound (manufactured by DIC, HP-6000) As a bismaleimide compound, 22.6 parts by mass of 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (manufactured by Kay Chemical Co., Ltd., BMI-80) and an aromatic diamine-based curing agent A resin varnish was prepared in the same manner as in Example 6 except that 2.8 parts by mass of 4,4′-diaminodiphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd., curing agent equivalent 49.5) was prepared, and a prepreg, a resin sheet, a laminate, A printed wiring board and a semiconductor device were obtained.

各実施例及び比較例により得られた樹脂ワニス及び積層板について、次の各評価を行った。各評価を、評価方法と共に以下に示す。また得られた結果を表1と表2に示す。   The following evaluation was performed about the resin varnish and laminated board which were obtained by each Example and the comparative example. Each evaluation is shown below together with the evaluation method. The obtained results are shown in Tables 1 and 2.

[評価方法]
(1)硬化後の樹脂組成物のガラス転移温度
上記実施例及び比較例で得られた厚さ40μmの樹脂シートを2枚重ね、220℃で180分プレスを行い、銅箔付き樹脂板を得た。この銅箔付き樹脂板を全面エッチングし、6mm×25mmの試験片を作製し、DMA装置(TAインスツルメント社製動的粘弾性測定装置DMA983)を用いて5℃/分で昇温し、tanδのピーク位置をガラス転移温度(℃)とした。
[Evaluation method]
(1) Glass transition temperature of resin composition after curing Two resin sheets having a thickness of 40 μm obtained in the above examples and comparative examples are stacked and pressed at 220 ° C. for 180 minutes to obtain a resin plate with copper foil. It was. The entire surface of the resin sheet with copper foil is etched to prepare a 6 mm × 25 mm test piece, and the temperature is raised at 5 ° C./min using a DMA device (Dynamic Viscoelasticity Measuring Device DMA983 manufactured by TA Instruments). The peak position of tan δ was defined as the glass transition temperature (° C.).

(2)硬化後の樹脂組成物の線膨張係数
上記実施例及び比較例で得られた厚さ40μmの樹脂シートを2枚重ね、220℃で180分プレスを行い、銅箔付き樹脂板を得た。この銅箔付き樹脂板を全面エッチングし、5mm×20mmの試験片を作製し、TMA装置(TAインスツルメント社製)を用いて5℃/分の条件で、厚み方向(Z方向)のガラス転移温度以下の領域の線膨張係数を測定した。
(2) Linear expansion coefficient of resin composition after curing Two resin sheets with a thickness of 40 μm obtained in the above examples and comparative examples were stacked and pressed at 220 ° C. for 180 minutes to obtain a resin plate with copper foil. It was. The entire surface of this resin sheet with copper foil is etched to prepare a test piece of 5 mm × 20 mm, and a glass in the thickness direction (Z direction) is used under the condition of 5 ° C./min using a TMA apparatus (manufactured by TA Instruments). The linear expansion coefficient in the region below the transition temperature was measured.

(3)硬化後の樹脂組成物の25℃における弾性率(ヤング率)
上記実施例及び比較例で得られた厚さ40μmの樹脂シートを2枚重ね、220℃で180分プレスを行い、銅箔付き樹脂板を得た。この銅箔付き樹脂板を全面エッチングし、6mm×25mmの試験片を作製し、DMA装置(TAインスツルメント社製動的粘弾性測定装置DMA983)を用いて5℃/分で昇温し、25℃での引っ張り弾性率を測定した。
(3) Elastic modulus at 25 ° C. (Young's modulus) of the cured resin composition
Two resin sheets with a thickness of 40 μm obtained in the above Examples and Comparative Examples were stacked and pressed at 220 ° C. for 180 minutes to obtain a resin plate with copper foil. The entire surface of the resin sheet with copper foil is etched to prepare a 6 mm × 25 mm test piece, and the temperature is raised at 5 ° C./min using a DMA device (Dynamic Viscoelasticity Measuring Device DMA983 manufactured by TA Instruments). The tensile elastic modulus at 25 ° C. was measured.

(4)積層板の半田耐熱性
上記実施例及び比較例で得られた積層板を50mm×50mmにグラインダーソーでカットした後、エッチングにより銅箔を1/4だけ残した試料を作製し、JIS C 6481に準拠して評価した。評価は、121℃、100%、2時間、PCT吸湿処理を行っ
た後に、288℃の半田槽に30秒間浸漬した後で外観の異常の有無を調べた。
(4) Solder heat resistance of laminated plate After the laminated plates obtained in the above examples and comparative examples were cut into 50 mm x 50 mm with a grinder saw, a sample was prepared by leaving only 1/4 of the copper foil by etching. Evaluation was performed according to C 6481. The evaluation was performed by performing PCT moisture absorption treatment at 121 ° C., 100% for 2 hours, and then immersing in a solder bath at 288 ° C. for 30 seconds, and then checking for an appearance abnormality.

(5)積層板の線膨張係数
上記実施例及び比較例で得られた厚さ0.4mmの両面銅張積層板を全面エッチングし、得られた積層板から5mm×20mmの試験片を作製し、TMA装置(TAインスツルメント社製)を用いて5℃/分の条件で、面方向(X方向)の線膨張係数を測定した。
(5) Coefficient of linear expansion of laminated plate The double-sided copper-clad laminate of 0.4 mm thickness obtained in the above examples and comparative examples was etched entirely, and a test piece of 5 mm × 20 mm was prepared from the obtained laminate. The linear expansion coefficient in the plane direction (X direction) was measured using a TMA apparatus (manufactured by TA Instruments) at 5 ° C./min.

(6)半導体装置におけるプリント配線板の反り
上記実施例及び比較例で得られた半導体装置を、温度30℃、湿度70%の雰囲気下で196時間放置後、260℃リフローを3回行った後、半導体装置におけるプリント配線板の反りを評価した。リフロー条件は、プレヒート(160〜200℃、50〜60秒で昇温)、加熱(200〜260℃、65〜75秒で昇温)、リフロー(260〜262℃、5〜10秒)及び冷却(262〜30℃、15分)を1サイクルとした。温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製、形式LS220−MT100MT50)を用い、上記測定機のサンプルチャンバーに上記で得られた半導体装置の半導体素子面を下にして設置し、多層プリント配線板の高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。反り量に関しては、150μmを超えるとマザーボード実装時に接続不良を起こす可能性が高くなる。
(6) Warpage of printed wiring board in semiconductor device After leaving the semiconductor devices obtained in the examples and comparative examples in an atmosphere of temperature 30 ° C. and humidity 70% for 196 hours, and performing 260 ° C. reflow three times. The warpage of the printed wiring board in the semiconductor device was evaluated. The reflow conditions are preheating (160 to 200 ° C., raising temperature in 50 to 60 seconds), heating (200 to 260 ° C., raising temperature in 65 to 75 seconds), reflow (260 to 262 ° C., 5 to 10 seconds) and cooling. (262-30 degreeC, 15 minutes) was made into 1 cycle. Using a temperature variable laser three-dimensional measuring machine (manufactured by Hitachi Technology & Service, model LS220-MT100MT50), the semiconductor device surface of the semiconductor device obtained above is placed in the sample chamber of the measuring machine, and multilayer printing is performed. The displacement in the height direction of the wiring board was measured, and the largest value of the displacement difference was taken as the warpage amount. Regarding the warpage amount, if it exceeds 150 μm, there is a high possibility of causing a connection failure when the mother board is mounted.

[評価結果]
表1から明らかなように、実施例1〜10は、本発明によるエポキシ樹脂組成物、ならびに、これを用いた積層板、プリント配線板及び半導体装置であり、硬化後の高いガラス転移温度、低い線膨張係数及び弾性率の相乗効果として、半導体装置におけるプリント配線板の反りが抑制されていることが分かる。また、いずれの実施例も半田耐熱性に問題はなかった。一方、表2から明らかなように、ナフチレンエーテル型エポキシ化合物(DIC製、HP−6000)を用いず、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタンを使用した比較例1、3、4は、硬化後の樹脂組成物のガラス転移温度は高くなるが、硬化後の樹脂組成物の線膨張係数及び弾性率、ならびに、積層板の線膨張係数も高くなり、全体として半導体装置におけるプリント配線板の反りが顕著に大きくなった。また、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタンを使用し、ビスマレイミドを多量に用いた比較例7では、半導体装置におけるプリント配線板の反りは良好であったが、積層板の半田耐熱性が悪化した。反対に、エポキシ化合物として1,6−ジグリシジルオキシナフタレンを使用した比較例2は、硬化後の樹脂組成物の線膨張係数及び弾性率、ならびに、積層板の線膨張係数については実施例1〜10と同等であるものの、ガラス転移温度が低く、全体として基板の反りを抑制することができなかった。また、ビスマレイミド化合物を用いなかった比較例5、6は硬化後の樹脂組成物の線膨張係数及び積層板の線膨張係数が低くならず、全体として基板の反りを抑制することができなかった。
以下、参考形態の例を付記する。
[1] 下記一般式(1)で表されるナフチレンエーテル型エポキシ化合物と、ビスマレイミド化合物と、無機充填剤とを含んでなるエポキシ樹脂組成物。
(式中、nは1〜20の整数である。Rはそれぞれ独立に水素原子、ベンジル基、アルキル基、下式(2)である。)
(式中、Arはそれぞれ独立的にフェニレン基、ナフチレン基であり、mは1又は2の整数である。)
[2] 熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)が160℃以上である第[1]項に記載のエポキシ樹脂組成物。
[3] 熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)未満における線膨張係数が40ppm/℃未満である第[1]項又は第[2]項に記載のエポキシ樹脂組成物。
[4] 熱硬化後のエポキシ樹脂組成物の25℃における弾性率(ヤング率)が1〜10GPaの範囲内にある第[1]項〜第[3]項のいずれか1項に記載のエポキシ樹脂組成物。
[5] 上記無機充填剤が平均粒子径10nm〜150nmのシリカナノ粒子を含む第[1]項〜第[4]項のいずれか1項に記載のエポキシ樹脂組成物。
[6] 上記無機充填剤が平均粒子径1μm〜10μmのシリコーンゴム微粒子を含む第[1]項〜第[5]項のいずれか1項に記載のエポキシ樹脂組成物。
[7] 第[1]項〜第[6]項のいずれか1項に記載のエポキシ樹脂組成物を基材に含浸させてなるプリプレグ。
[8] 第[7]項に記載のプリプレグの少なくとも片面上に金属層を配置してなる積層板。
[9] 第[7]項に記載のプリプレグを2枚以上積層したプリプレグ積層体の少なくとも片面上に金属層を配置してなる積層板。
[10] 第[1]項〜第[6]項のいずれか1項に記載のエポキシ樹脂組成物を支持フィルム又は金属箔上に配置してなる樹脂シート。
[11] 第[7]項に記載のプリプレグ、第[8]項もしくは第[9]項に記載の積層板、又は第[10]項に記載の樹脂シートから形成されたプリント配線板。
[12] 第[11]項に記載のプリント配線板に半導体素子を搭載してなる半導体装置。
[Evaluation results]
As is apparent from Table 1, Examples 1 to 10 are the epoxy resin composition according to the present invention, and a laminated board, printed wiring board and semiconductor device using the same, and a high glass transition temperature after curing and low. As a synergistic effect of the linear expansion coefficient and the elastic modulus, it can be seen that the warpage of the printed wiring board in the semiconductor device is suppressed. In all the examples, there was no problem in solder heat resistance. On the other hand, as is clear from Table 2, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) methane was used without using a naphthylene ether type epoxy compound (manufactured by DIC, HP-6000). Comparative Examples 1, 3, and 4 increase the glass transition temperature of the cured resin composition, but also increase the linear expansion coefficient and elastic modulus of the cured resin composition, and the linear expansion coefficient of the laminate, As a whole, the warpage of the printed wiring board in the semiconductor device was significantly increased. In Comparative Example 7 using 1,1-bis (2,7-diglycidyloxy-1-naphthyl) methane and using a large amount of bismaleimide, the warp of the printed wiring board in the semiconductor device was good. However, the heat resistance of the laminated board deteriorated. On the other hand, Comparative Example 2 using 1,6-diglycidyloxynaphthalene as an epoxy compound is the same as in Examples 1 to 4 regarding the linear expansion coefficient and elastic modulus of the cured resin composition, and the linear expansion coefficient of the laminate. Although it is equivalent to 10, the glass transition temperature was low, and the warpage of the substrate as a whole could not be suppressed. Further, in Comparative Examples 5 and 6 in which no bismaleimide compound was used, the linear expansion coefficient of the cured resin composition and the linear expansion coefficient of the laminated plate were not lowered, and it was not possible to suppress the warpage of the substrate as a whole. .
Hereinafter, examples of the reference form will be added.
[1] An epoxy resin composition comprising a naphthylene ether type epoxy compound represented by the following general formula (1), a bismaleimide compound, and an inorganic filler.
(In the formula, n is an integer of 1 to 20. Each R is independently a hydrogen atom, a benzyl group, an alkyl group, or the following formula (2).)
(In the formula, Ar is each independently a phenylene group or a naphthylene group, and m is an integer of 1 or 2.)
[2] The epoxy resin composition according to item [1], wherein the epoxy resin composition after thermosetting has a glass transition temperature (Tg) of 160 ° C. or higher.
[3] The epoxy resin composition according to item [1] or [2], wherein a linear expansion coefficient at less than a glass transition temperature (Tg) of the epoxy resin composition after thermosetting is less than 40 ppm / ° C.
[4] The epoxy according to any one of items [1] to [3], wherein the epoxy resin composition after thermosetting has an elastic modulus (Young's modulus) at 25 ° C. of 1 to 10 GPa. Resin composition.
[5] The epoxy resin composition according to any one of [1] to [4], wherein the inorganic filler includes silica nanoparticles having an average particle diameter of 10 nm to 150 nm.
[6] The epoxy resin composition according to any one of [1] to [5], wherein the inorganic filler contains silicone rubber fine particles having an average particle diameter of 1 μm to 10 μm.
[7] A prepreg obtained by impregnating a base material with the epoxy resin composition according to any one of items [1] to [6].
[8] A laminate comprising a metal layer disposed on at least one surface of the prepreg according to item [7].
[9] A laminate comprising a metal layer disposed on at least one surface of a prepreg laminate in which two or more prepregs according to the item [7] are laminated.
[10] A resin sheet obtained by disposing the epoxy resin composition according to any one of items [1] to [6] on a support film or a metal foil.
[11] A printed wiring board formed from the prepreg according to item [7], the laminate according to item [8] or [9], or the resin sheet according to item [10].
[12] A semiconductor device comprising a semiconductor element mounted on the printed wiring board according to the item [11].

本発明のエポキシ樹脂組成物は、ガラス繊維基材等の基材に含浸させプリプレグとして、さらにはそのプリプレグを用いた積層板として、用いることができる。また、本発明のエポキシ樹脂組成物の硬化物は、優れた絶縁性を有することから、例えばプリント配線板の絶縁層に好適に用いることができる。さらに本発明のエポキシ樹脂組成物の硬化物は、低線膨張であり、耐熱性、及び導体回路との密着性に優れることから、半導体装置のインターポーザとしても用いることができる。半導体装置のプリント配線板としては、マザーボード及びインターポーザが知られている。インターポーザは、マザーボードと同様のプリント配線板であるが、半導体素子(ベアチップ)又はプリント配線板とマザーボードの間に介在し、マザーボード上に搭載される。インターポーザは、マザーボードと同様に、プリント配線板を実装する基板として用いてもよいが、マザーボードと異なる特有の使用方法としては、パッケージ基板又はモジュール基板として用いられる。パッケージ基板とは、プリント配線板の基板としてインターポーザが用いられるという意味である。プリント配線板には、半導体素子をリードフレーム上に搭載し、両者をワイアボンディングで接続し、樹脂で封止するタイプと、インターポーザをパッケージ基板として用い、半導体素子を当該インターポーザ上に搭載し、両者をワイアボンディング等の方法で接続し、樹脂で封止するタイプとがある。
The epoxy resin composition of the present invention can be used as a prepreg by impregnating a substrate such as a glass fiber substrate, and further as a laminate using the prepreg. Moreover, since the hardened | cured material of the epoxy resin composition of this invention has the outstanding insulation, it can be used suitably for the insulating layer of a printed wiring board, for example. Furthermore, the cured product of the epoxy resin composition of the present invention has a low linear expansion and is excellent in heat resistance and adhesion to a conductor circuit, and therefore can be used as an interposer of a semiconductor device. As a printed wiring board of a semiconductor device, a mother board and an interposer are known. The interposer is a printed wiring board similar to the mother board, but is interposed between the semiconductor element (bare chip) or the printed wiring board and the mother board and mounted on the mother board. The interposer may be used as a substrate on which a printed wiring board is mounted in the same manner as a mother board. However, the interposer is used as a package substrate or a module substrate as a specific usage method different from the mother board. The package substrate means that an interposer is used as a printed wiring board substrate. In the printed wiring board, a semiconductor element is mounted on a lead frame, both are connected by wire bonding and sealed with resin, and an interposer is used as a package substrate, and a semiconductor element is mounted on the interposer. Are connected by a method such as wire bonding and sealed with resin.

Claims (14)

下記一般式(1)で表されるナフチレンエーテル型エポキシ化合物と、ビスマレイミド化合物と、無機充填剤とを含んでなるエポキシ樹脂組成物であって、
熱硬化後のエポキシ樹脂組成物の25℃におけるヤング率が1〜10GPaの範囲内にあるエポキシ樹脂組成物。
(式中、nは1〜20の整数である。Rはそれぞれ独立に水素原子、ベンジル基、アルキル基、下式(2)である。)
(式中、Arはそれぞれ独立にフェニレン基、ナフチレン基であり、mは1又は2の整数である。)
An epoxy resin composition comprising a naphthylene ether type epoxy compound represented by the following general formula (1), a bismaleimide compound, and an inorganic filler ,
An epoxy resin composition having a Young's modulus at 25 ° C. of 1 to 10 GPa of the epoxy resin composition after thermosetting.
(In the formula, n is an integer of 1 to 20. Each R is independently a hydrogen atom, a benzyl group, an alkyl group, or the following formula (2).)
(In the formula, Ar is each independently a phenylene group or a naphthylene group, and m is an integer of 1 or 2.)
熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)が160℃以上213℃以下である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the epoxy resin composition after thermosetting has a glass transition temperature (Tg) of 160 ° C or higher and 213 ° C or lower . 熱硬化後のエポキシ樹脂組成物のガラス転移温度(Tg)未満における線膨張係数が40ppm/℃未満である請求項1又は2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1 or 2, wherein the epoxy resin composition after thermosetting has a linear expansion coefficient of less than 40 ppm / ° C at a glass transition temperature (Tg) of less than 40 ppm / ° C. 上記無機充填剤が平均粒子径10nm〜150nmのシリカナノ粒子を含む請求項1〜のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3 , wherein the inorganic filler includes silica nanoparticles having an average particle diameter of 10 nm to 150 nm. 上記無機充填剤が平均粒子径1μm〜10μmのシリコーンゴム微粒子を含む請求項1〜のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4 , wherein the inorganic filler contains silicone rubber fine particles having an average particle diameter of 1 µm to 10 µm. 上記エポキシ樹脂組成物中の上記ビスマレイミド化合物の含有量は、エポキシ樹脂組成物全体から上記無機充填剤を除いた組成物中の35%〜55質量%である請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物。The content of the bismaleimide compound in the epoxy resin composition is 35% to 55% by mass in the composition excluding the inorganic filler from the entire epoxy resin composition. The epoxy resin composition according to item. 上記エポキシ樹脂組成物中の上記ナフチレンエーテル型エポキシ化合物の含有量は、エポキシ樹脂組成物全体から上記無機充填剤を除いた組成物に対して、30〜55質量%の範囲内である請求項1〜6のいずれか1項に記載のエポキシ樹脂組成物。The content of the naphthylene ether type epoxy compound in the epoxy resin composition is in the range of 30 to 55 mass% with respect to the composition obtained by removing the inorganic filler from the entire epoxy resin composition. The epoxy resin composition according to any one of 1 to 6. 上記無機充填剤の含有量は、溶剤を除くエポキシ樹脂組成物の総量に対して30〜75質量%の範囲内である請求項1〜7のいずれか1項に記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 7, wherein the content of the inorganic filler is in the range of 30 to 75 mass% with respect to the total amount of the epoxy resin composition excluding the solvent. 請求項1〜のいずれか1項に記載のエポキシ樹脂組成物を基材に含浸させてなるプリプレグ。 A prepreg obtained by impregnating a base material with the epoxy resin composition according to any one of claims 1 to 8 . 請求項に記載のプリプレグの少なくとも片面上に金属層を配置してなる積層板。 A laminate comprising a metal layer disposed on at least one surface of the prepreg according to claim 9 . 請求項に記載のプリプレグを2枚以上積層したプリプレグ積層体の少なくとも片面上に金属層を配置してなる積層板。 A laminate comprising a metal layer disposed on at least one surface of a prepreg laminate in which two or more prepregs according to claim 9 are laminated. 請求項1〜のいずれか1項に記載のエポキシ樹脂組成物を支持フィルム又は金属箔上に配置してなる樹脂シート。 The resin sheet formed by arrange | positioning the epoxy resin composition of any one of Claims 1-8 on a support film or metal foil. 請求項に記載のプリプレグ、請求項10もしくは11に記載の積層板、又は請求項1に記載の樹脂シートから形成されたプリント配線板。 The prepreg according to claim 9, the laminate according to claim 10 or 11, or claim 1 second printed circuit board formed from a resin sheet according to. 請求項1に記載のプリント配線板に半導体素子を搭載してなる半導体装置。 Semiconductor device comprising a semiconductor element mounted on a printed wiring board according to claim 1 3.
JP2011250226A 2011-11-16 2011-11-16 Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device Expired - Fee Related JP5344022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250226A JP5344022B2 (en) 2011-11-16 2011-11-16 Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250226A JP5344022B2 (en) 2011-11-16 2011-11-16 Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2013104029A JP2013104029A (en) 2013-05-30
JP5344022B2 true JP5344022B2 (en) 2013-11-20

Family

ID=48623826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250226A Expired - Fee Related JP5344022B2 (en) 2011-11-16 2011-11-16 Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5344022B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122339A (en) * 2012-11-26 2014-07-03 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg, laminate, print circuit board, mounting substrate, and method for producing thermosetting resin composition
JP2014240456A (en) * 2013-06-11 2014-12-25 住友ベークライト株式会社 Prepreg with primer layer, metal-clad laminate, printed wiring board and semiconductor package
JP6229439B2 (en) * 2013-11-05 2017-11-15 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, and semiconductor device
JP2016069401A (en) * 2014-09-26 2016-05-09 住友ベークライト株式会社 Prepreg, resin board, metal-clad laminate, printed wiring board, and semiconductor device
CN107428963B (en) * 2015-03-12 2021-02-09 琳得科株式会社 Film for forming protective film
JP6602563B2 (en) * 2015-06-11 2019-11-06 ソマール株式会社 Powder paint
JP2018531317A (en) * 2015-08-08 2018-10-25 デジグナー モレキュールズ インク. Anionic curable composition
US10325863B2 (en) 2017-02-28 2019-06-18 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing same
KR102049024B1 (en) * 2017-03-22 2019-11-26 주식회사 엘지화학 Resin composition for semiconductor package, prepreg and metal clad laminate using the same
KR102057255B1 (en) 2017-03-22 2019-12-18 주식회사 엘지화학 Resin composition for semiconductor package, prepreg and metal clad laminate using the same
JP6950536B2 (en) * 2018-01-09 2021-10-13 味の素株式会社 Resin composition
JP6978472B2 (en) * 2018-08-27 2021-12-08 積水化学工業株式会社 Manufacturing method of multi-layer printed wiring board, resin film and multi-layer printed wiring board
JP6978471B2 (en) * 2018-08-27 2021-12-08 積水化学工業株式会社 Manufacturing method of multi-layer printed wiring board, resin film and multi-layer printed wiring board
KR20210124174A (en) * 2019-02-06 2021-10-14 미츠비시 가스 가가쿠 가부시키가이샤 Compositions, prepregs, resin sheets, laminates, and printed wiring boards
JP7424168B2 (en) * 2020-03-31 2024-01-30 味の素株式会社 Resin compositions, resin pastes, cured products, resin sheets, printed wiring boards, semiconductor chip packages, and semiconductor devices
JP7424167B2 (en) * 2020-03-31 2024-01-30 味の素株式会社 Resin compositions, cured products of resin compositions, resin sheets, printed wiring boards, semiconductor chip packages, and semiconductor devices
WO2022113892A1 (en) 2020-11-27 2022-06-02 信越化学工業株式会社 Thermosetting resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105315435A (en) * 2010-03-02 2016-02-10 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP5381869B2 (en) * 2010-03-31 2014-01-08 住友ベークライト株式会社 Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device

Also Published As

Publication number Publication date
JP2013104029A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5344022B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5381869B2 (en) Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5771987B2 (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
JP5522051B2 (en) Multilayer printed wiring board and semiconductor device
TWI494337B (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminated base material for printed wiring board, printed wiring board and semiconductor device
TWI453228B (en) Epoxy resin composition, prepreg, laminate, multilayered printed circuit board, and semiconductor device and insulating resin sheet and method for manufacturing multilayered printed circuit board
JP5206600B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP5849390B2 (en) Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP6186977B2 (en) Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
KR20130133199A (en) Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
KR102582537B1 (en) Manufacturing method of printed wiring board, manufacturing method of semiconductor device
JP2010174242A (en) Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
JP5428232B2 (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
KR101526645B1 (en) Resin composition, prepreg, resin sheet, metal-clad laminate, printed wiring board, multilayer printed wiring board, and semiconductor device
JP5549329B2 (en) Thermosetting composition for circuit board
JP2011219674A (en) Thermosetting resin composition for circuit board
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2012153752A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP5573392B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
WO2007108087A1 (en) Insulating resin layer, insulating resin layer with carrier and multilayer printed wiring board
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
KR20160096606A (en) Mold-release polyimide film with adhesive layer, laminated board having mold-release polyimide film with adhesive layer, laminated board, single-layer or multilayer wiring board having mold-release polyimide film with adhesive layer, and method for producing multilayer wiring board
JP5293654B2 (en) Circuit board resin composition, prepreg, laminate, printed wiring board, and semiconductor device
JP2014080493A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2011162622A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5344022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees