JPH11157009A - Manufacture of metal foil-clad laminated sheet - Google Patents

Manufacture of metal foil-clad laminated sheet

Info

Publication number
JPH11157009A
JPH11157009A JP9325544A JP32554497A JPH11157009A JP H11157009 A JPH11157009 A JP H11157009A JP 9325544 A JP9325544 A JP 9325544A JP 32554497 A JP32554497 A JP 32554497A JP H11157009 A JPH11157009 A JP H11157009A
Authority
JP
Japan
Prior art keywords
metal foil
woven fabric
clad laminate
prepreg
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9325544A
Other languages
Japanese (ja)
Inventor
Masahisa Ose
昌久 尾瀬
Akira Murai
曜 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9325544A priority Critical patent/JPH11157009A/en
Publication of JPH11157009A publication Critical patent/JPH11157009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of a metal foil-clad laminated sheet, in which the rate of dimensional change and its scattering are small and the accuracy of a sheet thickness is favorable. SOLUTION: In a metal foil-clad laminated sheet, which is produced by piling-up a required number of prepregs, each of which is obtained by impregnating a glass woven fabric with a resin for a laminating sheet and then drying the fabric, under the condition that a metal foil is placed on one side or both the sides of the piled-up prepregs so as to pressurize the piled-up prepregs under heat in order to obtain a metal foil-clad laminating sheet, a prepreg, the resin flow of which is 0.5-3.0% when measured with a method written in IPC TM-6502, 3, 17, is employed. The preferable glass woven fabric to be used has the ratio between thread counts per 25 mm (warp thread count/woof thread count) of 1.0-1.2 and the thermal expansion coefficient of 3×10<-6> / deg.C or less. The preferable metal foil to be used has a hot elongation at 180 deg.C of 10-50 %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、寸法変化率および
そのばらつきが小さく、板厚精度の良好な金属箔張積層
板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal foil-clad laminate having a small dimensional change and a small variation in the dimensional change and a good thickness accuracy.

【0002】[0002]

【従来の技術】プリント配線板は、金属箔張積層板に回
路加工などを施して製造され、この金属箔張積層板は、
基材に熱硬化性樹脂ワニスを含浸、乾燥して得られる複
数のプリプレグと金属箔とを積層し加熱・加圧して製造
される。基材としては、紙、ガラス繊維の織布、ガラス
繊維の不織布などが用途に応じて用いられる。
2. Description of the Related Art A printed wiring board is manufactured by subjecting a metal foil-clad laminate to circuit processing and the like.
It is manufactured by laminating a plurality of prepregs obtained by impregnating a base material with a thermosetting resin varnish and drying and a metal foil, and applying heat and pressure. As the base material, paper, woven fabric of glass fiber, nonwoven fabric of glass fiber, or the like is used depending on the application.

【0003】電子機器の小型化、高集積化に伴い、プリ
ント配線板においても回路形成の微細化が進んでいる。
回路の微細化が進むと寸法変化やそのばらつきにより、
多層化する際の設計が困難であったり、多層化後の位置
ずれなどによって不良が生じる。これに対して、特開昭
59−64350号公報や、特公平05−57752号
公報に示されるように、金属箔張積層板の成形後にエー
ジングを行ったり、金属箔および繊維基材を特定するこ
とで寸法変化率およびそのばらつきを低減する方法が提
案されている。
[0003] With the miniaturization and high integration of electronic equipment, the circuit formation of printed wiring boards has also been miniaturized.
As circuit miniaturization progresses, dimensional changes and their variations cause
It is difficult to design when forming a multilayer, and a defect occurs due to a positional shift after the multilayer. On the other hand, as shown in JP-A-59-64350 and JP-B-05-57752, aging is performed after molding of a metal foil-clad laminate, and a metal foil and a fiber base material are specified. Thus, a method of reducing the dimensional change rate and its variation has been proposed.

【0004】また、金属箔張積層板の製造上の問題とし
て、製造ロットや製品位置の違いによる板厚のばらつき
がある。これに対して、特公平01−7519号公報に
示されるものは、熱盤近隣のプリプレグ性能を特定する
ことで板厚精度を向上させる方法が提案されている。
[0004] Further, as a problem in manufacturing the metal foil-clad laminate, there is a variation in the plate thickness due to a difference in a production lot or a product position. On the other hand, Japanese Patent Publication No. 01-7519 discloses a method of improving the thickness accuracy by specifying the prepreg performance near a hot plate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
59−64350号公報や、特公平05−57752号
公報に提案されている金属箔張積層板の成形後にエージ
ングを行なったり、金属箔および繊維基材を特定するこ
とで寸法変化率およびそのばらつきを低減する方法で
は、製造工程の増加を招来する原因となったり、プリプ
レグに使用する樹脂ワニスの特性などにより大きく左右
されてしまう。また、特公平01−7519号公報で提
案されている熱盤近隣のプリプレグ性能を特定すること
で板厚精度を向上させる方法においては、プリプレグ性
能を熱盤近隣と中央部で区別する必要があり、プリプレ
グ製造時及びプリプレグ積載時に効率を悪化させる原因
となる。
However, the metal foil-clad laminates proposed in Japanese Patent Application Laid-Open No. 59-64350 and Japanese Patent Publication No. 05-57752 may be subjected to aging after molding, or to metal foil and fiber. The method of reducing the dimensional change rate and its variation by specifying the base material causes an increase in the number of manufacturing steps and is greatly influenced by the characteristics of the resin varnish used for the prepreg. Also, in the method proposed in Japanese Patent Publication No. 01-7519 to improve the thickness accuracy by specifying the prepreg performance near the hot plate, it is necessary to distinguish the prepreg performance between the vicinity of the hot plate and the center. This may cause a reduction in efficiency during prepreg production and prepreg loading.

【0006】本発明は上記課題に鑑みてなされたもので
あり、金属箔張積層板の製造方法において、寸法変化率
及びそのばらつきが小さく、且つ板厚精度の良好な金属
箔張積層板を得るための金属箔張積層板の製造方法を提
供することを目的としたものである。
The present invention has been made in view of the above problems, and in a method for manufacturing a metal foil-clad laminate, a metal foil-clad laminate having a small dimensional change rate and its variation and having good thickness accuracy is obtained. To provide a method for manufacturing a metal foil-clad laminate for use in the present invention.

【0007】[0007]

【課題を解決するための手段】本発明は、ガラス織布に
積層板用樹脂を含浸、乾燥させてなるプリプレグを所要
枚数重ね、その片面若しくは両面に金属箔を載置し、加
熱・加圧させて得られる金属箔張積層板において、プリ
プレグの樹脂流れ(IPC TM−650 2.3.1
7記載の測定方法)が、0.5%〜3.0%であるプリ
プレグを用いる金属箔張積層板の製造方法である。そし
て、ガラス織布が、25mm当たりの打ち込み本数の比
率が(たて糸本数/よこ糸本数)=1.0〜1.2のガ
ラス織布であると好ましい金属箔張積層板の製造方法で
ある。また、ガラス織布が、熱膨張係数が3×10-6
℃以下のガラス織布であると好ましい金属箔張積層板の
製造方法である。さらに、金属箔に、180℃における
熱間伸び率が10〜50%の金属箔を用いると好ましい
金属箔張積層板の製造方法である。
According to the present invention, a required number of prepregs obtained by impregnating a glass woven fabric with a resin for a laminate and drying are stacked, and a metal foil is placed on one or both surfaces thereof, and heated and pressed. In the metal foil-clad laminate obtained by this, the resin flow of the prepreg (IPC TM-650 2.3.1)
7) is a method for producing a metal foil-clad laminate using a prepreg of 0.5% to 3.0%. And it is the manufacturing method of the metal foil-clad laminated board whose glass woven fabric is a glass woven fabric in which the ratio of the number of driving per 25 mm is (number of warp yarns / number of weft yarns) = 1.0 to 1.2. Further, the glass woven fabric has a coefficient of thermal expansion of 3 × 10 −6 /
This is a method for producing a metal foil-clad laminate that is preferably a glass woven fabric having a temperature of not more than ° C. Furthermore, it is a preferable method for producing a metal foil-clad laminate using a metal foil having a hot elongation at 180 ° C. of 10 to 50% as the metal foil.

【0008】[0008]

【発明の実施の形態】本発明の第1発明は、ガラス織布
に積層板用樹脂を含浸、乾燥させてなるプリプレグを所
要枚数重ね、その片面若しくは両面に金属箔を載置し、
加熱・加圧させて得られる金属箔張積層板において、プ
リプレグの樹脂流れがIPC TM−650 2.3.
17に記載の測定方法にて、0.5%〜3.0%である
ことを特徴とする。プリプレグの樹脂流れが3.0%未
満であることにより、樹脂の流動を抑え加熱・加圧する
際の歪みを押さえることができ、寸法変化率およびその
ばらつきを小さくすることができる。また、樹脂の流動
が少ないことから、製品端部での板厚が薄くなることも
なく、板厚精度を良好にすることができる。しかしなが
ら、樹脂流れが0.5%未満であると、加熱・加圧して
金属箔張積層板を得る際に、基材のかすれやボイドが発
生する傾向にある。
BEST MODE FOR CARRYING OUT THE INVENTION The first invention of the present invention is to lay a required number of prepregs obtained by impregnating a glass woven fabric with a resin for a laminate and drying the resin, placing a metal foil on one or both surfaces thereof,
In a metal foil-clad laminate obtained by heating and pressing, the resin flow of the prepreg is IPC TM-650 2.3.
17. The measurement method according to item 17, wherein the content is 0.5% to 3.0%. When the resin flow of the prepreg is less than 3.0%, it is possible to suppress the flow of the resin, suppress distortion during heating and pressurizing, and reduce the dimensional change rate and its variation. Further, since the flow of the resin is small, the thickness at the end of the product is not reduced, and the accuracy of the thickness can be improved. However, when the resin flow is less than 0.5%, when the metal foil-clad laminate is obtained by heating and pressurizing, the base material tends to be blurred or voided.

【0009】本発明の第2発明は、請求項1の発明にお
いて、ガラス織布を25mm当たりの打ち込み本数の比
率が(たて糸本数/よこ糸本数)=1.0〜1.2のガ
ラス織布としたものである。25mm当たりの打ち込み
本数の比率が1.0〜1.2であるガラス織布を用いる
ことにより、より一層寸法変化率を小さくできるので好
ましい。ガラス織布の25mm当たりの打ち込み本数の
比率が1.0未満であると、たて方向とよこ方向の寸法
変化率の差が大きくなってしまう。また、この比率が
1.2を超えても、たて方向とよこ方向の寸法変化率の
差が大きくなってしまう。
In a second aspect of the present invention, there is provided the glass woven fabric according to the first aspect, wherein the ratio of the number of the woven fabrics per 25 mm (the number of warp yarns / the number of weft yarns) = 1.0 to 1.2. It was done. It is preferable to use a glass woven fabric having a ratio of the number of shots per 25 mm of 1.0 to 1.2, because the dimensional change rate can be further reduced. If the ratio of the number of shots per 25 mm of the glass woven fabric is less than 1.0, the difference in the dimensional change rate between the vertical direction and the horizontal direction becomes large. Further, even if this ratio exceeds 1.2, the difference in the dimensional change rate between the vertical direction and the horizontal direction will increase.

【0010】本発明の第3発明は、請求項1または請求
項2の発明において、ガラス織布を、熱膨張係数が3×
10-6/℃以下であるガラス織布としたものである。熱
膨張係数が3×10-6/℃以下であるガラス織布を基材
とすることにより、より一層寸法変化率を小さく出来る
ので好ましい。
According to a third aspect of the present invention, in the first or second aspect, the glass woven fabric has a thermal expansion coefficient of 3 ×.
It is a glass woven fabric of 10 −6 / ° C. or less. It is preferable to use a glass woven fabric having a coefficient of thermal expansion of 3 × 10 −6 / ° C. or less as a base material because the dimensional change rate can be further reduced.

【0011】本発明の第4発明は、請求項1、請求項2
または請求項3の発明において、金属箔を180℃にお
ける熱間伸び率(以下、単に熱間伸び率という)が10
〜50%の金属箔としたものである。金属箔として、熱
間伸び率が10%以上の金属箔を用いることにより、加
熱・加圧する際の樹脂基材と金属箔の間に発生する歪み
を抑えることができ、一層寸法変化率を小さくできるよ
うになる。しかしながら、熱間伸び率が50%を超える
と取扱性が悪く、折れしわや、積層するときにしわを生
じやすくなるので、極めて慎重に取り扱う必要があり、
製造工数が上がる結果となる。尚、熱間伸び率とは、測
定金属箔から長方形の試験片を切り取り、この試験片の
温度を180℃として引っ張り試験器により引っ張り、
試験片が破断したときの伸びを%で表したものである。
[0011] The fourth invention of the present invention is the first and second aspects of the present invention.
Alternatively, in the invention according to claim 3, the metal foil has a hot elongation at 180 ° C. (hereinafter, simply referred to as a hot elongation) of 10%.
〜50% of metal foil. By using a metal foil having a hot elongation of 10% or more as a metal foil, it is possible to suppress distortion generated between the resin base material and the metal foil when heating and pressing, and to further reduce the dimensional change rate. become able to. However, if the hot elongation exceeds 50%, the handleability is poor, and it is necessary to handle it very carefully, since it is likely to be broken and wrinkled when laminated.
As a result, the number of manufacturing steps is increased. Incidentally, the hot elongation rate, a rectangular test piece was cut from the metal foil to be measured, and the temperature of the test piece was set to 180 ° C. and pulled by a tensile tester.
The elongation at break of the test piece is expressed in%.

【0012】プリプレグとするために使用される熱硬化
性樹脂としては、エポキシ樹脂、ポリイミド樹脂、不飽
和ポリエステル樹脂、ビスマレイミドートリアジン樹脂
など、従来から積層板用に用いられている熱硬化性樹脂
が挙げられる。これらの熱硬化性樹脂をワニスにすると
きに用いられる溶剤としては、従来公知の溶剤が使用で
きる。
Examples of the thermosetting resin used for forming a prepreg include epoxy resins, polyimide resins, unsaturated polyester resins, and bismaleimide-triazine resins, which are conventionally used for laminated boards. Is mentioned. As a solvent used when these thermosetting resins are formed into a varnish, conventionally known solvents can be used.

【0013】プリプレグの樹脂流れをIPC TM−6
50 2.3.17に記載の測定方法にて、0.5%〜
3.0%に製造するための方法、条件としては、例えば
プリプレグのBステージの硬化度を進める方法、充填材
導入によるチキソ性の付与また高分子樹脂の配合による
高粘度化などの方法が挙げられるが、該プリプレグを得
られるものであれば特に制限はない。
[0013] The resin flow of the prepreg is changed to IPC TM-6.
50 According to the measurement method described in 2.3.17, 0.5% to
Examples of the method and conditions for producing 3.0% include a method of increasing the degree of curing of the B stage of the prepreg, a method of imparting thixotropy by introducing a filler, and a method of increasing the viscosity by blending a polymer resin. However, there is no particular limitation as long as the prepreg can be obtained.

【0014】ガラス織布は25mm当たりの打ち込み本
数の比率が1.0〜1.2であればよく、使用する糸は
特に制限はない。また、織布組織は平織であればよく、
製織するための織機など特に制限はない。さらに、熱硬
化性樹脂との親和性をよくすることから、シランカップ
リング剤等のカップリング剤で処理することが好まし
い。また、熱膨張係数が、3×10-6/℃以下のガラス
織布としては、Sガラス織布(熱膨張係数=2.8×1
-6/℃)などが挙げられる。
[0014] The glass woven fabric may have a ratio of the number of shots per 25 mm of 1.0 to 1.2, and the yarn to be used is not particularly limited. Also, the woven fabric may be a plain weave,
There is no particular limitation on the loom for weaving. Furthermore, in order to improve the affinity with the thermosetting resin, it is preferable to perform treatment with a coupling agent such as a silane coupling agent. As a glass woven fabric having a thermal expansion coefficient of 3 × 10 −6 / ° C. or less, an S glass woven fabric (thermal expansion coefficient = 2.8 × 1)
0 -6 / ° C).

【0015】金属箔張積層板を得るために使用される金
属箔としては、通常銅箔が使用される。熱間伸び率10
%〜50%の銅箔としては、例えば三井金属工業株式会
社からHTE箔、日本電解株式会社からHGR箔及びM
GR箔という商品名でそれぞれ市販されている銅箔が挙
げられる。
As a metal foil used for obtaining a metal foil-clad laminate, a copper foil is usually used. Hot elongation 10
% To 50%, for example, HTE foil from Mitsui Kinzoku Kogyo Co., Ltd., HGR foil and M
A copper foil commercially available under the trade name of GR foil may be used.

【0016】プリプレグと金属箔とから金属箔張積層板
を製造する方法、条件などは、従来同様の方法、条件に
よることができる。すなわち、プリプレグを製造しよう
とする金属箔張積層板の厚さに応じた枚数を重ね、その
外側(通常は両外側)に金属箔を重ね、ステンレス鏡板
などで挟んで、加熱・加圧して金属箔張積層板を得る。
The method and conditions for producing a metal-foil-clad laminate from a prepreg and a metal foil can be the same methods and conditions as in the prior art. That is, the number of sheets corresponding to the thickness of the metal foil-clad laminate for which the prepreg is to be manufactured is stacked, the metal foil is stacked on the outside (usually both sides), sandwiched by a stainless steel end plate or the like, and heated and pressed to form a metal sheet. Obtain a foil-clad laminate.

【0017】本発明の製造方法により製造された金属箔
張積層板は、多層プリント配線板の内層板としても好適
である。すなわち、本発明の製造方法により製造された
金属箔張積層板に回路加工を施して内層板とする。ま
た、本発明の製造方法により片面金属箔張積層板を多層
プリント配線板の外層板として使用することもできる。
これら多層プリント配線板を製造するとき、本発明の製
造方法に用いたプリプレグを接着用プリプレグとして用
いるのが多層プリント配線板の寸法変化やそのばらつき
を小さくすること、また板厚精度を良好にできることか
ら好ましい。ただし、接着用プリプレグを用い多層化す
る際のプレスは回路充填性を考慮し、従来公知の方法条
件において、最適多層化条件を見出す必要がある。
The metal foil-clad laminate manufactured by the manufacturing method of the present invention is also suitable as an inner layer of a multilayer printed wiring board. That is, circuit processing is performed on the metal foil-clad laminate manufactured by the manufacturing method of the present invention to form an inner layer board. Further, the single-sided metal foil-clad laminate can be used as an outer layer of a multilayer printed wiring board by the production method of the present invention.
When manufacturing these multilayer printed wiring boards, the prepreg used in the manufacturing method of the present invention is used as an adhesive prepreg to reduce dimensional changes and variations in the multilayer printed wiring boards and to improve the thickness accuracy. Is preferred. However, it is necessary to find out the optimum multilayering conditions under the conventionally known method conditions in consideration of the circuit filling property in the press at the time of multilayering using the adhesive prepreg.

【0018】プリプレグを加熱・加圧する際、プリプレ
グに使用されているBステージ化された樹脂ワニスは溶
融後硬化する。そのとき、溶融した樹脂ワニスは、加圧
成形によって流動することになる。そして、樹脂が流動
することによって、繊維基材を引っ張り、硬化後の積層
板に歪みを残すことになり、この歪みが寸法変化率やそ
のばらつきを悪化させる原因である。従って、本発明で
は、樹脂流れをIPC TM−650 2.3.17に
記載の測定方法にて0.5%〜3.0%にすることによ
って寸法変化率やそのばらつきを小さくするものであ
る。また、樹脂流れが大きいと金属箔張積層板の加熱・
加圧成形の際、積層板端部の樹脂が製品となる以外の部
分に染み出してしまい、その結果として板厚が薄くな
る。したがって、樹脂流れを低減することでこの現象を
抑えることができ、板厚精度の向上にも有効となる。
When heating and pressurizing the prepreg, the resin varnish in the B-stage used for the prepreg is cured after melting. At that time, the molten resin varnish flows by pressure molding. Then, the flow of the resin causes the fiber base material to be pulled, and the cured laminate is left with strain, and this strain causes the dimensional change rate and its variation to deteriorate. Therefore, in the present invention, the dimensional change rate and its variation are reduced by setting the resin flow to 0.5% to 3.0% by the measuring method described in IPC TM-650 2.3.17. . Also, if the resin flow is large, heating and
At the time of pressure molding, the resin at the edge of the laminated sheet exudes to portions other than the product, resulting in a reduced thickness. Therefore, this phenomenon can be suppressed by reducing the resin flow, which is also effective for improving the thickness accuracy.

【0019】また、ガラス織布の打ち込み本数の比率を
(たて糸本数/よこ糸本数)=1.0〜1.2とする
と、ガラス織布の異方性を無くすことで寸法変化率の異
方性を低減できる。また、例えばJIS R−3413
に規定される糸の呼称がD450 1/0のガラス糸
を、25mm当たりの打ち込み本数の比率が(たて糸本
数/よこ糸本数)=1.25であり、単位面積当たりの
重量が48g/m2であるガラス基材とガラス基材の2
5mm当たりの打ち込み本数の比率が(たて糸本数/よ
こ糸本数)=1.17であり、単位面積当たりの重量が
58g/m2であるガラス基材とを比較すると、同一厚
みのプリプレグを得る際に、ガラス基材の占有率が高く
なり、樹脂の流動を抑制し、歪みを小さくできる。従っ
て、寸法変化率やそのばらつきの低減に有効である。
When the ratio of the number of the woven glass fabrics to be driven is (number of warp yarns / number of weft yarns) = 1.0 to 1.2, the anisotropy of the dimensional change rate is eliminated by eliminating the anisotropy of the glass woven fabric. Can be reduced. Further, for example, JIS R-3413
The ratio of the number of driving yarns per 25 mm to the number of warp yarns per 25 mm is 1.25, and the weight per unit area is 48 g / m 2 . A glass substrate and a glass substrate 2
When the ratio of the number of driving yarns per 5 mm is (the number of warp yarns / the number of weft yarns) = 1.17 and the weight per unit area is 58 g / m 2 , when the prepreg having the same thickness is obtained, As a result, the occupancy of the glass substrate is increased, the flow of the resin is suppressed, and the distortion can be reduced. Therefore, it is effective in reducing the dimensional change rate and its variation.

【0020】また、ガラス織布の熱膨張係数3.0×1
-6/℃以下にすると、ガラス織布の熱による膨張が小
さくなるために、樹脂の流動を押さえる効果があり、寸
法変化率を低減することができる。さらに、熱間伸び率
が10%〜50%の金属箔を用いると、加熱・加圧成形
の際金属箔が樹脂の流動に追従するために、金属箔と樹
脂との間に発生する歪みが小さくなる。その結果、寸法
変化率が小さくなる。
The thermal expansion coefficient of the glass woven fabric is 3.0 × 1
When the temperature is 0 -6 / ° C or less, the expansion of the glass woven fabric due to heat is reduced, which has the effect of suppressing the flow of the resin and can reduce the dimensional change rate. Further, when a metal foil having a hot elongation of 10% to 50% is used, the distortion generated between the metal foil and the resin is reduced because the metal foil follows the flow of the resin at the time of heating and pressing. Become smaller. As a result, the dimensional change rate decreases.

【0021】[0021]

【実施例】以下、本発明の金属箔張積層板の製造方法に
ついて具体的に説明する。 (エポキシ樹脂ワニスの調整)ビスフェノールAノボラ
ック型エポキシ樹脂(エピクロン N−865、大日本
インキ化学工業株式会社、商品名)100重量部及び1
−シアノエチル−2−エチル−4−メチルイミダゾール
0.5重量部をメチルエチルケトン100重量部に溶解
して樹脂ワニスを得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a metal foil-clad laminate of the present invention will be specifically described. (Preparation of epoxy resin varnish) Bisphenol A novolak type epoxy resin (Epiclon N-865, Dainippon Ink and Chemicals, Inc., 100 parts by weight and 1)
-Cyanoethyl-2-ethyl-4-methylimidazole 0.5 part by weight was dissolved in 100 parts by weight of methyl ethyl ketone to obtain a resin varnish.

【0022】(実施例1)ガラス基材にJIS R−3
413に規定される糸の呼称がD450 1/0のガラ
ス糸を、25mm当たりの打ち込み本数の比率が(たて
糸本数/よこ糸本数)=1.25であり、単位面積当た
りの重量が48g/m2であり、熱膨張係数が5.0×
10-6/℃である平織されたガラス織布を基材として用
い、樹脂流れがIPC TM−650 2.3.17に
記載の測定方法にて2.0%、樹脂分が乾燥後で58重
量%となるように含浸し、乾燥して厚さ0.06mmの
プリプレグを得た。得られたプリプレグの両面に厚さ1
8μm、熱間伸び率1.7%の銅箔を重ね、減圧下に、
175℃、圧力3MPaで60分間加熱・加圧して銅張
積層板1を得た。
Example 1 JIS R-3 was applied to a glass substrate.
The ratio of the number of driving yarns per 25 mm to the glass yarn having a designation of D450 1/0 specified in 413 is 25 (the number of warp yarns / the number of weft yarns) = 1.25, and the weight per unit area is 48 g / m 2. And the thermal expansion coefficient is 5.0 ×
Using a plain-woven glass woven fabric of 10 −6 / ° C. as a substrate, the resin flow was 2.0% according to the measurement method described in IPC TM-650 2.3.17, and the resin content was 58% after drying. The prepreg was impregnated so as to obtain a prepreg having a thickness of 0.06 mm. Thickness 1 on both sides of the obtained prepreg
8μm, 1.7% hot elongation of copper foil layered, under reduced pressure,
The copper-clad laminate 1 was obtained by heating and pressing at 175 ° C. and a pressure of 3 MPa for 60 minutes.

【0023】(実施例2)ガラス基材の25mm当たり
の打ち込み本数の比率が(たて糸本数/よこ糸本数)=
1.17であり、単位面積当たりの重量が58g/m2
であり、得られたプリプレグの樹脂分が乾燥後で52重
量%であること以外は実施例1と同様の方法条件にて銅
張積層板2を得た。
(Example 2) The ratio of the number of fibers driven per 25 mm of the glass substrate is (number of warp yarns / number of weft yarns) =
1.17, and the weight per unit area is 58 g / m 2.
A copper clad laminate 2 was obtained under the same method conditions as in Example 1 except that the resin content of the obtained prepreg was 52% by weight after drying.

【0024】(実施例3)ガラス基材の熱膨張係数が
2.8×10-6/℃であること以外は実施例1と同様の
方法条件にて銅張積層板3を得た。
Example 3 A copper-clad laminate 3 was obtained under the same conditions as in Example 1 except that the glass substrate had a coefficient of thermal expansion of 2.8 × 10 −6 / ° C.

【0025】(実施例4)銅箔の熱間伸び率が30.4
%の銅箔(HTE−18、三井金属工業株式会社、商品
名)であること以外は実施例1と同様の方法条件にて銅
張積層板を得た。
Example 4 The hot elongation of the copper foil was 30.4.
% Copper foil (HTE-18, Mitsui Kinzoku Kogyo Co., Ltd., trade name), and a copper-clad laminate was obtained under the same method conditions as in Example 1.

【0026】(比較例1)ガラス基材にJIS R−3
413に規定される糸の呼称がD450 1/0のガラ
ス糸を、25mm当たりの打ち込み本数の比率が(たて
糸本数/よこ糸本数)=1.25であり、単位面積当た
りの重量が48g/m2であり、熱膨張係数が5.0×
10-6/℃である平織されたガラス織布を基材として用
い、樹脂流れがIPC TM−650 2.3.17に
記載の測定方法にて10.0%、樹脂分が乾燥後で58
重量%となるように含浸し、乾燥して厚さ0.06mm
のプリプレグを得る以外は、実施例1と同様の方法条件
にて銅張積層板4を得た。
(Comparative Example 1) JIS R-3 was used as a glass substrate.
The ratio of the number of driving yarns per 25 mm to the glass yarn having a designation of D450 1/0 specified in 413 is 25 (the number of warp yarns / the number of weft yarns) = 1.25, and the weight per unit area is 48 g / m 2. And the thermal expansion coefficient is 5.0 ×
Using a plain-woven glass woven fabric of 10 −6 / ° C. as a substrate, the resin flow was 10.0% according to the measurement method described in IPC TM-650 2.3.17, and the resin content was 58% after drying.
Impregnated to a weight% and dried to a thickness of 0.06 mm
A copper-clad laminate 4 was obtained under the same method conditions as in Example 1 except that the prepreg was obtained.

【0027】以上製作した銅張積層板について、寸歩変
化率およびそのばらつき、板厚精度を以下に説明するよ
うにして調べ、その結果を表1に示す。
With respect to the copper-clad laminate manufactured as described above, the step change rate, its variation, and the thickness accuracy were examined as described below, and the results are shown in Table 1.

【0028】寸法変化率(JIS C−6481「プリ
ント配線板用銅張積層板試験方法」準拠):銅張積層板
から長さ300mm、幅300mmの大きさの試験片を
切り取り、その四隅に基準マークを付ける。試験片を2
0℃、相対湿度60〜70%の室内に24時間放置した
後、長さ及び幅方向の基準マーク間を測定し、これをL
0とする。次に、試験片の銅箔を全面エッチングし、水
洗乾燥後、80℃で15分間乾燥し、次に温度20℃、
相対湿度60〜70%の室内に11時間放置し、さらに
温度170℃に30分間保持、室温まで冷却した後、長
さ及び幅方向の基準マーク間隔を測定し、これをL1
し、数式1により算出する。
Dimensional change rate (based on JIS C-6481 "Test method for copper-clad laminate for printed wiring boards"): A test piece having a length of 300 mm and a width of 300 mm is cut out from the copper-clad laminate, and the four corners are standardized. Add a mark. 2 test pieces
After leaving for 24 hours in a room at 0 ° C. and a relative humidity of 60 to 70%, the distance between the reference marks in the length and width directions was measured, and
Set to 0 . Next, the entire surface of the copper foil of the test piece was etched, washed, dried, and then dried at 80 ° C. for 15 minutes.
And it left relative humidity 60% to 70% of the 11 indoors hours, further temperature 170 ° C. to hold for 30 minutes, cooled to room temperature, measuring the reference mark spacing length and width direction, which was the L 1, Equation 1 It is calculated by:

【0029】[0029]

【数1】寸法変化率=(L0−L1)×100/L0 Dimension change rate = (L 0 −L 1 ) × 100 / L 0

【0030】寸法変化率のばらつき:上記測定方法にて
算出した寸法変化率の細大値L(MAX)と最小値L(MIN)の
差とし、数式2により算出する。
Variation in dimensional change rate: The difference between the small value L (MAX) and the minimum value L (MIN) of the dimensional change rate calculated by the above-mentioned measuring method is calculated by equation 2.

【0031】[0031]

【数2】寸法変化率のばらつき=L(MAX)−L(MIN)## EQU2 ## Variation of dimensional change rate = L (MAX) -L (MIN)

【0032】板厚精度:寸法変化率に使用したものと同
様の試験片を全面エッチングし、その試験片の周囲の8
点の厚さを測定し、その時の測定結果より3σ(σ;標
準偏差)を算出した。
Thickness accuracy: A test piece similar to that used for the dimensional change rate was etched over the entire surface, and 8 parts around the test piece were etched.
The thickness of the point was measured, and 3σ (σ; standard deviation) was calculated from the measurement result at that time.

【0033】[0033]

【表1】 寸法変化率(%) 寸法変化率のばらつき(%) 板厚精度 たて方向 よこ方向 たて方向 よこ方向 (3σ) 実施例1 -0.029 -0.074 0.017 0.028 0.006 実施例2 -0.015 -0.037 0.010 0.015 0.006 実施例3 -0.017 -0.058 0.016 0.027 0.006 実施例4 -0.018 -0.059 0.016 0.026 0.006 比較例 -0.055 -0.109 0.031 0.043 0.012 [Table 1] Dimensional change rate (%) Dimensional change rate variation (%) Sheet thickness accuracy Vertical direction Vertical direction Vertical direction Horizontal direction (3σ) Example 1 -0.029 -0.074 0.017 0.028 0.006 Example 2 -0.015 -0.037 0.010 0.015 0.006 Example 3 -0.017 -0.058 0.016 0.027 0.006 Example 4 -0.018 -0.059 0.016 0.026 0.006 Comparative example -0.055 -0.109 0.031 0.043 0.012

【0034】表1より、実施例1においては、比較例と
比較して寸法変化率およびそのばらつきが非常に小さく
なっており、板厚精度も良好になつていることが示され
ている。また、ガラス基材の25mm当たりの打ち込み
本数の比率が(たて糸本数/よこ糸本数)=1.17の
ガラス基材を用いた実施例2では、実施例1よりもさら
に寸法変化率およびそのばらつきが小さくなっているこ
とが示され、熱膨張係数が2.8×10-6/℃のガラス
織布を用いた実施例3、熱間伸び率が30.4%の銅箔
を用いた実施例4についても実施例1より更に寸法変化
率が小さくなっていることが示されている。
Table 1 shows that, in Example 1, the dimensional change rate and its variation are extremely small as compared with the comparative example, and the plate thickness accuracy is also good. Further, in the second embodiment using the glass base material in which the ratio of the number of driving per 25 mm of the glass base material (the number of the warp yarns / the number of the weft yarns) = 1.17, the dimensional change rate and the variation thereof are further lower than in the first embodiment. Example 3 shows that it is smaller and has a coefficient of thermal expansion of 2.8 × 10 −6 / ° C. Example 3 using a woven glass fabric, Example using a copper foil having a hot elongation of 30.4% 4 also shows that the dimensional change rate is smaller than in Example 1.

【0035】[0035]

【発明の効果】請求項1の発明によれば、寸法変化率お
よびそのばらつきが小さく、板厚精度の良好な金属箔張
積層板を製造することができ、また請求項2の発明によ
れば、請求項1の発明によるよりも更に寸法変化率およ
びばらつきの小さい金属箔張積層板を製造することがで
きる。さらに、請求項3または請求項4の発明によれ
ば、請求項1の発明によるよりも更に寸法変化率の小さ
い金属箔張積層板を製造することができる。
According to the first aspect of the present invention, it is possible to manufacture a metal foil-clad laminate having a small dimensional change rate and its variation and a good thickness accuracy, and according to the second aspect of the present invention. It is possible to manufacture a metal-foil-clad laminate having a smaller dimensional change and a smaller variation than in the first embodiment. Furthermore, according to the third or fourth aspect of the invention, it is possible to manufacture a metal foil-clad laminate having a smaller dimensional change rate than the first aspect of the invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H05K 1/03 610 H05K 1/03 610G ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // H05K 1/03 610 H05K 1/03 610G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス織布に積層板用樹脂を含浸、乾燥
させてなるプリプレグを所要枚数重ね、その片面若しく
は両面に金属箔を載置し、加熱・加圧させて得られる金
属箔張積層板において、プリプレグの樹脂流れ(IPC
TM−6502.3.17記載の測定方法)が、0.
5%〜3.0%であるプリプレグを用いることを特徴と
する金属箔張積層板の製造方法。
1. A metal foil-clad laminate obtained by impregnating a glass woven fabric with a resin for a laminate, drying a required number of prepregs, placing a metal foil on one or both surfaces thereof, and heating and pressing the metal foil. In the board, the resin flow of prepreg (IPC
Measurement method described in TM-6502.3.17)
A method for producing a metal foil-clad laminate, comprising using a prepreg of 5% to 3.0%.
【請求項2】 ガラス織布が、25mm当たりの打ち込
み本数の比率が(たて糸本数/よこ糸本数)=1.0〜
1.2のガラス織布である請求項1に記載の金属箔張積
層板の製造方法。
2. The glass woven fabric according to claim 1, wherein the ratio of the number of driving yarns per 25 mm is (number of warp yarns / number of weft yarns) = 1.0 to 1.0.
The method for producing a metal foil-clad laminate according to claim 1, which is a glass woven fabric of 1.2.
【請求項3】 ガラス織布が、熱膨張係数が3×10-6
/℃以下のガラス織布である請求項1または請求項2に
記載の金属箔張積層板の製造方法。
3. The glass woven fabric has a coefficient of thermal expansion of 3 × 10 −6.
The method for producing a metal-foil-clad laminate according to claim 1 or 2, which is a glass woven fabric having a temperature of not more than / ° C.
【請求項4】 金属箔が、180℃における熱間伸び率
が10〜50%の金属箔である請求項1ないし請求項3
のいずれかに記載の金属箔張積層板の製造方法。
4. The metal foil having a hot elongation at 180 ° C. of 10 to 50%.
The method for producing a metal foil-clad laminate according to any one of the above.
JP9325544A 1997-11-27 1997-11-27 Manufacture of metal foil-clad laminated sheet Pending JPH11157009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325544A JPH11157009A (en) 1997-11-27 1997-11-27 Manufacture of metal foil-clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325544A JPH11157009A (en) 1997-11-27 1997-11-27 Manufacture of metal foil-clad laminated sheet

Publications (1)

Publication Number Publication Date
JPH11157009A true JPH11157009A (en) 1999-06-15

Family

ID=18178080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325544A Pending JPH11157009A (en) 1997-11-27 1997-11-27 Manufacture of metal foil-clad laminated sheet

Country Status (1)

Country Link
JP (1) JPH11157009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191109A (en) * 2011-03-14 2012-10-04 Sumitomo Bakelite Co Ltd Prepreg for buildup
JP2012191108A (en) * 2011-03-14 2012-10-04 Sumitomo Bakelite Co Ltd Prepreg for buildup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191109A (en) * 2011-03-14 2012-10-04 Sumitomo Bakelite Co Ltd Prepreg for buildup
JP2012191108A (en) * 2011-03-14 2012-10-04 Sumitomo Bakelite Co Ltd Prepreg for buildup

Similar Documents

Publication Publication Date Title
EP0768814B1 (en) Woven glass cloth for printed wiring board and printed wiring products manufactured therefrom
JPH10508720A (en) UD-prepreg with foil and printed wiring board laminate made therefrom
JP3631385B2 (en) Laminate substrate and method for producing the same
US5435877A (en) Process for the production of copper-clad laminate
JP3879512B2 (en) Glass fiber woven fabric, prepreg, and printed wiring board
JP4467449B2 (en) Substrate reinforcing fiber fabric, prepreg using the reinforcing fiber fabric, and printed wiring board substrate
JPH11157009A (en) Manufacture of metal foil-clad laminated sheet
JP2001055642A (en) Cloth for reinforcing resin and laminated board by using the same
JP2001011750A (en) Glass fiber woven fabric
JP4908240B2 (en) Organic fiber woven fabric for laminate reinforcement
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JPH10272733A (en) Manufacture of metal-clad laminate
JP4540186B2 (en) Glass cloth and printed wiring board
JPH05318482A (en) Manufacture of laminate
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JPH1037038A (en) Glass cloth
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2713024B2 (en) Manufacturing method of multilayer metal foil-clad laminate
JPH11107112A (en) Glass cloth
JP2005132857A (en) Prepreg
JP3461523B2 (en) Prepreg
JP3402392B2 (en) Multilayer printed wiring board
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP3364782B2 (en) Prepreg and laminate for printed wiring board production
JPH07227934A (en) Single-sided copper clad laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061124