JP6624291B2 - 可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法 - Google Patents

可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法 Download PDF

Info

Publication number
JP6624291B2
JP6624291B2 JP2018527480A JP2018527480A JP6624291B2 JP 6624291 B2 JP6624291 B2 JP 6624291B2 JP 2018527480 A JP2018527480 A JP 2018527480A JP 2018527480 A JP2018527480 A JP 2018527480A JP 6624291 B2 JP6624291 B2 JP 6624291B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide fine
fine particles
interior material
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018527480A
Other languages
English (en)
Other versions
JPWO2018012240A1 (ja
Inventor
学 古舘
学 古舘
友博 井上
友博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPWO2018012240A1 publication Critical patent/JPWO2018012240A1/ja
Application granted granted Critical
Publication of JP6624291B2 publication Critical patent/JP6624291B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/084Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8875Germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/232Solid substances, e.g. granules, powders, blocks, tablets layered or coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/25Rooms in buildings, passenger compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2094Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Floor Finish (AREA)
  • Finishing Walls (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、可視光応答型光触媒活性を有する光触媒層を表面に有する内装材に関し、更に詳述すると、可視光(400〜800nm)のみでも光触媒活性を発現する、透明性の高い、可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法に関する。
光触媒性酸化チタン微粒子は、基材表面の清浄化、脱臭、抗菌等の用途に多用されてきている。光触媒反応とは、酸化チタンが光を吸収することによって生じた励起電子及び正孔が起こす反応のことをいう。有機物の分解は主として次のような機構で起きていると考えられている。〔1〕生成した励起電子及び正孔が酸化チタン表面に吸着している酸素や水と酸化還元反応を行い、発生させた活性種が有機物を分解する。〔2〕生成した正孔により、酸化チタン表面に吸着している有機物を直接酸化して分解する。
最近、上述のような光触媒作用の適用は、紫外線が利用できる屋外での使用のみならず、蛍光灯のように可視領域の光(波長400〜800nm)が大部分を占める光源で照らされた室内空間でも利用できるようにする検討が行われている。例えば、可視光応答型光触媒として、酸化タングステン光触媒体(特開2009−148700号公報:特許文献1)が開発されたが、タングステンは希少元素であるため、汎用元素であるチタンを利用した光触媒の可視光活性向上が望まれている。
酸化チタンを利用した光触媒の可視光活性向上方法としては、酸化チタン微粒子や金属をドープした酸化チタン微粒子の表面に鉄や銅を担持させる方法(例えば、特開2012−210632号公報:特許文献2、特開2010−104913号公報:特許文献3)や、スズと可視光活性を高める遷移金属を固溶(ドープ)した酸化チタン微粒子と銅を固溶した酸化チタン微粒子とをそれぞれ準備した後、混合して用いる方法(WO2014/045861号:特許文献4)などが知られている。
後者(特許文献4)のスズと可視光活性を高める遷移金属を固溶した酸化チタン微粒子と銅を固溶した酸化チタン微粒子とをそれぞれ準備した後、混合して用いる方法は、チタン以外に用いる金属がいずれも酸化チタン微粒子に固溶されていることから、安定で変性し難く、耐久性が高い光触媒薄膜が得られるという利点があるが、更に光触媒の可視光活性を向上させる方法が望まれる。
特開2009−148700号公報 特開2012−210632号公報 特開2010−104913号公報 WO2014/045861号 特開平7−303835号公報
本発明は、上記事情に鑑みなされたもので、異なる遷移金属等を固溶した酸化チタン微粒子を組み合わせ、混合することによって、従来と異なるタイプの高い可視光活性を得ることができる可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法を提供することを目的とする。
本発明者らは、上記目的を達成するための一つの方法として、特許文献4で用いられた第1の酸化チタン微粒子であるスズと可視光活性を高める遷移金属が固溶された酸化チタン微粒子に対して組み合わせる第2の酸化チタン微粒子を変更することによって、可視光のみの条件で高い光触媒活性を示す新たな材料の探索を行った。すると、特許文献4で用いられた第2の酸化チタン微粒子である銅成分を固溶した酸化チタン微粒子は、可視光(400〜800nm)のみの条件でも若干の光触媒活性を示すものであるが、意外なことに、単独では可視光のみの条件で殆ど光触媒活性を示さない鉄成分を固溶した酸化チタン微粒子を第2の酸化チタン微粒子として配合した場合、可視光のみの条件で、銅成分を固溶した酸化チタン微粒子を組み合わせた場合以上に高い光触媒活性を示すことが分かった。
この鉄成分を固溶した酸化チタン微粒子を第2の酸化チタン微粒子として配合した可視光応答型光触媒酸化チタンを含有した表面層を設けることで、可視光照射下でこれまで以上に高い分解活性を示す内装材が得られることを見出し、本発明をなすに至ったものである。
本発明の内装材を用いることで、建材、家具、日用品や布製品などから揮発し、室内空気を汚染しているシックハウス症候群の原因となる揮発性有機化合物(VOCs)などの有害物質を分解し、室内空気を清浄に保つことができると期待される。
従って、本発明は、下記の可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法を提供する。
〔1〕
スズ成分及び可視光応答性を高める遷移金属成分(但し、鉄族成分を除く)が固溶された第1の酸化チタン微粒子と鉄族成分が固溶された第2の酸化チタン微粒子との2種類の酸化チタン微粒子が含有されている可視光応答型光触媒活性を有する表面層を有する内装材。
〔2〕
第1の酸化チタン微粒子に含有されるスズ成分の含有量がチタンとのモル比(Ti/Sn)で1〜1,000である〔1〕記載の内装材。
〔3〕
第1の酸化チタン微粒子に固溶される遷移金属成分が、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン及びセリウムの群から選ばれる少なくとも1つである〔1〕又は〔2〕記載の内装材。
〔4〕
第1の酸化チタン微粒子に固溶される遷移金属成分が、モリブデン及び/又はバナジウムである〔3〕記載の内装材。
〔5〕
第1の酸化チタン微粒子に含有されるモリブデン成分の含有量がチタンとのモル比(Ti/Mo)で1〜1,000であり、及び/又はバナジウム成分の含有量がチタンとのモル比(Ti/V)で10〜10,000である〔4〕記載の内装材。
〔6〕
第2の酸化チタン微粒子に含有される鉄族成分の含有量がチタンとのモル比(Ti/鉄族成分)で1〜1,000である〔1〕〜〔5〕のいずれか1項記載の内装材。
〔7〕
第2の酸化チタン微粒子に固溶された鉄族成分が、鉄成分である〔1〕〜〔6〕のいずれか1項記載の内装材。
〔8〕
第1の酸化チタン微粒子と第2の酸化チタン微粒子の混合比が、それぞれの質量比[(第1の酸化チタン微粒子)/(第2の酸化チタン微粒子)]で99〜0.01である〔1〕〜〔7〕のいずれか1項記載の内装材。
〔9〕
表面層には、バインダーが含有される〔1〕〜〔8〕のいずれか1項記載の内装材。
〔10〕
上記バインダーがケイ素化合物系バインダーである〔9〕記載の内装材。
〔11〕
室内の建築材、車内の内装材、家具及び電化製品の群から選ばれる部材である〔1〕〜〔10〕のいずれか1項記載の内装材。
〔12〕
内装材本体の表面に、スズ成分及び可視光応答性を高める遷移金属成分(但し、鉄族成分を除く)が固溶された第1の酸化チタン微粒子と鉄族成分が固溶された第2の酸化チタン微粒子との2種類の酸化チタン微粒子を分散させた分散液を塗布することにより、可視光応答型光触媒活性を有する表面層を形成することを特徴とする内装材の製造方法。
〔13〕
上記分散液の塗布方法が、スプレーコート、フローコート、ディップコート、スピンコート、メイヤーバーコート、グラビアコート、ナイフコート、キスコート、ダイコート、又はフィルム転写である〔12〕記載の内装材の製造方法。
本発明によれば、可視光(400〜800nm)のみでも光触媒活性を発現する、透明性の高い光触媒薄膜(表面層)を簡便に作製することができる可視光応答型光触媒酸化チタン微粒子を表面に塗布することで、その物品の意匠性を損なわずに、室内照明下で優れた室内空気中化学物質の分解性能や抗菌性能などの光触媒性能を得ることができる内装材を提供することができる。
以下、本発明につき更に詳しく説明する。
本発明の内装材は、内装材本体と該本体の表面に形成される表面層とを有するものであり、該表面層は可視光応答型光触媒活性を有する。この可視光応答型光触媒活性を有する表面層の形成方法については、特に制限はないが、例えば、後述する塗布方法などを採用することにより、可視光応答型光触媒酸化チタン微粒子分散液を内装材本体表面に塗布、乾燥させて作製することができる。
ここで、上記の可視光応答型光触媒酸化チタン微粒子分散液について下記に詳述する。
<可視光応答型光触媒酸化チタン微粒子分散液>
上記の可視光応答型光触媒酸化チタン微粒子分散液は、水性分散媒中に、組成の異なる酸化チタン微粒子である第1の酸化チタン微粒子と第2の酸化チタン微粒子とが分散されているものであり、第1の酸化チタン微粒子はスズ成分と遷移金属成分(但し、鉄族成分を除く)が固溶された酸化チタン微粒子であり、第2の酸化チタン微粒子は鉄族成分が固溶された酸化チタン微粒子である。
ここで、固溶体とは、ある一つの結晶相の格子点にある原子が別の原子と置換するか、格子間隙に別の原子が入り込んだ相、即ち、ある結晶相に他の物質が溶け込んだとみなされる混合相をいい、結晶相としては均一相であるものをいう。格子点にある溶媒原子が溶質原子と置換したものを置換型固溶体、格子間隙に溶質原子が入ったものを侵入型固溶体というが、ここでは、このいずれをも指すものとする。
上記の酸化チタン微粒子は、第1の酸化チタン微粒子では酸化チタンとスズ及び遷移金属原子(但し、鉄族成分を除く)で固溶体を形成し、第2の酸化チタン微粒子では酸化チタンと鉄族成分で固溶体を形成していることを特徴としている。固溶体としては、置換型であっても侵入型であってもよい。置換型固溶体は、酸化チタン結晶のチタンサイトが各種金属原子に置換されて形成されるものであり、侵入型固溶体は、酸化チタン結晶の格子間隙に各種金属原子が入って形成されるものである。酸化チタンに各種金属原子が固溶されると、X線回折などにより結晶相を測定した際、酸化チタンの結晶相のピークのみが観測され、添加した各種金属原子由来の化合物のピークは観測されない。
金属酸化物結晶に異種金属を固溶する方法は特に限定されるものではないが、気相法(CVD法、PVD法など)、液相法(水熱法、ゾル・ゲル法など)、固相法(高温焼成法など)などを挙げることができる。
酸化チタン微粒子の結晶相としては、通常、ルチル型、アナターゼ型、ブルッカイト型の3つが知られているが、前記第1の酸化チタン微粒子及び前記第2の酸化チタン微粒子のいずれにおいても、主として、ルチル型及びアナターゼ型を利用することが好ましい。更に、第1の酸化チタン微粒子はルチル型とアナターゼ型のうち、主としてルチル型の方が好ましく、第2の酸化チタン微粒子は主としてアナターゼ型が好ましい。なお、ここでいう「主として」とは、酸化チタン微粒子結晶全体のうち、通常50質量%以上、好ましくは70質量%以上、更に好ましくは90質量%以上含有することを意味し、100質量%であってもよい。
また、分散液の分散媒は、通常水性溶媒が使用され、水を用いることが好ましいが、水と任意の割合で混合される親水性有機溶媒と水との混合溶媒を用いてもよい。水としては、例えば、脱イオン水、蒸留水、純水等が好ましい。また、親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール、エチレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコール−n−プロピルエーテル等のグリコールエーテル類が好ましい。混合溶媒を用いる場合には、混合溶媒中の親水性有機溶媒の割合が0より多く、50質量%以下であることが好ましく、より好ましくは20質量%以下、更に好ましくは10質量%以下である。
第1の酸化チタン微粒子は、スズ成分と可視光活性を高める鉄族成分以外の遷移金属成分を固溶した酸化チタン微粒子であるが、遷移金属は、周期表第3族〜第11族の中から選ばれる元素であり、可視光活性を高める遷移金属成分として好ましくは、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン、セリウムなどから選択することができるが、その中でもモリブデン及び/又はバナジウムが選択されることが好ましい。
第1の酸化チタン微粒子に固溶するスズ成分は、光触媒薄膜の可視光応答性を高めるためのものであるが、スズ化合物から誘導されるものであればよく、例えば、スズの金属(Sn)、酸化物(SnO、SnO2)、水酸化物、塩化物(SnCl2、SnCl4)、硝酸塩(Sn(NO32)、硫酸塩(SnSO4)、ハロゲン化物、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用したものでもよい。その中でも酸化物(SnO、SnO2)、塩化物(SnCl2、SnCl4)、硫酸塩(SnSO4)を使用することが好ましい。
第1の酸化チタン微粒子中のスズ成分の含有量は、チタンとのモル比(Ti/Sn)で1〜1,000、好ましくは2〜500、より好ましくは5〜100である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、1,000超過の場合、可視光応答性が不十分となることがあるためである。
第1の酸化チタン微粒子に固溶される遷移金属成分は、当該遷移金属化合物から誘導されるものであればよく、金属、酸化物、水酸化物、塩化物、硝酸塩、硫酸塩、ハロゲン化物、各種錯化合物等が挙げられ、これらの1種又は2種類以上が用いられる。
第1の酸化チタン微粒子中の遷移金属成分の含有量は、遷移金属成分の種類に応じて適宜選定し得るが、チタンとのモル比(Ti/遷移金属)で1〜10,000の範囲、特に5〜1,000の範囲であることが好ましい。
この場合、第1の酸化チタン微粒子に固溶される遷移金属成分にモリブデンを選択する場合、モリブデン成分はモリブデン化合物から誘導されるものであればよく、例えば、モリブデンの金属(Mo)、酸化物(MoO2、MoO3)、水酸化物、塩化物(MoCl3、MoCl5)、硝酸塩、硫酸塩、ハロゲン化物、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用したものでもよい。その中でも、酸化物(MoO2、MoO3)、塩化物(MoCl3、MoCl5)を使用することが好ましい。
第1の酸化チタン微粒子中のモリブデン成分の含有量は、チタンとのモル比(Ti/Mo)で1〜1,000、好ましくは2〜100、より好ましくは2〜50である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、1,000超過の場合、可視光応答性が不十分となり、アセトアルデヒドの低濃度での高い分解活性が得られないことがあるためである。
第1の酸化チタン微粒子に固溶される遷移金属成分にバナジウムを選択する場合、バナジウム成分はバナジウム化合物から誘導されるものであればよく、例えば、バナジウムの金属(V)、酸化物(VO、V23、VO2、V25)、水酸化物、塩化物(VCl5)、オキシ塩化物(VOCl3)、硝酸塩、硫酸塩、オキシ硫酸塩(VOSO4)、ハロゲン化物、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用したものでもよい。その中でも、酸化物(V23、V25)、塩化物(VCl5)、オキシ塩化物(VOCl3)、オキシ硫酸塩(VOSO4)を使用することが好ましい。
第1の酸化チタン微粒子中のバナジウム成分の含有量は、チタンとのモル比(Ti/V)で10〜10,000、好ましくは100〜10,000、より好ましくは100〜5,000である。これは、モル比が10未満の場合、酸化チタン結晶の含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となり、アセトアルデヒドの低濃度での高い分解活性が得られないことがあるためである。
第1の酸化チタン微粒子に固溶される遷移金属成分として、モリブデンとバナジウムの双方を選択することもできる。その際の各成分量は上記範囲より選択することができ、但し、各成分量の合計とチタンとのモル比[Ti/(Mo+V)]は、1以上、10,000以下である。
第1の酸化チタン微粒子は、1種で用いてもよいし、2種類以上を組み合わせて使用してもよい。異なる可視光応答性を持つ2種類以上を組み合わせた場合、可視光活性が高まる効果が得られることがある。
第2の酸化チタン微粒子は、第1の酸化チタン微粒子と異なる組成を持ち、特徴的には鉄族成分が固溶され、一般的な形態としては、第1の酸化チタン微粒子のように鉄族成分以外の遷移金属やスズを含むことはない。
第2の酸化チタン微粒子に固溶される鉄族金属は、鉄、コバルト、ニッケルが挙げられるが、その中でも鉄元素が好ましい。
第2の酸化チタン微粒子に固溶される鉄族成分は、鉄族化合物から誘導されるものであればよく、例えば、鉄の金属(Fe)、酸化物(Fe23、Fe34)、水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)、ハロゲン化物、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。その中でも、酸化物(Fe23、Fe34)、水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)を使用することが好ましい。
第2の酸化チタン微粒子中の鉄族成分の含有量は、チタンとのモル比(Ti/鉄族成分)で1〜1,000、好ましくは2〜200、より好ましくは5〜100である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、1,000超過の場合、可視光応答性が不十分となることがあるためである。
可視光応答型光触媒酸化チタン微粒子分散液中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子は、レーザー光を用いた動的光散乱法により測定される体積基準の50%累積分布径(D50)(以下、「平均粒子径」ということがある。)が、5〜30nmであることが好ましく、より好ましくは5〜20nmである。これは、平均粒子径が、5nm未満の場合、光触媒活性が不十分になることがあり、30nm超過の場合、分散液が不透明となることがあるためである。なお、平均粒子径を測定する装置としては、例えば、ナノトラックUPA−EX150(日機装(株)製)、LA−910(堀場製作所(株)製)等を使用することができる。
可視光応答型光触媒酸化チタン微粒子分散液に含まれる第1の酸化チタン微粒子と第2の酸化チタン微粒子の混合比は、それぞれの質量比[(第1の酸化チタン微粒子)/(第2の酸化チタン微粒子)]で99〜0.01であることが好ましく、より好ましくは19〜0.05、更に好ましくは9〜1である。これは、上記質量比が99超過もしくは0.01未満の場合、可視光活性が不十分となることがあるためである。
可視光応答型光触媒酸化チタン微粒子分散液中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子の合計の濃度は、所要の厚さの表面層(光触媒薄膜)の作製し易さの点で、0.01〜20質量%が好ましく、特に0.5〜10質量%が好ましい。
更に、可視光応答型光触媒酸化チタン微粒子分散液には、後述する各種部材表面に該分散液を塗布し易くすると共に該微粒子を接着し易いようにする目的でバインダーを添加してもよい。バインダーとしては、例えば、ケイ素、アルミニウム、チタン、ジルコニウム等の金属化合物系バインダー、フッ素系樹脂、アクリル系樹脂、ウレタン系樹脂等の有機樹脂系バインダー等が挙げられる。
バインダーと酸化チタンの質量比[バインダー/酸化チタン]としては、0.01〜99、より好ましくは0.1〜9、更に好ましくは0.4〜2.5の範囲で添加して使用することが好ましい。これは、上記質量比が0.01未満の場合、各種部材表面への酸化チタン微粒子の接着が不十分となり、99超過の場合、可視光活性が不十分となることがあるためである。
中でも、光触媒作用及び透明性の高い優れた表面層(光触媒薄膜)を得るためには、特にケイ素化合物系バインダーを配合比(ケイ素化合物と酸化チタンの質量比)1:99〜99:1、より好ましくは10:90〜90:10、更に好ましくは30:70〜70:30の範囲で添加して使用することが好ましい。ここで、ケイ素化合物系バインダーとは、固体状又は液体状のケイ素化合物を水性分散媒中に含んでなるケイ素化合物の、コロイド分散液、溶液、又はエマルジョンであって、具体的には、コロイダルシリカ(好ましい粒径1〜150nm);シリケート等のケイ酸塩類溶液;シラン、シロキサン加水分解物エマルジョン;シリコーン樹脂エマルジョン;シリコーン−アクリル樹脂共重合体、シリコーン−ウレタン樹脂共重合体等のシリコーン樹脂と他の樹脂との共重合体のエマルジョン等を挙げることができる。
また、可視光応答型光触媒酸化チタン微粒子分散液及びバインダーを添加したコーティング液には内装材への塗工性を上げるため、親水性有機溶媒や界面活性剤などを添加してもよい。
親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール、エチレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコール−n−プロピルエーテル等のグリコールエーテル類が好ましい。親水性有機溶媒を用いる場合には、光触媒分散液もしくはコーティング液中の親水性有機溶媒の割合が0より多く、50質量%以下であることが好ましく、より好ましくは20質量%以下、更に好ましくは10質量%以下である。
界面活性剤としては、例えば、脂肪酸ナトリウム塩、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩などの陰イオン界面活性剤、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、第四級アンモニウム塩などの陽イオン界面活性剤、アルキルアミノ脂肪酸塩、アルキルベタイン、アルキルアミンオキシドの両性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミドなどの非イオン界面活性剤、高分子界面活性剤などを挙げることができる。中でも、分散液の安定性の観点から非イオン界面活性剤が好ましい。
界面活性剤を用いる場合には、光触媒分散液もしくはコーティング液中の全組成の合計100質量%(即ち、上述した酸化チタン微粒子、バインダー、溶剤及び界面活性剤の合計100質量%)に対して、界面活性剤の濃度が0より多く、0.001〜5質量%であることが好ましく、0.01〜1.0質量%であることがより好ましく、0.05〜0.5質量%であることが更に好ましい。
<可視光応答型光触媒酸化チタン微粒子分散液の製造方法>
上記の可視光応答型光触媒酸化チタン微粒子分散液の製造方法は、第1の酸化チタン微粒子分散液と第2の酸化チタン微粒子分散液とをそれぞれ製造し、第1の酸化チタン微粒子分散液と第2の酸化チタン微粒子分散液とを混合することにより調製される。
具体的には、下記(1)〜(5)の工程を有する製造方法を挙げることができる。
(1)原料チタン化合物、スズ化合物、遷移金属化合物(但し、鉄族化合物を除く)、塩基性物質、過酸化水素及び水性分散媒から、スズ及び遷移金属含有ペルオキソチタン酸溶液を製造する工程、
(2)上記(1)の工程で製造したスズ及び遷移金属含有ペルオキソチタン酸溶液を、圧力制御の下、80〜250℃で加熱し、スズ及び遷移金属含有酸化チタン微粒子分散液を得る工程、
(3)原料チタン化合物、鉄族化合物、塩基性物質、過酸化水素及び水性分散媒から、鉄族元素含有ペルオキソチタン酸溶液を製造する工程、
(4)上記(3)の工程で製造した鉄族元素含有ペルオキソチタン酸溶液を、圧力制御の下、80〜250℃で加熱し、鉄族元素含有酸化チタン微粒子分散液を得る工程、
(5)上記(2)、(4)の工程で製造した2種類の酸化チタン微粒子分散液を混合する工程。
工程(1)及び(2)が第1の酸化チタン微粒子分散液を得る工程であり、工程(3)及び(4)が第2の酸化チタン微粒子分散液を得る工程であり、そして、(5)が最終的に第1の酸化チタン微粒子と第2の酸化チタン微粒子を含有する分散液を得る工程である。
また、既に述べたように、工程(1)で用いられる遷移金属化合物としては、モリブデン化合物及び/又はバナジウム化合物を用いることが好ましいので、以下モリブデン化合物及び/又はバナジウム化合物を用いた場合について各工程を詳細に説明する。
・工程(1):
工程(1)では、原料チタン化合物、遷移金属化合物、スズ化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、遷移金属及びスズ含有ペルオキソチタン酸溶液を製造する。
反応方法としては、水性分散媒中の原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸とした後に遷移金属化合物及びスズ化合物を添加して、遷移金属及びスズ含有ペルオキソチタン酸とする方法でも、水性分散媒中の原料チタン化合物及び塩基性物質に対して、遷移金属化合物及びスズ化合物を添加して溶解させてから、遷移金属及びスズ含有水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加して遷移金属及びスズ含有ペルオキソチタン酸とする方法でもよい。
なお、後者の前段において、水性分散媒中の原料チタン化合物及び塩基性物質を、原料チタン化合物を分散させた水性分散媒と塩基性物質を分散させた水性分散媒のように2液の水性分散媒に分けて、遷移金属化合物及びスズ化合物のそれぞれの化合物の当該2液への溶解性に従って、それぞれの化合物を当該2液のいずれか一方又は両方へ溶解させた後に、両者を混合してもよい。
このように遷移金属及びスズ含有ペルオキソチタン酸を得たのち、後述の工程(2)の水熱反応に供することにより、酸化チタンに当該各種金属を固溶した酸化チタン微粒子を得ることができる。
ここで、原料チタン化合物としては、例えば、チタンの塩化物、硝酸塩、硫酸塩等の無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化チタン等が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。その中でも、チタンの塩化物(TiCl3、TiCl4)を使用することが好ましい。
遷移金属化合物、スズ化合物、及び水性分散媒としては、それぞれ前述のものが、前述の配合となるように使用される。なお、原料チタン化合物と水性分散媒とから形成される原料チタン化合物水溶液の濃度は、60質量%以下、特に30質量%以下であることが好ましい。濃度の下限は適宜選定されるが、通常1質量%以上であることが好ましい。
塩基性物質は、原料チタン化合物をスムーズに水酸化チタンにするためのもので、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、アルカノールアミン、アルキルアミン等のアミン化合物が挙げられ、原料チタン化合物水溶液のpHを7以上、特にpH7〜10になるような量で添加して使用される。なお、塩基性物質は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。
過酸化水素は、上記原料チタン化合物又は水酸化チタンをペルオキソチタン、つまりTi−O−O−Ti結合を含む酸化チタン化合物に変換させるためのものであり、通常、過酸化水素水の形態で使用される。過酸化水素の添加量は、遷移金属、Ti及びSnの合計モル数の1.5〜20倍モルとすることが好ましい。また、過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応において、反応温度は5〜80℃とすることが好ましく、反応時間は30分〜24時間とすることが好ましい。
こうして得られる遷移金属及びスズを含有するペルオキソチタン酸溶液は、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよい。ここでいう、アルカリ性物質としては、例えば、アンモニア、水酸化ナトリウム、水酸化カルシウム等が挙げられ、酸性物質としては、例えば、硫酸、硝酸、塩酸、炭酸、リン酸、過酸化水素等の無機酸及び蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸が挙げられる。この場合、得られた遷移金属及びスズを含有するペルオキソチタン酸溶液のpHは1〜9、特にpH4〜7であることが取り扱いの安全性の点で好ましい。
・工程(2):
工程(2)では、上記工程(1)で得られた遷移金属及びスズ含有ペルオキソチタン酸溶液を、圧力制御の下、80〜250℃、好ましくは100〜250℃の温度において0.01〜24時間水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80〜250℃が適切であり、その結果、遷移金属及びスズ含有ペルオキソチタン酸は、遷移金属及びスズ含有酸化チタン微粒子に変換されていく。なお、ここで圧力制御の下とは、反応温度が分散媒の沸点を超える場合には、反応温度が維持できるように、適宜加圧を行い、反応温度を維持することをいい、分散媒の沸点以下の温度とする場合に大気圧で制御する場合を含む。ここで用いる圧力は、通常0.12〜4.5MPa程度、好ましくは0.15〜4.5MPa程度、より好ましくは0.20〜4.5MPaである。反応時間は、1分〜24時間であることが好ましい。この工程(2)により、第1の酸化チタン微粒子である遷移金属及びスズ含有酸化チタン微粒子分散液が得られる。
ここで得られる酸化チタン微粒子の粒子径は、既に述べた通りの範囲のものが好ましいが、反応条件を調整することで粒子径を制御することが可能であり、例えば、反応時間を短くすることによって粒子径を小さくすることができる。
・工程(3):
工程(3)では、上記(1)及び(2)の工程とは別に、原料チタン化合物、鉄族化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、鉄族元素含有ペルオキソチタン酸溶液を製造する。反応方法としては、上記工程(1)における遷移金属化合物及びスズ化合物に代えて、鉄族化合物を使用する以外は全く同様の方法で行うことができる。
即ち、出発材料としての、原料チタン化合物、鉄族化合物、水性分散媒、塩基性物質、及び過酸化水素は、それぞれ上述のものが、上述の配合となるように使用され、上述の温度及び時間のもとで反応に供される。なお、過酸化水素の添加量は、鉄族及びTiの合計モル数の1.5〜20倍モルとすることが好ましい。
こうして得られる鉄族元素含有ペルオキソチタン酸溶液も、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよく、ここでいう、アルカリ性物質及び酸性物質、そしてpH調整も前述と同様に取り扱うことができる。
・工程(4):
工程(4)では、上記工程(3)で得られた鉄族元素含有ペルオキソチタン酸溶液を、圧力制御の下、80〜250℃、好ましくは100〜250℃の温度において0.01〜24時間水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80〜250℃が適切であり、その結果、鉄族元素含有ペルオキソチタン酸は、鉄族元素含有酸化チタン微粒子に変換されていく。なお、ここで圧力制御の下とは、反応温度が分散媒の沸点を超える場合には、反応温度が維持できるように、適宜加圧を行い、反応温度を維持することをいい、分散媒の沸点以下の温度とする場合に大気圧で制御する場合を含む。ここで用いる圧力は、通常0.12〜4.5MPa程度、好ましくは0.15〜4.5MPa程度、より好ましくは0.20〜4.5MPaである。反応時間は、1分〜24時間であることが好ましい。この工程(4)により、第2の酸化チタン微粒子である鉄族元素含有酸化チタン微粒子分散液が得られる。
ここで得られる酸化チタン微粒子の粒子径も、既に述べた通りの範囲のものが好ましいが、反応条件を調整することで粒子径を制御することが可能であり、例えば、反応時間を短くすることによって粒子径を小さくすることができる。
・工程(5):
工程(5)では、工程(1)及び(2)で得られた第1の酸化チタン微粒子分散液と工程(3)及び(4)で得られた第2の酸化チタン微粒子分散液とを混合する。混合方法は特に限定されず、攪拌機で撹拌する方法でも、超音波分散機で分散させる方法でもよい。混合時の温度は20〜100℃、時間は1分〜3時間であることが好ましい。混合比については、それぞれの酸化チタン微粒子分散液中の酸化チタン微粒子の質量比が、既に述べた通りの質量比になるように混合すればよい。
酸化チタン微粒子分散液に含まれる酸化チタン微粒子の質量は、酸化チタン微粒子分散液の量と濃度から算出できる。濃度の測定方法は、酸化チタン微粒子分散液の一部をサンプリングし、105℃で3時間加熱して溶媒を揮発させた後の不揮発分(酸化チタン微粒子)の質量とサンプリングした酸化チタン微粒子分散液の質量から、次式に従い算出することができる。
酸化チタン微粒子分散液の濃度(%)=〔不揮発分質量(g)/酸化チタン微粒子分散液質量(g)〕×100
こうして調製された可視光応答型光触媒酸化チタン微粒子分散液中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子の合計の濃度は、上述した通り、所要の厚さの表面層(光触媒薄膜)の作製し易さの点で、0.01〜20質量%が好ましく、特に0.5〜10質量%が好ましい。濃度調整については、濃度が所望の濃度より高い場合には、水性溶媒を添加して希釈することで濃度を下げることができ、所望の濃度より低い場合には、水性溶媒を揮発もしくは濾別することで濃度を上げることができる。なお、濃度は、上述のように算出することができる。
また、上述した膜形成性を高めるバインダーを添加する場合には、加える水性バインダー溶液を混合した後に所望の濃度となるよう、上述のように濃度調整を行った可視光応答型光触媒酸化チタン微粒子分散液に対して添加することが好ましい。
<可視光応答型光触媒酸化チタンを含有した表面層を有する内装材>
上記の可視光応答型光触媒酸化チタン微粒子分散液は、内装材本体表面に光触媒薄膜(表面層)を形成させる目的で使用することができる。内装材は、それぞれの目的、用途に応じた様々な形状を有することができる。
ここで、本明細書における内装材とは、例えば、建築物の壁材、壁紙、天井材、床材、タイル、レンガ、木板、樹脂板、金属板、畳、浴室材等の室内の建築材、自動車や電車等の壁材、天井材、床材、シート、手すり、つり革等の車内の内装材、更に、カーテン、ブラインド、敷物、間仕切り板、ガラス、鏡、フィルム、机、椅子、ベッド、収納棚等の家具や、空気清浄器、エアコン、冷蔵庫、洗濯機、パソコン、プリンター、タブレット、タッチパネル、電話機等の家電製品など、室内に設置される部材を含む。
ここで、各種内装材の材料としては、例えば、有機材料、無機材料が挙げられる。
有機材料としては、例えば、塩化ビニル樹脂(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、アクリル樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン−酢酸ビニル共重合体(EVA)、アクリロニトリル−ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリビニルブチラール(PVB)、エチレン−ビニルアルコール共重合体(EVOH)、ポリイミド樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルエーテルイミド(PEEI)、ポリエーテルエーテルケトン(PEEK)、メラミン樹脂、フェノール樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂等の合成樹脂材料、天然ゴム等の天然材料、又は上記合成樹脂材料と天然材料との半合成材料が挙げられる。これらは、フィルム、シート、繊維材料、繊維製品、その他の成型品、積層体等の所要の形状、構成に製品化されていてもよい。
無機材料としては、例えば、非金属無機材料、金属無機材料が包含される。
非金属無機材料としては、例えば、ガラス、セラミック、石材、石膏等が挙げられる。これらは、タイル、硝子、ミラー、壁、意匠材等の様々な形に製品化されていてもよい。
金属無機材料としては、例えば、鋳鉄、鋼材、鉄、鉄合金、ステンレス、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が挙げられる。これらは、上記金属無機材料のメッキが施されていてもよいし、上記有機材料が塗布されていてもよいし、上記有機材料又は非金属無機材料の表面に施すメッキであってもよい。
各種の内装材本体の表面に表面層(光触媒薄膜)を形成する方法としては、可視光応答型光触媒酸化チタン微粒子分散液、もしくは更にバインダーを添加したコーティング液を、例えば、上記内装材本体の表面に、スプレーコート、フローコート、ディップコート、スピンコート、メイヤーバーコート、リバースロールコート、グラビアコート、ナイフコート、キスコート、ダイコート、フィルム転写などの方法により塗布した後、乾燥させることが挙げられる。
塗布後の乾燥温度は塗布対象基材により種々選定され得るが、好ましくは0〜500℃、より好ましくは5〜200℃、更に好ましくは10〜150℃である。これは、0℃未満の場合、液が凍結して使用できなくなるおそれがあり、500℃超過の場合、光触媒活性が低下するおそれがあるためである。
塗布後の乾燥時間は塗布方法、乾燥温度により種々選定され得るが、好ましくは10秒〜72時間、より好ましくは20秒〜48時間である。これは、10秒未満の場合、光触媒薄膜の部材表面への定着が不十分となることがあり、3日超過の場合、経済性が悪く好ましくないためである。
上記の表面層の厚さは種々選定され得るが、好ましくは10nm〜10μm、より好ましくは20nm〜5μm、更に好ましくは50nm〜1μmである。これは、上記層厚が10nm未満の場合、得られる光触媒活性が不十分となることがあり、10μm超過の場合、内装材本体表面から表面層が剥離し易いことがあるためである。
このようにして形成される表面層(光触媒薄膜)は、透明であり、従来のように紫外領域の光(10〜400nm)において良好な光触媒作用を与えるばかりでなく、従来の光触媒では十分な光触媒作用を得ることができなかった可視領域の光(400〜800nm)のみ、例えば室内でも優れた光触媒作用が得られるものであり、該表面層が形成された内装材は、酸化チタンの光触媒作用により表面に吸着した有機物を分解することから、該内装材表面の清浄化、脱臭、抗菌等の効果を発揮することができるものである。
以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。本発明における各種の測定は次のようにして行った。
(1)分散液中の酸化チタン微粒子の平均粒子径(D50
分散液中の酸化チタン微粒子の平均粒子径(D50)は、粒度分布測定装置(商品名“ナノトラック粒度分析計UPA−EX150”、日機装(株))を用いて測定した。
(2)光触媒薄膜のアセトアルデヒドガス分解性能試験(LED照射下)
分散液を塗布、乾燥することで作製した本発明の内装材(光触媒薄膜)の光触媒活性を、揮発性有機化合物(VOC)であるアセトアルデヒドガスの分解反応により評価した。評価はバッチ式ガス分解性能評価法により行った。
具体的には、容積5Lの石英ガラス窓付きステンレス製セル内にA4サイズ(210mm×297mm)に加工した内装材を設置したのち、該セルを湿度50%に調湿した濃度5ppmのアセトアルデヒドガスで満たし、該セル上部に設置したLED(商品型番“TH−211×200SW”、シーシーエス(株)、分光分布:400〜800nm)で照度30,000Lxになるように光を照射した。内装材に塗布した光触媒によりアセトアルデヒドガスが分解すると、該セル中のアセトアルデヒドガス濃度が低下する。そこで、その濃度を測定することで、アセトアルデヒドガス分解量を求めることができる。アセトアルデヒドガス濃度は光音響マルチガスモニタ(商品名“INNOVA1412”、LumaSense社製)を用いて測定し、アセトアルデヒドガス濃度を初期の5ppmから1ppmまで低減させるのに要した時間を比較し、次の基準で評価した。試験は72時間まで実施した。
・非常に良好(◎と表示)・・・24時間以内に低減
・良好(○と表示) ・・・72時間以内に低減
・やや不良(△と表示) ・・・初期濃度(5ppm)からの低減は見られるが、72時間では1ppmまでは低減できない
・不良(×と表示) ・・・初期濃度(5ppm)からの低減が見られない(全く低減されない)
(3)酸化チタン微粒子の結晶相の同定
酸化チタン微粒子の結晶相は、得られた酸化チタン微粒子の分散液を105℃、3時間乾燥させて回収した酸化チタン微粒子粉末の粉末X線回折(商品名“卓上型X線回折装置 D2 PHASER”、ブルカー・エイエックスエス(株))を測定することで同定した。
[実施例1]
<スズ及びモリブデンが固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加・溶解し、これを純水で10倍に希釈した後、この水溶液に、酸化モリブデン(VI)が前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が20となるよう添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズ及びモリブデンを含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズ及びモリブデンを含有する水酸化チタン沈殿物にH22/(Ti+Sn+Mo)(モル比)が10となるように35質量%過酸化水素水を添加し、その後50℃で3時間撹拌して十分に反応させ、橙色透明のスズ及びモリブデン含有ペルオキソチタン酸溶液(a)を得た。
容積500mLのオートクレーブに、スズ及びモリブデン含有ペルオキソチタン酸溶液(a)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びモリブデンが固溶された酸化チタン微粒子(A)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(A)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ及びモリブデンが酸化チタンに固溶されていることが分かった。
<鉄が固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化鉄(III)をTi/Fe(モル比)が10となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより鉄を含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の鉄を含有する水酸化チタン沈殿物にH22/(Ti+Fe)(モル比)が8となるように35質量%過酸化水素水を添加し、その後40℃で2時間撹拌して十分に反応させ、橙色透明の鉄含有ペルオキソチタン酸溶液(b)を得た。
容積500mLのオートクレーブに、鉄含有ペルオキソチタン酸溶液(b)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、鉄が固溶された酸化チタン微粒子(B)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(B)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、鉄が酸化チタンに固溶されていることが分かった。
酸化チタン微粒子(A)と酸化チタン微粒子(B)が質量比で(A):(B)=50:50となるようにそれぞれの分散液を混合することにより可視光応答型光触媒酸化チタン微粒子分散液(e−1)を得た。
光触媒酸化チタン微粒子分散液(e−1)にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が1.5となるように添加し、評価用コーティング液(E−1)を作製した。
<化粧石膏ボードへの塗布>
天井板として使用される化粧石膏ボードをA4サイズにカットし、評価用コーティング液(E−1)を吐出圧力を0.2MPaに調整したエアスプレーガン(商品型番“LPH−50−S9−10”、アネスト岩田(株))で光触媒微粒子を含む表面層(光触媒薄膜)が厚さ80nmとなるよう塗工し、20℃の室内で24時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、15時間で1ppm(非常に良好:◎)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
<メラミン化粧板への塗布>
[実施例2]
室内の間仕切り板として使用されるメラミン化粧板をA4サイズにカットし、評価用コーティング液(E−1)を実施例1と同様にエアスプレーガンで光触媒微粒子を含む表面層(光触媒薄膜)が厚さ60nmとなるよう塗工し、50℃に設定したオーブンで2時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、40時間で1ppm(良好:○)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
<フロアタイルへの塗布>
[実施例3]
室内の床材として使用されるフロアタイル(塩ビ樹脂系)をA4サイズにカットし、評価用コーティング液(E−1)を実施例1と同様にエアスプレーガンで光触媒微粒子を含む表面層(光触媒薄膜)が厚さ80nmとなるよう塗工し、150℃に設定したオーブンで1時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、12時間で1ppm(非常に良好:◎)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
[実施例4]
<室内用フィルムへの塗工>
コロナ表面処理を施したPETフィルム(商品型番“ルミラー T60”、東レ(株))をA4サイズにカットし、コロナ表面処理を施したフィルム面に実施例1で作製した評価用コーティング液(E−1)をバーコーターで光触媒微粒子を含む表面層(光触媒薄膜)が厚さ100nmになるよう塗工し、80℃に設定したオーブンで5分間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、12時間で1ppm(非常に良好:◎)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
[実施例5]
<スズ及びバナジウムが固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20、硫酸バナジル(IV)をTi/V(モル比)が2000となるように添加・溶解し、これを純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズ及びバナジウムを含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8.5であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズ及びバナジウムを含有する水酸化チタン沈殿物にH22/(Ti+Sn+V)(モル比)が10となるように35質量%過酸化水素水を添加し、その後50℃で3時間撹拌して十分に反応させ、橙色透明のスズ及びバナジウム含有ペルオキソチタン酸溶液(c)を得た。
容積500mLのオートクレーブに、スズ及びバナジウム含有ペルオキソチタン酸溶液(c)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びバナジウムが固溶された酸化チタン微粒子(C)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(C)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ及びバナジウムが酸化チタンに固溶されていることが分かった。
酸化チタン微粒子(C)と酸化チタン微粒子(B)が質量比で(C):(B)=50:50となるようにそれぞれの分散液を混合することで、本実施例の可視光応答型光触媒酸化チタン微粒子分散液(e−2)を得た。
光触媒酸化チタン微粒子分散液(e−2)にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が1.5となるように添加し、評価用コーティング液(E−2)を作製した。
<メラミン化粧板への塗布>
室内の間仕切り板として使用されるメラミン化粧板をA4サイズにカットし、評価用コーティング液(E−2)を実施例1と同様にエアスプレーガンで光触媒微粒子を含む表面層(光触媒薄膜)が厚さ60nmとなるよう塗工し、50℃に設定したオーブンで2時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、59時間で1ppm(良好:○)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
[実施例6]
<スズ及びモリブデンが固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が5となるように添加・溶解し、これを純水で10倍に希釈した後、この水溶液に、酸化モリブデン(VI)が前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が50となるよう添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズ及びモリブデンを含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズ及びモリブデンを含有する水酸化チタン沈殿物にH22/(Ti+Sn+Mo)(モル比)が10となるように35質量%過酸化水素水を添加し、その後50℃で3時間撹拌して十分に反応させ、橙色透明のスズ及びモリブデン含有ペルオキソチタン酸溶液(d)を得た。
容積500mLのオートクレーブに、スズ及びモリブデン含有ペルオキソチタン酸溶液(d)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びモリブデンが固溶された酸化チタン微粒子(D)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(D)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ及びモリブデンが酸化チタンに固溶されていることが分かった。
<鉄が固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化鉄(III)をTi/Fe(モル比)が100となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより鉄を含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の鉄を含有する水酸化チタン沈殿物にH22/(Ti+Fe)(モル比)が8となるように35質量%過酸化水素水を添加し、その後40℃で2時間撹拌して十分に反応させ、橙色透明の鉄含有ペルオキソチタン酸溶液(e)を得た。
容積500mLのオートクレーブに、鉄含有ペルオキソチタン酸溶液(e)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、鉄が固溶された酸化チタン微粒子(E)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(E)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、鉄が酸化チタンに固溶されていることが分かった。
酸化チタン微粒子(D)と酸化チタン微粒子(E)が質量比で(D):(E)=70:30となるようにそれぞれの分散液を混合することにより可視光応答型光触媒酸化チタン微粒子分散液(e−3)を得た。
光触媒酸化チタン微粒子分散液(e−3)にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が3となるように添加し、評価用コーティング液(E−3)を作製した。
<化粧石膏ボードへの塗布>
天井板として使用される化粧石膏ボードをA4サイズにカットし、評価用コーティング液(E−3)を吐出圧力を0.2MPaに調整したエアスプレーガン(商品型番“LPH−50−S9−10”、アネスト岩田(株))で光触媒微粒子を含む表面層(光触媒薄膜)が厚さ80nmとなるよう塗工し、20℃の室内で24時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、45時間で1ppm(良好:○)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
[実施例7]
<スズ及びモリブデンが固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が100となるように添加・溶解し、これを純水で10倍に希釈した後、この水溶液に、酸化モリブデン(VI)が前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が5となるよう添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズ及びモリブデンを含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズ及びモリブデンを含有する水酸化チタン沈殿物にH22/(Ti+Sn+Mo)(モル比)が10となるように35質量%過酸化水素水を添加し、その後50℃で3時間撹拌して十分に反応させ、橙色透明のスズ及びモリブデン含有ペルオキソチタン酸溶液(f)を得た。
容積500mLのオートクレーブに、スズ及びモリブデン含有ペルオキソチタン酸溶液(f)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びモリブデンが固溶された酸化チタン微粒子(F)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(F)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタン及びルチル型酸化チタンのもののみであり、スズ及びモリブデンが酸化チタンに固溶されていることが分かった。
酸化チタン微粒子(D)と酸化チタン微粒子(B)が質量比で(D):(B)=80:20となるようにそれぞれの分散液を混合することにより可視光応答型光触媒酸化チタン微粒子分散液(e−4)を得た。
光触媒酸化チタン微粒子分散液(e−4)にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が2となるように添加し、評価用コーティング液(E−4)を作製した。
<メラミン化粧板への塗布>
室内の間仕切り板として使用されるメラミン化粧板をA4サイズにカットし、評価用コーティング液(E−4)を実施例1と同様にエアスプレーガンで光触媒微粒子を含む表面層(光触媒薄膜)が厚さ60nmとなるよう塗工し、50℃に設定したオーブンで2時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、70時間で1ppm(良好:○)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
[実施例8]
<スズ、バナジウム及びモリブデンが固溶された酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が10、硫酸バナジル(IV)をTi/V(モル比)が100となるように添加・溶解し、これを純水で10倍に希釈した後、この水溶液に、酸化モリブデン(VI)が前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が500となるよう添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズ及びバナジウム及びモリブデンを含有する水酸化チタンの沈殿物を得た。このときの溶液のpHは8.5であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズ及びバナジウムを含有する水酸化チタン沈殿物にH22/(Ti+Sn+V+Mo)(モル比)が10となるように35質量%過酸化水素水を添加し、その後50℃で3時間撹拌して十分に反応させ、橙色透明のスズ、バナジウム及びモリブデン含有ペルオキソチタン酸溶液(g)を得た。
容積500mLのオートクレーブに、スズ及びバナジウム含有ペルオキソチタン酸溶液(g)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びバナジウムが固溶された酸化チタン微粒子(G)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(G)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ及びバナジウムが酸化チタンに固溶されていることが分かった。
酸化チタン微粒子(G)と酸化チタン微粒子(B)が質量比で(G):(B)=60:40となるようにそれぞれの分散液を混合することにより可視光応答型光触媒酸化チタン微粒子分散液(e−5)を得た。
光触媒酸化チタン微粒子分散液(e−5)にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が2となるように添加し、評価用コーティング液(E−5)を作製した。
<フロアタイルへの塗布>
室内の床材として使用されるフロアタイル(塩ビ樹脂系)をA4サイズにカットし、評価用コーティング液(E−5)を実施例1と同様にエアスプレーガンで光触媒微粒子を含む表面層(光触媒薄膜)が厚さ80nmとなるよう塗工し、150℃に設定したオーブンで1時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。この表面層(光触媒薄膜)のアセトアルデヒドガス分解性能をバッチ式ガス分解性能評価法により測定したところ、LED(波長400〜800nm)照射後、65時間で1ppm(良好:○)までアセトアルデヒドガス濃度が低下した。また、可視光下で目視により20cm離れた箇所で表面観察したが、外観異常はなかった。
[比較例1]
<酸化チタン微粒子分散液の調製>
36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、水酸化チタン沈殿物にH22/Ti(モル比)が5となるように35質量%過酸化水素水を添加し、その後室温で一昼夜撹拌して十分に反応させ、黄色透明のペルオキソチタン酸溶液(d)を得た。
容積500mLのオートクレーブに、ペルオキソチタン酸溶液(d)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、酸化チタン微粒子(D)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(D)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのものであった。
酸化チタン微粒子(D)の分散液のみから酸化チタン微粒子分散液(c−1)を得た。
実施例1と同様に、酸化チタン微粒子分散液(c−1)と、シリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が1.5となるように添加し、評価用コーティング液(C−1)を得た。
<化粧石膏ボードへの塗布>
評価用コーティング液(C−1)を使用したこと以外は実施例1と同様にして、アセトアルデヒドガス分解性能評価用サンプルを作製し、アセトアルデヒドガス分解性能を測定したところ、LED照射後72時間経過してもアセトアルデヒドガス濃度の低下は観測されなかった(不良:×)。
[比較例2]
酸化チタン微粒子(A)の分散液のみから酸化チタン微粒子分散液(c−2)を得た。
実施例1と同様に、酸化チタン微粒子分散液(c−2)と、シリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が1.5となるように添加し、評価用コーティング液(C−2)を得た。
<メラミン化粧板への塗布>
評価用コーティング液(C−2)を使用したこと以外は実施例2と同様にして、アセトアルデヒドガス分解性能評価用サンプルを作製し、アセトアルデヒドガス分解性能を測定したところ、LED照射後72時間経過してもアセトアルデヒドガス濃度は1ppmを下回らなかった(やや不良:△)。
[比較例3]
酸化チタン微粒子(B)の分散液のみから酸化チタン微粒子分散液(c−3)を得た。
実施例1と同様に、酸化チタン微粒子分散液(c−3)と、シリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製、平均粒子径10〜20nm、SiO2濃度20質量%水溶液)をTiO2/SiO2(質量比)が1.5となるように添加し、評価用コーティング液(C−3)を得た。
<フロアタイルへの塗布>
評価用コーティング液(C−3)を使用したこと以外は実施例3と同様にして、アセトアルデヒドガス分解性能評価用サンプルを作製し、アセトアルデヒドガス分解性能を測定したところ、LED照射後72時間経過してもアセトアルデヒドガス濃度の低下は観測されなかった(不良:×)。
実施例1〜8の結果から分かるように、スズ成分及び可視光応答性を高める遷移金属成分(モリブデン成分及び/又はバナジウム成分)が固溶された第1の酸化チタン微粒子と、鉄成分が固溶された第2の酸化チタン微粒子とを混合した光触媒を含有した表面層を有する内装材は、可視領域の光のみ発光するLED照射下でもアセトアルデヒドガスを分解できることが分かる。
比較例1の結果から分かるように、通常の酸化チタン微粒子からなる光触媒を含有した表面層を有する内装材では可視光照射下での十分な光触媒活性が得られない。
比較例2、3の結果から分かるように、第1の酸化チタン微粒子、第2の酸化チタン微粒子それぞれ単独では可視光照射下での十分な光触媒活性が得られない。
表1に、実施例1〜8及び比較例1〜3の評価結果をまとめて示す。
Figure 0006624291

Claims (13)

  1. スズ成分及び可視光応答性を高める遷移金属成分(但し、鉄族成分を除く)が固溶された第1の酸化チタン微粒子と鉄族成分が固溶された第2の酸化チタン微粒子との2種類の酸化チタン微粒子が含有されている可視光応答型光触媒活性を有する表面層を有する内装材。
  2. 第1の酸化チタン微粒子に含有されるスズ成分の含有量がチタンとのモル比(Ti/Sn)で1〜1,000である請求項1記載の内装材。
  3. 第1の酸化チタン微粒子に固溶される遷移金属成分が、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン及びセリウムの群から選ばれる少なくとも1つである請求項1又は2記載の内装材。
  4. 第1の酸化チタン微粒子に固溶される遷移金属成分が、モリブデン及び/又はバナジウムである請求項3記載の内装材。
  5. 第1の酸化チタン微粒子に含有されるモリブデン成分の含有量がチタンとのモル比(Ti/Mo)で1〜1,000であり、及び/又はバナジウム成分の含有量がチタンとのモル比(Ti/V)で10〜10,000である請求項4記載の内装材。
  6. 第2の酸化チタン微粒子に含有される鉄族成分の含有量がチタンとのモル比(Ti/鉄族成分)で1〜1,000である請求項1〜5のいずれか1項記載の内装材。
  7. 第2の酸化チタン微粒子に固溶された鉄族成分が、鉄成分である請求項1〜6のいずれか1項記載の内装材。
  8. 第1の酸化チタン微粒子と第2の酸化チタン微粒子の混合比が、それぞれの質量比[(第1の酸化チタン微粒子)/(第2の酸化チタン微粒子)]で99〜0.01である請求項1〜7のいずれか1項記載の内装材。
  9. 表面層には、バインダーが含有される請求項1〜8のいずれか1項記載の内装材。
  10. 上記バインダーがケイ素化合物系バインダーである請求項9記載の内装材。
  11. 室内の建築材、車内の内装材、家具及び電化製品の群から選ばれる部材である請求項1〜10のいずれか1項記載の内装材。
  12. 内装材本体の表面に、スズ成分及び可視光応答性を高める遷移金属成分(但し、鉄族成分を除く)が固溶された第1の酸化チタン微粒子と鉄族成分が固溶された第2の酸化チタン微粒子との2種類の酸化チタン微粒子を分散させた分散液を塗布することにより、可視光応答型光触媒活性を有する表面層を形成することを特徴とする内装材の製造方法。
  13. 上記分散液の塗布方法が、スプレーコート、フローコート、ディップコート、スピンコート、メイヤーバーコート、グラビアコート、ナイフコート、キスコート、ダイコート、又はフィルム転写である請求項12記載の内装材の製造方法。
JP2018527480A 2016-07-14 2017-06-22 可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法 Active JP6624291B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016139480 2016-07-14
JP2016139480 2016-07-14
PCT/JP2017/022983 WO2018012240A1 (ja) 2016-07-14 2017-06-22 可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2018012240A1 JPWO2018012240A1 (ja) 2018-12-27
JP6624291B2 true JP6624291B2 (ja) 2019-12-25

Family

ID=60951799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527480A Active JP6624291B2 (ja) 2016-07-14 2017-06-22 可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法

Country Status (8)

Country Link
US (1) US11590479B2 (ja)
EP (1) EP3486399B1 (ja)
JP (1) JP6624291B2 (ja)
KR (1) KR102430677B1 (ja)
CN (1) CN109477337B (ja)
AU (1) AU2017296589B2 (ja)
TW (1) TWI752053B (ja)
WO (1) WO2018012240A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971332B (zh) * 2018-04-12 2023-02-28 信越化学工业株式会社 光催化剂转印膜及其制造方法
CN111971331B (zh) * 2018-04-12 2023-02-24 信越化学工业株式会社 光催化剂转印膜及其制造方法
JP7044442B1 (ja) * 2021-08-18 2022-03-30 株式会社三井E&Sマシナリー 触媒塗膜形成材料が形成されたステンレス金属シート、ステンレス金属配管及び尿素scr排ガス処理装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909403B2 (ja) 1994-02-07 1999-06-23 石原産業株式会社 光触媒用酸化チタンおよびその製造方法
TW431908B (en) 1994-02-07 2001-05-01 Ishihara Sangyo Kaisha Titanium oxide photocatalyst
EP1300374A4 (en) 2000-07-12 2006-04-12 Nippon Sheet Glass Co Ltd PHOTOCATALYTIC ELEMENT
JP4273204B2 (ja) 2002-02-18 2009-06-03 独立行政法人産業技術総合研究所 光触媒を備える内装材
CN1675400A (zh) * 2002-06-17 2005-09-28 日本板硝子株式会社 涂布以钛化合物薄膜的制品、制备该制品的方法和用于涂布该薄膜的溅射靶
CN1816390A (zh) * 2003-07-04 2006-08-09 昭和电工株式会社 含有二氧化钛的溶胶、由其形成的薄膜和该溶胶的制备方法
TWI490037B (zh) 2006-04-28 2015-07-01 Ishihara Sangyo Kaisha 光觸媒及其製造方法、與使用其之光觸媒塗佈劑、光觸媒分散體、光觸媒體
JP5161555B2 (ja) 2007-12-20 2013-03-13 住友化学株式会社 酸化タングステン光触媒体の製造方法
JP5498009B2 (ja) 2008-10-30 2014-05-21 国立大学法人 東京大学 光触媒材料、有機物分解方法、内装部材、空気清浄装置、酸化剤製造装置
JP5212353B2 (ja) * 2009-12-28 2013-06-19 信越化学工業株式会社 可視光応答型酸化チタン系微粒子分散液およびその製造方法
KR101685675B1 (ko) * 2010-05-18 2016-12-12 신에쓰 가가꾸 고교 가부시끼가이샤 가시광 응답형 산화티탄계 미립자 분산액 및 그 제조방법
CN102295310A (zh) * 2010-06-28 2011-12-28 中国科学院理化技术研究所 金属离子掺杂的二氧化钛透明水性溶胶的制备方法
JP5655827B2 (ja) 2011-11-14 2015-01-21 信越化学工業株式会社 可視光応答型酸化チタン微粒子分散液、その製造方法及び該分散液を用いて形成される光触媒薄膜を表面に有する部材
JP5916645B2 (ja) 2012-02-22 2016-05-11 株式会社フジコー 光触媒機能を備えた内装材の製造方法
TWI455890B (zh) * 2012-07-09 2014-10-11 Univ Nat Chi Nan 雙金屬改質的二氧化鈦及其製備方法
JP5896034B2 (ja) 2012-09-19 2016-03-30 信越化学工業株式会社 可視光応答型光触媒微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材
US9375750B2 (en) * 2012-12-21 2016-06-28 Valinge Photocatalytic Ab Method for coating a building panel and a building panel
EP2974793A4 (en) 2013-03-15 2016-11-30 Daicel Corp LIQUID TITANIUM OXIDE DISPERSION, TITANIUM OXIDE LIQUID COATING, AND PHOTOCATALYST COATING FILM
CN107427818B (zh) 2015-03-23 2021-02-02 信越化学工业株式会社 可见光响应型光催化氧化钛微粒分散液、其制造方法和在表面具有光催化薄膜的构件
CN106076352A (zh) * 2016-05-23 2016-11-09 无锡市嘉邦电力管道厂 一种光电催化薄膜及其制备方法

Also Published As

Publication number Publication date
KR102430677B1 (ko) 2022-08-09
US11590479B2 (en) 2023-02-28
WO2018012240A1 (ja) 2018-01-18
JPWO2018012240A1 (ja) 2018-12-27
EP3486399B1 (en) 2021-03-17
US20200230575A1 (en) 2020-07-23
EP3486399A4 (en) 2020-03-04
AU2017296589A1 (en) 2018-12-06
KR20190028387A (ko) 2019-03-18
AU2017296589B2 (en) 2022-07-28
CN109477337A (zh) 2019-03-15
TWI752053B (zh) 2022-01-11
CN109477337B (zh) 2021-01-12
EP3486399A1 (en) 2019-05-22
TW201815470A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6394788B2 (ja) 可視光応答型光触媒酸化チタン微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材
KR102436684B1 (ko) 가시광 응답형 광촉매 산화타이타늄 미립자 혼합물, 그 분산액, 분산액의 제조 방법, 광촉매 박막, 및 광촉매 박막을 표면에 가지는 부재
US20140309103A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion
JP6624291B2 (ja) 可視光応答型光触媒活性を有する表面層を有する内装材及びその製造方法
JP7088082B2 (ja) 酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法
JP7070474B2 (ja) 酸化チタン微粒子、その分散液、及び分散液の製造方法
WO2012046493A1 (ja) ルチル型酸化チタン微粒子分散液、その製造方法及び該ルチル型酸化チタン薄膜を表面に有する部材
JP2021175697A (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法
WO2022059512A1 (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法
WO2022059520A1 (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法
JP2021175696A (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150