JP6622615B2 - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
JP6622615B2
JP6622615B2 JP2016027171A JP2016027171A JP6622615B2 JP 6622615 B2 JP6622615 B2 JP 6622615B2 JP 2016027171 A JP2016027171 A JP 2016027171A JP 2016027171 A JP2016027171 A JP 2016027171A JP 6622615 B2 JP6622615 B2 JP 6622615B2
Authority
JP
Japan
Prior art keywords
duty ratio
spool
ratio range
range
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016027171A
Other languages
English (en)
Other versions
JP2017145865A (ja
Inventor
頼田 浩
浩 頼田
潤二 右手
潤二 右手
新始 小松
新始 小松
宏 八十島
宏 八十島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016027171A priority Critical patent/JP6622615B2/ja
Publication of JP2017145865A publication Critical patent/JP2017145865A/ja
Application granted granted Critical
Publication of JP6622615B2 publication Critical patent/JP6622615B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、電磁スプール弁を用いた油圧制御装置に関する。
電磁スプール弁のスプールに小さい振れ幅のディザを発生させ、スプールを動摩擦の状態にする油圧制御装置が知られている(例えば、特許文献1参照)。
特許文献1には、スプール弁の出力油圧を油圧センサによって検出し、検出した出力油圧に基づいてディザ量を制御する技術が開示されている。この技術により、油温変化等によってディザ量が変化することにより生じる出力油圧の変動を回避できる。なお、ディザ量は、ディザにおけるスプールの振れ幅である。
特開平10−198431号公報
特許文献1の技術は、1個の電磁スプール弁に対して1個の油圧センサが必要になる。このように、油圧センサを必要とすることで、搭載性が悪化する。また、油圧センサを必要とすることで、組付性の悪化を招くとともに、部品点数の増加によって大幅なコストアップを招いてしまう。
本発明の目的は、油圧センサを用いることなくディザ量の変化による油圧変動を抑えることのできる油圧制御装置の提供にある。
(発明1)
請求項1の発明は、スプール(6)に作用するばね定数を、デューティ比50%を含む中デューティ比範囲(X2)で大きくする。
これにより、中デューティ比範囲(X2)におけるディザ量の増加を抑えることができる。このため、デューティ比制御によるディザ量が、中デューティ比範囲(X2)で大きくなる不具合を回避できる。その結果、中デューティ比範囲(X2)におけるディザ量の増大による油圧変動を防ぐことができる。
このように、請求項1の発明を採用することにより、圧力センサを用いることなくディザ量の変化による圧力変動を抑えることができる。
(発明2)
請求項2の発明は、スプール(6)に作用するフィードバック軸力を、デューティ比50%を含む中デューティ比範囲(X2)で大きくする。
これにより、中デューティ比範囲(X2)におけるディザ量の増加を抑えることができ、上記発明1と同様の効果を得ることができる。
(発明3)
請求項3の発明は、入力ポート(P1)と出力ポート(P2)の連通度合を、デューティ比50%を含む中デューティ比範囲(X2)で小さくする。
これにより、中デューティ比範囲(X2)では、スプール(6)のスライド変化に対する出力油圧の変化を抑えることができるため、上記発明1と同様の効果を得ることができる。
(発明4)
請求項4の発明は、スプール(6)にディザを発生させるパルス信号の波高を、デューティ比50%を含む中デューティ比範囲(X2)で小さくする。
これにより、中デューティ比範囲(X2)におけるディザ量の増加を抑えることができ、上記発明1と同様の効果を得ることができる。
(発明5)
請求項5の発明は、スプール(6)にディザを発生させる周波数を、デューティ比50%を含む中デューティ比範囲(X2)で高くする。
これにより、中デューティ比範囲(X2)におけるディザ量の増加を抑えることができ、上記発明1と同様の効果を得ることができる。
制御回路のブロック図および電磁スプール弁の断面図である。 (a)小ストローク時におけるデューティ比の説明図、(b)中ストローク時におけるデューティ比の説明図、(c)大ストローク時におけるデューティ比の説明図、(d)小ストローク時におけるソレノイド電流の説明図、(e)中ストローク時におけるソレノイド電流の説明図、(f)大ストローク時におけるソレノイド電流の説明図である。 (a)デューティ比と平均的なソレノイド電流の関係を示すグラフ、(b)デューティ比とソレノイド電流の振幅量の関係を示すグラフである。 (a)スプールのリフト量とスプールに作用するばね定数の関係を示すグラフ、(b)デューティ比とスプールリフト量の関係を示すグラフである。 スプール弁の要部拡大断面図である。 スプールのリフト量とスプールに作用するばね定数の関係を示すグラフである。 (a)小ストローク時における電磁スプール弁の断面図、(b)中ストローク時における電磁スプール弁の断面図、(c)大ストローク時における電磁スプール弁の断面図である。 デューティ比とスプールリフト量の関係を示すグラフである。 (a)小ストローク時における電磁スプール弁の断面図、(b)中ストローク時における電磁スプール弁の断面図である。 デューティ比とスプールリフト量の関係を示すグラフである。 (a)デューティ比0%付近におけるスプール弁の要部断面図、(b)デューティ比20%付近におけるスプール弁の要部断面図、(c)デューティ比50%付近におけるスプール弁の要部断面図である。 (a)デューティ比0%付近におけるスプール弁の拡大断面図、(b)デューティ比20%付近におけるスプール弁の拡大断面図、(c)デューティ比50%付近におけるスプール弁の拡大断面図である。 デューティ比と出力油圧の関係を示すグラフである。 制御回路のブロック図および電磁スプール弁の断面図である。 デューティ比とディザを発生させるパルス信号の波高の関係を示すグラフである。 デューティ比とディザを発生させる周波数の関係を示すグラフである。
以下では、図面に基づいて発明を実施するための形態を説明する。なお、以下で開示する実施形態は、一例を開示するものであって、本発明が実施形態に限定されないことは言うまでもない。
[実施形態1]
図1〜図4に基づいて実施形態1を説明する。
自動車に搭載される自動変速機は、油圧制御によって変速制御を実施す油圧制御装置を搭載する。
油圧制御装置は、内部に多数の油路が形成されたバルブハウジングに装着される電磁スプール弁1と、この電磁スプール弁1を通電制御する制御回路2とを備える。
電磁スプール弁1は、スプール弁3とリニアソレノイド4とを軸方向に結合した構造を採用する。電磁スプール弁1の具体的な一例として、この実施形態1では通電停止時に出力油圧が最小になるノーマリクローズタイプを示す。
先ず、電磁スプール弁1の具体的な構造を説明する。
スプール弁3は、略円筒形状を呈するスリーブ5と、このスリーブ5の内部で軸方向へ摺動自在に支持されるスプール6と、このスプール6を右側へ付勢する付勢部材7とを備える。
この実施形態では、説明の便宜上、スプール6のスライド方向(即ち、軸方向)を左右方向とする。もちろん、この左右方向は、説明のためのものであって、実際の搭載方向を限定するものではない。また、左右方向のうち、スプール弁3に対するリニアソレノイド4側を右とし、反対側を左として説明する。
スリーブ5には、オイルポンプ8の作動によって所定圧力に加圧された油圧の供給を受ける入力ポートP1、自動変速機の摩擦係合装置等に油路を介して連通する出力ポートP2、オイルパンに通じたドレン空間に連通するドレンポートP3、出力ポートP2に連通するフィードバックポートP4が設けられる。
これらの各ポートは、スリーブ5の内外を貫通する径方向の貫通孔であり、スリーブ5の内周面には各ポートのそれぞれに通じる環状溝が形成されている。そして、各ポートは、スリーブ5の右側から左側に向かって、ドレンポートP3、出力ポートP2、入力ポートP1、フィードバックポートP4の順に配置されている。
スプール6には、入力ポートP1の開度調整を行なう入力ランドR1、ドレンポートP3の開度調整を行なうドレンランドR2、入力ランドR1より小径のフィードバックランドR3が設けられている。
これらの各ランドは、スプール6の右側から左側に向かって、ドレンランドR2、入力ランドR1、フィードバックランドR3の順で配置されている。
入力ランドR1とドレンランドR2の間には、出力ポートP2に通じる分配室V1が形成される。
また、フィードバックランドR3の外周面とスリーブ5の内周面の間には、フィードバックポートP4に通じるフィードバック室V2が形成される。
ここで、入力ポートP1と入力ランドR1の位置関係、およびドレンポートP3とドレンランドR2の位置関係は、ノーマリクローズタイプが達成されるように設定される。
具体的に、リニアソレノイド4の通電が停止されている状態では、入力ランドR1が入力ポートP1を閉塞し、ドレンランドR2がドレンポートP3を開き、出力ポートP2がドレンポートP3のみと連通する。
また、リニアソレノイド4が通電制御されてスプール6が少量左側へスライドした状態では、入力ランドR1が入力ポートP1を開き、ドレンランドR2がドレンポートP3を開き、出力ポートP2にスプール6の位置に応じた出力油圧が発生する。
さらに、スプール6が大きく左側へスライドした状態では、入力ランドR1が入力ポートP1を開き、ドレンランドR2がドレンポートP3を閉塞し、出力ポートP2が入力ポートP1のみと連通する。これにより、出力ポートP2には、入力ポートP1へ供給された油圧と同等の油圧が発生する
出力ポートP2の発生油圧が大きくなるに従って、フィードバック室V2に印加されるフィードバック油圧が大きくなる。このため、入力ランドR1とフィードバックランドR3のランド差による圧差により、スプール6にはリニアソレノイド4の駆動力に抗する右向きのフィードバック軸力が作用する。なお、軸力は、軸方向の力である。
リニアソレノイド4は、スリーブ5の右端に結合され、リニアソレノイド4に付与されるソレノイド電流の増加に応じてスプール6を左側へ変位させる。なお、ソレノイド電流は、リニアソレノイド4に付与される電流である。
リニアソレノイド4は、周知構造のものであり、ソレノイド電流に応じた磁力を発生するコイル11、磁束ループを形成するステータ12およびヨーク13、コイル11の発生磁力の増加によって左方へ磁気吸引されるプランジャ14等を備えて構成される。
ステータ12の中心部には、棒状のプッシュロッド15が軸方向へ摺動自在に支持されている。このため、コイル11に付与されるソレノイド電流が増加してプランジャ14が左側へスライドすると、プッシュロッド15を介してスプール6が左側へスライドする。逆に、コイル11に付与されるソレノイド電流が減少し、プランジャ14に対する磁気吸引力が低下すると、付勢部材7の付勢力によって、スプール6およびプランジャ14が右側へ押し戻される。なお、図面に示すリニアソレノイド4の断面構造は一例であり、リニアソレノイド4の構造が図面のものに限定されないことは言うまでもない。
制御回路2は、ソレノイド電流を制御することによって、出力ポートP2の出力油圧を制御する。制御回路2は、リニアソレノイド4へ与えるソレノイド電流をPWM制御する。即ち、制御回路2は、PWM制御におけるデューティ比を変更することによってソレノイド電流を制御するものである。
制御回路2は、目標油圧を算出する演算部21の他に、演算部21が算出した目標油圧に応じたデューティ比を求め、そのデューティ比の駆動信号をリニアソレノイド4に付与するデューティ出力部22を備える。
なお、デューティ比は、周期的にハイとローを繰り返す信号におけるハイ時間とロー時間の割合である。
デューティ比が小さいとは、1周期におけるロー時間の割合が小さい状態である。
デューティ比が大きいとは、1周期におけるハイ時間の割合が大きい状態である。
デューティ比0%は、ハイ信号の無い状態である。
デューティ比50%は、1周期におけるハイ時間とロー時間の割合が等しい状態である。
デューティ比100%は、ロー信号の無い状態である。
デューティ比の制御は、ハイ時間とロー時間の割合の制御である。そして、デューティ比を大きくすることでソレノイド電流を大きくできる。逆に、デューティ比を大きくすることでソレノイド電流を小さくできる。
ハイとローを繰り返す信号の周波数が所謂PWM周波数である。具体的には、数百Hz〜数kHz程の範囲内において設定される。
図3(a)に示すように、ソレノイド電流の平均値は、デューティ比が大きくなるにつれて大きくなる。なお、図2(d)〜(f)では、ソレノイド電流の変化を実線で示し、平均したソレノイド電流を破線で示す。
一方、図3(b)に示すように、ソレノイド電流の振幅は、デューティ比50%で最大となる。
ソレノイド電流の振幅は、パルス信号のハイ信号の時間とロー信号の時間の短い方で決まる。
ソレノイド電流の振幅を決めるパルス信号の幅をパルス信号幅Wpとした場合、パルス信号幅Wpは、次式で示される。
Figure 0006622615
なお、式中rdは、デューティ比である。式中fは、PWM周波数である。
ソレノイド電流の振幅をソレノイド電流振幅AIとした場合、ソレノイド電流振幅AIは、次式で示される。
Figure 0006622615
なお、式中IDCは、ハイ信号時の電流値であり、言い換えるとパルス高さの直流電圧を加えた時のソレノイド電流である。式中Tは、ソレノイド電流の時定数である。式中のeは自然対数の底値であり、所謂ネイピア数である。
ここで、ソレノイド電流の振幅が、最大電流の30%を超えると、デューティ比制御によるディザ量が増加する影響により、出力油圧の脈動が大きくなる傾向がある。
具体的には、デューティ比50%に近づいて、次式となった時に、出力油圧に生じる脈動が過大となる可能性がある。
Figure 0006622615
この不具合を回避する手段として、この実施形態1では、次の技術を採用する。
先ず、デューティ比の全制御範囲のうち、デューティ比の小さい範囲を小デューティ比範囲X1とする。
また、デューティ比の全制御範囲のうち、デューティ比の大きい範囲を大デューティ比範囲X3とする。
さらに、デューティ比の全制御範囲のうち、小デューティ比範囲X1と大デューティ比範囲X3の間の範囲を中デューティ比範囲X2とする。中デューティ比範囲X2の下限および上限は限定するものではなく、少なくともデューティ比50%を含むものであれば良い。なお、中デューティ比範囲X2の下限の一例は、デューティ比30%〜40%程である。また、中デューティ比範囲X2の上限の一例は、デューティ比60%〜70%程である。
そして、この実施形態1では、スプール6に作用するばね定数が、中デューティ比範囲X2で大きくなるように設けられている。即ち、スプール6に作用する付勢部材7のばね定数は、小デューティ比範囲X1と大デューティ比範囲X3に比較して、中デューティ比範囲X2で大きくなるように設けられている。
次に、ばね定数を、中デューティ比範囲X2で大きくする技術を具体的に説明する。
付勢部材7は、スプール6を右側に付勢するものであり、スリーブ5の左端に螺合された調整スクリュ31とスプール6の間のばね室V3において軸方向に加圧された状態で配置されている。なお、ばね室V3は、スリーブ5に形成された呼吸孔32を介してドレン空間に連通している。
この実施形態1の付勢部材7は、軸方向に直列に配置した第1スプリング7aと第2スプリング7bを用いて構成される。第1スプリング7aと第2スプリング7bのそれぞれは、筒状に螺旋形成された圧縮コイルばねである。第1スプリング7aと第2スプリング7bの間には、略円板状の仕切板7cが配置されている。即ち、第1スプリング7aと第2スプリング7bは、仕切板7cを介して軸方向に直列に配置されている。なお、仕切板7cの右側が第1スプリング7aであり、仕切板7cの左側が第2スプリング7bである。
第1スプリング7aは、軸方向に対する圧縮量が小さい範囲でばね定数が小さく、圧縮量が大きくなるに従ってばね定数が大きくなる非線形特性のばねである。具体的に、第1スプリング7aは、巻ピッチが不等間隔に設けられており、スプール6のリフト量が大きくなるに従ってばね定数が大きくなる。
この第1スプリング7aの非線形の特性により、図4(a)に示すように、小デューティ比範囲X1ではばね定数が小さく、中デューティ比範囲X2ではばね定数が大きくなる。なお、リフト量とは、通電停止状態におけるスプール6の位置を基準としたスプール6の軸方向のスライド量である。
第2スプリング7bは、第1スプリング7aよりばね定数が大きく設けられている。一方、スリーブ5には、ばね室V3の内側へ向けて環状に突出するフランジ33が設けられている。そして、小デューティ比範囲X1と中デューティ比範囲X2では、第2スプリング7bの付勢力により、仕切板7cの外周部がフランジ33に押し付けられるように設けられる。また、大デューティ比範囲X3に達すると、仕切板7cがフランジ33から離れるように設けられている。
言い換えると、第2スプリング7bの付勢力によって仕切板7cがフランジ33に押し付けられる範囲が小デューティ比範囲X1と中デューティ比範囲X2であり、仕切板7cがフランジ33から離れた範囲が大デューティ比範囲X3である。
仕切板7cがフランジ33から離れると、第1スプリング7aと第2スプリング7bが軸方向において直列に繋がった状態となるため、スプール6に作用するばね定数が小さくなる。
その結果、図4(a)に示すように、大デューティ比範囲X3では、スプール6に作用するばね定数が中デューティ比範囲X2より小さくなる。
(実施形態1の効果)
この実施形態1の油圧制御装置は、上述したように、スプール6に作用するばね定数を、小デューティ比範囲X1で小さく、デューティ比50%を含む中デューティ比範囲X2で大きく、大デューティ比範囲X3で小さくしている。
これにより、ソレノイド電流の振幅が大きくなるデューティ比50%付近では、スプール6のスライドを抑えることができる。即ち、図4(b)に示すように、デューティ比50%付近では、デューティ比の変化に対するスプール6のリフト変化の傾きを小さくできる。
その結果、デューティ比50%付近でディザ量の増加によりスプール6が過大に振動して油圧変動が生じる不具合を回避できるとともに、他の範囲でディザ量が過小になる不具合を回避できる。なお、ディザ量が過小になる不具合は、スプール6のディザが失われてヒステリシスが増加する不具合や、スプール6とスリーブ5の間に侵入した異物を排出する効果を失う不具合である。
このように、この実施形態1を採用する油圧制御装置は、圧力センサを用いることなくディザ量の変化による圧力変動を抑えることができる。このため、油圧センサを用いることによる搭載性の悪化を回避できる。また、油圧センサを用いることによる組付性の悪化やコストアップを回避できる。
特に、自動変速機は、複数の電磁スプール弁1を搭載する。このため、複数の油圧センサを自動変速機に搭載する不具合を回避することができ、搭載性の向上を図ることができるとともに、大幅なコストカットを実現できる。
[実施形態2]
図5、図6に基づいて実施形態2を説明する。なお、以下の各実施形態において上記実施形態1と同一符合は同一機能物を示すものである。また、以下では、上述した実施形態に対する変更箇所のみを開示するものであり、以下の各実施形態において説明していない箇所については先行して説明した形態を採用するものである。
上記の実施形態1では、スプール6のリフト変化に対して第1スプリング7aのばね定数を非線形にする手段として、第1スプリング7aの巻ピッチを不等間隔に設ける例を示した。
これに対し、この実施形態2は、第1スプリング7aより軸方向長が短い第3スプリング7dを、第1スプリング7aと並列に配置するものである。
このように設けることで、小デューティ比範囲X1では、第1スプリング7aのみがスプール6に付勢力を加える状態となり、図6に示すように、ばね定数が小さくなる。
なお、この実施形態2では、第1スプリング7aのみがスプール6に付勢力を加える範囲が小デューティ比範囲X1であり、第1スプリング7aとともに第3スプリング7dがスプール6に付勢力を加える範囲が中デューティ比範囲X2と大デューティ比範囲X3である。
具体的に、スプール6が、通電停止位置から軸方向へ距離Lだけリフトすることで、小デューティ比範囲X1から中デューティ比範囲X2となり、第1スプリング7aと第2スプリング7bの両方がスプール6に付勢力を加える状態となる。その結果、中デューティ比範囲X2では、図6に示すように、ばね定数が大きくなる。
さらに、スプール6のリフト量が大きくなって大デューティ比範囲X3となると、上記実施形態1で示したように、仕切板7cがフランジ33から離れて、スプール6に作用するばね定数が中デューティ比範囲X2より小さくなる。
これにより、上述した実施形態1と同様の効果を得ることができる。
[実施形態3]
図7、図8に基づいて実施形態3を説明する。なお、以下の各形態では、付勢部材7が1つの圧縮コイルばねによって設けられる。
この実施形態3では、スプール6に作用するフィードバック軸力が中デューティ比範囲X2で大きくなるように設けられている。即ち、スプール6に作用するフィードバック軸力は、小デューティ比範囲X1と大デューティ比範囲X3に比較して、中デューティ比範囲X2で大きくなるように設けられている。
次に、フィードバック軸力を、中デューティ比範囲X2で大きくする技術を具体的に説明する。
この実施形態3のスプール弁3には、実施形態1で開示したフィードバック室V2とは別に、補助フィードバック室V4が設けられている。
具体的に、スプール6の左端には、フィードバックランドR3よりさらに小径の補助フィードバックランドR4が設けられている。そして、補助フィードバックランドR4の外周面とスリーブ5の内周面の間に、補助フィードバック室V4が設けられている。
一方、スプール6には、小デューティ比範囲X1の時のみ、補助フィードバック室V4の油圧をばね室V3に導く第1連通路41が設けられている。
また、スプール6には、中デューティ比範囲X2と大デューティ比範囲X3の時のみ、フィードバック室V2の油圧を補助フィードバック室V4に導く第2連通路42が設けられている。
さらに、スプール6には、大デューティ比範囲X3の時のみ、補助フィードバック室V4の油圧をばね室V3に導く第3連通路43が設けられている。
なお、第1連通路41、第2連通路42、第3連通路43は、スプール6の表面に形成される溝であっても良いし、スプール6を貫通する貫通孔であっても良い。
このように設けることで、小デューティ比範囲X1では、補助フィードバック室V4が第1連通路41、ばね室V3、呼吸孔32を介してドレン空間に連通し、フィードバック室V2のみによるフィードバック軸力がスプール6に作用する。
このため、小デューティ比範囲X1では、スプール6に作用するフィードバック軸力が小さくなる。その結果、図8に示すように、小デューティ比範囲X1では、スプール6のリフト感度が高くなり、デューティ比の変化に対してスプール6が大きくリフト変化する。
また、中デューティ比範囲X2では、フィードバック室V2と補助フィードバック室V4の両方に出力油圧が発生し、フィードバック室V2によるフィードバック軸力に、補助フィードバック室V4によるフィードバック軸力が加算されてスプール6に作用する。
このように、中デューティ比範囲X2では、スプール6に作用するフィードバック軸力が大きくなる。その結果、図8に示すように、中デューティ比範囲X2では、スプール6のリフト感度が低くなり、デューティ比の変化に対してスプール6のリフト変化が抑えられる。
さらに、大デューティ比範囲X3では、補助フィードバック室V4が第3連通路43、ばね室V3、呼吸孔32を介してドレン空間に連通し、フィードバック室V2のみによるフィードバック軸力がスプール6に作用する。
このため、大デューティ比範囲X3では、スプール6に作用するフィードバック軸力が小さくなる。その結果、図8に示すように、大デューティ比範囲X3では、スプール6のリフト感度が高くなり、デューティ比の変化に対してスプール6が大きくリフト変化する。
これにより、上述した実施形態1と同様の効果を得ることができる。
[実施形態4]
図9、図10に基づいて実施形態4を説明する。
この実施形態4の電磁スプール弁1は、小デューティ比範囲X1と中デューティ比範囲X2のみで作動するタイプであり、中デューティ比範囲X2においてスプール6が最大リフト量に達するものである。このタイプでは、実施形態3で示した第3連通路43を廃止することができる。
このように第3連通路43を廃止しても、上述した実施形態1と同様、デューティ比50%付近でスプール6が過大に振動して油圧変動が生じる不具合を回避できるとともに、他の範囲でディザ量が過小になる不具合を回避できる。
[実施形態5]
図11〜図13に基づいて実施形態5を説明する。
この実施形態5のスプール弁3は、入力ポートP1と出力ポートP2の連通度合を、デューティ比50%を含む中デューティ比範囲X2で小さくするように設けられている。即ち、小デューティ比範囲X1と大デューティ比範囲X3では、スプール6のスライド変化に応じて入力ポートP1と出力ポートP2の連通度合が大きく変化するように設けられる。そして、中デューティ比範囲X2では、スプール6のスライド変化に対して、入力ポートP1と出力ポートP2の連通度合が大きく変化しないように設けられている。
次に、入力ポートP1と出力ポートP2の連通度合を、中デューティ比範囲X2で小さくする技術を具体的に説明する。
スプール6の外周面には、小デューティ比範囲X1と大デューティ比範囲X3に比較して、中デューティ比範囲X2で入力ポートP1と出力ポートP2の連通度合を小さくする凹部51が設けられている。この凹部51が設けられる箇所は、入力ランドR1の右端に近い箇所の外周面である。
凹部51の形状は、限定するものでないが、一例として略半球状に窪んだ形状を採用している。
凹部51の数も限定するものではないが、2〜6個ほどが周方向において等間隔に配置されている。
一方、スリーブ5の内周面には、実施形態1で説明したように、入力ポートP1に通じる環状溝と、出力ポートP2に通じる環状溝とが設けられている。この実施形態5では、入力ポートP1に通じる環状溝を入力ポート溝52と称し、出力ポートP2に通じる環状溝を出力ポート溝53と称して説明する。
スリーブ5の内周面には、入力ポート溝52と出力ポート溝53を区画する区画壁54が設けられる。この区画壁54の軸方向の中間部には、1つの環状溝が設けられている。この環状溝を中間溝54aと称して説明する。
また、区画壁54のうちで、中間溝54aの左側を第1区画壁54bと称して説明する。さらに、入力ランドR1の右端には、R形状等よりなる面取り部55が設けられている。
第1区画壁54bの軸方向長L1は、凹部51の軸方向長L2より僅かに短く設けられている。
そして、小デューティ比範囲X1のうちで、デューティ比0%に近い範囲では、図12(a)に示すように、凹部51の左側の入力ランドR1の外周面と第1区画壁54bの内周面とが対向して入力ポートP1と出力ポートP2の連通を遮断する。
小デューティ比範囲X1のうちで、デューティ比が0%よりやや大きくなると、図12(b)に示すように、凹部51を介して入力ポート溝52と中間溝54aが連通する。中間溝54aは分配室V1に連通しているため、図13に示すように、小デューティ比範囲X1では、デューティ比の変化に対して油圧が大きく変化する。
中デューティ比範囲X2では、図12(c)に示すように、凹部51の右側の入力ランドR1の外周面と第1区画壁54bの内周面とが対向して入力ポートP1と出力ポートP2の連通度合が小さく抑えられる。このため、図13に示すように、中デューティ比範囲X2では、デューティ比の変化に対して油圧の変化が抑えられる。
大デューティ比範囲X3では、面取り部55と入力ポート溝52が軸方向においてオーバーラップする。このため、図13に示すように、大デューティ比範囲X3では、デューティ比の変化に対して油圧が大きく変化する。
この実施形態5では、上述したように、入力ポートP1と出力ポートP2の連通度合を、デューティ比50%付近で小さくすることで、スプール6のスライドに対する出力油圧の変化を抑えることができる。このため、上述した実施形態1と同様の効果を得ることができる。
[実施形態6]
図14、図15に基づいて実施形態6を説明する。
この実施形態6の制御回路2は、図14に示すように、スプール6にディザを発生させるためのパルス信号をリニアソレノイド4に付与するディザ出力部61を備える。
このディザ出力部61の出力するパルス信号は、所定のディザ周波数においてハイ信号とロー信号を繰り返すものであり、デューティ出力部22が出力した駆動電流に加算されてリニアソレノイド4に付与される。なお、ディザ周波数は、ディザの振動周期を決定する周波数であり、一例としてPWM周波数を分周したものである。
制御回路2は、小デューティ比範囲X1と大デューティ比範囲X3に比較して、中デューティ比範囲X2で、ディザを発生させるパルス信号の波高を高くするように設けられている。具体的に、この実施形態6では、ディザ出力部61が出力するパルス信号の波高を、デューティ比50%付近において小さくするように設けられている。
具体的な一例として、この実施形態6では、図15に示すように、デューティ比が50%に近づくに従ってディザ出力部61が出力するパルス信号の波高を小さくする。逆に、デューティ比が50%から遠のくに従ってディザ出力部61が出力するパルス信号の波高を大きくする。なお、図15中では、パルス信号の波高を振幅と記載する。
この実施形態6を採用することにより、デューティ比50%付近におけるディザ量を抑えることができるため、上述した実施形態1と同様の効果を得ることができる。
[実施形態7]
図16に基づいて実施形態7を説明する。
この実施形態7は、小デューティ比範囲X1と大デューティ比範囲X3に比較して、中デューティ比範囲X2で、ディザを発生させるパルス信号の周波数を高くするように設けられている。即ち、この実施形態7では、ディザ出力部61の出力するパルス信号の周波数をデューティ比50%付近において高くするように設けられている。
具体的な一例として、この実施形態7では、図16に示すように、デューティ比が50%に近づくに従ってディザ出力部61の出力するパルス信号の周波数を高くする。逆に、デューティ比が50%から遠のくに従ってディザ出力部61の出力するパルス信号の周波数を低くする。
この実施形態7を採用することにより、デューティ比50%付近におけるディザ量を抑えることができるため、上述した実施形態1と同様の効果を得ることができる。
なお、この実施形態7では、ディザ出力部61の出力するパルス信号の周波数を変更する例を示したが、実施形態1で示したようにディザ出力部61を用いない場合には、中デューティ比範囲X2においてPWM周波数を高めるようにしても良い。
[他の実施形態]
上記の実施形態では、ノーマリクローズタイプの電磁スプール弁1を用いる例を示したが、通電停止時に出力油圧が最大になるノーマリオープンタイプの電磁スプール弁1を用いても良い。
上記の実施形態では、自動変速機の油圧制御装置に本発明を適用する例を示したが、他の用途に用いられる油圧制御装置に本発明を用いても良い。一例として、エンジンのカムシャフトの進角量を調整する油圧制御装置に本発明を用いても良い。
2・・・制御回路 3・・・スプール弁
4・・・リニアソレノイド 5・・・スリーブ
6・・・スプール 7・・・付勢部材
51・・・凹部
P1・・・入力ポート P2・・・出力ポート
V2・・・フィードバック室 X1・・・小デューティ比範囲
X2・・・中デューティ比範囲 X3・・・大デューティ比範囲

Claims (5)

  1. 筒状を呈するスリーブ(5)を有するとともに、このスリーブの内側において軸方向へ摺動自在に支持されるスプール(6)を有し、このスプールの軸方向の位置に応じた出力油圧を発生するスプール弁(3)と、
    このスプール弁に設けられ、前記スプールを軸方向の一方へ向けて付勢する付勢部材(7)と、
    この付勢部材による付勢力に抗して前記スプールを駆動するリニアソレノイド(4)と、
    このリニアソレノイドに与える電流をデューティ比により制御する制御回路(2)と、
    を備える油圧制御装置において、
    デューティ比の全制御範囲のうち、デューティ比の小さい範囲を小デューティ比範囲(X1)、デューティ比の大きい範囲を大デューティ比範囲(X3)、前記小デューティ比範囲と前記大デューティ比範囲の間でデューティ比50%を含む範囲を中デューティ比範囲(X2)とした場合、
    前記スプールに作用する前記付勢部材のばね定数は、前記小デューティ比範囲と前記大デューティ比範囲に比較して、前記中デューティ比範囲で大きく設けられることを特徴とする油圧制御装置。
  2. 筒状を呈するスリーブを有するとともに、このスリーブの内側において軸方向へ摺動自在に支持されるスプールを有し、このスプールの軸方向の位置に応じた出力油圧を発生するスプール弁と、
    このスプール弁に設けられ、前記スプールを軸方向の一方へ向けて付勢する付勢部材と、
    この付勢部材の付勢力に抗して前記スプールを駆動するリニアソレノイドと、
    このリニアソレノイドの供給電流をデューティ比により制御する制御回路とを備え、
    出力油圧の上昇に応じた軸力を前記スプールに生じさせるフィードバック室(V2)が前記スプール弁に設けられる油圧制御装置において、
    デューティ比の全制御範囲のうち、デューティ比の小さい範囲を小デューティ比範囲、デューティ比の大きい範囲を大デューティ比範囲、前記小デューティ比範囲と前記大デューティ比範囲の間でデューティ比50%を含む範囲を中デューティ比範囲とするとともに、
    前記フィードバック室の油圧によって前記スプールに作用する軸力をフィードバック軸力とした場合、
    前記スプールに作用するフィードバック軸力は、前記小デューティ比範囲と前記大デューティ比範囲に比較して、前記中デューティ比範囲で大きく設けられることを特徴とする油圧制御装置。
  3. 筒状を呈するスリーブを有するとともに、このスリーブの内側において軸方向へ摺動自在に支持されるスプールを有し、このスプールの軸方向の位置に応じた出力油圧を発生するスプール弁と、
    このスプール弁に設けられ、前記スプールを軸方向の一方へ向けて付勢する付勢部材と、
    この付勢部材による付勢力に抗して前記スプールを駆動するリニアソレノイドと、
    このリニアソレノイドに与える電流をデューティ比により制御する制御回路と、
    を備える油圧制御装置において、
    前記スリーブは、加圧された油圧の供給を受ける入力ポート(P1)と、前記スプールの軸方向位置に応じた出力油圧を発生する出力ポート(P2)とを備えるものであり、
    デューティ比の全制御範囲のうち、デューティ比の小さい範囲を小デューティ比範囲、デューティ比の大きい範囲を大デューティ比範囲、前記小デューティ比範囲と前記大デューティ比範囲の間でデューティ比50%を含む範囲を中デューティ比範囲とした場合、
    前記スプールの外周面には、前記小デューティ比範囲と前記大デューティ比範囲に比較して、前記中デューティ比範囲で前記入力ポートと前記出力ポートの連通度合を小さくする凹部(51)が設けられることを特徴とする油圧制御装置。
  4. 筒状を呈するスリーブを有するとともに、このスリーブの内側において軸方向へ摺動自在に支持されるスプールを有し、このスプールの軸方向の位置に応じた出力油圧を発生するスプール弁と、
    このスプール弁に設けられ、前記スプールを軸方向の一方へ向けて付勢する付勢部材と、
    この付勢部材による付勢力に抗して前記スプールを駆動するものであり、自身に与えられる電流が前記スプール弁において発生する出力油圧とリニアな関係を有するように制御されるリニアソレノイドと、
    このリニアソレノイドに与える電流をデューティ比により制御する制御回路とを備える油圧制御装置において、
    デューティ比の全制御範囲のうち、デューティ比の小さい範囲を小デューティ比範囲、デューティ比の大きい範囲を大デューティ比範囲、前記小デューティ比範囲と前記大デューティ比範囲の間でデューティ比50%を含む範囲を中デューティ比範囲とした場合、
    前記制御回路は、前記小デューティ比範囲と前記大デューティ比範囲に比較して、前記中デューティ比範囲で、前記スプールにディザを発生させるパルス信号の波高を小さくすることを特徴とする油圧制御装置。
  5. 筒状を呈するスリーブを有するとともに、このスリーブの内側において軸方向へ摺動自在に支持されるスプールを有し、このスプールの軸方向の位置に応じた出力油圧を発生するスプール弁と、
    このスプール弁に設けられ、前記スプールを軸方向の一方へ向けて付勢する付勢部材と、
    この付勢部材による付勢力に抗して前記スプールを駆動するものであり、自身に与えられる電流が前記スプール弁において発生する出力油圧とリニアな関係を有するように制御されるリニアソレノイドと、
    このリニアソレノイドに与える電流をデューティ比により制御する制御回路とを備える油圧制御装置において、
    デューティ比の全制御範囲のうち、デューティ比の小さい範囲を小デューティ比範囲、デューティ比の大きい範囲を大デューティ比範囲、前記小デューティ比範囲と前記大デューティ比範囲の間でデューティ比50%を含む範囲を中デューティ比範囲とした場合、
    前記制御回路は、前記小デューティ比範囲と前記大デューティ比範囲に比較して、前記中デューティ比範囲で、前記スプールにディザを発生させるパルス信号の周波数を高くすることを特徴とする油圧制御装置。
JP2016027171A 2016-02-16 2016-02-16 油圧制御装置 Expired - Fee Related JP6622615B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027171A JP6622615B2 (ja) 2016-02-16 2016-02-16 油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027171A JP6622615B2 (ja) 2016-02-16 2016-02-16 油圧制御装置

Publications (2)

Publication Number Publication Date
JP2017145865A JP2017145865A (ja) 2017-08-24
JP6622615B2 true JP6622615B2 (ja) 2019-12-18

Family

ID=59682982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027171A Expired - Fee Related JP6622615B2 (ja) 2016-02-16 2016-02-16 油圧制御装置

Country Status (1)

Country Link
JP (1) JP6622615B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132355A (ja) * 2018-01-31 2019-08-08 株式会社デンソー 電流制御装置
JP7323337B2 (ja) * 2019-04-25 2023-08-08 株式会社日立ニコトランスミッション 比例電磁弁および油圧回路システム

Also Published As

Publication number Publication date
JP2017145865A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
JP4609324B2 (ja) リニアソレノイド
US10519944B2 (en) Variable displacement compressor
JP4058749B2 (ja) 電磁駆動装置およびそれを用いた電磁弁
WO2017073219A1 (ja) 減衰力調整式緩衝器
JP6156095B2 (ja) スプール制御弁
JP2001208234A (ja) 電磁弁
US9939081B2 (en) Valve apparatus
JP2006041099A (ja) リニアソレノイドおよび電磁弁
JP5141350B2 (ja) 油圧制御装置
JP6622615B2 (ja) 油圧制御装置
US7075394B2 (en) Electromagnetic drive flow controller
JP4463527B2 (ja) 油圧回路の圧力レベルの調整のための比例圧力調整弁
JP2008089080A (ja) 電磁駆動装置およびそれを用いた電磁弁
US6957656B2 (en) Proportional solenoid valve and control method therefor
JP2006046640A (ja) 電磁弁
JP5157465B2 (ja) 自動変速機クラッチ圧制御用電磁弁装置
JP2010212703A (ja) リニアソレノイド
JP2007100829A (ja) バルブ装置
JP7484394B2 (ja) 電磁弁の制御装置
JP4418418B2 (ja) 油圧駆動装置用コントロール弁の構造
JP5574188B2 (ja) 油圧制御装置
JP5747744B2 (ja) ノーマルオープン型スプール弁
JP4654984B2 (ja) 流体制御装置
JP2004169751A (ja) 電磁弁装置の制御方法
JP2004138123A (ja) 電磁バルブ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191122

R150 Certificate of patent or registration of utility model

Ref document number: 6622615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees