JP6611019B2 - 光源装置、プロジェクタ - Google Patents

光源装置、プロジェクタ Download PDF

Info

Publication number
JP6611019B2
JP6611019B2 JP2018033106A JP2018033106A JP6611019B2 JP 6611019 B2 JP6611019 B2 JP 6611019B2 JP 2018033106 A JP2018033106 A JP 2018033106A JP 2018033106 A JP2018033106 A JP 2018033106A JP 6611019 B2 JP6611019 B2 JP 6611019B2
Authority
JP
Japan
Prior art keywords
light
optical system
refractive optical
semiconductor laser
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033106A
Other languages
English (en)
Other versions
JP2019148692A (ja
Inventor
和彦 信田
雄一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2018033106A priority Critical patent/JP6611019B2/ja
Priority to TW107129231A priority patent/TWI752258B/zh
Priority to PCT/JP2018/031118 priority patent/WO2019167309A1/ja
Priority to CN201821586234.9U priority patent/CN208834085U/zh
Publication of JP2019148692A publication Critical patent/JP2019148692A/ja
Application granted granted Critical
Publication of JP6611019B2 publication Critical patent/JP6611019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Lenses (AREA)

Description

本発明は、光源装置に関し、特に半導体レーザチップから射出された光を利用する光源装置に関する。また、本発明は、このような光源装置を備えたプロジェクタに関する。
プロジェクタ用の光源として、半導体レーザチップを利用することが進められている。近年、このように半導体レーザチップを光源として用いながらも、更に光出力を高めた光源装置が市場から期待されている。
光源側の光出力を高めるためには、複数の半導体レーザチップから射出された光を集光する方法が考えられる。しかし、半導体レーザチップには一定の幅が存在し、これらを密接して配置することには限界がある。つまり、単に複数の半導体レーザチップを配置するだけでは、光源装置が大型化してしまう。
かかる観点から、例えば下記特許文献1のように、第一の領域に半導体レーザチップ群を配置し、第一の領域とは別の第二の領域に別の半導体レーザチップ群を配置し、両半導体レーザチップ群から射出される光を、スリットミラーからなる光合成手段を用いて合成する技術が存在する。かかる方法により、単に同一箇所に複数の半導体レーザチップを並べた場合と比較して、配置面積を縮小しながらも光強度を高めることが可能となる。
特開2017−215570号公報
ところで、光源側の光強度を高める方法として、レーザ光を射出する領域(光射出領域:以下では「エミッタ」と称することがある。)を複数設けた半導体レーザチップを用いる方法が考えられる。このような半導体レーザチップは、「マルチエミッタ型」と称されることがある。本発明者らは、マルチエミッタ型の半導体レーザチップを光源に利用することで、光強度を高めることを検討したところ、以下のような課題が存在することを突き止めた。
図1Aは、一つのエミッタを備えた半導体レーザチップの構造を模式的に示す斜視図である。このような半導体レーザチップは、「シングルエミッタ型」と称されることがある。なお、図1Aには、エミッタから射出される光(レーザ光)の光線束についても、模式的に図示している。なお、本明細書では、単一のエミッタから射出される束状に形成された光線群を「光線束」と称する。
図1Aに示されるような、いわゆる「端面発光型」の半導体レーザチップ100の場合、エミッタ101から射出される光線束101Lは、楕円錐型を示すことが知られている。本明細書では、光軸(図1Aに示すZ方向)に直交する2方向(X方向及びY方向)のうち、光線束101Lの発散角が大きい方向(図1Aに示すY方向)を、「ファースト軸方向」と呼び、光線束101Lの発散角が小さい方向(図1Aに示すX方向)を、「スロー軸方向」と呼ぶ。
図1Bは、光線束101Lを、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。図1Bに示すように、ファースト軸方向については光線束101Lの発散角θyが大きく、スロー軸方向については光線束101Lの発散角θxが小さい。
なお、以下の各図では、説明の都合上、光線束の発散角が実際よりも誇張して図示されている場合がある。
半導体レーザチップ100を複数配置し、各半導体レーザチップ100から射出される光(光線束101L)を集光して利用する場合、光学部材のサイズを抑制する観点から、各光線束101Lを平行光化した後、レンズによって集光するのが一般的である。具体的には、半導体レーザチップ100の後段にコリメートレンズ(「コリメーションレンズ」とも称される。)を配置して、各光線束101Lの発散角を縮小することが行われる。
図2Aは、半導体レーザチップ100の後段にコリメートレンズ102を配置した場合において、YZ平面方向に進行する光線束を、模式的に示した図面である。なお、図2Aでは、幾何光学上における上光線及び下光線のみを描画している。
本明細書において、「上光線」とは、単一のエミッタから射出された光線束のうち、光学部材(例えばレンズ)の絞り(入射瞳)の上縁を通過する光線を指し、「下光線」とは、単一のエミッタから射出された光線束のうち、前記絞り(入射瞳)の下縁を通過する光線を指す。また、以下では、単一のエミッタから射出された光線束のうち、前記絞り(入射瞳)の中心を通る光線を「主光線」と称する。主光線は、単一のエミッタから射出された光線束の上光線と下光線との間の中心を通過する光線である。
図2Aによれば、光線束101Lは、コリメートレンズ102を通過した後、ファースト軸方向(Y方向)に関して実質的な平行光線束(以下、「略平行光線束」と称する。)となる。なお、本明細書において、「実質的な平行光線束」又は「略平行光線束」とは、上光線と下光線のなす角度が2°未満である光線束を指す。
図2Bは、半導体レーザチップ100の後段にコリメートレンズ102を配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。図2Bによれば、光線束101Lは、コリメートレンズ102を通過した後、スロー軸方向(X方向)に関しても略平行光線束となる。
図3Aは、図1Aとは異なり、複数のエミッタを備えた半導体レーザチップの構造を模式的に示す斜視図である。図3Aでは、半導体レーザチップ110が2つのエミッタ(111,112)を備えている場合が示されている。
図3Bは、図1Bにならって、各エミッタ(111,112)から射出される光線束(111L,112L)を、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。各エミッタ(111,112)は、Y方向については同一の座標位置に形成されるため、X方向から見たときに光線束(111L,112L)は完全に重なっている。一方、各エミッタ(111,112)は、X方向については異なる座標位置に形成されるため、Y方向から見たときに光線束(111L,112L)はそれぞれの位置がずれて表示される。
図3Aに図示された半導体レーザチップ110の後段に、図2A及び図2Bと同様にコリメートレンズ102を配置した場合における光線束の態様について検討する。図3Bを参照して上述したように、X方向から見たときに光線束(111L,112L)は完全に重なっている。このため、ファースト軸方向(Y方向)に関しては、各光線束(111L,112L)は、コリメートレンズ102を通過した後、図2Aと同様に略平行光線束となる。
図4は、半導体レーザチップ110の後段にコリメートレンズ102を配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。半導体レーザチップ110は、X方向に離間して複数のエミッタ(111,112)を備えているため、コリメートレンズ102の中心位置におけるX座標と、各エミッタ(111,112)の中心位置におけるX座標には不可避的にずれが生じる。
この結果、エミッタ111から射出された光線束111L、及びエミッタ112から射出された光線束112Lのそれぞれは、コリメートレンズ102を通過後に略平行光線束となるものの、光線束111Lの主光線111Lmと、光線束112Lの主光線112Lmとは、非平行となる。つまり、光線束111Lと光線束112Lとは、それぞれX方向に係る進行方向を異ならせてしまう。
かかる構成の場合、後に集光光学系を用いて各光線束(111L,112L)を集光したとしても、集光後の光線束群に拡がりが生じ、目的とする方向に導くことのできない光線が生じてしまう。この結果、光の利用効率が低下する。特に、マルチエミッタ型の半導体レーザチップ110を複数配置して、各半導体レーザチップ110から射出される光を利用するような場合には、利用できない光が無視できない量となる。
コリメートレンズ102を通過した後において、光線束111Lと光線束112LのX方向に係る進行方向の角度は、コリメートレンズ102の焦点距離に対する、エミッタ(111,112)間の距離の相対値によって決定される。より詳細には、コリメートレンズ102の光軸から、コリメートレンズ102の光軸から最も遠い各エミッタ(111,112)の位置までの距離をd、コリメートレンズ102の焦点距離fとしたときに、光線束(111L,112L)の発散角θは、θ= tan-1(d/f)で規定される。
図5は、同一のコリメートレンズ102を用い、図4の構成よりも、エミッタ(111,112)間の距離(X方向の距離)を拡げた場合において、図4にならってXZ平面方向に進行する光線束を模式的に示した図面である。言い換えれば、図5は、図4の構成よりも、コリメートレンズ102の焦点距離に対する、エミッタ(111,112)間の距離の相対値を大きくした場合に対応する。
図5によれば、主光線111Lmと主光線112Lmとのなす角度θxm(この角度は、コリメートレンズ102の光軸と各主光線のなす角度の2倍に対応する。)は、図4の場合よりも大きくなっていることが分かる。この場合、光線束111Lと光線束112Lとが、図4の態様よりも、Z方向に関してコリメートレンズ102に対して近い位置で完全に分離してしまう。図4の態様では、光軸方向(Z方向)に関して、z1の位置で光線束111Lと光線束112Lとが完全に分離する。これに対し、図5の態様では、光軸方向(Z方向)に関して、z1よりも前段のz2の位置で光線束111Lと光線束112Lとが完全に分離する。
逆にいえば、コリメートレンズ102の焦点距離に対して、エミッタ(111,112)間の距離が十分無視できる程度の大きさである場合には、X方向に関しても、光線束111Lの主光線111Lmと、光線束112Lの主光線112Lmとのなす角度は実質的に0°に近づき、各光線束(111L,112L)が分離するようなことは生じない。しかし、このためには、コリメートレンズ102を、十分長い焦点距離を有するレンズとする必要があり、光学系のサイズが拡大してしまう。
特に、マルチエミッタ型の半導体レーザチップ110を複数配置する場合、各半導体レーザチップ110に対応してコリメートレンズ102を配置する必要があるため、装置規模が極めて大きくなってしまう。
上記の課題は、シングルエミッタ型の半導体レーザチップ100でも起こり得る。すなわち、上記の課題は、半導体レーザチップ100の出力を上昇させるべく、エミッタ101の幅を広くした場合や、シングルエミッタ型の半導体レーザチップ100を複数配置して、複数の半導体レーザチップ100から射出された光線束を一つのコリメートレンズ102に対して入射させる場合においても同様に起こり得る。
本発明は、上記の課題に鑑み、複数の半導体レーザチップを用いて、装置規模の拡大を抑制しながら光出力を高めた光源装置を提供することを課題とする。また、本発明は、かかる光源装置を備えたプロジェクタを提供することを課題とする。
本発明に係る光源装置は、
同一の又は異なる半導体レーザチップ上に設けられた複数の光射出領域と、隣接する複数の前記光射出領域から射出された複数の第一光線束が入射されて、前記複数の第一光線束それぞれを、略平行光線束である複数の第二光線束に変換して射出する第一屈折光学系とを含む、複数の半導体レーザユニットと、
異なる傾斜角を有する複数の平坦面を含み、同一の前記半導体レーザユニットから射出された複数の前記第二光線束それぞれの少なくとも一部が異なる前記平坦面に入射されて、複数の前記第二光線束のそれぞれの主光線の進行方向を光軸に対して略平行に変換して射出する第二屈折光学系と、を備え、
前記第二屈折光学系は、前記半導体レーザユニットの数に対応して配置されていることを特徴とする。
第一屈折光学系に対して複数の第一光線束が入射されると、それぞれは略平行光線束である複数の第二光線束に変換される。しかし、各第二光線束同士、より詳細には各第二光線束の主光線同士は、第一光線束の主光線同士の間隔に応じた角度を有して進行する。第一光線束の主光線同士の間隔は、各第一光線束を射出する光射出領域の中心位置同士の間隔に依存する。
上記光源装置は、第一屈折光学系の後段に、異なる傾斜角を有する複数の平坦面を含む第二屈折光学系を備える。そして、同一の半導体レーザユニットから射出された、より詳細には同一の第一屈折光学系から射出された、複数の第二光線束は、それぞれの少なくとも一部が、第二屈折光学系の異なる平坦面に入射される。平坦面に形成された傾斜角に応じて、複数の第二光線束は屈折し、その進行方向が変化する。ここで、各平坦面は、複数の第二光線束のそれぞれの主光線の進行方向を光軸に対して略平行となるように、傾斜角が設定されている。この結果、第二屈折光学系を通過した後の各第二光線束は、相互に進行方向が実質的に同一方向となる。
従って、第二光線束の主光線同士が、実質的に平行光(略平行光)となるため、各第二光線束同士が交差することがなく、若しくは、極めて微細な光線同士が交差するにとどまる。
上記光源装置は、半導体レーザチップ及び第一屈折光学系を含む半導体レーザユニットを複数備え、この半導体レーザユニットの数に対応した複数の第二屈折光学系を備えている。これにより、各第二屈折光学系から射出された複数の光線束は、それぞれ主光線同士が実質的に平行化される。この結果、これらの光線束を後段で集光することで、高い放射照度を有する光が得られる。
そして、上記光源装置によれば、各第一屈折光学系の後段に、第二屈折光学系を配置することで、光線の拡がりが抑制されるため、焦点距離の長い大型のコリメートレンズを配置する必要がなく、装置規模の拡大が抑制される。
上記光源装置は、同一の半導体レーザチップ上に複数の光射出領域(いわゆる「エミッタ」)を有してなるマルチエミッタ型の半導体レーザチップを複数備えるものとしても構わないし、同一の半導体レーザチップ上に単一の光射出領域(エミッタ)を有してなるシングルエミッタ型の半導体レーザチップを複数備えるものとしても構わない。
上記光源装置において、
前記第一屈折光学系は、光射出面側に凸曲面を有し、
前記第二屈折光学系は、前記第一屈折光学系に対して、前記第一屈折光学系の焦点距離よりも離れた位置に配置されているものとしても構わない。
第一屈折光学系から射出された複数の第二光線束は、その主光線同士が、第一屈折光学系の焦点の位置で交差する。各第二光線束の上光線と下光線の幅は、実質的に共通であるため、第一屈折光学系の焦点の位置において、各第二光線束同士が完全に重なり合う。仮に、第二屈折光学系が配置されていないとすれば、各第二光線束同士は、第一屈折光学系の焦点の位置から離れるに連れて相互に拡がりを有して進行していく。
ところで、第一屈折光学系から射出された第二光線束は、主光線の位置において最も光強度が高く、主光線から離れるほど光強度が急激に低下するような配光分布、例えば、ガウス分布のような分布を示す。
上記構成によれば、少なくとも第一屈折光学系から射出された複数の第二光線束の主光線は、それぞれ第二屈折光学系の異なる平坦面上に入射される。つまり、各第二光線束のうち、放射照度が極めて高い光線については、異なる平坦面に入射された後、相互に略平行化される。この結果、上述したように、第二屈折光学系から射出された複数の光線束を後段の集光光学系によって集光することで、高い放射照度を有する光を得ることができる。
上記構成において、前記第二屈折光学系は、隣接する一対の前記第二光線束に関して、一方の前記第二光線束の上光線と他方の前記第二光線束の下光線とが交差する特定位置、又は前記特定位置よりも前記第一屈折光学系に対して離れた位置に配置されているものとしても構わない。
前記特定位置において、隣接する一対の前記第二光線束同士は完全に分離される。仮に、第二屈折光学系が配置されていないとすれば、各第二光線束同士は、前記特定位置から離れるに連れて、離間距離を拡げながら分散進行する。
つまり、上記特定位置、又はその特定位置よりも後段に第二屈折光学系が配置されることで、第一屈折光学系から射出された複数の第二光線束は、それぞれ完全に第二屈折光学系の異なる平坦面上に入射される。この結果、各第二光線束に含まれる全ての光線を、略平行光として、後段に導くことができる。
逆に、前記第二屈折光学系は、前記第一屈折光学系に対して、前記第一屈折光学系の焦点距離よりも離れた位置であって、前記特定位置よりも前段の位置に配置されるものとしても構わない。この場合、隣接する第二光線束同士が一部重なり合いを有した状態で、第二屈折光学系の平坦面に入射される。
仮に、第二屈折光学系が配置されていないとすると、複数の第二光線束全体の幅(光軸に対して直交する平面上における外形)は、特定位置、又はその後段の位置と比較して、特定位置よりも前段の位置の方が小さい。つまり、上記の構成によれば、複数の第二光線束は、ビーム幅が小さい状態で第二屈折光学系に導かれる。この結果、第二屈折光学系から射出された複数の第二光線束を、ビーム幅の小さい光線束として後段に導くことができる。
なお、この構成の場合、第二屈折光学系の平坦面に入射された第二光線束に含まれる一部の光線は、同光線束の主光線とは異なる方向に進行することとなる。この光線は、後段の集光光学系によって目的の位置に集光されずに、迷光となる可能性がある。しかし、上述したように、各第二光線束は例えばガウス分布のような分布を示し、且つ、各第二光線束に含まれる主光線近傍の光線は、第二屈折光学系によって主光線と同方向に進行するため、これらの光線は後段の集光光学系によって目的の位置に集光される。つまり、この態様においても、利用できない光線の強度は極めて低いものであって、装置全体として鑑みた場合、光の利用効率に大きく影響するものではない。
前記第二屈折光学系は、隣接する前記半導体レーザユニットから射出された前記第二光線束が入射されない位置に配置されているものとすることができる。このことは、第二屈折光学系の、第一光学系からの離間位置の好ましい上限値を規定することに対応する。
仮に、第二屈折光学系を第一屈折光学系から極めて遠い位置に配置すると、この第二屈折光学系に対して、隣接する半導体レーザユニットから射出された第二光線束が入射される。このとき、以下の問題が生じる可能性がある。
第二屈折光学系が第一屈折光学系から極めて遠い位置に配置されるため、同一の第一屈折光学系から射出された複数の第二光線束同士は、完全に分離し、更にその離間距離が大きい状態で、第二屈折光学系の各平坦面に入射されることになる。この結果、第二屈折光学系は、各平坦面の大きさを大きくするか、又は、各平坦面間の間隔を大きくする必要が生じ、第二屈折光学系の規模が大きくなってしまう。
更に、第二屈折光学系のうち、端部に位置する平坦面に対しては、対応する第一屈折光学系から射出された第二光線束が入射される。これに対し、第二屈折光学系のうち、端部以外に位置する平坦面に対しては、対応する第一屈折光学系からの第二光線束に加えて、隣接する第一屈折光学系からの第二光線束が入射される。この場合、多くの光線が光軸に対して非平行となって進行し、光の利用効率が低下する可能性がある。
上記の構成とすることで、第二屈折光学系の大きさを必要以上に拡大化することなく、光の利用効率を向上させることができる。
前記第二屈折光学系は、光入射面側に複数の前記平坦面を有し、複数の前記平坦面のうち、一の前記平坦面が、光軸に対して直交する面であるものとしても構わない。この場合、一の光射出領域の中心位置と、光軸に対して直交する面で構成された、前記平坦面の中心位置を、それぞれ光軸上に位置合わせすることで光学系の位置合わせが可能となる。
前記第二屈折光学系は、光射出面側に、光軸に対する直交面を有するものとしても構わない。
前記光源装置は、前記平坦面とは反対側の面において、複数の前記第二屈折光学系が一体化されてなる第一光学部材を有するものとすることができる。この場合、各第二屈折光学系は、第一光学部材の一部分に対応する。
前記光源装置は、
前記第二屈折光学系の後段の位置において、前段フライアイレンズ及び後段フライアイレンズからなるインテグレータ光学系を有し、
前記前段フライアイレンズは、前記第一光学部材の光射出面側に連結して配置されており、複数の前記第二屈折光学系が備える、同一の前記傾斜角を有する前記平坦面同士の周期よりも短周期で配置された複数のレンズを含んでなるものとしても構わない。
光源装置がインテグレータ光学系を有することで、その後段において照射面上における照度を略均一化することができる。このとき、インテグレータ光学系に含まれる前段フライアイレンズを、複数の第二屈折光学系が一体化されてなる第一光学部材と連結して配置することで、光軸方向に係る装置規模を縮小化できる。
前記光源装置は、一の前記第二屈折光学系から射出された光線束の下光線と、隣接する前記第二屈折光学系から射出された別の光線束の上光線とが交差する位置に配置され、曲面を相互に対向させて配置された前段フライアイレンズ及び後段フライアイレンズからなるインテグレータ光学系を備えるものとしても構わない。
光源装置がインテグレータ光学系を有することで、その後段において照射面上における照度を略均一化することができる。しかも、上記の構成によれば、ある第二屈折光学系から射出された光線と、隣接する第二屈折光学系から射出された光線とが、前段フライアイレンズの構成要素である同一のレンズ(単レンズ)に入射される。この結果、前段フライアイレンズに含まれる各単レンズに入射された時点における、光の放射照度のバラツキがある程度抑制されるため、その後段の照射面上における照度バラツキを抑制する効果が更に高められる。
ところで、隣接する第二屈折光学系から射出された光線は、隣接する半導体レーザチップから射出された光線である。つまり、上記の構成によれば、同一の半導体レーザチップから射出された光線のみならず、一部隣接する半導体レーザチップから射出された光線が、前段フライアイレンズの構成要素である同一の単レンズに入射される。これにより、光源装置から射出された光を集光して対象物に照射する際、照射面上におけるスペックルノイズを低減する効果が期待される。
本発明に係るプロジェクタは、上記光源装置から射出された光を利用して画像を投影することを特徴とする。
本発明によれば、複数の半導体レーザチップを用いて、装置規模の拡大を抑制しながらも、光出力を高めた光源装置が実現される。
シングルエミッタ型の半導体レーザチップの構造を模式的に示す斜視図である。 図1Aの半導体レーザチップから射出される光線束を、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。 半導体レーザチップの後段にコリメートレンズを配置した場合において、YZ平面方向に進行する光線束を、模式的に示した図面である。 半導体レーザチップの後段にコリメートレンズを配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。 マルチエミッタ型の半導体レーザチップの構造を模式的に示す斜視図である。 図3Aの半導体レーザチップから射出される光線束を、X方向から見た場合と、Y方向から見た場合とに分けて模式的に図示したものである。 図3Aの半導体レーザチップの後段にコリメートレンズを配置した場合において、XZ平面方向に進行する光線束を、模式的に示した図面である。 図4の構成よりも、エミッタ間の距離を拡げた場合において、XZ平面方向に進行する光線束を模式的に示した図面である。 光源装置の一実施形態の構成を模式的に示す図面である。 図6から一つの半導体レーザユニットと、その後段に配置された第二屈折光学系とを抽出して図示した図面である。 図7Aの一部拡大図である。 図7Aの一部拡大図である。 図7Aの状態から、第二屈折光学系の配置位置を前段に移動させた場合の光線の進行を模式的に示す図面である。 第二屈折光学系の別の構成例を模式的に示す図面である。 第二屈折光学系の別の構成例を模式的に示す図面である。 第二屈折光学系の別の構成例を模式的に示す図面である。 第二屈折光学系の別の構成例を模式的に示す図面である。 光源装置の別の実施形態の構成を模式的に示す図面である。 光源装置の別の実施形態の構成を模式的に示す図面である。 図13の一部分を抽出して模式的に拡大した図面である。 第二屈折光学系とインテグレータ光学系の別の態様を模式的に示す図面である。 光源装置の別の実施形態の構成を模式的に示す図面である。 光源装置を含むプロジェクタの構成例を模式的に示す図面である。 光源装置の別の実施形態の構成を模式的に示す図面である。
以下、本発明に係る光源装置、及びプロジェクタの各実施形態について、適宜図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、実際の寸法比と図面上の寸法比とは必ずしも一致していない。
図6は、光源装置の一実施形態の構成を模式的に示す図面である。光源装置1は、複数の半導体レーザユニット(2,2,‥‥)と、各半導体レーザユニットの数に応じて配置された第二屈折光学系(3,3,‥‥)とを備える。なお、図6では、第二屈折光学系(3,3,‥‥)から射出された光が導かれる後段光学系40が図示されている。
半導体レーザユニット2は、半導体レーザチップ5と、第一屈折光学系6とを備える。図7Aは、一つの半導体レーザユニット2と、この半導体レーザユニット2に対応して配置された第二屈折光学系3とを抽出して図示した図面である。本実施形態において、半導体レーザチップ5は、複数の光射出領域(10,20)を備えた、マルチエミッタ型の構造であり、図3Aを参照して上述した半導体レーザチップ110と同様の形状を示す。以下では、図3Aと同様に、光射出領域(10,20)が隣接する方向をX方向、光軸方向をZ方向、X及びZ方向に直交する方向をY方向として説明する。なお、図7Bは、図7Aにおいて、光射出領域(10,20)から第一屈折光学系6までの部分を拡大した図面である。
半導体レーザチップ5が備える各光射出領域(10,20)の、ファースト軸方向(Y方向)に係る幅は、2μm以下であり、一例として1μmである。各光射出領域(10,20)の、スロー軸方向(X方向)に係る幅は5μm以上500μm以下であり、一例として80μmである。各光射出領域(10,20)の間隔(X方向)は、50μm以上、1000μm以下であり、一例として、150μmである。
半導体レーザチップ5は、各光射出領域(10,20)から、ほぼ円錐形状の第一光線束(11,21)を射出する。このとき、図3Bを参照して上述したのと同様に、各光射出領域(10,20)は、Y方向については同一の座標位置に形成されるため、X方向から見たときに各第一光線束(11,21)は完全に重なっている。一方、各光射出領域(10,20)は、X方向については異なる座標位置に形成されるため、Y方向から見たときに各第一光線束(11,21)はそれぞれの位置がずれて表示される。図7Aは、各第一光線束(11,21)を、Y方向から見たときの光線図を模式的に示している。
より詳細には、図7Bに図示されるように、第一光線束11は、上光線11aと、下光線11bとに挟まれた光線群で規定される。上光線11aと下光線11bとの中間を進行する光線を、主光線11mと定義する。同様に、第一光線束21は、上光線21aと、下光線21bとに挟まれた光線群で規定され、その中間の位置に主光線21mが存在する。主光線(11m,21m)は、便宜上一点鎖線で示されている。なお、図7A及び図7Bでは、第一屈折光学系6の光軸が光軸61として図示されている。
半導体レーザチップ5は、その中心位置5aが、第一屈折光学系6の光軸61上に位置するように配置される。この結果、各光射出領域(10,20)は、それぞれX方向に関して光軸61から離れた位置に配置される。更に、個々の光射出領域(10,20)においても、X方向に大きさを有しているため、光軸61に近い側の端部と、光軸61から遠い側の端部との間では、それぞれ光軸からの距離に差が生じる。
半導体レーザチップ5と第一屈折光学系6とは、Z方向に関して、第一屈折光学系6の焦点距離f6だけ離れて配置される。これにより、半導体レーザチップ5の各光射出領域(10,20)から射出された各第一光線束(11,21)は、第一屈折光学系6によって屈折され、それぞれが略平行光線束である第二光線束(12,22)に変換される。第一屈折光学系6は、各第一光線束(11,21)を、略平行光線束である第二光線束(12,22)に変換する光学系であれば、どのような光学部材で構成されていても構わない。
上述したように、各光射出領域(10,20)は、それぞれX方向に関して光軸61から離れた位置に配置されている。このため、略平行光線束である第二光線束(12,22)それぞれの主光線(12m,22m)は、第一屈折光学系6の後段の(光射出面側の)焦点位置に向かって進行する。この結果、第二光線束(12,22)は、それぞれ略平行光線束として進行しながらも、それぞれの進行方向は異なる。図7Aには、各第二光線束(12,22)が交差する場合が図示されている。
第二光線束(12,22)は、第一屈折光学系6の後段に配置された第二屈折光学系3に導かれる。図7Cは、図7Aにおいて、第二屈折光学系3の近傍の部分を拡大した図面である。図7Cにおいて、第二屈折光学系3の光軸を「光軸62」として示している。本実施形態では、第一屈折光学系6の光軸61と、第二屈折光学系3の光軸62とが一致するように、各屈折光学系(6,3)の位置が調整されているものとして説明する。
図7Cに示されるように、第二屈折光学系3は、光入射面側に設けられた、異なる傾斜角(θa、θb)を示す複数の平坦面(3a,3b)と、光射出面側に設けられた平坦面3cを有する。平坦面3cは、光軸62(61)に対して直交する面で構成されている。
ここで、平坦面(3a,3b)の傾斜角(θa,θb)とは、光軸62を基準としたときの角度を指し、この角度には回転方向に応じて正負の値を付して区別するものとする。ここでは、回転方向が反時計方向である場合を正とし、時計方向である場合を負とする。すなわち、図7Cの例によれば、第二屈折光学系3の平坦面3aは、光軸62に対して反時計方向に傾いており、傾斜角θaは正の値である。一方、第二屈折光学系3の平坦面3bは、光軸62に対して時計方向に傾いており、傾斜角θbは負の値である。つまり、平坦面3aの傾斜角θaと、平坦面3bの傾斜角θbとは、それぞれ異なる値である。
第二屈折光学系3は、各平坦面(3a,3b)に入射された第二光線束(12,22)を、光軸62に対して略平行にするよう、それぞれの傾斜角(θa,θb)が設定されている。より詳細には、平坦面3aは、第二光線束22の主光線22mが入射されると、その主光線22mが光軸62に対して略平行となるよう、傾斜角θaが設定されている。同様に、平坦面3bは、第二光線束12の主光線12mが入射されると、その主光線12mが光軸62に対して略平行となるよう、傾斜角θbが設定されている。
かかる構成によれば、第二屈折光学系3を通過した各第二光線束(12,22)は、それぞれ実質的に同一方向(光軸62に対して平行な方向)に進行する。図6を参照して上述したように、光源装置1は、半導体レーザユニット2の数に応じて、第二屈折光学系3を備えている。この結果、各第二屈折光学系3から射出された第二光線束(12,22)は、いずれもが、実質的に同一方向に向かって進行する略平行光線束となる。この結果、後段光学系40が集光光学系を含む場合、この後段光学系40内において集光された光線束群のビーム幅を縮小化することができる。
第二屈折光学系3は、入射された各第二光線束(12,22)を、光軸62に対して略平行に変換する機能を有していれば、どのような光学部材で構成しても構わない。一例として、第二屈折光学系3は、プリズムで構成される。
図7Aでは、第二屈折光学系3が、第一屈折光学系6側に凸となるような形状を示す場合について図示されている。かかる場合には、第二屈折光学系3は、Z方向に関して、第一屈折光学系6の焦点距離f6よりも遠方に離れた位置に配置される。図7Aでは、隣接する一対の第二光線束(12,22)に関して、一方の第二光線束12の上光線12aと他方の第二光線束22の下光線22bとが交差する位置z1(「特定位置」に対応する。)よりもZ方向(光軸61,62の方向)に関して、後段の位置に第二屈折光学系3が配置されている。第二屈折光学系3がこのような位置に配置された場合、各第二光線束(12,22)は、それぞれが完全に分離された状態で第二屈折光学系3に対して入射される。
図8は、図7Aの状態から、第二屈折光学系3の配置位置を前段(第一屈折光学系6側)に移動させた場合の各光線の進行を模式的に示す図面である。第二屈折光学系3を通過した光線束全体の幅(ビーム幅d)は、図7Aの場合と比べて小さくなる。この結果、後段光学系40内に対して、ビーム幅を縮小化した状態で光線束群を入射させることができるため、装置規模の縮小化に寄与する。
ところで、図8の態様では、上述したように、各第二光線束(12,22)の一部が重なっている状態で、各第二光線束(12,22)が第二屈折光学系3に対して入射される。つまり、第二屈折光学系3の各平坦面(3a,3b)に対して、隣接する第二光線束(12,22)の一部の光線が入射される。より詳細には、平坦面3aに対して、主光線22mを含む第二光線束22に加えて、第二光線束12の上光線12a近傍の光線が入射される。同様に、平坦面3bに対して、主光線12mを含む第二光線束12に加えて、第二光線束22の下光線22b近傍の光線が入射される。
図7A〜図7Cを参照して上述したように、第二屈折光学系3が備える平坦面(3a,3b)は、各平坦面(3a,3b)に入射された第二光線束(12,22)を、光軸62に対して略平行にするように、それぞれの傾斜角(θa,θb)が設定されている。より詳細には、平坦面3aは、主光線22mを含む第二光線束22を光軸62に対して略平行化するよう、傾斜角θaが設定されており、平坦面3bは、主光線12mを含む第二光線束12を光軸62に対して略平行化するよう、傾斜角θbが設定されている。
つまり、平坦面3aに対して入射される光線のうち、第二光線束22に属する光線については、光軸62に対して略平行な光線に変換される。しかし、上述したように、平坦面3aに対しては、第二光線束12の上光線12a近傍の光線も入射される。この光線は、第二光線束22とは異なる入射角で平坦面3aに対して入射されるため、第二光線束22とは異なり、光軸62に対して非平行な光線となる。
同様に、平坦面3bに対して入射される光線のうち、第二光線束12に属する光線については、光軸62に対して略平行な光線に変換される。しかし、上述したように、平坦面3bに対しては、第二光線束22の下光線22b近傍の光線も入射される。この光線は、第二光線束12とは異なる入射角で平坦面3bに対して入射されるため、第二光線束12とは異なり、光軸62に対して非平行な光線となる。
つまり、平坦面3aに入射された、第二光線束12の上光線12a近傍の光線、及び、平坦面3bに対して入射された、第二光線束22の下光線22b近傍の光線は、いずれも後段光学系40において目的の位置に集光されずに、迷光となる可能性がある。
しかし、第二光線束(12,22)は、それぞれの主光線(12m,22m)を最大強度とし、主光線から離れるほど光強度が急激に低下するような配光分布、例えばガウス分布のような分布を示す。すなわち、平坦面3aに入射された、第二光線束12の上光線12a近傍の光線の強度、及び、平坦面3bに対して入射された、第二光線束22の下光線22b近傍の光線の強度は、極めて低い。
つまり、第二屈折光学系3を図8に図示された位置に配置したことで、上述したような迷光が発生したとしても、その光量は微小であるため、光源装置1全体としての、光の利用効率には大きな影響を及ぼすものではない。第二屈折光学系3を図8に図示された位置に配置したことで、むしろ、図7Aに図示された装置構成と比較して、後段に導かれるビーム径dの幅を縮小化できるため、限られた領域内に多くの光線束を導くことができ、高出力の光源装置1が実現できるという効果を奏する。
図7Aに示される第二屈折光学系3は、光入射面側に、傾斜角を有する平坦面(3a,3b)を有し、光射出面側に、光軸62に対して直交する平坦面3cを有する。これに対し、図9Aに示すように、第二屈折光学系3が、光入射面側に、光軸62に対して直交する平坦面3cを有し、光射出面側に、傾斜角を有する平坦面(3a,3b)を有する構成としても構わない。
この構成によれば、各第二光線束(12,22)は、第二屈折光学系3の平坦面3cに入射されると、屈折して進行方向を変化させて第二屈折光学系3の内部を進行し、その後、平坦面(3a,3b)に到達すると、再度屈折して進行方向が変化し、光軸62に対して略平行となる。言い換えれば、この図9Aの構成によれば、各第二光線束(12,22)の進行方向を光軸62に対して略平行とするために、各第二光線束(12,22)を2回にわたって屈折させることができる。
この結果、図7Aの場合と比較して、第二屈折光学系3の光入射面側における、各第二光線束(12,22)の入射角度を小さくでき、第二屈折光学系3の表面における反射光の光量を削減できる。つまり、図9Aの構成によれば、図7Aの場合と比較して、光の利用効率を向上できる。
また、図9Bに示されるように、第二屈折光学系3が、光入射面側に、傾斜角を有する平坦面(3a,3b)を有し、光射出面側にも、傾斜角を有する平坦面(3d,3e)を有するものとしても構わない。この場合においても、図9Aの構成と同様に、各第二光線束(12,22)の進行方向を光軸62に対して略平行とするために、各第二光線束(12,22)を2回にわたって屈折させることができるため、第二屈折光学系3の表面での反射光量が抑制され、光の利用効率を向上できる。
なお、第二屈折光学系3の光軸62は、必ずしも第一屈折光学系6の光軸61と一致していなくても構わない。例えば、図10に示すように、第二屈折光学系3の光射出面側の平坦面3cを傾斜させることで、第二屈折光学系3から射出される各第二光線束(12,22)を、第二屈折光学系3の光軸62に対しては略平行であって、第一屈折光学系6の光軸61とは非平行としても構わない。例えば、後段光学系40において、光学系に導くために、光線束の進行方向を反射光学系(ミラー等)を用いて変更させる必要がある場合などでは、図10のような構成を採用することで、予め第二屈折光学系3側で進行方向を調整することができるため、光学部材の点数を削減する効果が得られる。
また、図7Aに図示された第二屈折光学系3は、第二屈折光学系3が有する各平坦面(3a,3b)のいずれもが、第一屈折光学系6の光軸61に対して直交する平面(XY平面)に対して、傾斜していた。これに対し、図11に図示されるように、例えば、平坦面3bは、第一屈折光学系6の光軸61に対して直交するように配置されていても構わない。
図11に図示される半導体レーザユニット2は、光射出領域10の中心位置が第一屈折光学系6の光軸61に一致するように配置されている。この場合、光射出領域10から射出される第一光線束11に含まれる主光線11mは、第一屈折光学系6の光軸61に位置するように進行する。よって、第一光線束11は、第一屈折光学系6に入射された後、第一屈折光学系6の光軸61に平行な方向に進行する略平行光線束に変換される(第二光線束12)。
よって、この第二光線束12を、第一屈折光学系6の光軸61に対して直交するように配置された平坦面3bに入射させることで、第二屈折光学系3を通過した後においても、引き続き、第一屈折光学系6の光軸61(第二屈折光学系3の光軸62)に平行な方向に進行させることができる。一方、光射出領域20から射出される第一光線束21については、図7Aを参照して上述したように、第一屈折光学系6の光軸61に対して非平行に進行するため、第二屈折光学系3に設けられた、傾斜した平坦面3aに入射されることで、光軸(61,62)に略平行に変換することができる。
かかる構成によれば、半導体レーザユニット2と第二屈折光学系3との光学的な位置合わせが容易化される。
別の構成例として、図12に図示されるように、光源装置1が備える複数の第二屈折光学系(3,3,‥‥)は、それぞれが一体化されてなる第一光学部材30を形成することができる。図12に図示された例では、それぞれの第二屈折光学系3は、図7Cを参照して上述した形状を呈している。この場合、第一光学部材30の面のうち、光射出面側の面については、直交面を構成する平坦面3cとし、これらを各第二屈折光学系3において共通化する。また、第一光学部材30の面のうち、光入射面側の面については、複数の傾斜した平坦面(3a,3b)を、半導体レーザユニット2の数に対応した数だけ連続的に形成する。このように形成された図12に示される光源装置1は、図6を参照して上述した光源装置1と光学的に同機能を示す。
なお、図6に図示された光源装置1において、各第二屈折光学系3は、それぞれに対応した半導体レーザユニット2から射出された光線束が入射され、その隣接する半導体レーザユニット2から射出された光線束については入射されないのが好ましい。第二屈折光学系3に対して、隣接する半導体レーザユニット2から射出された光線束が入射される場合とは、第二屈折光学系3の配置位置が、半導体レーザユニット2(より詳細には、第一屈折光学系6)から光軸61の方向に極めて遠い場合に対応する。
このような構成の場合、同一の第一屈折光学系6から射出され、第二屈折光学系3に対して入射される第二光線束(12,22)同士の離間距離が空いてしまう。このような第二光線束(12,22)を入射させるためには、第二屈折光学系3の平坦面(3a,3b)を、X方向に関して大きな寸法を有する形状にしなければならない。この結果、第二屈折光学系3の形状が大型化してしまう。
図13に示すように、光源装置1は、各第二屈折光学系3の後段に、インテグレータ光学系50を備えるものとしても構わない。図14は、図13の一部分を抽出して模式的に拡大した図面である。インテグレータ光学系50は、前段フライアイレンズ51と後段フライアイレンズ52とを含み、これらが互いに対向して配置されている。前段フライアイレンズ51及び後段フライアイレンズ52は、同一焦点距離、同一形状の複数のレンズ(単レンズ)を、縦横それぞれに多数並べたものとして形成されている。
かかる構成によれば、各第二屈折光学系3を通過した第二光線束(12,22)は、インテグレータ光学系50によって、多重像が形成されることで、照射面上における照度分布を均一化した疑似光源が形成される。つまり、インテグレータ光学系50を通過した光線束が後段光学系40に入射されることで、後段光学系40から射出された光が照射される、対象照射面上における照度バラツキが抑制される。
なお、図15に図示されるように、第二屈折光学系3と、インテグレータ光学系50の前段フライアイレンズ51とが、一体化されているものとしても構わない。この場合、第二屈折光学系3の周期、より詳細には、同一の傾斜角を有する平坦面同士(例えば平坦面3a同士)の周期よりも、前段フライアイレンズ51が備える複数のレンズの周期の方が短周期で構成される。
更に、図12に図示したように、光源装置1が備える複数の第二屈折光学系(3,3,‥‥)は、それぞれが一体化されてなる第一光学部材30を形成している場合において、この第一光学部材30の光射出面側において、インテグレータ光学系50の前段フライアイレンズ51が一体化されているものとしても構わない(図16参照)。
ところで、図8を参照して説明したように、第二屈折光学系3を第一屈折光学系6に少し近づけて配置した場合、第二屈折光学系3から射出される、光強度の弱い一部の光線は、光軸62に対して非平行に進行する。この光線を、隣接する第二屈折光学系3に対応して配置されたインテグレータ光学系50に入射させることで、後段光学系40から射出された光が照射される対象照射面上における、スペックルコントラストを低減する効果が得られる。
図17は、上述した光源装置1を含むプロジェクタの構成例を模式的に示す図面である。プロジェクタ9は、光源装置1を含む照明光学系70と、照明光学系70から導かれた光を分光した後にスクリーン90に投影する分光・投影光学系80とを備える。
図17に示す例では、光源装置1を赤色用光源とした場合が想定されている。すなわち、照明光学系70は、赤色用光源としての光源装置1と、青色光源71と、青色光源71から射出された青色光を受光して蛍光を生成する蛍光光源72と、拡散反射光学系73と、ダイクロイックミラー(74,75)と、インテグレータ光学系50と、合成光学系76とを備える。
光源装置1から射出された、光密度の高い赤色光Rは、ダイクロイックミラー74で反射された後、インテグレータ光学系50へと導かれる。また、青色光源71から射出された青色光Bは、偏光に応じてダイクロイックミラー75で反射される光と透過する光とに分離される。例えば、ダイクロイックミラー75には、偏光方向によって光の進行方向を制御することのできる偏光分離素子を含むものとしてもよい。
ダイクロイックミラー75で反射されたある偏光方向の青色光は、蛍光光源72に導かれて、蛍光光源72に含まれる蛍光体の励起光として用いられ、得られた蛍光がダイクロイックミラー(75,74)を透過してインテグレータ光学系50へと導かれる。ダイクロイックミラー75を透過した別の偏光方向の青色光は、拡散反射光学系73に入射され、その拡散光が拡散反射光学系73から反射されて、ダイクロイックミラー75に導かれる。この光は、ダイクロイックミラー75で反射された後、ダイクロイックミラー74を透過してインテグレータ光学系50へと導かれる。
インテグレータ光学系50において、各色の光は照度分布が均一化された後、合成光学系76によって白色光に合成される。合成光学系76は、偏光方向を均一化させる偏光変換素子を含むものとしても構わない。
合成光学系76を通過した白色光は、分光・投影光学系80に導かれる。分光・投影光学系80に含まれる各ダイクロイックミラー(81a,81b,81c)によって、色分離された各色の光は、適宜ミラー(81d,81e)を介して進行方向が調整された後、各色の変調装置(82R,82G,82B)に入射される。変調装置(82R,82G,82B)は、画像情報に応じて各色光を変調し、色合成光学系83に出力する。色合成光学系83は、前記画像情報に応じた画像光を合成して投射光学系84に入射する。投射光学系84は、画像光をスクリーン90に投射する。
図17に示すプロジェクタ9の構成の場合、合成光学系76、及び分光・投影光学系80が、図6における後段光学系40に対応する。
なお、図17に示すプロジェクタ9は、本実施形態の光源装置1を赤色光を生成する光源に利用した場合を想定しているが、青色光を生成する光源とすることも可能である。この場合、青色光を生成する光源装置1と、この光源装置1から射出された青色光が励起光として入射されて蛍光を生成する蛍光光源とを備え、青色光と蛍光とが合成光学系76を介して合成されて白色光が生成されるものとしてもよい。
なお、図15及び図16を参照して上述したように、光源装置1が備える各第二屈折光学系3が、インテグレータ光学系50と一体化されているものとしても構わない。この場合、図17に図示されている、ダイクロイックミラー74と合成光学系76との間に配置されたインテグレータ光学系50は、その配置を省略するものとしても構わない。
更に、プロジェクタ9は、本実施形態の光源装置1によって、R,G,B各色の光を生成し、これらを合成光学系76によって合成する態様とすることも可能である。すなわち、光源装置1が、青色光を生成する半導体レーザチップ5、赤色光を生成する半導体レーザチップ5、緑色光を生成する半導体レーザチップ5をそれぞれ備えるものとしても構わない。この場合、各光源装置1から射出された各色の光は、光ファイバなどの導光部材を通じて伝搬されて、各色の変調装置(82R,82G,82B)に入射されるものとしても構わない。
なお、図17に示すプロジェクタ9は、変調装置(82R,82G,82B)が透過型の液晶素子で構成されている場合を想定して図示されたものであるが、反射型の変調装置(DMD:デジタル・マイクロミラー・デバイス、登録商標)が用いられていても構わない。分光・投影光学系80は、変調装置の構成に応じて適宜設定される。
[別実施形態]
以下、別実施形態につき説明する。
〈1〉 図6等を参照して上述した半導体レーザチップ5は、2つの光射出領域(10,20)を有するマルチエミッタ型の構成であった。この半導体レーザチップ5が備える光射出領域の数は、2個に限定されず、3個以上であっても構わない。第二屈折光学系3が備える、傾斜角の異なる平坦面(3a,3b,‥‥)の数は、同一半導体レーザユニット2に含まれる光射出領域の数に応じて設定される。
逆に、各半導体レーザチップ5は、例えば図1Aを参照して上述したように、単独の光射出領域を有するシングルエミッタ型の構成であり、複数の半導体レーザチップ5からの射出光が、第一屈折光学系6に入射される構成であっても構わない(図18参照)。更に、図18のように、複数の半導体レーザチップ5からの射出光が、第一屈折光学系6に入射される態様において、各半導体レーザチップ5がマルチエミッタ型の構造であっても構わない。また、第一屈折光学系6は各半導体レーザチップ5に対応して設けられていれば良く、該第一屈折光学系6自身が個別に設けられていても、アレー状に一体形成されていても構わない。
〈2〉 上記実施形態では、各半導体レーザチップ5が光射出領域(10,20)が半導体レーザチップ5の端面に形成された、いわゆる「端面発光型」の構造である場合を想定して説明した。しかし、本発明は、各半導体レーザチップ5が、半導体層の積層方向に光が取り出される、いわゆる「面発光型」の構造であっても、同様に適用可能である。
〈3〉 本発明に係る光源装置1は、複数の光線束を集光して、所定の照射対象物に照射するアプリケーションであれば、プロジェクタ以外にも適用可能である。一例として、光源装置1を露光装置用の光源として利用することが可能である。
〈4〉 上述した光源装置1が備える光学配置態様は、あくまで一例であり、本発明は、図示された各構成に限定されない。例えば、ある光学系と別の光学系との間において、光の進行方向を変化させるための反射光学系が適宜介在されていても構わない。
1 : 光源装置
2 : 半導体レーザユニット
3 : 第二屈折光学系
3a,3b: 第二屈折光学系が備える平坦面
5 : 半導体レーザチップ
5a : 半導体レーザチップの中心位置
6 : 第一屈折光学系
9 : プロジェクタ
10,20 : 光射出領域
11,21 : 第一光線束
12,22 : 第二光線束
30 : 第一光学部材
40 : 後段光学系
50 : インテグレータ光学系
61 : 第一屈折光学系の光軸
62 : 第二屈折光学系の光軸
70 : 照明光学系
71 : 青色光源
72 : 蛍光光源
73 : 拡散反射光学系
74,75 : ダイクロイックミラー
76 : 合成光学系
80 : 分光・投影光学系
81a,81,81c : ダイクロイックミラー
81d,81e : ミラー
82B,82G,82R : 変調装置
84 : 投射光学系
85 : 色合成光学系
90 : スクリーン
100,110 : 半導体レーザチップ
101,111,112 : エミッタ
101L,111L,112L : エミッタから射出される光線束
102 : コリメートレンズ

Claims (8)

  1. 同一の半導体レーザチップ上にスロー軸方向に離間して設けられた2つの光射出領域と、隣接する2つの前記光射出領域から射出された複数の第一光線束が入射されて、前記複数の第一光線束それぞれを、略平行光線束である複数の第二光線束に変換して射出する第一屈折光学系とを含む、複数の半導体レーザユニットと、
    異なる傾斜角を有する複数の平坦面を含み、同一の前記半導体レーザユニットから射出された複数の前記第二光線束それぞれの少なくとも一部が異なる前記平坦面に入射されて、複数の前記第二光線束のそれぞれの主光線の進行方向を光軸に対して略平行に変換して射出する第二屈折光学系と、を備え、
    前記第二屈折光学系は、前記半導体レーザユニットの数に対応して配置されており、
    2つの前記光射出領域は、前記スロー軸方向に関して、前記半導体レーザチップの前記スロー軸方向に係る中心位置を挟むように配置され、
    2つの前記光射出領域のうちの一方の前記光射出領域は、前記第一屈折光学系の光軸上に配置され、
    2つの前記光射出領域のそれぞれから射出された前記第一光線束が変換されてなる前記第二光線束が前記第二屈折光学系に入射される領域の、前記スロー軸方向に係る中心位置を通り前記第一屈折光学系の光軸に平行な中心軸と、前記半導体レーザチップの前記スロー軸方向に係る中心位置を通り前記第一屈折光学系の光軸に平行な中心軸とは、前記スロー軸方向に関して前記第一屈折光学系の光軸を挟む位置に存在することを特徴とする、光源装置。
  2. 前記第一屈折光学系は、光射出面側に凸曲面を有し、
    前記第二屈折光学系は、前記第一屈折光学系に対して、前記第一屈折光学系の焦点距離よりも離れた位置に配置されていることを特徴とする、請求項1に記載の光源装置。
  3. 前記第二屈折光学系は、隣接する前記半導体レーザユニットから射出された前記第二光線束が入射されない位置に配置されていることを特徴とする、請求項1又は2に記載の光源装置。
  4. 前記第二屈折光学系は、光入射面側に複数の前記平坦面を有し、複数の前記平坦面のうち、一の前記平坦面が、光軸に対して直交する面であることを特徴とする、請求項1〜3のいずれか1項に記載の光源装置。
  5. 前記第二屈折光学系は、光射出面側に、光軸に対する直交面を有することを特徴とする請求項に記載の光源装置。
  6. 前記平坦面とは反対側の面において、複数の前記第二屈折光学系が一体化されてなる第一光学部材を有することを特徴とする、請求項4又は5に記載の光源装置。
  7. 前記第二屈折光学系の後段の位置において、前段フライアイレンズ及び後段フライアイレンズからなるインテグレータ光学系を有し、
    前記前段フライアイレンズは、前記第一光学部材の光射出面側に連結して配置されており、複数の前記第二屈折光学系が備える、同一の前記傾斜角を有する前記平坦面同士の周期よりも短周期で配置された複数のレンズを含んでなることを特徴とする、請求項に記載の光源装置。
  8. 請求項1〜のいずれか1項の光源装置から射出された光を利用して画像を投影することを特徴とするプロジェクタ。
JP2018033106A 2018-02-27 2018-02-27 光源装置、プロジェクタ Active JP6611019B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018033106A JP6611019B2 (ja) 2018-02-27 2018-02-27 光源装置、プロジェクタ
TW107129231A TWI752258B (zh) 2018-02-27 2018-08-22 光源裝置、投影機
PCT/JP2018/031118 WO2019167309A1 (ja) 2018-02-27 2018-08-23 光源装置、プロジェクタ
CN201821586234.9U CN208834085U (zh) 2018-02-27 2018-09-28 光源装置、投影仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033106A JP6611019B2 (ja) 2018-02-27 2018-02-27 光源装置、プロジェクタ

Publications (2)

Publication Number Publication Date
JP2019148692A JP2019148692A (ja) 2019-09-05
JP6611019B2 true JP6611019B2 (ja) 2019-11-27

Family

ID=66318261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033106A Active JP6611019B2 (ja) 2018-02-27 2018-02-27 光源装置、プロジェクタ

Country Status (4)

Country Link
JP (1) JP6611019B2 (ja)
CN (1) CN208834085U (ja)
TW (1) TWI752258B (ja)
WO (1) WO2019167309A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036307A (ja) * 2019-08-26 2021-03-04 カシオ計算機株式会社 光源装置及び投影装置
US20230335971A1 (en) * 2019-12-09 2023-10-19 Panasonic Intellectual Property Management Co., Ltd. Light source device
WO2022018819A1 (ja) * 2020-07-21 2022-01-27 三菱電機株式会社 光源装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234205A (ja) * 1994-12-28 1996-09-13 Seiko Epson Corp 偏光照明装置および投写型表示装置
TW401530B (en) * 1996-03-12 2000-08-11 Seiko Epson Corp Polarized light separation device, method of fabricating the same and projection display apparatus using the polarized light separation device
DE19800590B4 (de) * 1998-01-09 2005-12-01 Jenoptik Ag Optische Anordnung zur Symmetrierung der Strahlung eines oder mehrerer übereinander angeordneter Hochleistungsdiodenlaser
JP2004151177A (ja) * 2002-10-29 2004-05-27 Kyocera Corp 表示装置
JP4046335B2 (ja) * 2003-06-30 2008-02-13 フジノン株式会社 偏光照明光学系およびこれを用いた投写型表示装置
JP3591536B2 (ja) * 2003-10-20 2004-11-24 セイコーエプソン株式会社 照明装置及び投写型表示装置
JP2006133655A (ja) * 2004-11-09 2006-05-25 Canon Inc 投射型表示装置
WO2010064559A1 (ja) * 2008-12-05 2010-06-10 三洋電機株式会社 照明装置および投写型映像表示装置
WO2012039895A1 (en) * 2010-09-22 2012-03-29 3M Innovative Properties Company Tilted dichroic color combiner iii
US9784985B2 (en) * 2011-10-24 2017-10-10 3M Innovative Properties Company Titled dichroic polarizing beamsplitter
JP5910324B2 (ja) * 2012-06-04 2016-04-27 ソニー株式会社 照明装置、投影型表示装置および直視型表示装置
JP6082560B2 (ja) * 2012-10-09 2017-02-15 株式会社日立メディアエレクトロニクス 光源装置およびそれを用いた投射型表示装置
JP6178991B2 (ja) * 2013-01-24 2017-08-16 パナソニックIpマネジメント株式会社 光源ユニットおよびそれを用いた光源モジュール
JP6347128B2 (ja) * 2014-03-26 2018-06-27 セイコーエプソン株式会社 プロジェクター
CN105629486B (zh) * 2014-10-28 2019-03-29 深圳光峰科技股份有限公司 3d投影显示系统
JP2016126025A (ja) * 2014-12-26 2016-07-11 コニカミノルタ株式会社 レンズ及び投影画像表示装置
CN105974560B (zh) * 2015-03-13 2020-04-24 扬明光学股份有限公司 广角投影系统及镜头
WO2016208644A1 (ja) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 光学装置、光源装置及び投影装置
JP2017138471A (ja) * 2016-02-03 2017-08-10 セイコーエプソン株式会社 光源装置およびプロジェクター
JP6712508B2 (ja) * 2016-06-28 2020-06-24 株式会社ブイ・テクノロジー 照度調整フィルタの製造方法、照度調整フィルタ、照明光学系、及び露光装置

Also Published As

Publication number Publication date
WO2019167309A1 (ja) 2019-09-06
TWI752258B (zh) 2022-01-11
JP2019148692A (ja) 2019-09-05
TW201937264A (zh) 2019-09-16
CN208834085U (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
US20170343891A1 (en) Light source apparatus and projector
US9599316B2 (en) Light source device using monochromatic light to excite stationary phosphor layers
TWI494595B (zh) Projection display device
JP6525856B2 (ja) 光源光学系およびこれを用いた投射型表示装置
KR101321631B1 (ko) 집광 광학계 및 투사형 화상 표시 장치
WO2014196020A1 (ja) 照明光学系及びプロジェクタ
JP6536724B1 (ja) 光源装置、プロジェクタ
JP6611019B2 (ja) 光源装置、プロジェクタ
JPWO2015129656A1 (ja) 光源装置
JP6383166B2 (ja) 光照射装置および描画装置
JP2002072128A (ja) 光学装置およびこれを用いた投写型表示装置
WO2019230008A1 (ja) 光源装置、プロジェクタ
JP2014182358A (ja) 光源装置及び画像表示装置
KR101267098B1 (ko) 광원 장치
JP7400417B2 (ja) 光源光学系、光源装置及び画像表示装置
JP2019086532A (ja) 投射型映像表示装置
US20160349625A1 (en) Light irradiation apparatus and drawing apparatus
JP2017053876A (ja) 投写型画像表示装置
JP6711705B2 (ja) 照明装置およびこれを用いた投射型表示装置
JP6696297B2 (ja) 投射装置
JP7331902B2 (ja) 光源装置及び投影装置
US10838292B2 (en) Light source apparatus, illuminator, and projector
JP2017147195A (ja) 光源装置及びプロジェクター
JP2023059524A (ja) 光源装置、画像投射装置および表示装置
JP2023051736A (ja) 光源装置、画像投射装置および表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190410

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R151 Written notification of patent or utility model registration

Ref document number: 6611019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250