JP6591073B2 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP6591073B2
JP6591073B2 JP2018531269A JP2018531269A JP6591073B2 JP 6591073 B2 JP6591073 B2 JP 6591073B2 JP 2018531269 A JP2018531269 A JP 2018531269A JP 2018531269 A JP2018531269 A JP 2018531269A JP 6591073 B2 JP6591073 B2 JP 6591073B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018531269A
Other languages
English (en)
Other versions
JPWO2018128179A1 (ja
Inventor
賢匠 星
賢匠 星
秀介 土屋
秀介 土屋
佐藤 力
力 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62790954&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6591073(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2018128179A1 publication Critical patent/JPWO2018128179A1/ja
Priority to JP2019081128A priority Critical patent/JP6897707B2/ja
Application granted granted Critical
Publication of JP6591073B2 publication Critical patent/JP6591073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関するものである。
リチウムイオン電池(リチウムイオン二次電池)は、軽量で高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコン、携帯電話等のポータブル機器の電源に使用されている。
近年では、リチウムイオン二次電池は、ポータブル機器等の民生用途にとどまらず、車載搭載用途、太陽光発電、風力発電等といった自然エネルギー向け大規模蓄電システム用途などとしても展開されている。特に、自動車分野への適用において、回生によるエネルギーの利用効率の向上のために、リチウムイオン二次電池には、優れた入力特性が要求されている。また、リチウムイオン二次電池には、優れた長期寿命特性も要求されている。
例えば、特許文献1では、最適なラマンR値(結晶性)が異なる2種類の黒鉛質粒子からなり、1種類がフロー式粒子解析計で求められる平均円形度が0.9以上であることにより、高容量、急速充放電特性及び高サイクル特性を示す非水二次電池用負極材が提案されている。
また、特許文献2では、平均円形度が0.9以上である黒鉛質粒子と、高アスペクト比の黒鉛粒子との混合により、低い不可逆容量で充放電効率に優れた特性を示す非水二次電池用負極材が提案されている。
特開2010−251315号公報 特開2015−164143号公報
しかしながら、特許文献1では、2種類の黒鉛を単に混合しただけであり、従来技術に比べて連続急速入力特性には優れるものの、パルスでの充電特性には効果が希薄であることが、本発明者等の検討により明らかとなった。また、特許文献2では、粒子径の異なる2種類の黒鉛を混合し、1種類の黒鉛が高アスペクト比であることで、不可逆容量を抑制している一方で、パルスでの充電に関しては何ら記載もされていない。さらに、高アスペクト比の黒鉛質粒子は、パルスでの充電特性には効果が希薄であることが、本発明者等の検討により明らかとなった。
本発明の一形態は、上記従来の事情に鑑みてなされたものであり、不可逆容量が小さく、パルス充電特性に優れるリチウムイオン二次電池用負極材並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを目的とする。
前記課題を解決するための具体的手段は以下の通りである。
<1> フロー式粒子解析計で求められる円形度の低い側からの累積頻度が10個数%〜90個数%の範囲における、前記円形度の標準偏差が、0.05〜0.1である黒鉛質粒子を含むリチウムイオン二次電池用負極材。
<2> 前記黒鉛質粒子についての前記累積頻度が10個数%における円形度が、0.7〜0.9である<1>に記載のリチウムイオン二次電池用負極材。
<3> 前記黒鉛質粒子の平均粒子径が、2μm〜30μmである<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4> 前記黒鉛質粒子に対して532nmのレーザー光を照射したときのラマンスペクトルにおける1580cm−1〜1620cm−1の範囲にあるピーク強度IGに対する1300cm−1〜1400cm−1の範囲にあるピーク強度IDの比であるラマンR値(ID/IG)が、0.10〜0.60である<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5> 非晶質炭素粒子をさらに含み、前記黒鉛質粒子及び前記非晶質炭素粒子の混合粒子についてのフロー式粒子解析計で求められる円形度の低い側からの累積頻度が10個数%〜90個数%の範囲における、前記円形度の標準偏差が、0.05〜0.1である<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<6> 前記非晶質炭素粒子の含有率が、1質量%〜30質量%である<5>に記載のリチウムイオン二次電池用負極材。
<7> 集電体と、
前記集電体の表面に配置され、<1>〜<6>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極合剤層と、
を有するリチウムイオン二次電池用負極。
<8> <7>に記載のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池。
本発明の一形態によれば、不可逆容量が小さく、パルス充電特性に優れるリチウムイオン二次電池用負極材並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することができる。
本開示を適用したリチウムイオン二次電池の断面図である。
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。また、本明細書に開示される技術的思想の範囲内において、当業者による様々な変更及び修正が可能である。
本明細書において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において各成分の含有率及び割合は、各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計の含有率及び割合を意味する。
本明細書において各成分の粒子径は、各成分に該当する粒子が複数種存在する場合、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本明細書において、正極合剤又は負極合剤の「固形分」とは、正極合剤のスラリー又は負極合剤のスラリーから有機溶剤等の揮発性成分を除いた残りの成分を意味する。
<リチウムイオン二次電池用負極材>
本開示のリチウムイオン二次電池用負極材は、フロー式粒子解析計で求められる円形度の低い側からの累積頻度が10個数%〜90個数%の範囲における、前記円形度の標準偏差(以下、「特定範囲における円形度の標準偏差」と称することがある。)が、0.05〜0.1である黒鉛質粒子を含む。黒鉛質粒子は、負極活物質として機能しうるものである。
特定範囲における円形度の標準偏差が0.05〜0.1である黒鉛質粒子を含む本開示のリチウムイオン二次電池用負極材を用いることで、不可逆容量が小さく、パルス充電特性に優れる本開示のリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製することが可能となる。
黒鉛質粒子の特定範囲における円形度の標準偏差は0.06〜0.1であることが好ましく、0.06〜0.09であることがより好ましく、0.06〜0.08であることがさらに好ましい。
黒鉛質粒子の円形度は、湿式フロー式粒子径・形状分析装置(マルバーン社製FPIA−3000)を用いて測定することができる。また、円形度の測定結果に基づく、特定範囲における円形度の標準偏差の解析等は、FPIA−3000学術資料(2006年8月31日第2版発行)を基に実施することができる。
なお、測定温度は25℃とし、測定試料の濃度は10質量%とし、カウントする粒子の数は10000個とする。また、分散用の溶媒として水を用いる。
黒鉛質粒子の円形度を測定する際には、黒鉛質粒子を予め、分散させておくことが好ましい。例えば、超音波分散、ボルテックスミキサー等を使用して黒鉛質粒子を分散させることが可能である。黒鉛質粒子の粒子崩壊又は粒子破壊の影響を抑制するため、測定する黒鉛質粒子の強度に鑑みて適宜強さ及び時間を調整してもよい。
超音波処理としては、例えば、超音波洗浄器(ASU-10D、アズワン株式会社製)の槽内に任意の量の水を貯めた後、黒鉛質粒子の分散液の入った試験管をホルダーごと1分間〜10分間超音波処理することが好ましい。この時間内であれば黒鉛質粒子の粒子崩壊、粒子破壊、試料温度の上昇等を抑制したまま分散させることが可能となる。
黒鉛質粒子並びに黒鉛質粒子及び非晶質炭素粒子の混合粒子についての特定範囲における円形度の標準偏差は、フロー式粒子解析計で求められる、円形度の低い側からの累積頻度が90個数%における円形度(Upper値)と円形度の低い側からの累積頻度が10個数%における円形度(Lower値)との差(Upper値−Lower値)として求めることができる。
黒鉛質粒子の平均円形度は、特定範囲における円形度の標準偏差が0.05〜0.1の範囲であれば特に制限されるものではなく、例えば、平均円形度が0.70以上であることが好ましく、0.85以上であることがより好ましい。黒鉛質粒子の平均円形度が0.70以上であることで、連続での充電受け入れ性が向上する傾向にある。
また、黒鉛質粒子の累積頻度(フロー式粒子解析計で求められる円形度の低い側からの累積頻度)が10個数%における円形度は、0.7〜0.9であることが好ましい。
次に、黒鉛質粒子の物性について説明する。
本開示における黒鉛質粒子とは、黒鉛を成分として含み、X線広角回折法における炭素網面層間(d002)が0.34nm未満のものである。
本開示において、炭素網面層間(d002)は、X線(CuKα線)を試料に照射し、回折線をゴニオメーターにより測定し得た回折プロファイルより、回折角2θが24°〜27°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用い算出することができる。
d002は、以下の条件で測定を行うことができる。
線源:CuKα線(波長=0.15418nm)
出力:40kV、20mA
サンプリング幅:0.010°
走査範囲:10°〜35°
スキャンスピード:0.5°/min
ブラッグの式:2dsinθ=nλ
ここで、dは1周期の長さ、θは回折角度、nは反射次数、λはX線波長を示している。
黒鉛質粒子としては、塊状の天然黒鉛を粉砕して得られたものを用いてもよい。なお、塊状の天然黒鉛を粉砕して得られた黒鉛質粒子には不純物が含まれていることがあるため、天然黒鉛を精製処理によって高純度化することが好ましい。
天然黒鉛の精製処理の方法は特に制限されず、通常用いられる精製処理方法から適宜選択することができる。例えば、浮遊選鉱、電気化学処理、薬品処理等を挙げることができる。
天然黒鉛の純度は、質量基準で、99.8%以上(灰分0.2%以下)であることが好ましく、99.9%以上(灰分0.1%以下)であることがより好ましい。純度が99.8%以上であることで電池の安全性がより向上し、電池性能がより向上する傾向にある。
天然黒鉛の純度は、例えば、100gの黒鉛を空気雰囲気で800℃の炉に48時間以上静置したのち、灰分に由来する残量を測定することで算出することができる。
黒鉛質粒子としては、エポキシ樹脂、フェノール樹脂等の樹脂系材料、石油、石炭等から得られるピッチ系材料などを焼成して得られる人造黒鉛を粉砕したものを用いてもよい。
人造黒鉛を得るための方法としては、特に制限はなく、例えば、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロリン、コールタール、タールピッチ等の原料を800℃以上の不活性雰囲気中でか焼して、焼成物である人造黒鉛を得る方法が挙げられる。次いで、得られた焼成物をジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法により粉砕し、2μm〜40μm程度に平均粒子径を調整することで人造黒鉛由来の黒鉛質粒子を作製することができる。また、か焼する前に予め原料に熱処理を施してもよい。原料に熱処理を施す場合は、例えば、オートクレーブ等の機器により予め熱処理を施し、既知の方法により粗粉砕した後、上記と同様に800℃以上の不活性雰囲気中で熱処理された原料をか焼し、得られた焼成物である人造黒鉛を粉砕して2μm〜40μm程度に平均粒子径を調整することで人造黒鉛由来の黒鉛質粒子を得ることができる。
黒鉛質粒子は、黒鉛以外の他の材料によって改質されていてもよい。黒鉛質粒子は、例えば、核となる黒鉛粒子の表面に低結晶炭素層を有していてもよい。黒鉛質粒子が黒鉛の表面に低結晶炭素層を有する場合、黒鉛1質量部に対する低結晶炭素層の比率(質量比)は0.005〜10であることが好ましく、0.005〜5であることがより好ましく、0.005〜0.08であることがさらに好ましい。黒鉛に対する低結晶炭素層の比率(質量比)が0.005以上であれば、初期充放電効率及び寿命特性に優れる傾向にある。また、10以下であれば、出力特性に優れる傾向にある。
黒鉛質粒子は、黒鉛以外の他の材料によって改質されている場合、黒鉛質粒子に含まれる黒鉛及び黒鉛以外の他の材料の含有率は、例えば、TG−DTA(Thermogravimetry−Differential Thermal Analysis、示差熱−熱重量同時測定)で、空気気流中での重量変化を測定し、500℃から600℃までの重量減少比率から算出することが可能である。なお、500℃から600℃までの温度域における重量変化を、黒鉛以外の他の材料由来の重量変化に帰属できる。一方、加熱処理終了後の残部を、黒鉛の量に帰属できる。
核となる黒鉛粒子の表面に低結晶炭素層を有する黒鉛質粒子の製造方法は、特に限定されない。例えば、核となる黒鉛粒子と、前記黒鉛粒子よりも結晶性の低い炭素材の前駆体と、を含む混合物を熱処理する工程を含むことが好ましい。この方法によれば、前述した黒鉛質粒子を効率よく製造することができる。
前記黒鉛粒子よりも結晶性の低い炭素材の前駆体は特に制限されず、ピッチ、有機高分子化合物等が挙げられる。ピッチとしては、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して作製されるピッチ、及びナフタレン等を超強酸存在下で重合させて作製されるピッチが挙げられる。有機高分子化合物としては、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性樹脂、デンプン、セルロース等の天然物質などが挙げられる。
混合物を熱処理する際の温度は、特に限定されないが、リチウムイオン二次電池における入出力特性を向上させる点から、950℃〜1500℃であることが好ましい。
上記方法において、熱処理前の混合物中の核となる黒鉛粒子及び前記黒鉛粒子よりも結晶性の低い炭素材の前駆体の含有率は、特に制限されない。リチウムイオン二次電池における入出力特性を向上させる点から、核となる黒鉛粒子の含有率は、混合物の総質量に対して、85質量%〜99.9質量%であることが好ましい。
黒鉛質粒子に対して532nmのレーザー光を照射したときのラマンスペクトルにおける1580cm−1〜1620cm−1の範囲にあるピーク強度IGに対する1300cm−1〜1400cm−1の範囲にあるピーク強度IDの比であるラマンR値(ID/IG)は、0.10〜0.60であることが好ましく、0.15〜0.55であることがより好ましく、0.20〜0.50であることがさらに好ましい。
なお、ラマン分光スペクトルは、ラマン分光装置(例えば、サーモフィッシャーサイエンティフィック製、DXR)を用いて測定することができる。
黒鉛質粒子の平均粒子径は、2μm〜30μmであることが好ましく、2.5μm〜25μmであることがより好ましく3μm〜20μmであることがさらに好ましく、5μm〜20μmであることが特に好ましい。黒鉛質粒子の平均粒子径が30μm以下であると、放電容量及び放電特性が向上する傾向にある。黒鉛質粒子の平均粒子径が2μm以上であると、初期充放電効率が向上する傾向にある。
なお、平均粒子径(d50)は、例えば、レーザー光散乱法を利用した粒子径分布測定装置(株式会社島津製作所製、SALD−3000)を用いて体積基準の粒度分布を測定し、d50(メジアン径)として求められる体積平均粒子径である。
黒鉛質粒子のBET比表面積の範囲は、0.8m/g〜8m/gであることが好ましく、1m/g〜7m/gであることがより好ましく、1.5m/g〜6m/gであることがさらに好ましい。
黒鉛質粒子のBET比表面積が0.8m/g以上であれば、優れた電池性能が得られる傾向にある。また、黒鉛質粒子のBET比表面積が8m/g以下であると、タップ密度が上がりやすく、結着剤、導電剤等のほかの材料との混合性が良好になる傾向にある。
BET比表面積は、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、QUANTACHROME社製:AUTOSORB−1(商品名)を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
本開示のリチウムイオン二次電池用負極材は、黒鉛質粒子と共に非晶質炭素粒子を含有してもよい。黒鉛質粒子と非晶質炭素粒子とを併用することで、入力特性を保持しつつ、出力特性及びエネルギー密度をより向上することができる。
非晶質炭素粒子を含有する場合における黒鉛質粒子及び非晶質炭素粒子の混合粒子についてのフロー式粒子解析計で求められる特定範囲における円形度の標準偏差は、0.05〜0.1であることが好ましく、0.06〜0.1であることがより好ましく、0.07〜0.1であることがさらに好ましい。
本開示のリチウムイオン二次電池用負極材が非晶質炭素粒子を含有する場合、パルス充電特性の向上とエネルギー密度の観点から、本開示のリチウムイオン二次電池用負極材に占める非晶質炭素粒子の割合は、1質量%〜30質量%であることが好ましく、2質量%〜25質量%であることがより好ましく、3質量%〜20質量%であることがさらに好ましく、5質量%〜20質量%であることが特に好ましい。非晶質炭素粒子の割合が1質量%以上であれば、パルス充電特性が向上する傾向にある。非晶質炭素粒子の割合が30質量%以下であれば、入力特性の保持と過充電耐性を両立できる傾向にある。
次に、非晶質炭素粒子の物性について説明する。
本開示における非晶質炭素粒子は、非晶質炭素を成分として含む。非晶質炭素粒子のX線広角回折法における炭素網面層間(d002)は、0.340nm〜0.390nmであることが好ましく、0.341nm〜0.385nmであることがより好ましく、0.342nm〜0.370nmであることがさらに好ましい。なお、非晶質炭素粒子が、易黒鉛化炭素を含む場合には、X線広角回折法における炭素網面層間(d002)は、0.340nm〜0.360nmであることが好ましく、0.341nm〜0.355nmであることがより好ましく、0.342nm〜0.350nmであることがさらに好ましい。
また、非晶質炭素粒子は、熱重量測定で、空気気流中550℃での質量が25℃での質量に対して70質量%以上であり、650℃での質量が25℃での質量に対して20質量%以下であることが好ましい。熱重量測定は、例えば、TG分析(Thermo Gravimetry Analysis)装置(エスアイアイ・ナノテクノロジー株式会社製、TG/DTA6200)で測定することができる。10mgの試料を採取し、乾燥空気300mL/分の流通下で、アルミナをリファレンスとして、昇温速度を1℃/分とした測定条件で、測定を行うことができる。
なお、入出力特性をより向上できる観点からは、非晶質炭素粒子は、空気気流中550℃での質量が25℃での質量の90質量%以上であり、650℃での質量が25℃での質量の10質量%以下であることがより好ましい。
また、非晶質炭素粒子の平均粒子径(d50)は、1μm〜30μmであることが好ましく、2μm〜25μmであることがより好ましく、2μm〜23μmであることがさらに好ましい。平均粒子径が1μm以上であれば、比表面積を適正な範囲とすることができ、リチウムイオン二次電池の初期充放電効率に優れ、粒子同士の接触がよく入出力特性に優れる傾向にある。
一方、平均粒子径が30μm以下であれば、電極面に凸凹が発生しにくく電池の短絡を抑制でき、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン二次電池の入出力特性が向上する傾向にある。
非晶質炭素粒子の平均粒子径は、黒鉛質粒子の場合と同様にして測定することができる。
本開示のリチウムイオン二次電池用負極材は、負極活物質として、黒鉛質粒子及び必要に応じて用いられる非晶質炭素粒子以外の炭素質材料、酸化錫、酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金形成可能な材料などの粒子をその他の粒子として併用してもよい。その他の粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
金属複合酸化物としては、リチウムを吸蔵、放出可能なものであれば特に制限はなく、Ti(チタン)、Li(リチウム)又はTi及びLiの双方を含有するものが、放電特性の観点で好ましい。
本開示のリチウムイオン二次電池用負極材が負極活物質としてその他の粒子を含有する場合、本開示のリチウムイオン二次電池用負極材に占めるその他の粒子の割合は、0.5質量%〜20質量%であることが好ましく、1質量%〜15質量%であることがより好ましい。
<リチウムイオン二次電池用負極>
本開示のリチウムイオン二次電池用負極(負極)は、集電体と、前記集電体の表面に配置され、本開示のリチウムイオン二次電池用負極材を含む負極合剤層と、を有する。集電体及び負極合剤層の詳細については、後述する。
<リチウムイオン二次電池>
本開示のリチウムイオン二次電池は、本開示のリチウムイオン二次電池用負極材を含む負極を備えるものであれば、その構成について特に限定はない。本開示のリチウムイオン二次電池用負極材は、負極合剤層に含まれていてもよい。
(リチウムイオン二次電池の概要)
まず、リチウムイオン二次電池の概要について簡単に説明する。リチウムイオン二次電池は、電池容器内に、正極、負極、セパレータ及び非水電解液を有している。正極と負極との間にはセパレータが配置されている。
リチウムイオン二次電池を充電する際には、正極と負極との間に充電器を接続する。充電する際においては、正極活物質内に挿入されているリチウムイオンが脱離し、非水電解液中に放出される。非水電解液中に放出されたリチウムイオンは、非水電解液中を移動し、セパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
放電する際には、正極と負極の間に外部負荷を接続する。放電の際においては、負極活物質内に挿入されていたリチウムイオンが脱離して非水電解液中に放出される。このとき、負極から電子が放出される。そして、非水電解液中に放出されたリチウムイオンは、非水電解液中を移動し、セパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。正極活物質にリチウムイオンが挿入されることにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。
このように、リチウムイオン二次電池は、リチウムイオンを正極活物質と負極活物質との間で挿入及び脱離することにより、充放電することができる。なお、実際のリチウムイオン二次電池の構成例については、後述する(例えば、図1参照)。
次いで、本開示のリチウムイオン二次電池の構成要素である正極、負極、非水電解液、セパレータ及び必要に応じて設けられるその他の構成部材に関し順次説明する。
(正極)
本開示のリチウムイオン二次電池は、高容量で高入出力のリチウムイオン二次電池に適用可能な以下に示す正極を有する。本開示の正極(正極板)は、集電体(正極集電体)及びその表面に配置された正極合剤層を有する。正極合剤層は、集電体の表面に配置された少なくとも正極活物質を含む層である。
正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下、NMCという場合もある)を含むことが好ましい。NMCは、高容量であり、且つ安全性にも優れる傾向にある。
安全性のさらなる向上の観点からは、NMC及びスピネル型リチウムマンガン複合酸化物(以下、sp−Mnという場合もある)との混合物を、正極活物質として用いることが好ましい。
NMCの含有率は、電池の高容量化の観点から、正極合剤層全量に対して65質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
NMCとしては、以下の組成式(化1)で表されるものを用いることが好ましい。
Li(1+δ)MnNiCo(1−x−y−z)…(化1)
組成式(化1)において、(1+δ)はLi(リチウム)の組成比を、xはMn(マンガン)の組成比を、yはNi(ニッケル)の組成比を、(1−x−y−z)はCo(コバルト)の組成比を、各々示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。
元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)及びSn(錫)からなる群より選択される少なくとも1種の元素である。
また、−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z<1.0、0≦z≦0.1である。
sp−Mnとしては、以下の組成式(化2)で表されるものを用いることが好ましい。
Li(1+η)Mn(2−λ)M’λ…(化2)
組成式(化2)において、(1+η)はLiの組成比を、(2−λ)はMnの組成比を、λは元素M’の組成比を、各々示す。O(酸素)の組成比は4である。
元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Al、Ga、Zn(亜鉛)及びCu(銅)からなる群より選択される少なくとも1種の元素であることが好ましい。
0≦η≦0.2、0≦λ≦0.1である。
組成式(化2)における元素M’としては、Mg又はAlを用いることが好ましい。Mg又はAlを用いることにより、電池の長寿命化を図ることができる傾向にある。また、電池の安全性の向上を図ることができる傾向にある。さらに、元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性及び充放電サイクル特性を向上させることができる傾向にある。
また、正極活物質としては、NMC及びsp−Mn以外のものを用いてもよい。
NMC及びsp−Mn以外の正極活物質としては、この分野で常用されるものを使用でき、NMC及びsp−Mn以外のリチウム含有複合金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。
リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、例えば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBが挙げられ、Mn、Al、Co、Ni及びMgが好ましい。異種元素は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
NMC及びsp−Mn以外のリチウム含有複合金属酸化物としては、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo 1−y(LiCo 1−y中、MはNa、Mg、Sc、Y、Mn、Fe、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1−y (LiNi1−y 中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)等が挙げられる。ここで、xは0<x≦1.2の範囲であり、yは0〜0.9の範囲であり、zは2.0〜2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。
また、オリビン型リチウム塩としては、LiFePO等が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
次に、正極合剤層及び集電体について詳細に説明する。正極合剤層は、正極活物質、結着剤等を含有し、集電体上に配置される。正極合剤層の形成方法に制限はなく、例えば、次のように形成される。正極活物質、結着剤及び必要に応じて用いられる導電剤、増粘剤等の他の材料を乾式で混合してシート状にし、これを集電体に圧着する(乾式法)ことで正極合剤層を形成することができる。また、正極活物質、結着剤及び必要に応じて用いられる導電剤、増粘剤等の他の材料を分散溶媒に溶解又は分散させて正極合剤のスラリーとし、これを集電体に塗布し、乾燥する(湿式法)ことで正極合剤層を形成することができる。
正極活物質としては、前述したように、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)が用いられることが好ましい。正極活物質は、粉状(粒状)で用いられ、混合される。
NMC、sp−Mn等の正極活物質の粒子としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等の形状を有するものを用いることができる。
NMC、sp−Mn等の正極活物質の粒子の平均粒子径(d50)(一次粒子が凝集して二次粒子を形成している場合には二次粒子の平均粒子径(d50))は、タップ密度(充填性)、電極の形成の際における他の材料との混合性の観点から、1μm〜30μmであることが好ましく、3μm〜25μmであることがより好ましく、5μm〜15μmであることがさらに好ましい。正極活物質の粒子の平均粒子径(d50)は、黒鉛質粒子の場合と同様にして測定することができる。
NMC、sp−Mn等の正極活物質の粒子のBET比表面積の範囲は、0.2m/g〜4.0m/gであることが好ましく、0.3m/g〜2.5m/gであることがより好ましく、0.4m/g〜1.5m/gであることがさらに好ましい。
正極活物質の粒子のBET比表面積が0.2m/g以上であれば、優れた電池性能が得られる傾向にある。また、正極活物質の粒子のBET比表面積が4.0m/g以下であると、タップ密度が上がりやすく、結着剤、導電剤等の他の材料との混合性が良好になる傾向にある。BET比表面積は、黒鉛質粒子の場合と同様にして測定することができる。
正極用の導電剤としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料などが挙げられる。なお、正極用の導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
正極合剤層の質量に対する導電剤の含有率は、0.01質量%〜50質量%であることが好ましく、0.1質量%〜30質量%であることがより好ましく、1質量%〜15質量%であることがさらに好ましい。導電剤の含有率が0.01質量%以上であると充分な導電性を得やすい傾向にある。導電剤の含有率が50質量%以下であれば、電池容量の低下を抑制することができる傾向にある。
正極用の結着剤としては、特に限定されず、湿式法により正極合剤層を形成する場合には、分散溶媒に対する溶解性又は分散性が良好な材料が選択される。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、セルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)等のゴム状高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、ポリテトラフルオロエチレン−フッ化ビニリデン共重合体、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。なお、正極用の結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
正極の安定性の観点から、結着剤としては、ポリフッ化ビニリデン(PVdF)又はポリテトラフルオロエチレン−フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。
正極合剤層の質量に対する結着剤の含有率は、0.1質量%〜60質量%であることが好ましく、1質量%〜40質量%であることがより好ましく、3質量%〜10質量%であることがさらに好ましい。
結着剤の含有率が0.1質量%以上であると、正極活物質を充分に結着でき、充分な正極合剤層の機械的強度が得られ、サイクル特性等の電池性能が向上する傾向にある。結着剤の含有率が60質量%以下であると、充分な電池容量及び導電性が得られる傾向にある。
増粘剤は、スラリーの粘度を調製するために有効である。増粘剤としては、特に制限はなく、具体的には、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
増粘剤を用いる場合の正極合剤層の質量に対する増粘剤の含有率は、入出力特性及び電池容量の観点から、0.1質量%〜20質量%であることが好ましく、0.5質量%〜15質量%であることがより好ましく、1質量%〜10質量%であることがさらに好ましい。
スラリーを形成するための分散溶媒としては、正極活物質、結着剤、及び必要に応じて用いられる導電剤又は増粘剤等を溶解又は分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒又は有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコール及び水とアルコールとの混合溶媒等が挙げられ、有機系溶媒の例としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルスルホキシド、ベンゼン、キシレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘剤を用いることが好ましい。
湿式法又は乾式法を用いて集電体上に形成された正極合剤層は、正極活物質の充填密度を向上させるため、ハンドプレス又はローラープレス等により圧密化することが好ましい。
圧密化した正極合剤層の密度は、入出力特性及び安全性のさらなる向上の観点から、2.5g/cm〜3.5g/cmの範囲であることが好ましく、2.55g/cm〜3.15g/cmの範囲であることがより好ましく、2.6g/cm〜3.0g/cmの範囲であることがさらに好ましい。
また、正極合剤層を形成する際の正極合剤のスラリーの集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、正極合剤の固形分として、30g/m〜170g/mであることが好ましく、40g/m〜160g/mであることがより好ましく、40g/m〜150g/mであることがさらに好ましい。
正極合剤のスラリーの集電体への片面塗布量及び正極合剤層の密度を考慮すると、正極合剤層の平均厚みは、19μm〜68μmであることが好ましく、23μm〜64μmであることがより好ましく、36μm〜60μmであることがさらに好ましい。本開示において、合剤層の平均厚みは、任意の10箇所における厚みの平均値とする。
正極用の集電体の材質としては特に制限はなく、中でも金属材料が好ましく、アルミニウムがより好ましい。集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。金属材料については、金属箔、金属板、金属薄膜、エキスパンドメタル等が挙げられ、中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
集電体の平均厚みは特に限定されるものではなく、集電体として必要な強度及び良好な可とう性が得られる観点から、1μm〜1mmであることが好ましく、3μm〜100μmであることがより好ましく、5μm〜100μmであることがさらに好ましい。
(負極)
本開示のリチウムイオン二次電池は、高容量で高入出力のリチウムイオン二次電池に適用可能な以下に示す負極を有する。本開示の負極(負極板)は、集電体(負極集電体)及びその表面に配置された負極合剤層を有する。負極合剤層は、集電体の表面に配置された少なくとも負極活物質を含む層である。負極として、本開示のリチウムイオン二次電池用負極を用いることができる。
本開示のリチウムイオン二次電池に係る負極合剤層に含まれる負極活物質として、本開示のリチウムイオン二次電池用負極材が用いられる。
本開示のリチウムイオン二次電池用負極材の含有率は、電池の高容量化の観点から、負極合剤層全量に対して80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
次に、負極合剤層及び集電体について詳細に説明する。負極合剤層は、負極活物質、結着剤等を含有し、集電体上に配置される。負極合剤層の形成方法に制限はなく、例えば、次のように形成される。負極活物質、結着剤及び必要に応じて用いられる導電剤、増粘剤等の他の材料を分散溶媒に溶解又は分散させて負極合剤のスラリーとし、これを集電体に塗布し、乾燥する(湿式法)ことで負極合剤層を形成することができる。
負極用の導電剤としては、本開示のリチウムイオン二次電池用負極材に係る黒鉛質粒子以外の天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等を用いることができる。負極用の導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。このように、導電剤を添加することにより、電極の抵抗を低減する等の効果を奏する傾向にある。
負極合剤層の質量に対する導電剤の含有率は、導電性の向上及び初期不可逆容量の低減の観点から、1質量%〜45質量%であることが好ましく、2質量%〜42質量%であることがより好ましく、3質量%〜40質量%であることがさらに好ましい。導電剤の含有率が1質量%以上であると充分な導電性を得やすい傾向にある。導電剤の含有率が45質量%以下であれば、電池容量の低下を抑制することができる傾向にある。
負極用の結着剤としては、非水電解液又は電極の形成の際に用いる分散溶媒に対して安定な材料であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)等のゴム状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。なお、負極用の結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、SBR、ポリフッ化ビニリデンに代表されるフッ素系高分子等を用いることが好ましい。
負極合剤層の質量に対する結着剤の含有率は、0.1質量%〜20質量%であることが好ましく、0.5質量%〜15質量%であることがより好ましく、0.6質量%〜10質量%であることがさらに好ましい。
結着剤の含有率が0.1質量%以上であると、負極活物質を充分に結着でき、充分な負極合剤層の機械的強度が得られる傾向にある。結着剤の含有率が20質量%以下であると、充分な電池容量及び導電性が得られる傾向にある。
なお、結着剤として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合剤層の質量に対する結着剤の含有率は、1質量%〜15質量%であることが好ましく、2質量%〜10質量%であることがより好ましく、3質量%〜8質量%であることがさらに好ましい。
増粘剤は、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はなく、具体的には、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
増粘剤を用いる場合の負極合剤層の質量に対する増粘剤の含有率は、入出力特性及び電池容量の観点から、0.1質量%〜5質量%であることが好ましく、0.5質量%〜3質量%であることがより好ましく、0.6質量%〜2質量%であることがさらに好ましい。
スラリーを形成するための分散溶媒としては、負極活物質、結着剤、及び必要に応じて用いられる導電剤又は増粘剤等を溶解又は分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒又は有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコール及び水とアルコールとの混合溶媒等が挙げられる。有機系溶媒の例としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルスルホキシド、ベンゼン、キシレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘剤を用いることが好ましい。
負極合剤層の密度は、0.7g/cm〜2g/cmであることが好ましく、0.8g/cm〜1.9g/cmであることがより好ましく、0.9g/cm〜1.8g/cmであることがさらに好ましい。
負極合剤層の密度が0.7g/cm以上であると、負極活物質間の導電性が向上し電池抵抗の増加を抑制することができ、単位容積あたりの容量を向上できる傾向にある。負極合剤層の密度が2g/cm以下であると、初期不可逆容量の増加及び集電体と負極活物質との界面付近への非水電解液の浸透性の低下による放電特性の劣化を招く恐れが少なくなる傾向にある。
また、負極合剤層を形成する際の負極合剤のスラリーの集電体への片面塗布量は、エネルギー密度及び入出力特性の観点から、負極合剤の固形分として、30g/m〜150g/mであることが好ましく、40g/m〜140g/mであることがより好ましく、45g/m〜130g/mであることがさらに好ましい。
負極合剤のスラリーの集電体への片面塗布量及び負極合剤層の密度を考慮すると、負極合剤層の平均厚みは、10μm〜150μmであることが好ましく、15μm〜140μmであることがより好ましく、15μm〜120μmであることがさらに好ましい。
負極用の集電体の材質としては特に制限はなく、具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属板、金属薄膜、エキスパンドメタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として好適である。
集電体の平均厚みは特に限定されるものではない。例えば、5μm〜50μmであることが好ましく、8μm〜40μmであることがより好ましく、9μm〜30μmであることがさらに好ましい。
なお、集電体の平均厚みが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることでその強度を向上させることができる。
(非水電解液)
非水電解液は、一般的に、非水溶媒とリチウム塩(電解質)とを含む。
はじめに、非水溶媒について説明する。
非水溶媒としては、例えば、環状カーボネート、鎖状カーボネート及び環状スルホン酸エステルが挙げられる。
環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2〜6のものが好ましく、2〜4のものがより好ましい。エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート及びプロピレンカーボネートが好ましい。
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数が、それぞれ1〜5のものが好ましく、1〜4のものがより好ましい。ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート等の対称鎖状カーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状カーボネート類などが挙げられる。中でも、ジメチルカーボネート及びエチルメチルカーボネートが好ましい。ジメチルカーボネートはジエチルカーボネートよりも耐酸化性及び耐還元性に優れるためサイクル特性を向上させることができる傾向にある。エチルメチルカーボネートは、分子構造が非対称であり、融点が低いため低温特性を向上させることができる傾向にある。エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを組み合わせた混合溶媒が、広い温度範囲で電池特性を確保できるため特に好ましい。
環状カーボネート及び鎖状カーボネートの含有率は、電池特性の観点から、非水溶媒全量を基準として、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
また、環状カーボネートと鎖状カーボネートとを併用する場合の環状カーボネート及び鎖状カーボネートの混合割合は、電池特性の観点から、環状カーボネート/鎖状カーボネート(体積比)が1/9〜6/4であることが好ましく、2/8〜5/5であることがより好ましい。
環状スルホン酸エステルとしては、1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン等が挙げられる。中でも、1,3−プロパンスルトン及び1,4−ブタンスルトンがより直流抵抗を低減できる観点から特に好ましい。
非水電解液は、さらに、鎖状エステル、環状エーテル、鎖状エーテル、環状スルホン等を含んでいてもよい。
鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性の改善の観点から酢酸メチルを用いることが好ましい。
環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
環状スルホンとしては、スルホラン、3−メチルスルホラン等が挙げられる。
非水電解液は、リン酸シリルエステル化合物を含有していてもよい。
リン酸シリルエステル化合物の具体例としては、リン酸トリス(トリメチルシリル)、リン酸ジメチルトリメチルシリル、リン酸メチルビス(トリメチルシリル)、リン酸ジエチルトリメチルシリル、リン酸エチルビス(トリメチルシリル)、リン酸ジプロピルトリメチルシリル、リン酸プロピルビス(トリメチルシリル)、リン酸ジブチルトリメチルシリル、リン酸ブチルビス(トリメチルシリル)、リン酸ジオクチルトリメチルシリル、リン酸オクチルビス(トリメチルシリル)、リン酸ジフェニルトリメチルシリル、リン酸フェニルビス(トリメチルシリル)、リン酸ジ(トリフルオロエチル)(トリメチルシリル)、リン酸トリフルオロエチルビス(トリメチルシリル)、前述のリン酸シリルエステルのトリメチルシリル基をトリエチルシリル基、トリフェニルシリル基、t−ブチルジメチルシリル基等で置換した化合物、リン酸エステル同士が縮合してリン原子が酸素を介して結合した、いわゆる縮合リン酸エステルの構造を有する化合物などが挙げられる。
これらの中でもリン酸トリス(トリメチルシリル)(TMSP)を用いることが好ましい。リン酸トリス(トリメチルシリル)は、他のリン酸シリルエステル化合物と比較して、より少ない添加量で、抵抗上昇を抑制することができる。
これらのリン酸シリルエステルは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
非水電解液がリン酸シリルエステル化合物を含有する場合、リン酸シリルエステル化合物の含有率は、非水電解液の全量に対して0.1質量%〜5質量%であることが好ましく、0.3質量%〜3質量%であることがより好ましく、0.4質量%〜2質量%であることがさらに好ましい。
特に、非水電解液がリン酸トリス(トリメチルシリル)(TMSP)を含有する場合、リン酸トリス(トリメチルシリル)(TMSP)の含有率は、非水電解液の全量に対して0.1質量%〜0.5質量%であることが好ましく、0.1質量%〜0.4質量%であることがより好ましく、0.2質量%〜0.4質量%であることがさらに好ましい。TMSPの含有率が上記範囲であると、薄いSEI(Solid Electrolyte Interphase)の作用等によって、寿命特性を向上させることができる傾向にある。
また、非水電解液は、ビニレンカーボネート(VC)を含有してもよい。VCを用いることにより、リチウムイオン二次電池の充電の際に、負極の表面に安定な被膜が形成される。この被膜は負極表面での非水電解液の分解を抑制する効果を有する。
ビニレンカーボネートの含有率は、非水電解液の全量に対し0.3質量%〜1.6質量%であることが好ましく、0.3質量%〜1.5質量%であることがより好ましく、0.3質量%〜1.3質量%であることがさらに好ましい。ビニレンカーボネートの含有率が上記範囲であると、寿命特性を向上させることができ、リチウムイオン二次電池の充放電の際に過剰のVCが分解されて充放電効率を低下させる作用を防ぐことができる傾向にある。
次にリチウム塩(電解質)について説明する。
リチウム塩としては、リチウムイオン二次電池用の非水電解液の電解質として使用可能なリチウム塩であれば特に制限はなく、以下に示す無機リチウム塩、含フッ素有機リチウム塩、オキサラトボレート塩等が挙げられる。
無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩、LiClO、LiBrO、LiIO等の過ハロゲン酸塩、LiAlCl等の無機塩化物塩などが挙げられる。
含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩などが挙げられる。
オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。
これらのリチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、リチウムイオン二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。
非水電解液中の電解質の濃度に特に制限はない。電解質の濃度範囲は、次のとおりである。濃度の下限は、0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、濃度の上限は、2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。電解質の濃度が0.5mol/L以上であれば、非水電解液の電気伝導度が充分となる傾向にある。電解質の濃度が2mol/L以下であれば、非水電解液の粘度上昇が抑制されるため、電気伝導度が上昇する傾向にある。非水電解液の電気伝導度が上昇することにより、リチウムイオン二次電池の性能が向上する傾向にある。
(セパレータ)
セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。非水電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いることが好ましい。
無機物としては、アルミナ、二酸化ケイ素等の酸化物類、窒化アルミニウム、窒化ケイ素等の窒化物類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布としたもの、織布としたもの又は微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01μm〜1μmであり、平均厚みが5μm〜50μmのものが好適に用いられる。また、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることもできる。また、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。
(その他の構成部材)
リチウムイオン二次電池のその他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
また、温度上昇に伴い不活性ガス(例えば、二酸化炭素)を放出する構成部材を設けてもよい。このような構成部材を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部材に用いられる材料としては、炭酸リチウム、ポリエチレンカーボネート、ポリプロピレンカーボネート等が好ましい。
本開示において、リチウムイオン二次電池の負極容量とは、[負極の放電容量]を示す。また、本開示において、リチウムイオン二次電池の正極容量とは、[正極の初回充電容量−負極又は正極のどちらか大きい方の不可逆容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。また、[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。
負極と正極の容量比は、例えば、「負極の放電容量/リチウムイオン二次電池の放電容量」から算出することもできる。リチウムイオン二次電池の放電容量は、例えば、4.2V、0.1C〜0.5C、終止時間を2時間〜5時間とする定電流定電圧(CCCV)充電を行った後、0.1C〜0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。負極の放電容量は、リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、非水電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1Cで1.5Vまで定電流(CC)放電したときの条件で、所定面積当たりの放電容量を測定し、これをリチウムイオン二次電池の負極として用いた総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。なお、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。
(リチウムイオン二次電池)
次に、図面を参照して、本開示を18650タイプの円柱状リチウムイオン二次電池に適用した実施の形態について説明する。図1は、本開示を適用したリチウムイオン二次電池の断面図である。
図1に示すように、本開示のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2及び負極板3がポリエチレン製多孔質シートのセパレータ4を介して断面渦巻状に捲回された電極捲回群5が収容されている。セパレータ4は、例えば、幅が58mm、平均厚みが30μmに設定される。電極捲回群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極捲回群5の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極捲回群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子及び負極タブ端子は、それぞれ電極捲回群5の両端面の互いに反対側に導出されている。なお、電極捲回群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない非水電解液が注液されている。
以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。
(実施例1)
[正極板の作製]
正極板の作製を以下のように行った。正極活物質として層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC、BET比表面積が0.4m/g、平均粒子径(d50)が6.5μm)を用いた。この正極活物質に、導電剤としてアセチレンブラック(商品名:HS−100、平均粒子径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、結着剤としてポリフッ化ビニリデンとを順次添加し、混合することにより正極材料の混合物を得た。質量比は、正極活物質:導電剤:結着剤=90:5:5とした。さらに上記混合物に対し、分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である平均厚みが20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、密度2.7g/cmまでプレスにより圧密化した。正極合剤のスラリーの片面塗布量は、正極合剤の固形分として40g/mとした。
[負極活物質の作製]
分級処理をした球形天然黒鉛100質量部とコールタールピッチ(軟化点90℃、残炭率(炭化率)50%)10質量部を混合して混合物を得た。次いで、混合物の熱処理を行って、表面に低結晶炭素層を有する黒鉛質粒子を作製した。熱処理は、窒素流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。得られた黒鉛質粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材(負極活物質)とした。得られた負極活物質は、表1に記載の特定範囲における円形度の標準偏差(標準偏差)、累積頻度が10個数%における円形度(10個数%円形度)、平均粒子径、ラマンR値(R値)及びBET比表面積(BET)を有するものであった。
[負極板の作製]
負極板の作製を以下のように行った。負極活物質として表1に記載の特定範囲における円形度の標準偏差(標準偏差)、累積頻度が10個数%における円形度(10個数%円形度)、平均粒子径、ラマンR値(R値)及びBET比表面積(BET)を示す黒鉛質粒子(C軸方向の面間隔d002=0.336nm)を用いた。
この負極活物質に増粘剤としてカルボキシメチルセルロース(CMC)と結着剤としてスチレンブタジエンゴム(SBR)を添加した。これらの質量比は、負極活物質:CMC:SBR=98:1:1とした。これに分散溶媒である精製水を添加し、混練することにより各実施例及び比較例のスラリーを形成した。このスラリーを負極用の集電体である平均厚みが10μmの圧延銅箔の両面に実質的に均等かつ均質に所定量塗布した。負極合剤層の密度は1.3g/cmとした。
[リチウムイオン二次電池の作製]
上記正極板及び負極板をそれぞれ所定の大きさに裁断し、裁断した正極と負極とを、その間に平均厚みが30μmのポリエチレンの単層セパレータ(商品名:ハイポア、旭化成株式会社製、「ハイポア」は登録商標)を挟装して捲回し、ロール状の電極体を形成した。このとき電極体の直径は、17.15mmになるよう、正極、負極及びセパレータの長さを調整した。この電極体に集電用リードを付設し、18650型電池ケースに挿入し、次いで電池ケース内に非水電解液を注入した。非水電解液には環状カーボネートであるエチレンカーボネート(EC)と、鎖状カーボネートであるジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを、それぞれの体積比が2:3:2で混合した混合溶媒に、リチウム塩(電解質)としてヘキサフルオロリン酸リチウム(LiPF)を1.2mol/Lの濃度で溶解させたものを用い、ビニレンカーボネート(VC)を1.0質量%添加した。最後に電池ケースを密封して、リチウムイオン二次電池を完成させた。
[電池特性(初期充放電効率)の評価]
作製したリチウムイオン二次電池は、25℃の環境下において、0.5Cで4.2Vまで定電流充電し、4.2Vに到達した時からその電圧で電流値が0.01Cになるまで定電圧充電した。その後、0.5Cの定電流放電で、2.7Vまで放電した。これを3サイクル実施した。なお、各充放電間には30分の休止を入れた。3サイクル実施後のリチウムイオン二次電池を、初期状態と称する。
初期状態のリチウムイオン二次電池について、25℃の環境下において、充電電流値0.5Cで4.2Vまで定電流充電し、終止条件である電流値0.01Cとなるまで定電流定電圧(CCCV)充電を行った後、放電電流値0.5Cで3Vまで定電流(CC)放電を行い、このときの充電容量及び放電容量を測定し、それぞれ初回充電容量及び初回放電容量とした。
初期充放電効率は、下記の式から算出した。結果を表1に示す。初期充放電効率が高いほど、リチウムイオン二次電池の不可逆容量の小さいことが示唆される。
初期充放電効率(%)=(初回放電容量/初回充電容量)×100
[パルス充電特性の評価]
パルス充電特性は、Liの析出状態から判断した。初期状態にした電池を−30℃の恒温槽内に電池内部が環境温度に近くなるように5時間静置した後、20C相当の電流値である20Aで5秒間充電したのちに、電池を解体して、Liの析出状態をSEM(株式会社キーエンス社製、SU3500)にて確認した。得られた結果を表1に示す。Liの析出が無い場合に、パルス充電特性に優れると判断した。
(実施例2〜7並びに比較例1)
分級条件を変更した以外は、実施例1と同様に負極活物質を作製した。得られた負極活物質の特定範囲における円形度の標準偏差(標準偏差)、累積頻度が10個数%における円形度(10個数%円形度)、平均粒子径、ラマンR値(R値)及びBET比表面積(BET)を表1に示す。また、得られた負極活物質について、実施例1と同様に、電池特性(初期充放電効率)及びパルス充電特性を評価した。その結果を表1に示す。
表1から明らかなように、本開示のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、初期充放電効率及びパルス充電特性に優れることが分かる。
2017年1月6日に出願された日本国特許出願2017−1162号の開示は、その全体が参照により本明細書に取り込まれる。
また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (8)

  1. 表面に低結晶炭素層を有する黒鉛質粒子を含み、
    前記黒鉛質粒子は、フロー式粒子解析計で求められる、円形度の低い側からの累積頻度が90個数%における円形度(Upper値)と円形度の低い側からの累積頻度が10個数%における円形度(Lower値)との差(Upper値−Lower値)である円形度の標準偏差が、0.05〜0.1であり、
    前記黒鉛質粒子は、前記累積頻度が10個数%における円形度が、0.7〜0.9である、
    リチウムイオン二次電池用負極材。
  2. 前記黒鉛質粒子の平均粒子径が、2μm〜30μmである請求項1に記載のリチウムイオン二次電池用負極材。
  3. 前記黒鉛質粒子に対して532nmのレーザー光を照射したときのラマンスペクトルにおける1580cm−1〜1620cm−1の範囲にあるピーク強度IGに対する1300cm−1〜1400cm−1の範囲にあるピーク強度IDの比であるラマンR値(ID/IG)が、0.10〜0.60である請求項1又は請求項に記載のリチウムイオン二次電池用負極材。
  4. 非晶質炭素粒子をさらに含み、前記黒鉛質粒子及び前記非晶質炭素粒子の混合粒子についてのフロー式粒子解析計で求められる円形度の低い側からの累積頻度が90個数%における円形度(Upper値)と円形度の低い側からの累積頻度が10個数%における円形度(Lower値)との差(Upper値−Lower値)である円形度の標準偏差が、0.05〜0.1である請求項1〜請求項のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5. 前記非晶質炭素粒子の含有率が、1質量%〜30質量%である請求項に記載のリチウムイオン二次電池用負極材。
  6. 前記円形度の標準偏差が、0.05〜0.08である請求項1〜請求項のいずれか1項に記載のリチウムイオン二次電池用負極材。
  7. 集電体と、
    前記集電体の表面に配置され、請求項1〜請求項のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極合剤層と、
    を有するリチウムイオン二次電池用負極。
  8. 請求項に記載のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池。
JP2018531269A 2017-01-06 2018-01-04 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Active JP6591073B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081128A JP6897707B2 (ja) 2017-01-06 2019-04-22 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017001162 2017-01-06
JP2017001162 2017-01-06
PCT/JP2018/000040 WO2018128179A1 (ja) 2017-01-06 2018-01-04 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019081128A Division JP6897707B2 (ja) 2017-01-06 2019-04-22 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JPWO2018128179A1 JPWO2018128179A1 (ja) 2019-01-10
JP6591073B2 true JP6591073B2 (ja) 2019-10-16

Family

ID=62790954

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018531269A Active JP6591073B2 (ja) 2017-01-06 2018-01-04 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019081128A Active JP6897707B2 (ja) 2017-01-06 2019-04-22 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019081128A Active JP6897707B2 (ja) 2017-01-06 2019-04-22 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US11031597B2 (ja)
JP (2) JP6591073B2 (ja)
CN (2) CN110168787B (ja)
TW (1) TWI751260B (ja)
WO (1) WO2018128179A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031597B2 (en) * 2017-01-06 2021-06-08 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN112437993B (zh) * 2018-07-11 2024-06-18 株式会社力森诺科 锂离子二次电池用负极材、锂离子二次电池用负极、锂离子二次电池、和锂离子二次电池用负极的制造方法
WO2020012586A1 (ja) * 2018-07-11 2020-01-16 日立化成株式会社 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JPWO2020171138A1 (ja) 2019-02-20 2021-12-23 学校法人 埼玉医科大学 放射線治療による抗腫瘍免疫効果を評価する末梢血バイオマーカー

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312790A (ja) * 1997-05-14 1998-11-24 Toyota Motor Corp リチウムイオン2次電池
JP4765253B2 (ja) * 2003-02-20 2011-09-07 三菱化学株式会社 リチウム二次電池用負極活物質、リチウム二次電池負極及びリチウム二次電池
WO2006025377A1 (ja) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
JP4707570B2 (ja) * 2006-01-20 2011-06-22 Jfeケミカル株式会社 微小黒鉛質粒子の製造方法
JP2007242282A (ja) * 2006-03-06 2007-09-20 Sony Corp 電池
CN102362381B (zh) * 2009-03-27 2015-06-03 三菱化学株式会社 非水电解质二次电池用负极材料以及使用该负极材料的非水电解质二次电池
JP5754098B2 (ja) * 2009-09-15 2015-07-22 三菱化学株式会社 リチウムイオン二次電池用炭素材料
JP2011175842A (ja) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd リチウム電池用負極材、リチウム二次電池用負極及びリチウム電池
JP6121645B2 (ja) 2010-09-16 2017-04-26 三菱化学株式会社 非水電解液二次電池用負極材及びこれを用いた負極並びに非水電解液二次電池
JP5799710B2 (ja) * 2010-09-29 2015-10-28 三菱化学株式会社 非水電解液二次電池負極用炭素材及びその製造方法、これを用いた非水系二次電池用負極並びに非水電解液二次電池
JP5987431B2 (ja) * 2011-04-13 2016-09-07 三菱化学株式会社 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP5725351B2 (ja) * 2011-07-29 2015-05-27 トヨタ自動車株式会社 リチウムイオン二次電池
US20140227522A1 (en) * 2011-09-09 2014-08-14 Sumitomo Bakelite Company Limited Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2014032923A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
JP2014165156A (ja) * 2013-02-28 2014-09-08 Panasonic Corp 非水電解液二次電池、および非水電解液二次電池の負極板の製造方法
JP2014194852A (ja) * 2013-03-28 2014-10-09 Mt Carbon Co Ltd リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
JP5817872B2 (ja) * 2014-03-14 2015-11-18 日立化成株式会社 リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN106133983A (zh) * 2014-03-31 2016-11-16 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质二次电池
JP6759586B2 (ja) * 2015-03-27 2020-09-23 三菱ケミカル株式会社 炭素材、及び、非水系二次電池
JP6475064B2 (ja) * 2015-04-08 2019-02-27 帝人株式会社 正極活物質、その製造方法、正極活物質を用いた正極合材、非水電解質二次電池用正極及び非水電解質二次電池
US11031597B2 (en) * 2017-01-06 2021-06-08 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
US20190348679A1 (en) 2019-11-14
CN114725315A (zh) 2022-07-08
TWI751260B (zh) 2022-01-01
US11031597B2 (en) 2021-06-08
JP2019175852A (ja) 2019-10-10
JP6897707B2 (ja) 2021-07-07
CN110168787B (zh) 2022-05-03
CN110168787A (zh) 2019-08-23
TW201832401A (zh) 2018-09-01
JPWO2018128179A1 (ja) 2019-01-10
WO2018128179A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
KR102183996B1 (ko) 양극 활물질 및 그 제조방법, 상기 양극 활물질을 채용한 양극과 리튬 전지
KR102473532B1 (ko) 양극 활물질 및 상기 양극 활물질을 채용한 양극과 리튬 전지
JP6897707B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2017199548A (ja) リチウムイオン二次電池
JP2018092778A (ja) リチウムイオン二次電池
WO2016104024A1 (ja) リチウムイオン電池
JP7147844B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
KR20170095942A (ko) 리튬 이온 이차 전지
JP2017199547A (ja) リチウムイオン二次電池
KR101983924B1 (ko) 리튬 이온 이차 전지
JP2016115598A (ja) リチウムイオン二次電池
JP7147845B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極の製造方法
WO2017068985A1 (ja) リチウムイオン電池
JP2017228434A (ja) リチウムイオン二次電池
KR102439849B1 (ko) 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지
JP2017199488A (ja) リチウムイオン電池
JP2019067590A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022264384A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2016004683A (ja) リチウムイオン電池
WO2018092194A1 (ja) リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017188404A (ja) リチウムイオン二次電池
JP2017134914A (ja) リチウムイオン二次電池用正極材、リチウムイオン二次電池用正極合材、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2018179167A1 (ja) リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2016115611A (ja) リチウムイオン電池
JP2016115610A (ja) リチウムイオン電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180614

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R150 Certificate of patent or registration of utility model

Ref document number: 6591073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350