WO2018092194A1 - リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2018092194A1 WO2018092194A1 PCT/JP2016/083854 JP2016083854W WO2018092194A1 WO 2018092194 A1 WO2018092194 A1 WO 2018092194A1 JP 2016083854 W JP2016083854 W JP 2016083854W WO 2018092194 A1 WO2018092194 A1 WO 2018092194A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- positive electrode
- ion secondary
- secondary battery
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a material for a lithium ion secondary battery, a positive electrode mixture, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
- Lithium ion secondary batteries are high energy density secondary batteries, and are widely used as power sources for electronic devices such as notebook personal computers and portable information terminals such as smartphones, taking advantage of their characteristics.
- a lithium ion secondary battery mainly includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution including an electrolyte.
- the present invention has been made in view of the above circumstances, and is a lithium ion secondary battery material and a positive electrode mixture that are excellent in the ability to adsorb metal ions and hydrogen fluoride, and a titanium ion secondary battery manufactured using these materials. It is an object to provide a positive electrode for use and a lithium ion secondary battery.
- a lithium ion secondary battery which is an aluminum silicate compound composite containing an aluminum silicate compound having an elemental molar ratio of silicon to aluminum (Si / Al ratio) of 1.0 to 5.0 and carbon Materials.
- ⁇ 5> The material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein a volume average particle diameter measured by a laser diffraction particle size distribution analyzer is 0.1 ⁇ m to 50 ⁇ m.
- ⁇ 6> The material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 5>, wherein an element molar ratio of silicon to aluminum (Si / Al) is 1.5 to 3.0.
- a positive electrode mixture comprising the lithium ion secondary battery material according to any one of ⁇ 1> to ⁇ 6> and a positive electrode active material.
- a positive electrode for a lithium ion secondary battery comprising the material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 6>.
- a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to ⁇ 9>.
- a lithium ion secondary battery material and a positive electrode mixture excellent in adsorption ability of metal ions and hydrogen fluoride, and a positive electrode and a lithium ion secondary battery for a lithium ion secondary battery produced using these materials are provided.
- the purpose is to provide. Since the lithium ion secondary battery material of the present invention is excellent in the ability to adsorb metal ions and hydrogen fluoride, the lithium ion secondary battery using the lithium ion secondary battery material of the present invention has a reduced capacity retention rate. Tend to be suppressed.
- the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
- numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
- the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
- the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
- the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
- the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
- the material for a lithium ion secondary battery of the present embodiment includes an aluminum silicate compound having an element molar ratio of silicon to aluminum (Si / Al ratio) of 1.0 to 5.0, and carbon (hereinafter referred to as aluminum). Also referred to as silicate compound complex).
- the aluminum silicate compound composite adsorbs the hydrogen fluoride produced by the reaction between the water contained in the battery and the fluorine-containing electrolyte in the electrolytic solution. It is estimated that this suppresses precipitation of lithium fluoride serving as a resistance component, change in the crystal structure of the positive electrode active material, and the like. Further, it is estimated that the reprecipitation of metal ions at the negative electrode or the like is suppressed by adsorbing metal ions such as cobalt eluted from the positive electrode active material due to hydrogen fluoride.
- the state of the aluminum silicate compound and carbon (arrangement relationship, etc.) in the aluminum silicate compound composite is not particularly limited.
- Carbon may be provided in a part or all of the aluminum silicate compound.
- the aluminum silicate compound composite include those in which all or part of the surface of the particulate aluminum silicate compound is coated with carbon.
- the presence or absence of carbon in the aluminum silicate compound complex can be confirmed by, for example, laser Raman spectroscopy measurement with an excitation wavelength of 532 nm.
- Examples of the aluminum silicate compound in the aluminum silicate compound composite include allophane, kaolin, zeolite, saponite and imogolite which are aluminum silicates. Among these, from the viewpoint of improving the cycle characteristics, an amorphous aluminum silicate compound whose specific surface area can be easily adjusted is preferable.
- the amorphous aluminum silicate compound is an aluminum silicate having an element molar ratio Si / Al in the range of 0.3 to 5.0.
- the X-ray diffractometer for example, Geigerflex RAD-2X (manufactured by Rigaku Corporation) can be used. Specific measurement conditions are as follows. -Measurement condition- Divergence slit: 1 ° Scattering slit: 1 ° Receiving slit: 0.30mm X-ray output: 40 kV, 40 mA
- the amorphous aluminum silicate compound may be synthesized or a commercially available product may be used.
- a step of mixing a solution containing silicate ions and a solution containing aluminum ions to obtain a reaction product, and the reaction product in an aqueous medium in the presence of an acid A step of heat treatment, and may include other steps as necessary.
- a washing step for performing desalting and solid separation at least after the heat treatment step, preferably both before and after the heat treatment step. It is preferable to have.
- the method for providing carbon to the amorphous aluminum silicate compound is not particularly limited.
- a method of coating an amorphous aluminum silicate compound with an organic compound (carbon precursor) that changes to a carbonaceous material by heat treatment and changing the carbon precursor to a carbonaceous material can be mentioned.
- a wet method in which an amorphous aluminum silicate compound is added to a carbon precursor dissolved or dispersed in a solvent and then the solvent is removed by heating or the like.
- examples thereof include a dry method in which a mixture obtained by mixing a carbon precursor and an amorphous aluminum silicate compound with solids is kneaded while applying a shearing force, and a gas phase method such as a CVD method. From the viewpoint of cost and production process reduction, a dry method or a gas phase method without using a solvent is preferable.
- the type of carbon precursor is not particularly limited. Examples thereof include ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, pitch generated by thermal decomposition of polyvinyl chloride and the like, and synthetic pitch obtained by polymerizing naphthalene or the like in the presence of a super strong acid. Moreover, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, etc. can be used as a thermoplastic carbon precursor, and a phenol resin, a furan resin, etc. can be used as a thermosetting carbon precursor.
- the heating conditions in this case are not particularly limited and can be determined in consideration of the carbonization rate of the carbon precursor. For example, it is preferable to heat in the range of 800 ° C. to 1300 ° C. in an inert atmosphere. When the heating temperature is 800 ° C. or higher, carbonization of the carbon precursor proceeds sufficiently, the specific surface area of the aluminum silicate compound composite does not become too large, and the initial irreversible capacity tends not to increase. When the heating temperature is 1300 ° C. or lower, the specific surface area does not become too low, and the resistance does not easily increase.
- the inert atmosphere include nitrogen, argon, helium, and mixed gases thereof.
- the element molar ratio of silicon to aluminum is preferably 1.0 to 5.0, and more preferably 1.5 to 3.0.
- the Si / Al ratio of the aluminum silicate compound composite can be calculated from the values obtained for silicon and aluminum by conducting elemental analysis of the measurement sample. Elemental analysis can be performed by inductively coupled plasma (ICP) emission spectroscopy.
- ICP inductively coupled plasma
- the aluminum silicate compound complex preferably has a chlorine ratio (RCl) of 1% or less, more preferably 0.1% or less, and even more preferably less than 0.1%.
- a chlorine ratio (RCl) is 1% or less, there is a tendency that a decrease in life due to deterioration (elution, film formation, etc.) of the positive electrode active material caused by a chlorine-derived compound (hydrogen chloride or the like) tends to be suppressed.
- the chlorine ratio (RCl) is less than 0.1%, the expansion of the battery due to the gas generated by the reaction between chlorine and the electrolytic solution tends to be suppressed.
- the chlorine ratio (RCl) means the ratio (%) of the Cl content to the total content of Al and Si in the aluminum silicate compound composite. Specifically, it is a value calculated by the following equation (1) from values obtained for each element by performing elemental analysis in the measurement sample. Elemental analysis can be measured using the same method and apparatus as the Si / Al ratio.
- Aluminum silicate compound complex is calculated and the peak area A of the oxidation point in the vicinity of 1490cm -1, which derived from pyridine adsorption IR spectrum, the following equation from the peak area B of the hydrogen bonds in the vicinity of 1446cm -1 (2)
- the oxidation point ratio (RA) is preferably less than 25%.
- RA (%) A / B ⁇ 100 (2)
- the oxidation point ratio (RA) is preferably less than 25%, and more preferably less than 20%. When the ratio of the oxidation points is less than 25%, it is difficult to adsorb water, and the lifespan tends to be suppressed. Further, when the oxidation point ratio (RA) is less than 20%, the expansion of the battery caused by the reaction between the functional group and the electrolytic solution tends to be suppressed.
- the oxidation point of the aluminum silicate compound complex can be measured from a pyridine adsorption IR spectrum obtained by infrared spectroscopy.
- the pyridine adsorption IR spectrum can be obtained using, for example, a Fourier transform infrared spectrophotometer (for example, “Cary670” manufactured by Agilent Technologies).
- the oxidation point of the aluminum silicate compound complex is measured as follows.
- the cell filled with the sample is evacuated at 500 ° C. for 1 hour and then cooled to 30 ° C.
- pyridine gas is introduced into the cell while being heated to 100 ° C., and is adsorbed for 5 minutes.
- the physisorbed pyridine is removed by heating to 150 ° C. and exhausting for 60 minutes. Subsequently, it cools to 30 degreeC and measures an IR spectrum.
- the peak area A of the oxidation point and the peak area B of the hydrogen bond are calculated by the following method, and the values calculated by the equation (2) using the calculated peak areas are the oxidation points.
- the ratio (RA) is the ratio (RA).
- ⁇ Calculation of peak area A at oxidation point> A baseline is drawn with a straight line in the region of IR spectrum from 1485 cm ⁇ 1 to 1500 cm ⁇ 1 . The maximum peak in the vicinity of 1490 cm ⁇ 1 is separated using a Gaussian function, and the area of the portion surrounded by the baseline is obtained.
- ⁇ Calculation of hydrogen bond peak area B> Subtracting a baseline in a straight line from 1430 cm -1 of the IR spectrum in the region of 1460 cm -1. The maximum peak near 1446 cm ⁇ 1 in the meantime is separated using a Gaussian function, and the area of the portion surrounded by the baseline is obtained.
- the mass reduction rate between 350 ° C. and 850 ° C. measured using differential thermal-thermogravimetric analysis (TG-DTA) of the aluminum silicate compound composite is 0. 5% to 30% is preferable, 2% to 25% is more preferable, and 5% to 20% is still more preferable.
- TG-DTA differential thermal-thermogravimetric analysis
- the mass reduction rate of 350 ° C. to 850 ° C. of the aluminum silicate compound composite is the value obtained by the following formula (3).
- Mass reduction rate (%) ⁇ (W1-W2) / W1 ⁇ ⁇ 100 (3)
- W1 is the mass (g) of the measurement target after being heated from 25 ° C. to 350 ° C. at a rate of temperature increase of 10 ° C./min under a circulation of dry air and held at 350 ° C. for 20 minutes.
- W2 is the mass (g) of the object to be measured after raising the temperature from 350 ° C. to 850 ° C. at a rate of temperature rise of 10 ° C./min under a circulation of dry air and holding at 850 ° C. for 20 minutes.
- TG-DTA-6200 type manufactured by SII NanoTechnology Co., Ltd.
- the volume average particle diameter (D50) measured by the laser diffraction particle size distribution analyzer is selected according to the desired size of the aluminum silicate compound composite, and 0
- the thickness is preferably 1 ⁇ m to 50 ⁇ m, more preferably 0.2 ⁇ m to 20 ⁇ m, and still more preferably 0.5 ⁇ m to 10 ⁇ m.
- volume average particle diameter (D50) of the aluminum silicate compound composite is 0.1 ⁇ m or more, the viscosity of the positive electrode mixture does not become too high when a positive electrode is prepared using the positive electrode mixture described later, Tend to be well maintained.
- the volume average particle diameter (D50) of the aluminum silicate compound composite is 50 ⁇ m or less, streaks tend not to be drawn when the positive electrode mixture is applied onto the current collector.
- the volume average particle diameter (D50) of the aluminum silicate compound composite is preferably 0.5 ⁇ m or more from the viewpoint of cost reduction required for pulverization, and 10 ⁇ m or less from the viewpoint of the efficiency of adsorption of hydrogen fluoride or the like. It is preferable that
- the volume average particle diameter (D50) of the aluminum silicate compound composite is measured using a laser diffraction method.
- the measurement by the laser diffraction method can be performed using, for example, a laser diffraction particle size distribution measuring apparatus (SALD3000J, Shimadzu Corporation).
- SALD3000J laser diffraction particle size distribution measuring apparatus
- an aluminum silicate compound complex is dispersed in a dispersion medium such as water to prepare a dispersion, and a volume cumulative distribution curve is measured from the small diameter side from the small diameter side of this dispersion using a laser diffraction particle size distribution analyzer.
- the particle diameter (D50) when the cumulative volume is 50% is determined as the volume average particle diameter.
- the BET specific surface area of the aluminum silicate compound composite is preferably 80 m 2 / g or less, more preferably 40 m 2 / g or less, and 20 m 2 / g or less from the viewpoint of cycle characteristics and storage characteristics. More preferably it is.
- the lower limit of the BET specific surface area is not particularly limited, but is preferably 1 m 2 / g or more and more preferably 2 m 2 / g or more from the viewpoint of improving the adsorption ability for hydrogen fluoride and metal ions. More preferably, it is 3 m 2 / g or more.
- the BET specific surface area of the aluminum silicate compound composite is measured from the nitrogen adsorption capacity according to JIS Z 8830 (2001).
- a nitrogen adsorption measuring device AUTOSORB-1, QUANTACHROME
- AUTOSORB-1, QUANTACHROME nitrogen adsorption measuring device
- a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump and then heated at 110 ° C. After maintaining in this state for 3 hours or longer, the product is naturally cooled to room temperature (25 ° C.) while maintaining the reduced pressure state. After performing this pretreatment, the evaluation temperature is 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
- the positive electrode mixture of the present embodiment contains the lithium ion secondary battery material of the present embodiment and the positive electrode active material. Even if the lithium ion secondary battery having a positive electrode formed using the positive electrode mixture of the present embodiment is used at a high voltage, a decrease in capacity maintenance rate is suppressed.
- lithium ion secondary battery material contained in the positive electrode mixture are the same as those described for the lithium ion secondary battery material of the present embodiment.
- the details and preferred embodiments of the positive electrode active material contained in the positive electrode mixture are the same as those described for the lithium ion secondary battery described later.
- the content of the lithium ion secondary battery material in the positive electrode mixture may be, for example, 0.01% by mass to 10% by mass with respect to the total amount of the positive electrode mixture, and 0.05% by mass to 5% by mass. It is preferable that Further, the mass ratio of the lithium ion secondary battery material and the positive electrode active material in the positive electrode mixture (lithium ion secondary battery material / positive electrode active material) may be, for example, 0.009 to 9.8, It is preferably 0.045 to 4.9.
- the positive electrode for a lithium ion secondary battery of the present embodiment contains the material for a lithium ion secondary battery of the present embodiment. For example, it can manufacture by a well-known method using the positive electrode compound material of this embodiment.
- ⁇ Lithium ion secondary battery> The lithium ion secondary battery of this embodiment is provided with the positive electrode for lithium ion secondary batteries of this embodiment. In the lithium ion secondary battery of the present embodiment, the capacity maintenance rate is prevented from decreasing.
- a lithium ion secondary battery has a positive electrode and a negative electrode, and a separator through which lithium ions can pass is usually disposed between the positive electrode and the negative electrode.
- a charger When charging a lithium ion secondary battery, a charger is connected between the positive electrode and the negative electrode. At the time of charging, lithium ions inserted into the positive electrode active material of the positive electrode are desorbed and released into the electrolytic solution. The lithium ions released into the electrolytic solution move through the electrolytic solution, pass through the separator, and reach the negative electrode. The lithium ions that have reached the negative electrode are inserted into the negative electrode active material of the negative electrode.
- charging / discharging is performed by inserting or desorbing lithium ions between the positive electrode active material and the negative electrode active material.
- a configuration example of an actual lithium ion secondary battery will be described later (see, for example, FIG. 1).
- the positive electrode, negative electrode, electrolytic solution, separator, and other components of the lithium ion secondary battery will be described.
- the positive electrode includes the lithium ion secondary battery material of the present embodiment and a positive electrode active material.
- the positive electrode has a current collector and a positive electrode mixture layer provided on both sides or one side of the current collector, and the positive electrode mixture layer is for the lithium ion secondary battery of the present embodiment.
- the positive electrode may include other materials such as a conductive material, a binder, a thickener, and a dispersion solvent as necessary.
- the lithium-containing composite metal oxide or lithium-containing phosphate compound is a metal oxide or phosphate compound containing lithium and a metal other than lithium.
- the metal other than lithium contained in the lithium-containing composite metal oxide or the lithium-containing phosphate compound may be only one kind or two or more kinds.
- the lithium-containing composite metal oxide or lithium-containing phosphate compound is preferably a metal oxide containing lithium and a transition metal or a lithium-containing phosphate compound.
- part of the transition metal may be substituted with an element (heterogeneous element) different from the transition metal.
- the different elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B.
- Mn, Al, Co, Ni, and the like At least one selected from the group consisting of Mg is preferred.
- lithium-containing composite metal oxide examples include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1 1-y O z (Li In x Co y M 1 1-y O z , M 1 is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V, and B ), Li x Ni 1-y M 2 y O z (in Li x Ni 1-y M 2 y O z , M 2 is Na, Mg, Sc, Y, Mn, Fe, Co, And at least one element selected from the group consisting of Cu, Zn, Al, Cr, Pb, Sb, V and B.), Li x Mn 2 O 4 and Li x Mn 2-y M 3 y O 4 ( In Li x Mn 2-y M 3 y O 4 , M 3 is Na,
- x is in the range of 0 ⁇ x ⁇ 1.2
- y is in the range of 0 to 0.9
- z is in the range of 2.0 to 2.3.
- the x value indicating the molar ratio of lithium increases or decreases due to charge / discharge.
- lithium-containing phosphate compound examples include LiMPO 4 and Li 2 MPO 4 F (in the above formulas, M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, And at least one element selected from the group consisting of Pb, Sb, V and B.).
- M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, And at least one element selected from the group consisting of Pb, Sb, V and B.
- an olivine type lithium salt is preferable, and LiFePO 4 is more preferable.
- the positive electrode active material may contain a compound other than the lithium-containing composite metal oxide or the lithium-containing phosphate compound.
- examples of such compounds include chalcogen compounds and manganese dioxide.
- examples of the chalcogen compound include titanium disulfide and molybdenum disulfide.
- the positive electrode active material may be in the form of particles, and is preferably in a state of secondary particles formed by aggregation of primary particles.
- the positive electrode active material is in the state of secondary particles, expansion and contraction of the positive electrode active material due to charge / discharge are alleviated compared to the case where the positive electrode active material is only primary particles, and positive electrode active due to stress caused by expansion and contraction is reduced. There is a tendency that deterioration such as destruction of a substance and cutting of a conductive path hardly occurs.
- the shape is not particularly limited, and examples thereof include a lump shape, polyhedron shape, spherical shape, elliptical spherical shape, plate shape, needle shape, and columnar shape. Of these, spherical or elliptical spheres are preferred.
- the shape of the positive electrode active material is spherical or elliptical, the degree of orientation of the positive electrode active material in the electrode is smaller than when the plate has a large aspect ratio, such as a plate shape, and the expansion of the electrode during charge / discharge Shrinkage tends to be suppressed. Further, when preparing the positive electrode mixture, it tends to be easily mixed with other materials such as a conductive material.
- the positive electrode active material is preferably in the form of secondary particles formed by aggregation of primary particles, and the shape of the secondary particles is preferably spherical or elliptical.
- the volume average particle diameter (D50) measured with a laser diffraction particle size distribution analyzer of the positive electrode active material is not particularly limited.
- the volume average particle diameter (D50) of the positive electrode active material may be 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more. Preferably, it is 3 ⁇ m or more.
- the volume average particle diameter (D50) of the positive electrode active material may be 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 16 ⁇ m or less, and more preferably 15 ⁇ m. More preferably, it is as follows.
- the volume average particle diameter (D50) of the positive electrode active material means the volume average particle diameter (D50) of the secondary particles when the positive electrode active material is in the state of secondary particles.
- the volume average particle diameter (D50) of the positive electrode active material is measured in the same manner as the volume average particle diameter (D50) of the lithium ion secondary battery material (aluminum silicate compound composite) of the present embodiment.
- the average particle diameter of the primary particles forming the secondary particles is not particularly limited.
- the average particle diameter of the primary particles may be 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, 0 More preferably, it is 1 ⁇ m or more.
- the average particle size of the primary particles may be 3 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and 0.6 ⁇ m or less. More preferably.
- the average particle diameter of the primary particles when the positive electrode active material is in the state of secondary particles is, for example, scanning electron microscope / energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscope / energy dispersive X It can be measured by line spectroscopy (TEM-EDX) or the like.
- the BET specific surface area of the positive electrode active material is not particularly limited. From the viewpoint of improving battery performance, the BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, and 0.3 m 2 / g. More preferably, it is the above. From the viewpoint of electrode formability, the BET specific surface area of the positive electrode active material is preferably 4.0 m 2 / g or less, more preferably 2.5 m 2 / g or less, and 1.5 m 2 / g or less. More preferably.
- the BET specific surface area of the positive electrode active material is measured by the same method as the method for measuring the BET specific surface area of the aluminum silicate compound composite described above.
- the positive electrode preferably contains a conductive material from the viewpoint of improving battery performance.
- the conductive material include natural graphite, artificial graphite, graphite such as fibrous graphite, carbon black, and the like.
- the carbon blacks acetylene black is preferable from the viewpoint of improving input / output characteristics.
- the carbon black is preferably particles having an average particle diameter of 20 nm to 100 nm. More preferred are particles of 30 nm to 80 nm, and even more preferred are particles having an average particle size of 40 nm to 60 nm.
- the graphite When graphite is included as the conductive material, the graphite is preferably particles having an average particle diameter of 1 ⁇ m to 10 ⁇ m. Further, the graphite preferably has a carbon network plane interlayer (d002) in the X-ray wide angle diffraction method of 0.3354 nm to 0.337 nm.
- d002 carbon network plane interlayer
- examples of the particle shape include a granular shape, a flake shape, a spherical shape, a columnar shape, and an irregular shape.
- the “granular” is not an irregular shape but a shape having almost equal dimensions (JIS Z2500: 2000).
- the flake shape (strip shape) is a plate-like shape (JIS Z2500: 2000) and is also referred to as a scaly shape because it is thin like a scale.
- a scanning electron microscope is used. Analysis is performed from the observation results of the above, and particles having an aspect ratio (particle diameter a / average thickness t) in the range of 2 to 100 are formed into flakes.
- the particle diameter a here is defined as the value of the square root of the area S when the flaky particles are viewed in plan.
- Spherical means a shape almost similar to a sphere (see JIS Z2500: 2000). Further, the shape does not necessarily need to be spherical, and the ratio of the major axis (DL) to the minor axis (DS) of the particle (DL) / (DS) (sometimes referred to as spherical coefficient or sphericity) is 1. Those in the range of 0.0 to 1.2 are included in “spherical”. When the particles are spherical, the major axis (DL) is taken as the particle size. Examples of the columnar shape include a substantially circular column and a substantially polygonal column. When the particles are columnar, the height of the column is the particle size.
- the average particle diameter of the conductive material is an arithmetic average value of values measured for all particle images in the image taken with a scanning electron microscope taken at 200,000 times.
- the content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.5% by mass or more with respect to the total amount of the positive electrode mixture. More preferably.
- the upper limit of the content of the conductive material is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less. When the content of the conductive material is within the above range, the battery capacity and input / output characteristics tend to be more excellent.
- the positive electrode preferably includes a binder from the viewpoint of obtaining adhesion between the positive electrode mixture, the current collector, and the positive electrode active material.
- the kind of binder is not particularly limited. Specific examples include resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene
- the binder may be used alone or in combination of two or more. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
- PVdF polyvinylidene fluoride
- a binder having good solubility or dispersibility in the dispersion solvent contained in the positive electrode mixture it is preferable to select a binder having good solubility or dispersibility in the dispersion solvent contained in the positive electrode mixture.
- the content is preferably 0.5% by mass or more, more preferably 1% by mass or more, and more preferably 2% by mass with respect to the total amount of the positive electrode mixture. It is still more preferable that it is above.
- the upper limit of the binder content is preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and preferably 10% by mass or less. Particularly preferred.
- a dispersion solvent When the positive electrode mixture is in a slurry state, a dispersion solvent may be included.
- the dispersion solvent is not particularly limited as long as it can dissolve or disperse the material contained in the positive electrode mixture, and may be an aqueous solvent or an organic solvent.
- the aqueous solvent include water, a mixed solvent of alcohol and water
- the organic solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, and acrylic.
- a thickener may be included to adjust the viscosity.
- the thickener is not particularly limited, and examples thereof include polymer compounds such as carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein, and salts of these polymer compounds.
- a thickener may be used individually by 1 type, or may be used in combination of 2 or more type.
- the content is not particularly limited. From the viewpoint of applicability of the positive electrode mixture, it is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.5% by mass or more with respect to the total amount of the positive electrode mixture. More preferably.
- the content of the thickener is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less with respect to the total amount of the positive electrode mixture.
- the material of the current collector is not particularly limited, and examples thereof include metal materials such as aluminum, stainless steel, nickel-plated steel, titanium, and tantalum, and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials are preferable, and aluminum is more preferable.
- the shape of the current collector is not particularly limited, and materials processed into various shapes can be used.
- Examples of the shape when the current collector is a metal material include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal.
- Examples of the shape when the current collector is a carbonaceous material include a carbon plate, a carbon thin film, and a carbon cylinder. Among these, a metal thin film is preferable. The thin film may be mesh.
- the thickness of the current collector is not particularly limited. From the viewpoint of obtaining sufficient strength as a current collector, the thickness of the current collector may be 1 ⁇ m or more, preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. From the viewpoint of obtaining sufficient flexibility and workability, the thickness of the current collector may be 1 mm or less, preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
- a method of forming a positive electrode mixture layer using a positive electrode mixture on a current collector a method of forming the positive electrode mixture into a sheet shape and press-bonding it to the current collector (dry method), a slurry-like positive electrode Examples thereof include a method (wet method) in which a composite material is applied to a current collector and dried.
- the positive electrode mixture layer formed on the current collector is preferably consolidated by a hand press, a roller press or the like in order to improve the packing density of the positive electrode active material.
- the density of the positive electrode mixture layer is preferably 3.0 g / cm 3 to 4.0 g / cm 3 .
- the single-side coating amount on the current collector is preferably 100 g / m 2 to 300 g / m 2 .
- Negative electrode contains a negative electrode active material.
- the negative electrode includes a current collector and a negative electrode mixture layer provided on both or one side of the current collector, and the negative electrode mixture layer includes a negative electrode active material.
- the negative electrode may include other materials such as a conductive material, a binder, a thickener, and a dispersion solvent as necessary.
- the negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions.
- a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
- the negative electrode active material may be in the form of particles, for example.
- carbonaceous materials include amorphous carbon materials, natural graphite, composite carbonaceous materials in which a film of amorphous carbon material is formed on natural graphite, artificial graphite (resin raw materials such as epoxy resins and phenol resins, or petroleum, And obtained by firing a pitch-based raw material obtained from coal or the like.
- the metal composite oxide preferably contains one or both of titanium and lithium, and more preferably contains lithium.
- carbonaceous materials have high conductivity and are particularly excellent in low temperature characteristics and cycle stability.
- graphite is preferable from the viewpoint of increasing the capacity.
- Graphite preferably has a carbon network plane interlayer (d002) of less than 0.34 nm in the X-ray wide angle diffraction method, more preferably 0.3354 nm or more and 0.337 nm or less.
- a carbonaceous material that satisfies such conditions may be referred to as pseudo-anisotropic carbon.
- the negative electrode mixture containing the negative electrode active material may further contain a conductive material.
- a conductive material a highly conductive carbonaceous material such as graphitic carbon material, amorphous carbon material, activated carbon, or the like can be used. Specific examples include graphite (graphite) such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon material such as needle coke.
- a conductive material may be used individually by 1 type, and may be used in combination of 2 or more type.
- the conductive material is a carbonaceous material having different properties from the carbonaceous material (first carbonaceous material) used as the negative electrode active material (The second carbonaceous material) is preferable.
- the properties include X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, and ash content. Exhibit one or more characteristics.
- the content of the conductive material may be 1% by mass or more, preferably 2% by mass or more, and preferably 3% by mass or more with respect to the total amount of the negative electrode mixture. Is more preferable. From the viewpoint of suppressing an increase in initial irreversible capacity, the content of the conductive material may be 45% by mass or less, and preferably 40% by mass or less, with respect to the total amount of the negative electrode mixture.
- the negative electrode mixture may contain a binder.
- the binder is not particularly limited, and examples thereof include those exemplified as the binder that may be included in the positive electrode mixture.
- a binder may be used individually by 1 type, and may be used in combination of 2 or more type.
- the content of the binder is not particularly limited.
- the content of the binder is preferably 0.1% by mass or more and 0.2% by mass or more with respect to the total amount of the negative electrode composite material. It is more preferable that the content is 0.5% by mass or more.
- the content of the binder is 20% by mass or less with respect to the total amount of the negative electrode mixture. It is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 8% by mass or less.
- the content of the binder is 0.1% by mass or more based on the total amount of the negative electrode mixture. It may be 0.2% by mass or more, and more preferably 0.5% by mass or more. Moreover, it may be 5 mass% or less with respect to the total amount of negative electrode compound materials, it is preferable that it is 3 mass% or less, and it is more preferable that it is 2 mass% or less.
- SBR styrene-butadiene rubber
- the content of the binder may be 1% by mass or more based on the total amount of the negative electrode mixture, and 2% by mass. Preferably, it is preferably 3% by mass or more. Moreover, it may be 15 mass% or less with respect to the total amount of negative electrode compound materials, it is preferable that it is 10 mass% or less, and it is more preferable that it is 8 mass% or less.
- the negative electrode mixture may contain a thickener in order to adjust the viscosity.
- the thickener is not particularly limited, and examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof.
- a thickener may be used individually by 1 type, or may be used in combination of 2 or more type.
- the content of the thickener may be 0.1% by mass or more, preferably 0.2% by mass or more, and more preferably 0.5% by mass or more. Is more preferable.
- the content of the thickener may be 5% by mass or less, preferably 3% by mass or less, and preferably 2% by mass or less. It is more preferable that
- the material of the current collector used for the negative electrode is not particularly limited, and examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
- the shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among these, a metal thin film is preferable, and a copper foil is more preferable.
- the copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitably used as a current collector.
- the thickness of the current collector is not particularly limited, but when the thickness is less than 25 ⁇ m, it is stronger to use a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) than pure copper. From the viewpoint of
- a method for producing a negative electrode by using a negative electrode mixture and a current collector is not particularly formed.
- it can be produced by forming a negative electrode mixture layer on a current collector using a negative electrode mixture in the same manner as the positive electrode described above.
- Electrolytic Solution includes an electrolyte and a non-aqueous solvent that dissolves the electrolyte.
- the electrolytic solution may contain an additive as necessary.
- An electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
- electrolyte solution what contains a fluorine-containing electrolyte is preferable.
- the electrolyte preferably contains a lithium salt, and more preferably contains lithium hexafluorophosphate (LiPF 6 ).
- LiPF 6 lithium hexafluorophosphate
- the electrolyte comprises a LiPF 6, even using only LiPF 6, it may be used in combination of a lithium salt other than LiPF 6.
- the lithium salt other than LiPF 6, LiBF 4, LiAsF 6 , LiSbF 6 such as inorganic fluoride salts; inorganic chloride salts such as LiAlCl 4;; LiClO 4, LiBrO 4, perhalogenate of LiIO 4 such LiCF 3 Perfluoroalkane sulfonates such as SO 3 ; perfluoro such as LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 9 ) Alkanesulfonylimide salt; Perfluoroalkanesulfonylmethide salt such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 3 CF 3
- the content of LiPF 6 is preferably 10% by mass or more, and preferably 50% by mass or more of the entire lithium salt from the viewpoint of battery performance. More preferred.
- the concentration of the electrolyte in the electrolytic solution is not particularly limited. From the viewpoint of sufficiently obtaining the electric conductivity of the electrolytic solution, it may be 0.5 mol / L or more, preferably 0.6 mol / L or more, and more preferably 0.7 mol / L or more. From the viewpoint of suppressing a decrease in electrical conductivity due to an increase in the viscosity of the electrolytic solution, it may be 2 mol / L or less, preferably 1.8 mol / L or less, and more preferably 1.7 mol / L or less. preferable.
- the non-aqueous solvent is not particularly limited as long as it can be used as an electrolyte solvent for a lithium ion secondary battery.
- cyclic carbonate, chain carbonate, chain ester, cyclic ether, chain ether and the like can be mentioned.
- an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
- Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
- a dialkyl carbonate is preferable, and the number of carbon atoms of the two alkyl groups is preferably 1 to 5, and more preferably 1 to 4, respectively.
- symmetrical chain carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate
- asymmetric chain carbonates such as methyl ethyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate Is mentioned.
- dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable.
- chain esters examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
- methyl acetate is preferable from the viewpoint of improving low temperature characteristics.
- Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like. Among these, tetrahydrofuran is preferable from the viewpoint of improving input / output characteristics.
- chain ethers examples include dimethoxyethane and dimethoxymethane.
- the non-aqueous solvent may be used alone or in combination of two or more.
- Examples of the combination of two or more types include a combination of a high dielectric constant solvent such as cyclic carbonate and a low viscosity solvent such as chain carbonate and chain ester.
- One of the preferable combinations is a combination mainly composed of a cyclic carbonate and a chain carbonate.
- the total of the cyclic carbonate and the chain carbonate in the entire non-aqueous solvent may be 80% by volume or more, preferably 85% by volume or more, and more preferably 90% by volume or more.
- the volume of the cyclic carbonate relative to the total of the cyclic carbonate and the chain carbonate may be 5% by volume or more, preferably 10% by volume or more, and more preferably 15% by volume or more.
- the volume of the cyclic carbonate relative to the total of the cyclic carbonate and the chain carbonate may be 50% by volume or less, preferably 35% by volume or less, and more preferably 30% by volume or less.
- cyclic carbonates and chain carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate And methyl ethyl carbonate, ethylene carbonate, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate.
- the additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion secondary battery.
- other additives such as an overcharge preventing material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material may be used depending on the required function.
- the content of vinylene carbonate is preferably 0.3% by mass to 2.0% by mass with respect to the entire electrolytic solution.
- the content of vinylene carbonate is 0.3% by mass or more, a coating film can be sufficiently formed on the negative electrode, and decomposition of the electrolytic solution tends to be suppressed.
- the content of vinylene carbonate is 2.0% by mass or less, an increase in internal pressure at high temperatures and high voltages tends to be suppressed.
- the content of vinylene carbonate is more preferably 0.5% by mass to 1.5% by mass with respect to the entire electrolytic solution.
- Separator A separator is particularly suitable if it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has sufficient resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. Not limited. Examples of the material (material) of the separator that satisfies such characteristics include resins, inorganic substances, and glass fibers.
- the resin examples include olefin polymers, fluorine polymers, cellulose polymers, polyimide, nylon, and the like. Specifically, it is preferable to select from materials that are stable with respect to the non-aqueous electrolyte and have excellent liquid retention properties, and porous sheets, nonwoven fabrics, and the like made of polyolefin such as polyethylene and polypropylene are more preferable.
- Examples of the inorganic substance include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate.
- Examples of the separator using an inorganic material include a material in which a fiber-shaped or particle-shaped inorganic material is attached to a thin film-shaped substrate such as a nonwoven fabric, a woven fabric, or a microporous film.
- a thin film-shaped substrate those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
- Another example includes a composite porous layer made of a fiber-shaped or particle-shaped inorganic substance using a binder such as a resin. Furthermore, what formed this composite porous layer in the surface of the positive electrode or the negative electrode is good also as a separator. For example, a composite porous layer in which alumina particles having a 90% particle size of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode to form a separator.
- the lithium ion secondary battery may be provided with a cleavage valve as another component. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
- a component that emits an inert gas (for example, carbon dioxide) as the temperature rises may be provided.
- an inert gas for example, carbon dioxide
- the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved.
- the material used for the above components include lithium carbonate and polyalkylene carbonate resin.
- a laminate-type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce positive and negative electrode terminals. Next, a positive electrode, a separator (insulating layer), and a negative electrode are laminated in this order to produce a laminate, which is accommodated in a laminate pack, and the positive and negative electrode terminals are taken out of the laminate pack. Next, a non-aqueous electrolyte is poured into the laminate pack, and the opening of the laminate pack is sealed. Examples of the material of the laminate pack include aluminum.
- the lithium ion secondary battery 1 has a bottomed cylindrical battery container 6 made of steel plated with nickel.
- the battery container 6 accommodates an electrode group 5 produced by winding a belt-like positive electrode plate 2 and a negative electrode plate 3 with a separator 4 interposed therebetween.
- the separator 4 may be a polyethylene porous sheet, for example, and may have a width of 58 mm and a thickness of 30 ⁇ m.
- a ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out.
- the other end of the positive electrode tab terminal is disposed on the upper side of the electrode group 5 and is joined to the lower surface of a disk-shaped battery lid serving as a positive electrode external terminal by ultrasonic welding.
- a negative electrode tab terminal made of copper and having one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5.
- the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are respectively led to both end faces of the electrode group 5.
- omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5.
- the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, a non-aqueous electrolyte (not shown) is injected into the battery container 6.
- the capacity ratio of the negative electrode to the positive electrode is preferably 1.03 to 1.8, and preferably 1.05 to 1.4 from the viewpoint of safety and energy density. It is more preferable.
- the negative electrode capacity refers to [negative electrode discharge capacity]
- the positive electrode capacity refers to [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater].
- the “negative electrode discharge capacity” is defined to be calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed.
- the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
- the capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of the lithium ion secondary battery / discharge capacity of the negative electrode”.
- the discharge capacity of the lithium ion battery is, for example, 4.4 V, 0.1 C to 0.5 C, 0.1 C to 0 after performing constant current and constant voltage (CCCV) charging with an end time of 2 to 15 hours. It can be measured under the conditions when a constant current (CC) is discharged to 2.5V at 5C.
- the discharge capacity of the negative electrode was prepared by cutting a negative electrode having a measured discharge capacity of the lithium ion secondary battery into a predetermined area, using lithium metal as a counter electrode, and preparing a single electrode cell through a separator impregnated with an electrolyte.
- the constant current (CC) was discharged to 1.5 V at 0.1 C to 0.5 C. It can be calculated by measuring the discharge capacity per predetermined area under the conditions of time and converting this to the total area when used as the negative electrode of the lithium ion battery.
- the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which the lithium ions inserted into the negative electrode active material are desorbed is defined as discharging.
- C means “current value (A) / battery discharge capacity (Ah)”.
- the aluminum silicate compound composite of the present embodiment includes an aluminum silicate compound having an element molar ratio (Si / Al ratio) of silicon to aluminum of 1.0 to 5.0, and carbon.
- the details and preferred aspects of the aluminum silicate compound composite of the present embodiment are the same as the details and preferred aspects of the aluminum silicate compound composite used as the material for the lithium ion secondary battery described above.
- the aluminum silicate compound composite of the present embodiment is preferably used as a material for a lithium ion secondary battery, and is used as a material for a lithium ion secondary battery of a lithium ion secondary battery containing a fluorine-containing electrolyte in an electrolytic solution. It is more preferable.
- the use of the aluminum silicate compound composite of the present embodiment is not limited to a material for a lithium ion secondary battery, and expresses an excellent adsorbing ability for metal ions, for example, for example, an air purification filter, It can be used as a component of water treatment materials, light absorption films, electromagnetic wave shielding films, organic solvents, non-aqueous solvent ion exchange filters, semiconductor encapsulants, and electronic materials.
- the solution was then placed in a dryer and heated at 98 ° C. for 48 hours.
- a 1 mol / L sodium hydroxide aqueous solution was added to the heated solution to adjust the pH to 9.
- the salt in the solution was aggregated by adjusting the pH, the aggregate was precipitated by the same pressure filtration as described above, and then the supernatant was discharged to perform desalting.
- the precipitate obtained after the desalting treatment was dried at 110 ° C. for 16 hours to collect the particle mass.
- the collected particle lump was pulverized with a jet mill to obtain a particulate aluminum silicate compound.
- the obtained aluminum silicate compound and polyvinyl alcohol powder (Wako Pure Chemical Industries, Ltd.) were mixed at a mass ratio of 100: 70 and baked at 1000 ° C. for 1 hour in a nitrogen atmosphere to derive from polyvinyl alcohol.
- a particulate aluminum silicate compound composite having carbon to be deposited on an aluminum silicate compound was prepared.
- a compound complex was prepared.
- the salt in the solution was aggregated by adjusting the pH, the aggregate was precipitated by the same centrifugation as described above, and then the supernatant was discharged.
- the desalting process of adding pure water to the precipitate after discharging the supernatant and returning to the volume before centrifugation was performed three times.
- a gel-like precipitate obtained after the third desalting of the desalting treatment was dried at 60 ° C. for 16 hours to recover 30 g of a particle lump.
- the particle lump was pulverized with a jet mill to produce a particulate aluminum silicate compound.
- particulate aluminum silicate compound and polyvinyl alcohol powder (Wako Pure Chemical Industries, Ltd.) were mixed at a mass ratio of 100: 70 (aluminum oxide: polyvinyl alcohol powder), and 1 at 850 ° C. in a nitrogen atmosphere.
- a particulate aluminum silicate compound composite in which carbon derived from polyvinyl alcohol was provided on an aluminum silicate compound was produced.
- the Co solution before the addition of the aluminum silicate compound complex and the supernatant of the Co solution after standing were filtered using a filter having a pore size of 0.45 ⁇ m, and the Co ion concentration (ppm) was measured using an ICP emission spectrometer. ) Were measured respectively.
- the difference between the Co ion concentration (500 ppm) of the Co solution at the initial stage (before addition of the aluminum silicate compound complex) and the Co ion concentration (ppm) of the supernatant after adsorption (after standing) was determined.
- the Co adsorption capacity (mg / g) was calculated by multiplying the difference value by the amount of Co solution (5 g) and dividing by the mass (0.05 g) of the aluminum silicate compound complex.
- FIG. 2 shows the relationship between the measurement results and the Si / Al ratio of the aluminum silicate compound composite.
- the aluminum silicate compound composites obtained in Production Examples 1 to 5 and Production Example 12 were evaluated for hydrogen fluoride adsorption capacity as follows. First, 1 mol / L of lithium hexafluorophosphate (LiPF 6 ) and 0.5% by mass of vinylene carbonate (VC) with respect to a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) volume ratio 3: 7. A dissolved electrolyte solution (40 g) was prepared. Thereafter, an aluminum silicate compound composite (0.4 g) vacuum-dried at 120 ° C. for 10 hours was added to the electrolytic solution and stirred for 10 minutes, and then allowed to stand at room temperature for 3 hours.
- LiPF 6 lithium hexafluorophosphate
- VC vinylene carbonate
- EMC ethyl methyl carbonate
- the hydrogen fluoride concentration (ppm) was measured using ion chromatography (ICS-2000, manufactured by Thermo Fisher SCIENTIFIC). It was measured. The difference between the hydrogen fluoride concentration of the electrolyte solution at the initial stage (before addition of the aluminum silicate compound complex) and the hydrogen fluoride concentration (ppm) of the supernatant after adsorption (after standing) was determined. The hydrogen fluoride adsorption capacity (mg / g) was calculated by multiplying the difference value by the amount of the electrolytic solution (40 g) and dividing by the mass of the aluminum silicate compound complex (0.4 g). FIG. 3 shows the relationship between the measurement results and the Si / Al ratio of the aluminum silicate compound composite.
- the chlorine ratio (RCl) of the aluminum silicate compound composites obtained in Production Examples 1 to 12 is the ratio of each element detected from SEM-EDX (S-4800, manufactured by Hitachi High-Technologies Corporation). From this, it was calculated by the above-mentioned formula (1).
- RA oxidation point ratio
- Example 1 [Production of positive electrode] Lithium cobaltate (94% by mass) as a positive electrode active material, fibrous graphite (1% by mass) and acetylene black (AB) (1% by mass) as conductive materials, and the aluminum silicate compound produced in Production Example 1 The composite (1% by mass) and polyvinylidene fluoride (PVDF) (3% by mass) as a binder were sequentially added and mixed. The composition of the mixture is shown in Table 1. The content of the conductive material in Table 1 is the total of fibrous graphite (1% by mass) and acetylene black (1% by mass).
- NMP N-methyl-2-pyrrolidone
- a positive electrode cut into a 13.5 cm 2 square is sandwiched between polyethylene porous sheets (trade name: Hypore, manufactured by Asahi Kasei Co., Ltd., thickness 30 ⁇ m, “Hypore” is a registered trademark), and further 14.3 cm.
- a negative electrode cut into two squares was superposed to produce a laminate.
- This laminate is placed in an aluminum laminate container (trade name: aluminum laminate film, manufactured by Dai Nippon Printing Co., Ltd.), 1 mL of electrolyte is added, the laminate container is heat-welded, and a lithium ion secondary battery for evaluation is prepared. Produced.
- the electrolytic solution one obtained by adding 1% by mass of vinylene carbonate (VC) to a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate containing 1 mol / L LiPF 6 with respect to the total amount of the mixed solution was used.
- VC vinylene carbonate
- Example 2 instead of the aluminum silicate compound composite obtained in Production Example 1, the aluminum silicate compound composite obtained in Production Examples 2 to 9 was added to the positive electrode mixture, respectively, in the same manner as in Example 1. A lithium ion secondary battery for evaluation was produced. The composition and evaluation results are shown in Table 1.
- Example 1 except that the ratio of lithium cobaltate as the positive electrode active material was 95% by mass, the aluminum silicate compound composite was not added, and the coating amount on one side of the positive electrode mixture was changed to 200 g / m 2. Thus, a lithium ion secondary battery for evaluation was produced.
- the composition and evaluation results are shown in Table 1.
- C used as a unit of current value means “current value (A) / battery capacity (Ah)".
- 0.2 C constant current charging is performed up to an upper limit voltage of 4.4 V.
- the charge termination condition was a current value of 0.02 C
- a constant current discharge with a final voltage of 2.5 V was performed at a current value of 0.2 C, and this discharge
- the capacity of time was defined as the battery capacity.
- Output characteristics (%) (discharge capacity at current value 3C / discharge capacity at current value 0.2C) ⁇ 100
- the cycle characteristics were calculated as follows. After evaluating the output characteristics under the above conditions, the cycle characteristics were evaluated by a cycle test in which charge and discharge were repeated. As for the charging pattern, each lithium battery was subjected to constant current charging at an electric current value of 1 C up to an upper limit voltage of 4.4 V in an environment of 45 ° C., followed by constant voltage charging at 4.4 V. The charge termination condition was a current value of 0.1C. Discharge was performed at a constant current of 1C up to 2.5V. The cycle characteristics were calculated by the following formula. The results are shown in Table 1.
- Cycle characteristics (%) (discharge capacity after 200 cycles at current value 1C / discharge capacity after one cycle at current value 1C) ⁇ 100
- High temperature storage characteristics (battery expansion) were calculated as follows. After evaluating the output characteristics under the above conditions, the volume of the lithium ion secondary battery was measured with a high-precision electronic hydrometer (MDS-300, manufactured by Alpha Mirage Co., Ltd.). Thereafter, constant current charging was performed at 25 ° C. with a current value of 0.1 C up to an upper limit voltage of 4.4 V, and then constant voltage charging was performed at 4.4 V. The charge termination condition was a current value of 0.01C. In the charged state, the lithium ion secondary battery was left in a constant temperature bath at 80 ° C. for 48 hours, and a high temperature storage test was performed.
- MDS-300 high-precision electronic hydrometer
- the lithium ion secondary battery was taken out from the thermostat, the volume after cooling to 25 ° C. was measured with a high-precision electronic hydrometer, and the expansion coefficient of the lithium ion secondary battery was calculated from the following formula. The results are shown in Table 1.
- Battery expansion (%) (volume of lithium battery after high-temperature storage test / volume of lithium battery before high-temperature storage test) ⁇ 100
- the lithium ion secondary batteries of Examples 1 to 9 manufactured using the aluminum silicate compound composite were manufactured using the lithium of Comparative Example 1 manufactured without using the aluminum silicate compound composite.
- the evaluation of the output characteristics and the cycle characteristics was good.
- the aluminum silicate compound complex contained in the positive electrode adsorbs hydrogen fluoride in the electrolyte solution, thereby precipitating lithium fluoride as a resistance component and the crystal structure of the positive electrode active material. It is conceivable that the change and the like were suppressed, and the decrease in capacity and the deterioration of output characteristics after the cycle test were suppressed.
- metal ions such as cobalt eluted from the positive electrode active material are adsorbed by the aluminum silicate compound complex located on the positive electrode, so that metal deposition on the negative electrode is suppressed, resulting in a decrease in capacity after cycle testing and output characteristics. It is conceivable that deterioration of the resin was suppressed.
- the Si / Al ratio is 1.0 to Compared to the lithium ion secondary batteries of Comparative Examples 2 to 4 manufactured using the aluminum silicate compound composite having a Si / Al ratio not in the range of 1.0 to 5.0, sufficient effects were seen in improving output characteristics and cycle characteristics and suppressing battery expansion. I could't. The reason for this is not necessarily clear, but the hydrogen fluoride or metal ion adsorption capacity of the aluminum silicate compound complex is related to the Si / Al ratio, and if the Si / Al ratio deviates from the appropriate value, it is sufficient. It is considered that the adsorption capacity cannot be exhibited.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含むアルミニウムケイ酸化合物複合体である、リチウムイオン二次電池用材料。
Description
本発明は、リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関する。
リチウムイオン二次電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコン、スマートフォン等の携帯用情報端末などの電子機器の電源に広く使用されている。
リチウムイオン二次電池は一般に、正極活物質を含む正極と、負極活物質を含む負極と、前記正極及び負極の間に介在するセパレータと、電解質を含む電解液と、を主要な構成材料としている。
近年、携帯用情報端末の高機能化に伴い、充放電サイクル後の容量維持率に優れるリチウムイオン二次電池の開発が強く求められている。
容量維持率の低下を抑えるために、(1)電解質としてフッ素系含有塩とホスホノアセテート類化合物を、正極活物質としてジルコニウム含有リチウムコバルト複合酸化物を用いる方法(例えば、特許文献1参照)、(2)電解液としてフッ素化環状炭酸エステルとフッ素化鎖状エステルを用いる方法(例えば、特許文献2参照)、(3)正極活物質として表面の一部に希土類化合物を固着させたコバルト酸リチウムを用いる方法(例えば、特許文献3参照)等が提案されている。
しかしながら、上記特許文献1~3に記載の方法でも、高電圧で使用した場合、容量維持率の低下を十分に抑制することは困難であることが本発明者らの検討により明らかとなった。この原因としては、例えば、以下の2つのことが考えられる。1つ目に、リチウムイオン二次電池中に含まれる水分がヘキサフルオロリン酸リチウム(LiPF6)等のフッ素含有電解質と反応した際に生じるフッ化水素(HF)が原因となり、正極活物質からコバルト等の金属イオンが溶出することが考えられる。2つ目に、前記溶出したコバルト等の金属イオンが負極等の上で再析出することが考えられる。
本発明は、上記事情を鑑みてなされたものであり、金属イオン及びフッ化水素の吸着能に優れるリチウムイオン二次電池用材料及び正極合材、並びにこれらを用いて製造されるチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することを目的とする。
上記事情を鑑み、本課題を解決する具体的な手段は以下の通りである。
<1>ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含むアルミニウムケイ酸化合物複合体である、リチウムイオン二次電池用材料。
<1>ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含むアルミニウムケイ酸化合物複合体である、リチウムイオン二次電池用材料。
<2>下式で計算される塩素比率(RCl)が1%以下である、<1>に記載のリチウムイオン二次電池用材料。
RCl(%)=(Clの比率(質量%))/(Alの比率(質量%)+Siの比率(質量%))×100
RCl(%)=(Clの比率(質量%))/(Alの比率(質量%)+Siの比率(質量%))×100
<3>ピリジン吸着IRスペクトルから得られる1490cm-1付近の酸化点のピーク面積Aと、1446cm-1付近の水素結合のピーク面積Bとから下式により計算される酸化点の比率(RA)が25%未満である、<1>又は<2>に記載のリチウムイオン二次電池用材料。
RA(%)=A/B×100
RA(%)=A/B×100
<4>示差熱-熱重量分析装置(TG-DTA)を用いて測定される350℃~850℃の間での質量減少率が0.5%~30%である、<1>~<3>のいずれか1項に記載のリチウムイオン二次電池用材料。
<5>レーザー回折式粒度分布測定装置で測定される体積平均粒子径が0.1μm~50μmである、<1>~<4>のいずれか1項に記載のリチウムイオン二次電池用材料。
<6>ケイ素とアルミニウムの元素モル比(Si/Al)が1.5~3.0である、<1>~<5>のいずれか1項に記載のリチウムイオン二次電池用材料。
<7><1>~<6>のいずれか1項に記載のリチウムイオン二次電池用材料と、正極活物質と、を含有する正極合材。
<8>前記リチウムイオン二次電池用材料の含有率が、前記正極合剤の全量に対して0.01質量%~10質量%である、<7>に記載の正極合材。
<9><1>~<6>のいずれか1項に記載のリチウムイオン二次電池用材料を含有するリチウムイオン二次電池用正極。
<10><9>に記載のリチウムイオン二次電池用正極を備えるリチウムイオン二次電池。
本発明によれば、金属イオン及びフッ化水素の吸着能に優れるリチウムイオン二次電池用材料及び正極合材、並びにこれらを用いて製造されるチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することを目的とする。
本発明のリチウムイオン二次電池用材料は、金属イオン及びフッ化水素の吸着能に優れるため、本発明のリチウムイオン二次電池用材料を用いたリチウムイオン二次電池は、容量維持率の低下が抑制される傾向にある。
本発明のリチウムイオン二次電池用材料は、金属イオン及びフッ化水素の吸着能に優れるため、本発明のリチウムイオン二次電池用材料を用いたリチウムイオン二次電池は、容量維持率の低下が抑制される傾向にある。
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<リチウムイオン二次電池用材料>
本実施形態のリチウムイオン二次電池用材料は、ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含む(以下、アルミニウムケイ酸化合物複合体とも称する)。
本実施形態のリチウムイオン二次電池用材料は、ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含む(以下、アルミニウムケイ酸化合物複合体とも称する)。
本実施形態のリチウムイオン二次電池用材料を用いて製造されるリチウムイオン二次電池は、容量維持率の低下が抑制される。その理由は必ずしも明らかではないが、アルミニウムケイ酸化合物複合体が電池に含まれる水分と電解液中のフッ素含有電解質とが反応して生成するフッ化水素を吸着しているためと考えられる。これにより、抵抗成分となるフッ化リチウムの析出、正極活物質の結晶構造の変化等が抑制されるためと推定している。また、フッ化水素が原因で正極活物質から溶出したコバルト等の金属イオンを吸着することで、負極等での金属イオンの再析出が抑制されるためと推定している。
さらに本発明者らの検討により、アルミニウムケイ酸化合物複合体のSi/Al比が1.0~5.0の範囲内であると、上記の効果がより顕著であることがわかった。その理由は必ずしも明らかではないが、Si/Al比が上記範囲内であるとフッ化水素及び金属イオンの吸着能力により優れるためと推測される。
アルミニウムケイ酸化合物複合体におけるアルミニウムケイ酸化合物と炭素の状態(配置関係等)は、特に制限されない。例えば、アルミニウムケイ酸化合物上に炭素を備えることが好ましく、アルミニウムケイ酸化合物表面に炭素を備えることがより好ましい。炭素は、アルミニウムケイ酸化合物上の一部に備えられても、全部に備えられてもよい。
アルミニウムケイ酸化合物複合体として、例えば、粒子状のアルミニウムケイ酸化合物の表面の全部又は一部が炭素で被覆されたものが挙げられる。
アルミニウムケイ酸化合物複合体における炭素の有無は、例えば、励起波長532nmのレーザーラマン分光測定等により確認することができる。
アルミニウムケイ酸化合物複合体として、例えば、粒子状のアルミニウムケイ酸化合物の表面の全部又は一部が炭素で被覆されたものが挙げられる。
アルミニウムケイ酸化合物複合体における炭素の有無は、例えば、励起波長532nmのレーザーラマン分光測定等により確認することができる。
アルミニウムケイ酸化合物複合体におけるアルミニウムケイ酸化合物としては、例えば、アルミニウムケイ酸塩であるアロフェン、カオリン、ゼオライト、サポナイト及びイモゴライトが挙げられる。これらの中でもサイクル特性向上の観点からは、比表面積が容易に調整可能である無定形アルミニウムケイ酸化合物が好ましい。
無定形アルミニウムケイ酸化合物とは、元素モル比Si/Alが0.3~5.0の範囲内にあるアルミニウムケイ酸塩である。無定形アルミニウムケイ酸化合物としては、例えば、nSiO2・Al2O3・mH2O[n=0.6~10.0、m=0以上]で示される組成を有するものが挙げられる。
無定形アルミニウムケイ酸化合物は、X線源としてCuKα線を用いた粉末X線回折スペクトルにおいて、ムライト構造を示す明確なピークが観測されず、2θ=10°~30°近辺にブロードなピークを有する。X線回折装置としては、例えば、Geigerflex RAD-2X(株式会社リガク製)を用いることができる。具体的な測定条件は以下のとおりである。
-測定条件-
発散スリット:1°
散乱スリット:1°
受光スリット:0.30mm
X線出力:40kV、40mA
-測定条件-
発散スリット:1°
散乱スリット:1°
受光スリット:0.30mm
X線出力:40kV、40mA
無定形アルミニウムケイ酸化合物は、合成してもよく、市販品を用いてもよい。無定形アルミニウムケイ酸化合物を合成する場合、ケイ酸イオンを含む溶液とアルミニウムイオンを含む溶液を混合して反応生成物を得る工程と、前記反応生成物を、水性媒体中、酸の存在下で加熱処理する工程と、を有し、必要に応じてその他の工程を有することができる。得られる反応生成物の収率及び構造体形成等の観点から、少なくとも加熱処理する工程の後、好ましくは、加熱処理する工程の前及び後の両方で、脱塩及び固体分離を行う洗浄工程を有することが好ましい。
反応生成物を含む溶液から共存イオンを脱塩処理して除去した後に、酸の存在下で加熱処理することで、金属イオン及びフッ化水素の吸着能に優れる無定形アルミニウムケイ酸化合物を効率良く製造することができる。共存イオンとしては、ナトリウムイオン、塩化物イオン、過塩素酸イオン、硝酸イオン、硫酸イオン等が挙げられる。
無定形アルミニウムケイ酸化合物に炭素を備える方法は特に制限されない。例えば、熱処理により炭素質に変化する有機化合物(炭素前駆体)で無定形アルミニウムケイ酸化合物を被覆し、この炭素前駆体を炭素質に変化させる方法が挙げられる。
炭素前駆体で無定形アルミニウムケイ酸化合物を被覆する方法としては、炭素前駆体を溶媒に溶解又は分散させた中に無定形アルミニウムケイ酸化合物を添加した後、溶媒を加熱等で除去する湿式法、炭素前駆体と無定形アルミニウムケイ酸化合物を固体同士で混合して得た混合物を、せん断力を加えながら混練する乾式法、CVD法等の気相法などが挙げられる。コスト及び製造プロセス低減の観点からは、溶媒を使用しない乾式法又は気相法が好ましい。
炭素前駆体の種類は特に制限されない。例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等の熱分解により生成するピッチ、ナフタレン等を超強酸存在下で重合させて得られる合成ピッチなどが挙げられる。また、熱可塑性の炭素前駆体としてポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等が使用でき、熱硬化性の炭素前駆体としてフェノール樹脂、フラン樹脂等が使用できる。
炭素前駆体を炭素質に変化させる方法としては、不活性雰囲気下で加熱する方法が挙げられる。この場合の加熱の条件は特に制限されず、炭素前駆体の炭素化率等を考慮して決定できる。例えば、不活性雰囲気下で800℃~1300℃の範囲で加熱することが好ましい。加熱温度が800℃以上であると、炭素前駆体の炭素化が充分進み、またアルミニウムケイ酸化合物複合体の比表面積が大きくなりすぎず、初回の不可逆容量が増大しにくい傾向にある。加熱温度が1300℃以下であると、比表面積が低くなりすぎず、抵抗上昇が生じにくい傾向にある。不活性雰囲気としては、窒素、アルゴン、ヘリウム、これらの混合ガス等が挙げられる。
アルミニウムケイ酸化合物複合体は、ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であることが好ましく、1.5~3.0であることがより好ましい。
アルミニウムケイ酸化合物複合体のSi/Al比は、測定試料の元素分析を行い、ケイ素とアルミニウムについてそれぞれ得られた値から算出できる。元素分析は、誘導結合プラズマ(ICP)発光分光分析により行うことができる。
ICP発光分光分析による元素分析に用いる装置としては、例えば、株式会社日立製作所の「P-4010」が挙げられる。
アルミニウムケイ酸化合物複合体は、塩素比率(RCl)が1%以下であることが好ましく、0.1%以下であることがより好ましく、0.1%未満であることが更に好ましい。塩素比率(RCl)が1%以下であると、塩素由来の化合物(塩化水素等)によって生じる正極活物質の劣化(溶出、被膜形成等)による寿命の低下が抑制される傾向にある。また、塩素比率(RCl)が0.1%未満であると、塩素と電解液とが反応して生じるガスによる電池の膨張が抑制される傾向にある。
本明細書において塩素比率(RCl)は、アルミニウムケイ酸化合物複合体におけるCl含有率のAl及びSiの合計含有率に対する比率(%)を意味する。具体的には、測定試料中の元素分析を行って各元素について得られた値から下式(1)により算出される値である。元素分析は、Si/Al比と同様の方法及び装置を用いて測定できる。
RCl(%)=(Clの比率(質量%))/(Alの比率(質量%)+Siの比率(質量%))×100 ・・・(1)
アルミニウムケイ酸化合物複合体は、ピリジン吸着IRスペクトルから得られる1490cm-1付近の酸化点のピーク面積Aと、1446cm-1付近の水素結合のピーク面積Bとから下式(2)により計算される酸化点の比率(RA)が25%未満であることが好ましい。
RA(%)=A/B×100 ・・・(2)
酸化点の比率(RA)は25%未満であることが好ましく、20%未満であることがより好ましい。酸化点の比率が25%未満であると、水を吸着しにくくなり、寿命の低下が抑制される傾向にある。また、酸化点の比率(RA)が20%未満であると、官能基と電解液との反応によって生じる電池の膨張が抑制される傾向にある。
RA(%)=A/B×100 ・・・(2)
酸化点の比率(RA)は25%未満であることが好ましく、20%未満であることがより好ましい。酸化点の比率が25%未満であると、水を吸着しにくくなり、寿命の低下が抑制される傾向にある。また、酸化点の比率(RA)が20%未満であると、官能基と電解液との反応によって生じる電池の膨張が抑制される傾向にある。
アルミニウムケイ酸化合物複合体の酸化点は、赤外分光法により得られるピリジン吸着IRスペクトルから測定できる。ピリジン吸着IRスペクトルは、例えば、フーリエ変換赤外分光光度計(例えば、Agilent Technologies社の「Cary670」)を用いて得ることができる。
アルミニウムケイ酸化合物複合体の酸化点は、具体的には下記のようにして測定する。
サンプルを充填したセルを、500℃で1時間排気した後、30℃まで冷却する。次に、100℃に加熱した状態でピリジンガスをセル内に導入し、5分間吸着させる。その後、150℃に加熱して60分排気することにより、物理吸着したピリジンを除去する。次いで、30℃に冷却してIRスペクトルを測定する。
サンプルを充填したセルを、500℃で1時間排気した後、30℃まで冷却する。次に、100℃に加熱した状態でピリジンガスをセル内に導入し、5分間吸着させる。その後、150℃に加熱して60分排気することにより、物理吸着したピリジンを除去する。次いで、30℃に冷却してIRスペクトルを測定する。
得られたIRスペクトルから、以下の方法で酸化点のピーク面積Aと水素結合のピーク面積Bを算出し、算出されたそれぞれのピーク面積を用いて式(2)により計算される値を酸化点の比率(RA)とする。
<酸化点のピーク面積Aの算出>
IRスペクトルの1485cm-1から1500cm-1の領域に直線でベースラインを引く。その間の1490cm-1付近の最大ピークをガウス関数を用いてピーク分離し、ベースラインで囲まれた部分の面積を求める。
<水素結合のピーク面積Bの算出>
IRスペクトルの1430cm-1から1460cm-1の領域に直線でベースラインを引く。その間の1446cm-1付近の最大のピークをガウス関数を用いてピーク分離し、ベースラインで囲まれた部分の面積を求める。
IRスペクトルの1485cm-1から1500cm-1の領域に直線でベースラインを引く。その間の1490cm-1付近の最大ピークをガウス関数を用いてピーク分離し、ベースラインで囲まれた部分の面積を求める。
<水素結合のピーク面積Bの算出>
IRスペクトルの1430cm-1から1460cm-1の領域に直線でベースラインを引く。その間の1446cm-1付近の最大のピークをガウス関数を用いてピーク分離し、ベースラインで囲まれた部分の面積を求める。
入出力特性及びサイクル特性の観点から、アルミニウムケイ酸化合物複合体の示差熱-熱重量分析(TG-DTA)を用いて測定される350℃~850℃の間での質量減少率は、0.5%~30%が好ましく、2%~25%がより好ましく、5%~20%が更に好ましい。350℃~850℃の質量減少率が上記範囲内であると、アルミニウムケイ酸化合物複合体の表面と電解液が反応することによる抵抗上昇を抑制できる傾向にあり、また、フッ化水素等の吸着能により優れる傾向にある。
アルミニウムケイ酸化合物複合体の350℃~850℃の質量減少率は、下式(3)にて求められた値とする。
質量減少率(%)={(W1-W2)/W1}×100 ・・・(3)
式(3)において、W1は乾燥空気流通下、10℃/分の昇温速度で25℃から350℃まで昇温し、350℃で20分保持した後の測定対象の質量(g)であり、W2は乾燥空気流通下、10℃/分の昇温速度で350℃から850℃まで昇温し、850℃で20分保持した後の測定対象の質量(g)である。
TG-DTAによる分析に用いる装置としては、エスアイアイ・ナノテクノロジー株式会社の「TG-DTA-6200型」等が挙げられる。
アルミニウムケイ酸化合物複合体が粒子である場合、レーザー回折式粒度分布測定装置で測定される体積平均粒子径(D50)は、アルミニウムケイ酸化合物複合体の所望の大きさに合わせて選択され、0.1μm~50μmであることが好ましく、0.2μm~20μmであることがより好ましく、0.5μm~10μmであることが更に好ましい。
アルミニウムケイ酸化合物複合体の体積平均粒子径(D50)が0.1μm以上であると、後述する正極合材を用いて正極を作製する際に、正極合材の粘度が高くなりすぎず、作業性が良好に維持される傾向にある。アルミニウムケイ酸化合物複合体の体積平均粒子径(D50)が50μm以下であると、正極合材を集電体上に塗工する際にスジを引きにくい傾向にある。
アルミニウムケイ酸化合物複合体の体積平均粒子径(D50)は、粉砕に要するコスト低減の観点からは0.5μm以上であることが好ましく、フッ化水素等の吸着の効率性の観点からは10μm以下であることが好ましい。
アルミニウムケイ酸化合物複合体の体積平均粒子径(D50)は、レーザー回折法を用いて測定される。レーザー回折法による測定は、例えば、レーザー回折式粒度分布測定装置(SALD3000J、株式会社島津製作所)を用いて行うことができる。具体的には、アルミニウムケイ酸化合物複合体を水等の分散媒に分散させて分散液を調製し、この分散液について、レーザー回折式粒度分布測定装置を用いて小径側から体積累積分布曲線を描いた場合に、体積の累積が50%となるときの粒子径(D50)を体積平均粒子径として求める。
アルミニウムケイ酸化合物複合体のBET比表面積は、サイクル特性及び保存特性の観点からは80m2/g以下であることが好ましく、40m2/g以下であることがより好ましく、20m2/g以下であることが更に好ましい。BET比表面積の下限値は特に制限されないが、フッ化水素及び金属イオンに対する吸着能を向上させる観点からは、1m2/g以上であることが好ましく、2m2/g以上であることがより好ましく、3m2/g以上であることが更に好ましい。
アルミニウムケイ酸化合物複合体のBET比表面積は、JIS Z 8830(2001年)に準じて窒素吸着能から測定する。評価装置としては、例えば窒素吸着測定装置(AUTOSORB-1、QUANTACHROME社)等を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすことが想定されるため、まず、加熱による水分除去のための前処理を行う。
前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱する。この状態で3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
<正極合材>
本実施形態の正極合材は、本実施形態のリチウムイオン二次電池用材料と、正極活物質と、を含有するものである。本実施形態の正極合材を用いて形成される正極を有するリチウムイオン二次電池は、高電圧で使用しても容量維持率の低下が抑制される。
本実施形態の正極合材は、本実施形態のリチウムイオン二次電池用材料と、正極活物質と、を含有するものである。本実施形態の正極合材を用いて形成される正極を有するリチウムイオン二次電池は、高電圧で使用しても容量維持率の低下が抑制される。
正極合材に含まれるリチウムイオン二次電池用材料の詳細及び好ましい態様は、本実施形態のリチウムイオン二次電池用材料に関して述べたものと同様である。また、正極合材に含まれる正極活物質の詳細及び好ましい態様は、後述するリチウムイオン二次電池に関して述べるものと同様である。
正極合材中のリチウムイオン二次電池用材料の含有率は、例えば、正極合材の全量に対して0.01質量%~10質量%であってよく、0.05質量%~5質量%であることが好ましい。また、正極合材中のリチウムイオン二次電池用材料と正極活物質の質量比(リチウムイオン二次電池用材料/正極活物質)は、例えば、0.009~9.8であってよく、0.045~4.9であることが好ましい。
<リチウムイオン二次電池用正極>
本実施形態のリチウムイオン二次電池用正極は、本実施形態のリチウムイオン二次電池用材料を含有するものである。例えば、本実施形態の正極合材を用いて、公知の方法で製造することができる。
<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池は、本実施形態のリチウムイオン二次電池用正極を備えるものである。本実施形態のリチウムイオン二次電池は、容量維持率の低下が抑制される。
本実施形態のリチウムイオン二次電池用正極は、本実施形態のリチウムイオン二次電池用材料を含有するものである。例えば、本実施形態の正極合材を用いて、公知の方法で製造することができる。
<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池は、本実施形態のリチウムイオン二次電池用正極を備えるものである。本実施形態のリチウムイオン二次電池は、容量維持率の低下が抑制される。
まず、本実施形態のリチウムイオン二次電池の概要について簡単に説明する。リチウムイオン二次電池は、正極と負極と、を有し、正極と負極の間には通常、リチウムイオンが通過可能なセパレータが配置されている。
リチウムイオン二次電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極の正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、セパレータを通過して、負極に到達する。負極に到達したリチウムイオンは、負極の負極活物質内に挿入される。
リチウムイオン二次電池を放電する際には、正極と負極の間に外部負荷を接続する。放電時においては、負極の負極活物質内に挿入されていたリチウムイオンが脱離して電解液中に放出される。このとき、負極から電子が放出される。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、セパレータを通過して、正極に到達する。正極に到達したリチウムイオンは、正極の正極活物質内に挿入される。正極活物質にリチウムイオンが挿入されることで、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより、放電が行われる。
以上のように、正極活物質と負極活物質との間でリチウムイオンを挿入又は脱離することで、充放電が行われる。なお、実際のリチウムイオン二次電池の構成例については、後述する(例えば、図1参照)。以下、リチウムイオン二次電池の正極、負極、電解液、セパレータ及びその他の構成部材に関して説明する。
1.正極
正極は、本実施形態のリチウムイオン二次電池用材料と、正極活物質と、を含む。具体的には、例えば、正極は集電体と、集電体との両面又は片面に設けられる正極合材層と、を有し、正極合材層が本実施形態のリチウムイオン二次電池用材料と、正極活物質と、を含む。正極は、必要に応じて導電材、結着材、増粘材、分散溶媒等の他の材料を含んでもよい。
正極は、本実施形態のリチウムイオン二次電池用材料と、正極活物質と、を含む。具体的には、例えば、正極は集電体と、集電体との両面又は片面に設けられる正極合材層と、を有し、正極合材層が本実施形態のリチウムイオン二次電池用材料と、正極活物質と、を含む。正極は、必要に応じて導電材、結着材、増粘材、分散溶媒等の他の材料を含んでもよい。
(正極活物質)
正極に含まれる正極活物質は、1種のみでも2種以上であってもよい。エネルギー密度向上の観点からは、リチウム含有複合金属酸化物又はリチウム含有リン酸化合物を含むことが好ましい。リチウム含有複合金属酸化物又はリチウム含有リン酸化合物は、リチウムとリチウム以外の金属を含む金属酸化物又はリン酸化合物である。リチウム含有複合金属酸化物又はリチウム含有リン酸化合物に含まれるリチウム以外の金属は、1種のみであっても2種以上であってもよい。
正極に含まれる正極活物質は、1種のみでも2種以上であってもよい。エネルギー密度向上の観点からは、リチウム含有複合金属酸化物又はリチウム含有リン酸化合物を含むことが好ましい。リチウム含有複合金属酸化物又はリチウム含有リン酸化合物は、リチウムとリチウム以外の金属を含む金属酸化物又はリン酸化合物である。リチウム含有複合金属酸化物又はリチウム含有リン酸化合物に含まれるリチウム以外の金属は、1種のみであっても2種以上であってもよい。
リチウム含有複合金属酸化物又はリチウム含有リン酸化合物は、リチウムと遷移金属を含む金属酸化物又はリチウム含有リン酸化合物が好ましい。リチウムと遷移金属を含む金属酸化物又はリチウム含有リン酸化合物は、遷移金属の一部が当該遷移金属とは異なる元素(異種元素)で置換されていてもよい。異種元素として具体的には、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、B等が挙げられ、Mn、Al、Co、Ni及びMgからなる群より選択される少なくとも1種が好ましい。
リチウム含有複合金属酸化物としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-yO2、LixCoyM1
1-yOz(LixCoyM1
1-yOz中、M1はNa、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LixNi1-yM2
yOz(LixNi1-yM2
yOz中、M2はNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LixMn2O4及びLixMn2-yM3
yO4(LixMn2-yM3
yO4中、M3はNa、Mg、Sc、Y、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。ここで、xは0<x≦1.2の範囲であり、yは0~0.9の範囲であり、zは2.0~2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。
リチウム含有リン酸化合物としては、例えば、LiMPO4及びLi2MPO4F(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群から選択される少なくとも1種の元素を示す。)が挙げられる。リチウム含有リン酸化合物としてはオリビン型リチウム塩が好ましく、LiFePO4がより好ましい。
正極活物質は、リチウム含有複合金属酸化物又はリチウム含有リン酸化合物以外の化合物を含んでもよい。このような化合物としては、カルコゲン化合物、二酸化マンガン等が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデン等が挙げられる。
正極活物質は、粒子状であってよく、一次粒子が凝集して形成される二次粒子の状態であることが好ましい。正極活物質が二次粒子の状態であると、正極活物質が一次粒子のみである場合に比べ、充放電に伴う正極活物質の膨張と収縮が緩和され、膨張と収縮により生じるストレスによる正極活物質の破壊、導電パスの切断等の劣化が生じにくい傾向にある。
正極活物質が粒子状である場合、その形状は特に制限されず、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。中でも、球状又は楕円球状が好ましい。正極活物質の形状が球状又は楕円球状であると、板状等のアスペクト比の大きい形状である場合よりも電極内における正極活物質の配向の度合いが小さくなり、充放電時の電極の膨張と収縮が抑制される傾向にある。また、正極合材を調製する際に、導電材等の他の材料と混合しやすい傾向にある。
正極活物質は、一次粒子が凝集して形成される二次粒子の状態であり、かつその二次粒子の形状が球状又は楕円球状であることが好ましい。
正極活物質のレーザー回折式粒度分布測定装置で測定される体積平均粒子径(D50)は、特に制限されない。所望のタップ密度が得られやすい観点からは、正極活物質の体積平均粒子径(D50)は0.1μm以上であってよく、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、3μm以上であることがさらに好ましい。電極形成性と電池性能の向上の観点からは、正極活物質の体積平均粒子径(D50)は20μm以下であってよく、18μm以下であることが好ましく、16μm以下であることがより好ましく、15μm以下であることがさらに好ましい。
正極活物質の体積平均粒子径(D50)は、正極活物質が二次粒子の状態である場合は、二次粒子の体積平均粒子径(D50)を意味する。正極活物質の体積平均粒子径(D50)は、本実施形態のリチウムイオン二次電池用材料(アルミニウムケイ酸化合物複合体)の体積平均粒子径(D50)と同様にして測定される。
正極活物質が二次粒子の状態である場合、二次粒子を形成している一次粒子の平均粒子径は特に制限されない。充放電の可逆性を向上させる観点からは、一次粒子の平均粒子径は0.01μm以上であってよく、0.05μm以上であることが好ましく、0.08μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。出力特性等の電池性能を向上させる観点からは、一次粒子の平均粒子径は3μm以下であってよく、2μm以下であることが好ましく、1μm以下であることがより好ましく、0.6μm以下であることがさらに好ましい。
正極活物質が二次粒子の状態である場合の一次粒子の平均粒子径は、例えば、走査型電子顕微鏡/エネルギー分散型X線分光法(SEM-EDX)、透過型電子顕微鏡/エネルギー分散型X線分光法(TEM-EDX)等により測定することができる。
正極活物質のBET比表面積は、特に制限されない。電池性能を向上させる観点からは、正極活物質のBET比表面積は0.1m2/g以上であることが好ましく、0.2m2/g以上であることがより好ましく、0.3m2/g以上であることがさらに好ましい。電極形成性の観点からは、正極活物質のBET比表面積は4.0m2/g以下であることが好ましく、2.5m2/g以下であることがより好ましく、1.5m2/g以下であることがさらに好ましい。
正極活物質のBET比表面積は、上述したアルミニウムケイ酸化合物複合体のBET比表面積の測定方法と同様の方法で測定される。
(導電材)
正極は、電池性能を向上させる観点から、導電材を含むことが好ましい。導電材としては、天然黒鉛、人造黒鉛、繊維状黒鉛等の黒鉛(グラファイト)、カーボンブラックなどが挙げられる。入出力特性向上の観点からは、カーボンブラックの中でもアセチレンブラックが好ましい。
正極は、電池性能を向上させる観点から、導電材を含むことが好ましい。導電材としては、天然黒鉛、人造黒鉛、繊維状黒鉛等の黒鉛(グラファイト)、カーボンブラックなどが挙げられる。入出力特性向上の観点からは、カーボンブラックの中でもアセチレンブラックが好ましい。
導電材としてカーボンブラックを用いる場合、正極合材への分散性及び電池の入出力特性の観点からは、カーボンブラックは、平均粒径が20nm~100nmの粒子であることが好ましく、平均粒径が30nm~80nmの粒子であることがより好ましく、平均粒径が40nm~60nmの粒子であることがさらに好ましい。
導電材として黒鉛を含む場合、黒鉛は、平均粒径が1μm~10μmの粒子であることが好ましい。また、黒鉛は、X線広角回折法における炭素網面層間(d002)が、0.3354nm~0.337nmであることが好ましい。
導電材が粒子である場合、粒子の形状としては、粒状、フレーク状、球状、柱状、不規則形状等が挙げられる。ここで「粒状」とは、不規則形状のものではなくほぼ等しい寸法をもつ形状である(JIS Z2500:2000)。フレーク状(片状)とは、板のような形状であり(JIS Z2500:2000)、鱗のように薄い板状であることから鱗片状とも言われ、本実施形態においては、走査型電子顕微鏡による観察の結果から解析を行い、アスペクト比(粒子径a/平均厚さt)が2~100の範囲である粒子をフレーク状とする。ここでいう粒子径aは、フレーク状の粒子を平面視したときの面積Sの平方根の値として定義する。「球状」とは、ほぼ球に近い形状である(JIS Z2500:2000参照)。また、形状は必ずしも真球状である必要はなく、粒子の長径(DL)と短径(DS)との比(DL)/(DS)(球状係数あるいは真球度と言うことがある)が1.0~1.2の範囲にあるものは「球状」に含まれる。粒子が球状である場合、長径(DL)を粒径とする。柱状としては、略円柱、略多角柱等の形状が挙げられる。粒子が柱状である場合、柱の高さを粒径とする。
なお、導電材の平均粒径は、20万倍で撮影した走査型電子顕微鏡により撮影し、画像内の粒子像の全てについて測定した値の算術平均値である。
導電材を用いる場合、その含有率は、正極合材の全量に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましい。導電材の含有率の上限は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。導電材の含有率が上記範囲内であると、電池容量及び入出力特性により優れる傾向にある。
(結着材)
正極は、正極合材と集電体及び正極活物質同士の接着性を得る観点から、結着材を含むことが好ましい。結着材の種類は、特に限定されない。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。
正極は、正極合材と集電体及び正極活物質同士の接着性を得る観点から、結着材を含むことが好ましい。結着材の種類は、特に限定されない。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。
結着材は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。正極の安定性の観点からは、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。集電体上に正極合材層を湿式法により形成する場合は、正極合材に含まれる分散溶媒に対する溶解性又は分散性が良好な結着材を選択することが好ましい。
正極合材が結着材を含む場合、その含有率は、正極合材の全量に対して0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることが更に好ましい。結着材の含有率の上限は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。結着材の含有率を上記範囲とすることで、サイクル特性等の電池性能により優れる傾向にある。
(分散溶媒)
正極合材がスラリーの状態である場合、分散溶媒を含んでもよい。
分散溶媒は、正極合材に含まれる材料を溶解又は分散できる溶媒であれば特に制限されず、水系溶媒であっても有機系溶媒であってもよい。
水系溶媒としては、水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
正極合材がスラリーの状態である場合、分散溶媒を含んでもよい。
分散溶媒は、正極合材に含まれる材料を溶解又は分散できる溶媒であれば特に制限されず、水系溶媒であっても有機系溶媒であってもよい。
水系溶媒としては、水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
正極合材がスラリーの状態である場合、粘度を調節するために増粘材を含んでもよい。増粘材は特に制限されず、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等の高分子化合物、及びこれら高分子化合物の塩などが挙げられる。増粘材は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
正極合材が増粘材を含む場合、その含有率は特に制限されない。正極合材の塗布性の観点からは、正極合材の全量に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。増粘剤の含有率は、正極合材の全量に対して5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましい。
(集電体)
集電体の材質は特に制限されず、アルミニウム、ステンレス鋼、ニッケルメッキ鋼、チタン、タンタル等の金属材料、カーボンクロス、カーボンペーパー等の炭素質材料などが挙げられる。中でも金属材料が好ましく、アルミニウムがより好ましい。
集電体の材質は特に制限されず、アルミニウム、ステンレス鋼、ニッケルメッキ鋼、チタン、タンタル等の金属材料、カーボンクロス、カーボンペーパー等の炭素質材料などが挙げられる。中でも金属材料が好ましく、アルミニウムがより好ましい。
集電体の形状は特に制限されず、種々の形状に加工された材料を用いることができる。集電体が金属材料である場合の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。集電体が炭素質材料である場合の形状としては、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が好ましい。薄膜はメッシュ状であってもよい。
集電体の形状が薄膜である場合、その厚さは特に制限されない。集電体として充分な強度を得る観点からは、集電体の厚さは1μm以上であってよく、3μm以上であることが好ましく、5μm以上であることがより好ましい。充分な可撓性と加工性を得る観点からは、集電体の厚さは1mm以下であってよく、100μm以下であることが好ましく、50μm以下であることがより好ましい。
集電体上に正極合材を用いて正極合材層を形成する方法としては、正極合材をシート状に成形し、これを集電体に圧着する方法(乾式法)、スラリー状の正極合材を集電体に塗布し、乾燥する方法(湿式法)等が挙げられる。
集電体上に形成された正極合材層は、正極活物質の充填密度を向上させるため、ハンドプレス、ローラープレス等により圧密化することが好ましい。
入出力特性の観点からは、正極合材層の密度は3.0g/cm3~4.0g/cm3であることが好ましい。また、集電体への片面塗布量(湿式法の場合は乾燥後の片面塗布量)は100g/m2~300g/m2であることが好ましい。
2.負極
負極は、負極活物質を含む。具体的には、例えば、負極は集電体と、集電体との両面又は片面に設けられる負極合材層と、を有し、負極合材層が負極活物質を含む。負極は、必要に応じて導電材、結着材、増粘材、分散溶媒等の他の材料を含んでもよい。
負極は、負極活物質を含む。具体的には、例えば、負極は集電体と、集電体との両面又は片面に設けられる負極合材層と、を有し、負極合材層が負極活物質を含む。負極は、必要に応じて導電材、結着材、増粘材、分散溶媒等の他の材料を含んでもよい。
(負極活物質)
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質であれば特に制限されない。例えば、炭素質材料、金属複合酸化物、錫、ゲルマニウム、ケイ素等の第四族元素の酸化物又は窒化物、リチウム単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金を形成可能な金属などが挙げられる。安全性の観点からは、炭素質材料及び金属複合酸化物からなる群より選択される少なくとも1種が好ましい。負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。負極活物質は、例えば、粒子状であってよい。
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質であれば特に制限されない。例えば、炭素質材料、金属複合酸化物、錫、ゲルマニウム、ケイ素等の第四族元素の酸化物又は窒化物、リチウム単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金を形成可能な金属などが挙げられる。安全性の観点からは、炭素質材料及び金属複合酸化物からなる群より選択される少なくとも1種が好ましい。負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。負極活物質は、例えば、粒子状であってよい。
炭素質材料としては、非晶質炭素材料、天然黒鉛、天然黒鉛に非晶質炭素材料の被膜を形成した複合炭素質材料、人造黒鉛(エポキシ樹脂、フェノール樹脂等の樹脂原料、又は、石油、石炭等から得られるピッチ系原料を焼成して得られる)などが挙げられる。
金属複合酸化物は、高電流密度充放電特性の観点からは、チタン及びリチウムのいずれか一方又は両方を含有するものが好ましく、リチウムを含有するものがより好ましい。
負極活物質の中でも炭素質材料は、導電性が高く、低温特性及びサイクル安定性に特に優れている。炭素質材料の中でも高容量化の観点からは、黒鉛が好ましい。黒鉛は、X線広角回折法における炭素網面層間(d002)が0.34nm未満であることが好ましく、0.3354nm以上0.337nm以下であることがより好ましい。このような条件を満たす炭素質材料を、擬似異方性炭素と称する場合がある。
(導電材)
負極活物質を含む負極合材は、導電材をさらに含んでもよい。導電材としては、黒鉛質炭素材料、非晶質炭素材料、活性炭等の導電性の高い炭素質材料を用いることができる。具体的には、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素材料等が挙げられる。導電材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。負極合材が導電材を含有することで、電極の抵抗を低減するなどの効果が得られる傾向にある。
負極活物質を含む負極合材は、導電材をさらに含んでもよい。導電材としては、黒鉛質炭素材料、非晶質炭素材料、活性炭等の導電性の高い炭素質材料を用いることができる。具体的には、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素材料等が挙げられる。導電材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。負極合材が導電材を含有することで、電極の抵抗を低減するなどの効果が得られる傾向にある。
負極活物質として炭素質材料を使用し、かつ導電材として炭素質材料を使用する場合、導電材は、負極活物質として用いる炭素質材料(第1炭素質材料)と性質が異なる炭素質材料(第2炭素質材料)であることが好ましい。上記性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量等が挙げられ、これらのうち一つ以上の特性を示す。
負極合材が導電材を含有する場合、その含有率は特に制限されない。導電性の向上効果の観点からは、導電材の含有率は負極合材の総量に対して1質量%以上であってよく、2質量%以上であることが好ましく、3質量%以上であることがより好ましい。初期不可逆容量の増大を抑制する観点からは、導電材の含有率は負極合材の総量に対して45質量%以下であってよく、40質量%以下であることが好ましい。
(結着材)
負極合材は、結着材を含有してもよい。結着材は特に制限されず、正極合材に含まれてもよい結着材として例示したものが挙げられる。結着材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
負極合材は、結着材を含有してもよい。結着材は特に制限されず、正極合材に含まれてもよい結着材として例示したものが挙げられる。結着材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
負極合材が結着材を含有する場合、その含有率は特に制限されない。負極合材の強度の低下を抑制する観点からは、結着材の含有率は、負極合材の総量に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。電池容量に寄与しない結着材の割合が増加して電池容量が低下するのを抑制する観点からは、結着材の含有率は、負極合材の総量に対して20質量%以下であってよく、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることがさらに好ましい。
スチレン-ブタジエンゴム(SBR)に代表されるゴム状高分子を結着材の主要成分として用いる場合の結着材の含有率は、負極合材の総量に対して0.1質量%以上であってよく、0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、負極合材の総量に対して5質量%以下であってよく、3質量%以下であることが好ましく、2質量%以下であることがより好ましい。
ポリフッ化ビニリデンに代表されるフッ素系高分子を結着材の主要成分として用いる場合の結着材の含有率は、負極合材の総量に対して1質量%以上であってよく、2質量%以上であることが好ましく、3質量%以上であることがより好ましい。また、負極合材の総量に対して15質量%以下であってよく、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。
(増粘材)
負極合材は、粘度を調節するために増粘材を含有してもよい。増粘材は特に制限されず、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等が挙げられる。増粘材は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
負極合材は、粘度を調節するために増粘材を含有してもよい。増粘材は特に制限されず、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等が挙げられる。増粘材は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
負極合材が増粘材を含む場合、その含有率は特に制限されない。負極合材の塗布性の観点からは、増粘材の含有率は0.1質量%以上であってよく、0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。電池容量の低下又は負極活物質間の抵抗の上昇を抑制する観点からは、増粘材の含有率は5質量%以下であってよく、3質量%以下であることが好ましく、2質量%以下であることがより好ましい。
(集電体)
負極に用いる集電体の材質は特に制限されず、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点からは銅が好ましい。
負極に用いる集電体の材質は特に制限されず、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点からは銅が好ましい。
集電体の形状は特に制限されず、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として好適に用いられる。
集電体の厚さは特に制限されないが、厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いる方が、強度の観点から好ましい。
負極合材と集電体を用いて負極を作製する方法は特に形成されない。例えば、上述した正極と同様にして、負極合材を用いて集電体上に負極合材層を形成することにより作製できる。
3.電解液
電解液は、電解質と、これを溶解する非水系溶媒とを含む。電解液は、必要に応じて添加材を含有してもよい。電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。また、電解液としては、フッ素含有電解質を含むものが好ましい。
電解液は、電解質と、これを溶解する非水系溶媒とを含む。電解液は、必要に応じて添加材を含有してもよい。電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。また、電解液としては、フッ素含有電解質を含むものが好ましい。
電解質としてはリチウム塩を含むことが好ましく、ヘキサフルオロリン酸リチウム(LiPF6)を含むことがより好ましい。電解質がLiPF6を含む場合、LiPF6のみを用いても、LiPF6以外のリチウム塩を併用してもよい。
LiPF6以外のリチウム塩としては、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩;LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩;LiAlCl4等の無機塩化物塩;LiCF3SO3等のパーフルオロアルカンスルホン酸塩;LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO9)等のパーフルオロアルカンスルホニルイミド塩;LiC(CF3SO2)3等のパーフルオロアルカンスルホニルメチド塩;Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等のフルオロアルキルフッ化リン酸塩;リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレートなどが挙げられる。
電解質がLiPF6とこれ以外のリチウム塩とを含む場合、LiPF6の含有率は、電池性能の観点から、リチウム塩全体の10質量%以上であることが好ましく、50質量%以上であることがより好ましい。
電解液中の電解質の濃度は特に制限されない。電解液の電気伝導率を充分に得る観点からは、0.5mol/L以上であってよく、0.6mol/L以上であることが好ましく、0.7mol/L以上であることがより好ましい。電解液の粘度上昇による電気伝導度の低下を抑制する観点からは、2mol/L以下であってよく、1.8mol/L以下であることが好ましく、1.7mol/L以下であることがより好ましい。
非水系溶媒は、リチウムイオン二次電池用の電解質の溶媒として使用可能なものであれば特に制限されない。例えば、環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテル、鎖状エーテル等が挙げられる。
環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2~6のものが好ましく、2~4のものがより好ましい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート及びプロピレンカーボネートが好ましい。
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数が、それぞれ1~5のものが好ましく、それぞれ1~4のものがより好ましい。具体的には、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート等の対称鎖状カーボネート類、メチルエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等の非対称鎖状カーボネート類などが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。
鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルが好ましい。
環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。中でも、入出力特性改善の観点からテトラヒドロフランが好ましい。
鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
非水系溶媒は1種を単独で用いても、2種以上を併用してもよい。2種以上の併用としては、例えば、環状カーボネート等の高誘電率の溶媒と、鎖状カーボネート、鎖状エステル等の低粘度の溶媒との併用が挙げられる。好ましい組み合わせの一つは、環状カーボネートと鎖状カーボネートとを主体とする組み合わせである。この場合、非水系溶媒全体に占める環状カーボネートと鎖状カーボネートの合計が80容量%以上であってよく、85容量%以上であることが好ましく、90容量%以上であることがより好ましい。また、環状カーボネートと鎖状カーボネートの合計に対する環状カーボネートの容量は、5容量%以上であってよく、10容量%以上であることが好ましく、15容量%以上であることがより好ましい。また、環状カーボネートと鎖状カーボネートの合計に対する環状カーボネートの容量は、50容量%以下であってよく、35容量%以下であることが好ましく、30容量%以下であることがより好ましい。このような非水系溶媒の組み合わせを用いることで、電池のサイクル特性及び保存特性がより向上する傾向にある。
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとメチルエチルカーボネート等が挙げられる。
添加材は、リチウムイオン二次電池の非水系電解液用の添加材であれば特に制限されない。例えば、窒素及び硫黄の少なくとも一方を含有する複素環化合物、環状カルボン酸エステル、ビニレンカーボネート等の分子内に二重結合を有する環状カーボネート、フルオロエチレンカーボネート等のハロゲン原子を含む環状カーボネートなどが挙げられる。
また、上記添加材以外に、求められる機能に応じて過充電防止材、負極被膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。
また、上記添加材以外に、求められる機能に応じて過充電防止材、負極被膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。
サイクル特性の観点からは、添加材としてビニレンカーボネートを含有することが好ましい。電解液がビニレンカーボネートを含有する場合、その含有率は、電解液全体に対して0.3質量%~2.0質量%であることが好ましい。ビニレンカーボネートの含有率が0.3質量%以上であると、負極に被膜を充分に形成でき、電解液の分解が抑制される傾向にある。ビニレンカーボネートの含有率が2.0質量%以下であると、高温及び高電圧下での内圧の増加が抑制される傾向にある。ビニレンカーボネートの含有率は、電解液全体に対して0.5質量%~1.5質量%であることがより好ましい。ビニレンカーボネートの含有率が0.5質量%以上であると、ビニレンカーボネートが分解消費されて枯渇するのが抑制される傾向にある。ビニレンカーボネートの含有率が1.5質量%以下であると、高温保存にビニレンカーボネートが分解してガスが発生するのが抑制される傾向にある。
4.セパレータ
セパレータは、正極と負極との間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性と負極側における還元性に対する充分な耐性を備えるものであれば特に制限されない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が挙げられる。
セパレータは、正極と負極との間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性と負極側における還元性に対する充分な耐性を備えるものであれば特に制限されない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が挙げられる。
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が挙げられる。具体的には、非水系電解液に対して安定で、保液性の優れた材料の中から選ぶことが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布等がより好ましい。
無機物としては、アルミナ、二酸化ケイ素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩などが挙げられる。無機物を用いるセパレータとしては、例えば、繊維形状又は粒子形状の無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものが挙げられる。薄膜形状の基材としては、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。他の例としては、繊維形状又は粒子形状の無機物を、樹脂等の結着材を用いて複合多孔層としたものが挙げられる。さらに、この複合多孔層を、正極又は負極の表面に形成したものをセパレータとしてもよい。例えば、90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として結着させた複合多孔層を、正極の表面に形成してセパレータとしてもよい。
5.その他の構成部材
リチウムイオン二次電池は、その他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
リチウムイオン二次電池は、その他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
また、温度上昇に伴い不活性ガス(例えば、二酸化炭素など)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部に用いられる材料としては、炭酸リチウムやポリアルキレンカーボネート樹脂等が挙げられる。
(リチウムイオン二次電池)
まず、リチウムイオン二次電池がラミネート型である場合の実施の形態の一例について説明する。ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接して正負極端子を作製する。次いで、正極、セパレータ(絶縁層)及び負極をこの順番に積層して積層体を作製し、これをラミネートパック内に収容し、正負極端子をラミネートパックの外に出す。次いで、非水電解質をラミネートパック内に注液し、ラミネートパックの開口部を密封する。ラミネートパックの材質としては、アルミニウム等が挙げられる。
まず、リチウムイオン二次電池がラミネート型である場合の実施の形態の一例について説明する。ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接して正負極端子を作製する。次いで、正極、セパレータ(絶縁層)及び負極をこの順番に積層して積層体を作製し、これをラミネートパック内に収容し、正負極端子をラミネートパックの外に出す。次いで、非水電解質をラミネートパック内に注液し、ラミネートパックの開口部を密封する。ラミネートパックの材質としては、アルミニウム等が挙げられる。
次に、リチウムイオン二次電池が18650タイプの円柱状である場合の実施の形態の一例について、図面を参照して説明する。図1に示すように、リチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2と負極板3をセパレータ4を介して捲回して作製した電極群5が収容されている。セパレータ4は、例えば、ポリエチレン製多孔質シートであってよく、幅が58mm、厚さが30μmの大きさであってよい。電極群5の上端面には、一方の端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他方の端部は、電極群5の上側に配置され、正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群5の下端面には、一方の端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他方の端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子と負極タブ端子とは、それぞれ電極群5の両端面のそれぞれに導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない非水電解液が注液されている。
本実施形態において、負極と正極の容量比(負極容量/正極容量)は、安全性とエネルギー密度の観点から1.03~1.8であることが好ましく、1.05~1.4であることがより好ましい。
ここで、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の初回充電容量-負極又は正極のどちらか大きい方の不可逆容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。また、[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。
負極と正極の容量比は、例えば、「リチウムイオン二次電池の放電容量/負極の放電容量」からも算出することができる。前記リチウムイオン電池の放電容量は、例えば、4.4V、0.1C~0.5C、終止時間を2~15時間とする定電流定電圧(CCCV)充電を行った後、0.1C~0.5Cで2.5Vまで定電流(CC)放電したときの条件で測定できる。
前記負極の放電容量は、前記リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C~0.5C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1C~0.5Cで1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これを前記リチウムイオン電池の負極として用いたときの総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電と定義し、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。
尚、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。
ここで、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の初回充電容量-負極又は正極のどちらか大きい方の不可逆容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。また、[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。
負極と正極の容量比は、例えば、「リチウムイオン二次電池の放電容量/負極の放電容量」からも算出することができる。前記リチウムイオン電池の放電容量は、例えば、4.4V、0.1C~0.5C、終止時間を2~15時間とする定電流定電圧(CCCV)充電を行った後、0.1C~0.5Cで2.5Vまで定電流(CC)放電したときの条件で測定できる。
前記負極の放電容量は、前記リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C~0.5C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1C~0.5Cで1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これを前記リチウムイオン電池の負極として用いたときの総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電と定義し、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。
尚、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。
<アルミニウムケイ酸化合物複合体>
本実施形態のアルミニウムケイ酸化合物複合体は、ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含む。
本実施形態のアルミニウムケイ酸化合物複合体の詳細及び好ましい態様は、上述したリチウムイオン二次電池用材料として用いられるアルミニウムケイ酸化合物複合体の詳細及び好ましい態様と同様である。
本実施形態のアルミニウムケイ酸化合物複合体は、ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含む。
本実施形態のアルミニウムケイ酸化合物複合体の詳細及び好ましい態様は、上述したリチウムイオン二次電池用材料として用いられるアルミニウムケイ酸化合物複合体の詳細及び好ましい態様と同様である。
本実施形態のアルミニウムケイ酸化合物複合体は、リチウムイオン二次電池用材料として用いられることが好ましく、電解液にフッ素含有電解質を含むリチウムイオン二次電池のリチウムイオン二次電池用材料として用いられることがより好ましい。
本実施形態のアルミニウムケイ酸化合物複合体の用途は、リチウムイオン二次電池用材料に限られるわけではなく、金属イオン等に優れた吸着能を発現することから、例えば、えば、空気浄化フィルタ、水処理材、光吸収フィルム、電磁波シールドフィルム、有機溶剤、非水溶媒のイオン交換フィルタ、半導体封止材及び電子材料の一成分として利用可能である。
本実施形態のアルミニウムケイ酸化合物複合体の用途は、リチウムイオン二次電池用材料に限られるわけではなく、金属イオン等に優れた吸着能を発現することから、例えば、えば、空気浄化フィルタ、水処理材、光吸収フィルム、電磁波シールドフィルム、有機溶剤、非水溶媒のイオン交換フィルタ、半導体封止材及び電子材料の一成分として利用可能である。
以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。
[製造例1]
Al濃度が1mol/Lの硫酸アルミニウム水溶液(500mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(500mL)を加え、30分間撹拌した。この溶液に、1mol/Lの水酸化ナトリウム水溶液を加え、pHを7に調整した。pHを調整した溶液を30分間撹拌した後、加圧ろ過により脱塩を行った。脱塩処理後の沈殿物に、1mol/Lの硫酸を加えてpHを4に調整し、30分間撹拌した。次に、この溶液を乾燥器に入れ、98℃で48時間加熱した。加熱後の溶液に、1mol/Lの水酸化ナトリウム水溶液を添加し、pHを9に調整した。pHの調整を行うことにより溶液中の塩を凝集させ、上記と同様の加圧ろ過によってこの凝集体を沈殿させ、次いで、上澄み液を排出して脱塩を行った。脱塩処理後に得た沈殿物を、110℃で16時間乾燥して粒子塊を回収した。回収した粒子塊をジェットミルで粉砕することで、粒子状のアルミニウムケイ酸化合物を得た。
次いで、得られたアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:70の質量比で混合し、窒素雰囲気下、1000℃で1時間焼成して、ポリビニルアルコールに由来する炭素をアルミニウムケイ酸化合物上に備えた粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が1mol/Lの硫酸アルミニウム水溶液(500mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(500mL)を加え、30分間撹拌した。この溶液に、1mol/Lの水酸化ナトリウム水溶液を加え、pHを7に調整した。pHを調整した溶液を30分間撹拌した後、加圧ろ過により脱塩を行った。脱塩処理後の沈殿物に、1mol/Lの硫酸を加えてpHを4に調整し、30分間撹拌した。次に、この溶液を乾燥器に入れ、98℃で48時間加熱した。加熱後の溶液に、1mol/Lの水酸化ナトリウム水溶液を添加し、pHを9に調整した。pHの調整を行うことにより溶液中の塩を凝集させ、上記と同様の加圧ろ過によってこの凝集体を沈殿させ、次いで、上澄み液を排出して脱塩を行った。脱塩処理後に得た沈殿物を、110℃で16時間乾燥して粒子塊を回収した。回収した粒子塊をジェットミルで粉砕することで、粒子状のアルミニウムケイ酸化合物を得た。
次いで、得られたアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:70の質量比で混合し、窒素雰囲気下、1000℃で1時間焼成して、ポリビニルアルコールに由来する炭素をアルミニウムケイ酸化合物上に備えた粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例2]
Al濃度が1mol/Lの硫酸アルミニウム水溶液(571mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(429mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が1mol/Lの硫酸アルミニウム水溶液(571mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(429mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例3]
Al濃度が1mol/Lの硫酸アルミニウム水溶液(400mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(600mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が1mol/Lの硫酸アルミニウム水溶液(400mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(600mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例4]
Al濃度が1mol/Lの硫酸アルミニウム水溶液(667mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(333mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が1mol/Lの硫酸アルミニウム水溶液(667mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(333mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例5]
Al濃度:1mol/Lの硫酸アルミニウム水溶液(286mL)に、Si濃度:2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(714mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度:1mol/Lの硫酸アルミニウム水溶液(286mL)に、Si濃度:2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(714mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例6]
炭素付着工程における焼成条件を900℃で1時間とした以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
炭素付着工程における焼成条件を900℃で1時間とした以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例7]
炭素付着工程における焼成条件を850℃で1時間とした以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例8]
製造例1に記載のアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:45の質量比で混合したこと以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例9]
製造例1に記載のアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:100の質量比で混合したこと以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
炭素付着工程における焼成条件を850℃で1時間とした以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例8]
製造例1に記載のアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:45の質量比で混合したこと以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例9]
製造例1に記載のアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:100の質量比で混合したこと以外は製造例1と同様にして、粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例10]
Al濃度が1mol/Lの硫酸アルミニウム水溶液(909mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(91mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が1mol/Lの硫酸アルミニウム水溶液(909mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(91mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例11]
Al濃度が1mol/Lの硫酸アルミニウム水溶液(167mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(833mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が1mol/Lの硫酸アルミニウム水溶液(167mL)に、Si濃度が2mol/Lの水ガラス(珪酸ソーダ3号、Na2O・nSiO2・mH2O)(833mL)を加え、30分間撹拌した。その後、製造例1と同様の操作(pH調整、脱塩、98℃エージング、乾燥、粉砕等)を行って、粒子状のアルミニウムケイ酸化合物を得た。次いで、製造例1と同様にして粒子状のアルミニウムケイ酸化合物複合体を作製した。
[製造例12]
Al濃度が700mmol/Lの塩化アルミニウム水溶液(500mL)に、Si濃度が350mmol/Lのオルトケイ酸ナトリウム水溶液(500mL)を加え、30分間撹拌した。この溶液に、1mol/Lの水酸化ナトリウム水溶液を330mL加え、pHを6.1に調整した。pHを調整した溶液を30分間撹拌した後、遠心分離装置(株式会社トミー精工製:Suprema23及びスタンダードロータNA-16)を用い、回転速度:3,000回転/分で、5分間の遠心分離を行った。遠心分離後、上澄み溶液を排出し、ゲル状沈殿物を純水に再分散させ、遠心分離前の容積に戻した。このような遠心分離による脱塩処理を3回行った。
脱塩処理3回目の上澄み排出後に得たゲル状沈殿物に、1mol/Lの塩酸を135mL加えてpHを3.5に調整し、30分間撹拌した。次に、この溶液を乾燥器に入れ、98℃で48時間加熱した。加熱後の溶液(塩濃度47g/L)に、1mol/Lの水酸化ナトリウム水溶液を188mL添加し、pHを9.1に調整した。pHの調整を行うことにより溶液中の塩を凝集させ、上記同様の遠心分離によってこの凝集体を沈殿させ、次いで上澄み液を排出した。上澄み液を排出した後の沈殿物に純水を添加して遠心分離前の容積に戻すという脱塩処理を3回行った。脱塩処理3回目の上澄み排出後に得たゲル状沈殿物を、60℃で16時間乾燥して30gの粒子塊を回収した。この粒子塊をジェットミルで粉砕することで、粒子状のアルミニウムケイ酸化合物を作製した。
次いで、粒子状のアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:70(アルミニウム酸化物:ポリビニルアルコール粉末)の質量比で混合し、窒素雰囲気下、850℃で1時間焼成して、ポリビニルアルコールに由来する炭素をアルミニウムケイ酸化合物上に備えた粒子状のアルミニウムケイ酸化合物複合体を作製した。
Al濃度が700mmol/Lの塩化アルミニウム水溶液(500mL)に、Si濃度が350mmol/Lのオルトケイ酸ナトリウム水溶液(500mL)を加え、30分間撹拌した。この溶液に、1mol/Lの水酸化ナトリウム水溶液を330mL加え、pHを6.1に調整した。pHを調整した溶液を30分間撹拌した後、遠心分離装置(株式会社トミー精工製:Suprema23及びスタンダードロータNA-16)を用い、回転速度:3,000回転/分で、5分間の遠心分離を行った。遠心分離後、上澄み溶液を排出し、ゲル状沈殿物を純水に再分散させ、遠心分離前の容積に戻した。このような遠心分離による脱塩処理を3回行った。
脱塩処理3回目の上澄み排出後に得たゲル状沈殿物に、1mol/Lの塩酸を135mL加えてpHを3.5に調整し、30分間撹拌した。次に、この溶液を乾燥器に入れ、98℃で48時間加熱した。加熱後の溶液(塩濃度47g/L)に、1mol/Lの水酸化ナトリウム水溶液を188mL添加し、pHを9.1に調整した。pHの調整を行うことにより溶液中の塩を凝集させ、上記同様の遠心分離によってこの凝集体を沈殿させ、次いで上澄み液を排出した。上澄み液を排出した後の沈殿物に純水を添加して遠心分離前の容積に戻すという脱塩処理を3回行った。脱塩処理3回目の上澄み排出後に得たゲル状沈殿物を、60℃で16時間乾燥して30gの粒子塊を回収した。この粒子塊をジェットミルで粉砕することで、粒子状のアルミニウムケイ酸化合物を作製した。
次いで、粒子状のアルミニウムケイ酸化合物とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:70(アルミニウム酸化物:ポリビニルアルコール粉末)の質量比で混合し、窒素雰囲気下、850℃で1時間焼成して、ポリビニルアルコールに由来する炭素をアルミニウムケイ酸化合物上に備えた粒子状のアルミニウムケイ酸化合物複合体を作製した。
[Si/Al比の算出]
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体について、常法のICP発光分光分析(ICP発光分光装置:P-4010(株式会社日立製作所))によりSi及びAlの元素モル比(Si/Al)を求めた。結果を表に示す。
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体について、常法のICP発光分光分析(ICP発光分光装置:P-4010(株式会社日立製作所))によりSi及びAlの元素モル比(Si/Al)を求めた。結果を表に示す。
[結晶構造の評価]
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体について、X線回折装置(Geigerflex RAD-2X、株式会社リガク製)を用いて結晶構造を評価した。測定の結果、製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体はムライト構造を示す明確なピークが観測されず、2θ=10°~30°近辺にブロードなピークを有する無定形アルミニウムケイ酸化合物であることを確認した。測定条件を以下に示す。
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体について、X線回折装置(Geigerflex RAD-2X、株式会社リガク製)を用いて結晶構造を評価した。測定の結果、製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体はムライト構造を示す明確なピークが観測されず、2θ=10°~30°近辺にブロードなピークを有する無定形アルミニウムケイ酸化合物であることを確認した。測定条件を以下に示す。
-測定条件-
発散スリット:1°
散乱スリット:1°
受光スリット:0.30mm
X線出力:40kV、40mA
発散スリット:1°
散乱スリット:1°
受光スリット:0.30mm
X線出力:40kV、40mA
[金属イオン吸着能の評価]
製造例1~製造例5及び製造例10~製造例12で得られたアルミニウムケイ酸化合物複合体について、金属イオン吸着能を以下のようにして評価した。
1MのLiPF6を含む電解液(エチレンカーボネート:ジメチルカーボネート:ジエチルカーボネートの体積比が1:1:1)を調製し、これにCo(BF4)2を溶解して、500ppmのCo溶液を調製した。このCo溶液(5g)に、アルミニウムケイ酸化合物複合体をそれぞれ0.05g添加して30分間撹拌した後、室温にて一晩静置した。
アルミニウムケイ酸化合物複合体の添加前のCo溶液と、静置後のCo溶液の上澄みを孔径が0.45μmのフィルタを用いて濾過したものについて、ICP発光分光装置を用いてCoイオン濃度(ppm)をそれぞれ測定した。
初期(アルミニウムケイ酸化合物複合体の添加前)のCo溶液のCoイオン濃度(500ppm)と吸着後(静置後)の上澄みのCoイオン濃度(ppm)の差分を求めた。その差分の値にCo溶液の量(5g)を乗じ、アルミニウムケイ酸化合物複合体の質量(0.05g)で割ることで、Co吸着能(mg/g)を算出した。測定結果と、アルミニウムケイ酸化合物複合体のSi/Al比との関係を図2に示す。
製造例1~製造例5及び製造例10~製造例12で得られたアルミニウムケイ酸化合物複合体について、金属イオン吸着能を以下のようにして評価した。
1MのLiPF6を含む電解液(エチレンカーボネート:ジメチルカーボネート:ジエチルカーボネートの体積比が1:1:1)を調製し、これにCo(BF4)2を溶解して、500ppmのCo溶液を調製した。このCo溶液(5g)に、アルミニウムケイ酸化合物複合体をそれぞれ0.05g添加して30分間撹拌した後、室温にて一晩静置した。
アルミニウムケイ酸化合物複合体の添加前のCo溶液と、静置後のCo溶液の上澄みを孔径が0.45μmのフィルタを用いて濾過したものについて、ICP発光分光装置を用いてCoイオン濃度(ppm)をそれぞれ測定した。
初期(アルミニウムケイ酸化合物複合体の添加前)のCo溶液のCoイオン濃度(500ppm)と吸着後(静置後)の上澄みのCoイオン濃度(ppm)の差分を求めた。その差分の値にCo溶液の量(5g)を乗じ、アルミニウムケイ酸化合物複合体の質量(0.05g)で割ることで、Co吸着能(mg/g)を算出した。測定結果と、アルミニウムケイ酸化合物複合体のSi/Al比との関係を図2に示す。
[フッ化水素吸着能の評価]
製造例1~製造例5及び製造例12で得られたアルミニウムケイ酸化合物複合体について、フッ化水素吸着能を以下のようにして評価した。
まず、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)体積比3:7の混合溶媒に対してヘキサフルオロリン酸リチウム(LiPF6)を1mol/L、ビニレンカーボネート(VC)を0.5質量%溶解した電解液(40g)を作製した。その後、120℃で10時間真空乾燥させたアルミニウムケイ酸化合物複合体(0.4g)を、前記電解液に添加して10分間撹拌した後、室温にて3時間静置した。
アルミニウムケイ酸化合物複合体の添加前の電解液と、静置後の電解液の上澄みについて、イオンクロマトグラフィー(ICS-2000、Thermo Fisher SCIENTIFIC社製)を用いてフッ化水素濃度(ppm)をそれぞれ測定した。
初期(アルミニウムケイ酸化合物複合体の添加前)の電解液のフッ化水素濃度と、吸着後(静置後)の上澄みのフッ化水素濃度(ppm)の差分を求めた。その差分の値に電解液の量(40g)を乗じ、アルミニウムケイ酸化合物複合体の質量(0.4g)で割ることで、フッ化水素吸着能(mg/g)を算出した。測定結果と、アルミニウムケイ酸化合物複合体のSi/Al比との関係を図3に示す。
製造例1~製造例5及び製造例12で得られたアルミニウムケイ酸化合物複合体について、フッ化水素吸着能を以下のようにして評価した。
まず、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)体積比3:7の混合溶媒に対してヘキサフルオロリン酸リチウム(LiPF6)を1mol/L、ビニレンカーボネート(VC)を0.5質量%溶解した電解液(40g)を作製した。その後、120℃で10時間真空乾燥させたアルミニウムケイ酸化合物複合体(0.4g)を、前記電解液に添加して10分間撹拌した後、室温にて3時間静置した。
アルミニウムケイ酸化合物複合体の添加前の電解液と、静置後の電解液の上澄みについて、イオンクロマトグラフィー(ICS-2000、Thermo Fisher SCIENTIFIC社製)を用いてフッ化水素濃度(ppm)をそれぞれ測定した。
初期(アルミニウムケイ酸化合物複合体の添加前)の電解液のフッ化水素濃度と、吸着後(静置後)の上澄みのフッ化水素濃度(ppm)の差分を求めた。その差分の値に電解液の量(40g)を乗じ、アルミニウムケイ酸化合物複合体の質量(0.4g)で割ることで、フッ化水素吸着能(mg/g)を算出した。測定結果と、アルミニウムケイ酸化合物複合体のSi/Al比との関係を図3に示す。
[塩素比率(RCl)の算出方法]
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体の塩素比率(RCl)は、SEM-EDX(S-4800、日立ハイテクノロジ-ズ社製)測定から検出された各元素の比率から、上述した式(1)により算出した。
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体の塩素比率(RCl)は、SEM-EDX(S-4800、日立ハイテクノロジ-ズ社製)測定から検出された各元素の比率から、上述した式(1)により算出した。
[酸化点比率(RA)の算出方法]
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体の酸化点は、フーリエ変換赤外分光光度計(Cary670、Agilent Technologies社製)を用いて測定した。具体的には、サンプルを充填したセルを500℃1時間排気した後、30℃まで冷却した。次に、100℃に加熱した状態でピリジンガスをセル内に導入し、5分間吸着させた。その後、150℃に加熱して60分排気することにより、物理吸着したピリジンを除去した。最後に、30℃に冷却してIRスペクトルを測定した。また、IRスペクトルから、A;1490cm-1付近の酸化点のピーク面積と、B;1446cm-1付近の水素結合のピーク面積を解析し、その比率(RA)を上述した式(2)により算出した。
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体の酸化点は、フーリエ変換赤外分光光度計(Cary670、Agilent Technologies社製)を用いて測定した。具体的には、サンプルを充填したセルを500℃1時間排気した後、30℃まで冷却した。次に、100℃に加熱した状態でピリジンガスをセル内に導入し、5分間吸着させた。その後、150℃に加熱して60分排気することにより、物理吸着したピリジンを除去した。最後に、30℃に冷却してIRスペクトルを測定した。また、IRスペクトルから、A;1490cm-1付近の酸化点のピーク面積と、B;1446cm-1付近の水素結合のピーク面積を解析し、その比率(RA)を上述した式(2)により算出した。
[質量減少率の評価]
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体の350℃~850℃の質量減少率は、上述した式(3)により算出した。
製造例1~製造例12で得られたアルミニウムケイ酸化合物複合体の350℃~850℃の質量減少率は、上述した式(3)により算出した。
(実施例1)
[正極の作製]
正極活物質であるコバルト酸リチウム(94質量%)に、導電材として繊維状の黒鉛(1質量%)及びアセチレンブラック(AB)(1質量%)と、製造例1で作製したアルミニウムケイ酸化合物複合体(1質量%)と、結着材としてポリフッ化ビニリデン(PVDF)(3質量%)とを順次添加し、混合した。混合物の組成を表1に示す。表1における導電材の含有率は、繊維状の黒鉛(1質量%)とアセチレンブラック(1質量%)の合計である。
さらに上記混合物に対し、分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリー状の正極合材を調製した。この正極合材を正極用の集電体である厚さ20μmのアルミニウム箔に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。乾燥後の正極合材の密度は3.6g/cm3とし、乾燥後の正極合材の片面塗布量は202g/m2とした。
[正極の作製]
正極活物質であるコバルト酸リチウム(94質量%)に、導電材として繊維状の黒鉛(1質量%)及びアセチレンブラック(AB)(1質量%)と、製造例1で作製したアルミニウムケイ酸化合物複合体(1質量%)と、結着材としてポリフッ化ビニリデン(PVDF)(3質量%)とを順次添加し、混合した。混合物の組成を表1に示す。表1における導電材の含有率は、繊維状の黒鉛(1質量%)とアセチレンブラック(1質量%)の合計である。
さらに上記混合物に対し、分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリー状の正極合材を調製した。この正極合材を正極用の集電体である厚さ20μmのアルミニウム箔に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。乾燥後の正極合材の密度は3.6g/cm3とし、乾燥後の正極合材の片面塗布量は202g/m2とした。
[負極の作製]
負極活物質である平均粒子径が22μmの人造黒鉛に、結着材としてSBR(スチレン・ブタジエンゴム)と、増粘材としてカルボキシメチルセルロース(商品名:CMC#2200、ダイセルファインケム株式会社製)とを添加した。これらの質量比は、負極活物質:結着材:増粘材=98:1:1とした。これに分散溶媒として水を添加し、混練することによりスラリー状の負極合材を調製した。この負極合材を負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に所定量塗布した。乾燥後の負極合材の密度は1.65g/cm3とし、乾燥後の負極合材の片面塗布量113g/m2とした。
負極活物質である平均粒子径が22μmの人造黒鉛に、結着材としてSBR(スチレン・ブタジエンゴム)と、増粘材としてカルボキシメチルセルロース(商品名:CMC#2200、ダイセルファインケム株式会社製)とを添加した。これらの質量比は、負極活物質:結着材:増粘材=98:1:1とした。これに分散溶媒として水を添加し、混練することによりスラリー状の負極合材を調製した。この負極合材を負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に所定量塗布した。乾燥後の負極合材の密度は1.65g/cm3とし、乾燥後の負極合材の片面塗布量113g/m2とした。
[リチウムイオン二次電池の作製]
13.5cm2の角形に切断した正極電極を、セパレータであるポリエチレン製多孔質シート(商品名:ハイポア、旭化成株式会社製、厚さ30μm、「ハイポア」は登録商標)で挟み、さらに14.3cm2の角形に切断した負極を重ね合わせて積層体を作製した。この積層体をアルミニウム製のラミネート容器(商品名:アルミラミネートフィルム、大日本印刷株式会社製)に入れ、電解液を1mL添加し、ラミネート容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。電解液としては、1mol/LのLiPF6を含むエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの混合溶液に、混合溶液全量に対してビニレンカーボネート(VC)を1質量%添加したものを使用した。
13.5cm2の角形に切断した正極電極を、セパレータであるポリエチレン製多孔質シート(商品名:ハイポア、旭化成株式会社製、厚さ30μm、「ハイポア」は登録商標)で挟み、さらに14.3cm2の角形に切断した負極を重ね合わせて積層体を作製した。この積層体をアルミニウム製のラミネート容器(商品名:アルミラミネートフィルム、大日本印刷株式会社製)に入れ、電解液を1mL添加し、ラミネート容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。電解液としては、1mol/LのLiPF6を含むエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの混合溶液に、混合溶液全量に対してビニレンカーボネート(VC)を1質量%添加したものを使用した。
(実施例2~9)
製造例1で得られたアルミニウムケイ酸化合物複合体の代わりに、製造例2~9で得られたアルミニウムケイ酸化合物複合体をそれぞれ正極合材に添加したこと以外は実施例1と同様にして、評価用のリチウムイオン二次電池を作製した。組成と評価結果を表1に示す。
製造例1で得られたアルミニウムケイ酸化合物複合体の代わりに、製造例2~9で得られたアルミニウムケイ酸化合物複合体をそれぞれ正極合材に添加したこと以外は実施例1と同様にして、評価用のリチウムイオン二次電池を作製した。組成と評価結果を表1に示す。
(比較例1)
正極活物質であるコバルト酸リチウムの割合を95質量%とし、アルミニウムケイ酸化合物複合体を添加せず、正極合材の片面塗布量を200g/m2に変更したこと以外は実施例1と同様にして、評価用のリチウムイオン二次電池を作製した。組成と評価結果を表1に示す。
正極活物質であるコバルト酸リチウムの割合を95質量%とし、アルミニウムケイ酸化合物複合体を添加せず、正極合材の片面塗布量を200g/m2に変更したこと以外は実施例1と同様にして、評価用のリチウムイオン二次電池を作製した。組成と評価結果を表1に示す。
(比較例2~4)
製造例1で得られたアルミニウムケイ酸化合物複合体の代わりに、製造例10~12で得られたアルミニウムケイ酸化合物複合体それぞれ正極合材に添加したこと以外は実施例1と同様にして、評価用のリチウムイオン二次電池を作製した。組成と評価結果を表1に示す。
製造例1で得られたアルミニウムケイ酸化合物複合体の代わりに、製造例10~12で得られたアルミニウムケイ酸化合物複合体それぞれ正極合材に添加したこと以外は実施例1と同様にして、評価用のリチウムイオン二次電池を作製した。組成と評価結果を表1に示す。
[電池容量の評価]
作製したリチウムイオン電池の電池特性を、以下に示す方法で評価した。
まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.5Vの定電流放電を行った。この充放電サイクルを3回繰り返した。(電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。)さらに、0.2Cの定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った後(充電終止条件は、電流値0.02Cとした。)、0.2Cの電流値で終止電圧2.5Vの定電流放電を行い、この放電時の容量を電池容量とした。
作製したリチウムイオン電池の電池特性を、以下に示す方法で評価した。
まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.5Vの定電流放電を行った。この充放電サイクルを3回繰り返した。(電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。)さらに、0.2Cの定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った後(充電終止条件は、電流値0.02Cとした。)、0.2Cの電流値で終止電圧2.5Vの定電流放電を行い、この放電時の容量を電池容量とした。
[出力特性の評価]
出力特性は、以下のようにして算出した。
上記の電池容量を測定した後、0.2Cの定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.02Cとした。その後、0.2Cの電流値で終止電圧2.5Vの定電流放電を行い、この放電時の容量を電流値0.2Cにおける放電容量とした。次に、0.2Cの定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った後(充電終止条件は、電流値0.02Cとした。)、3Cの電流値で終止電圧2.5Vの定電流放電を行い、この放電時の容量を電流値3Cにおける放電容量とし、以下の式により出力特性を算出した。結果を表1に示す。
出力特性は、以下のようにして算出した。
上記の電池容量を測定した後、0.2Cの定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.02Cとした。その後、0.2Cの電流値で終止電圧2.5Vの定電流放電を行い、この放電時の容量を電流値0.2Cにおける放電容量とした。次に、0.2Cの定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った後(充電終止条件は、電流値0.02Cとした。)、3Cの電流値で終止電圧2.5Vの定電流放電を行い、この放電時の容量を電流値3Cにおける放電容量とし、以下の式により出力特性を算出した。結果を表1に示す。
出力特性(%)=(電流値3Cにおける放電容量/電流値0.2Cにおける放電容量)×100
[サイクル特性の評価]
サイクル特性は、以下のようにして算出した。
上記に示す条件で出力特性を評価した後、サイクル特性を充放電を繰り返すサイクル試験にて評価した。充電パターンは、45℃の環境下でそれぞれのリチウム電池を1Cの電流値で定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.1Cとした。放電は、1Cで定電流放電を2.5Vまで行った。以下の式によりサイクル特性を算出した。結果を表1に示す。
サイクル特性は、以下のようにして算出した。
上記に示す条件で出力特性を評価した後、サイクル特性を充放電を繰り返すサイクル試験にて評価した。充電パターンは、45℃の環境下でそれぞれのリチウム電池を1Cの電流値で定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.1Cとした。放電は、1Cで定電流放電を2.5Vまで行った。以下の式によりサイクル特性を算出した。結果を表1に示す。
サイクル特性(%)=(電流値1Cにおける200サイクル後の放電容量/電流値1Cにおける1サイクル後の放電容量)×100
[高温保存特性の評価]
高温保存特性(電池膨張)は、以下のようにして算出した。
上記に示す条件で出力特性を評価した後、リチウムイオン二次電池の体積を高精度電子比重計(MDS-300、アルファーミラージュ株式会社製)で測定した。その後、25℃で、0.1Cの電流値で定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その充電状態で、リチウムイオン二次電池を80℃の恒温槽に48時間放置し、高温保存試験を実施した。試験後、恒温槽からリチウムイオン二次電池を取り出し、25℃まで冷却した後の体積を高精度電子比重計で測定し、下式からリチウムイオン二次電池の膨張率を算出した。結果を表1に示す。
高温保存特性(電池膨張)は、以下のようにして算出した。
上記に示す条件で出力特性を評価した後、リチウムイオン二次電池の体積を高精度電子比重計(MDS-300、アルファーミラージュ株式会社製)で測定した。その後、25℃で、0.1Cの電流値で定電流充電を上限電圧4.4Vまで行い、続いて4.4Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その充電状態で、リチウムイオン二次電池を80℃の恒温槽に48時間放置し、高温保存試験を実施した。試験後、恒温槽からリチウムイオン二次電池を取り出し、25℃まで冷却した後の体積を高精度電子比重計で測定し、下式からリチウムイオン二次電池の膨張率を算出した。結果を表1に示す。
電池膨張(%)=(高温保存試験後リチウム電池の体積/高温保存試験前のリチウム電池の体積)×100
[Co析出量の評価]
サイクル試験後のリチウムイオン二次電池を解体し、負極をジメチルカーボネートで洗浄し、乾燥させた。その後、集電体である銅箔から負極合材層を剥がし、負極合材層におけるCo析出量(質量基準、ppm)をICP発光分光分析(ICP発光分光装置:P-4010(株式会社日立製作所))から求めた。結果を表1に示す。
サイクル試験後のリチウムイオン二次電池を解体し、負極をジメチルカーボネートで洗浄し、乾燥させた。その後、集電体である銅箔から負極合材層を剥がし、負極合材層におけるCo析出量(質量基準、ppm)をICP発光分光分析(ICP発光分光装置:P-4010(株式会社日立製作所))から求めた。結果を表1に示す。
表1の結果に示すように、アルミニウムケイ酸化合物複合体を用いて作製した実施例1~9のリチウムイオン二次電池は、アルミニウムケイ酸化合物複合体を用いずに作製した比較例1のリチウムイオン二次電池と比較して、出力特性とサイクル特性の評価が良好であった。この理由は必ずしも明らかではないが、正極に含まれるアルミニウムケイ酸化合物複合体が電解液中のフッ化水素を吸着することにより、抵抗成分となるフッ化リチウムの析出、正極活物質の結晶構造の変化等が抑制されてサイクル試験後の容量低下及び出力特性の劣化が抑制されたことが考えられる。その他、正極活物質から溶出したコバルト等の金属イオンを正極上に位置するアルミニウムケイ酸化合物複合体が吸着することにより、負極上での金属析出が抑制されてサイクル試験後の容量低下及び出力特性の劣化が抑制されたことが考えられる。
実施例1~9の中でも実施例1~6及び8、9のリチウムイオン二次電池は、実施例7のリチウムイオン二次電池と比較して、電池の膨張が抑制されていた。この理由は必ずしも明らかではないが、実施例1~6で使用したアルミニウムケイ酸化合物複合体の酸化点比率が実施例7よりも低いため、電解液との反応によるガス発生が少なく、電解液中のフッ化水素の吸着によって、フッ化水素と電極上の炭酸リチウムとの反応により発生する二酸化炭素等のガスの発生がより少なかったことが考えられる。
Si/Al比が1.0~5.0の範囲内にないアルミニウムケイ酸化合物複合体を用いて作製した比較例2~4のリチウムイオン二次電池では、Si/Al比が1.0~5.0の範囲内にあるアルミニウムケイ酸化合物複合体を用いて作製した実施例1~9のリチウムイオン二次電池と比べ、出力特性、サイクル特性の向上及び電池膨張抑制において十分な効果が見られなかった。この理由は必ずしも明らかではないが、アルミニウムケイ酸化合物複合体のフッ化水素又は金属イオンの吸着能力はSi/Al比率と関連があり、Si/Al比率が適正値を外れた場合には、十分に吸着能力が発揮できないことが考えられる。
1 リチウムイオン二次電池
2 正極
3 負極
4 セパレータ
5 電極群
6 電池容器
2 正極
3 負極
4 セパレータ
5 電極群
6 電池容器
Claims (10)
- ケイ素とアルミニウムの元素モル比(Si/Al比)が1.0~5.0であるアルミニウムケイ酸化合物と、炭素とを含むアルミニウムケイ酸化合物複合体である、リチウムイオン二次電池用材料。
- 下式で計算される塩素比率(RCl)が1%以下である、請求項1に記載のリチウムイオン二次電池用材料。
RCl(%)=(Clの比率(質量%))/(Alの比率(質量%)+Siの比率(質量%))×100 - ピリジン吸着IRスペクトルから得られる1490cm-1付近の酸化点のピーク面積Aと、1446cm-1付近の水素結合のピーク面積Bとから下式により計算される酸化点の比率(RA)が25%未満である、請求項1又は請求項2に記載のリチウムイオン二次電池用材料。
RA(%)=A/B×100 - 示差熱-熱重量分析(TG-DTA)を用いて測定される350℃~850℃の間での質量減少率が0.5%~30%である、請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用材料。
- レーザー回折式粒度分布測定装置で測定される体積平均粒子径が0.1μm~50μmである、請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用材料。
- ケイ素とアルミニウムの元素モル比(Si/Al)が1.5~3.0である、請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用材料。
- 請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池用材料と、正極活物質と、を含有する正極合材。
- 前記リチウムイオン二次電池用材料の含有率が、前記正極合剤の全量に対して0.01質量%~10質量%である、請求項7に記載の正極合材。
- 請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池用材料を含有するリチウムイオン二次電池用正極。
- 請求項9に記載のリチウムイオン二次電池用正極を備えるリチウムイオン二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/083854 WO2018092194A1 (ja) | 2016-11-15 | 2016-11-15 | リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2018550901A JP6895988B2 (ja) | 2016-11-15 | 2016-11-15 | リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/083854 WO2018092194A1 (ja) | 2016-11-15 | 2016-11-15 | リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018092194A1 true WO2018092194A1 (ja) | 2018-05-24 |
Family
ID=62145485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083854 WO2018092194A1 (ja) | 2016-11-15 | 2016-11-15 | リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6895988B2 (ja) |
WO (1) | WO2018092194A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112271276A (zh) * | 2020-11-17 | 2021-01-26 | 银川市核芯科技有限公司 | 一种锂电子电池的正极加工工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317266A (ja) * | 2004-04-27 | 2005-11-10 | Sanyo Electric Co Ltd | 非水電解質電池の製造方法 |
JP2010208872A (ja) * | 2009-03-06 | 2010-09-24 | Yokohama National Univ | 多孔性アルミノケイ酸塩−炭素複合体及びその製造方法 |
JP2013127957A (ja) * | 2011-11-15 | 2013-06-27 | Hitachi Chemical Co Ltd | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極合剤、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2015018800A (ja) * | 2013-06-12 | 2015-01-29 | 日立化成株式会社 | 導電材料 |
JP2015118782A (ja) * | 2013-12-18 | 2015-06-25 | コニカミノルタ株式会社 | リチウムイオン二次電池 |
JP2015216089A (ja) * | 2014-04-23 | 2015-12-03 | 日立化成株式会社 | リチウムイオン二次電池用導電材料、リチウムイオン二次電池負極形成用組成物、リチウムイオン二次電池正極形成用組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2016004683A (ja) * | 2014-06-17 | 2016-01-12 | 日立化成株式会社 | リチウムイオン電池 |
-
2016
- 2016-11-15 WO PCT/JP2016/083854 patent/WO2018092194A1/ja active Application Filing
- 2016-11-15 JP JP2018550901A patent/JP6895988B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317266A (ja) * | 2004-04-27 | 2005-11-10 | Sanyo Electric Co Ltd | 非水電解質電池の製造方法 |
JP2010208872A (ja) * | 2009-03-06 | 2010-09-24 | Yokohama National Univ | 多孔性アルミノケイ酸塩−炭素複合体及びその製造方法 |
JP2013127957A (ja) * | 2011-11-15 | 2013-06-27 | Hitachi Chemical Co Ltd | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極合剤、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2015018800A (ja) * | 2013-06-12 | 2015-01-29 | 日立化成株式会社 | 導電材料 |
JP2015118782A (ja) * | 2013-12-18 | 2015-06-25 | コニカミノルタ株式会社 | リチウムイオン二次電池 |
JP2015216089A (ja) * | 2014-04-23 | 2015-12-03 | 日立化成株式会社 | リチウムイオン二次電池用導電材料、リチウムイオン二次電池負極形成用組成物、リチウムイオン二次電池正極形成用組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2016004683A (ja) * | 2014-06-17 | 2016-01-12 | 日立化成株式会社 | リチウムイオン電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112271276A (zh) * | 2020-11-17 | 2021-01-26 | 银川市核芯科技有限公司 | 一种锂电子电池的正极加工工艺 |
Also Published As
Publication number | Publication date |
---|---|
JP6895988B2 (ja) | 2021-06-30 |
JPWO2018092194A1 (ja) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5671772B2 (ja) | リチウムイオン二次電池 | |
WO2016056155A1 (ja) | 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 | |
JP6897707B2 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP6245382B2 (ja) | リチウムイオン二次電池 | |
JP2007220670A (ja) | リチウムイオン二次電池 | |
RU2656241C1 (ru) | Кремниевый материал и отрицательный электрод вторичной батареи | |
JP2007227367A (ja) | リチウムイオン二次電池 | |
JP2007165294A (ja) | リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池 | |
KR101983924B1 (ko) | 리튬 이온 이차 전지 | |
JP2022010459A (ja) | リチウムイオン二次電池 | |
JP2016115598A (ja) | リチウムイオン二次電池 | |
JP2017228434A (ja) | リチウムイオン二次電池 | |
WO2020012587A1 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極の製造方法 | |
JP6895988B2 (ja) | リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 | |
JP2017228435A (ja) | リチウムイオン二次電池 | |
JP2016004683A (ja) | リチウムイオン電池 | |
JP6883230B2 (ja) | リチウムイオン二次電池用材料、正極合材、リチウムイオン二次電池用正極及びリチウムイオン二次電池 | |
JP2017134914A (ja) | リチウムイオン二次電池用正極材、リチウムイオン二次電池用正極合材、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 | |
JP2017188404A (ja) | リチウムイオン二次電池 | |
JP2016115611A (ja) | リチウムイオン電池 | |
JP2019067590A (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
US20240234727A1 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2016115610A (ja) | リチウムイオン電池 | |
JP2016115597A (ja) | リチウムイオン電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16922008 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018550901 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16922008 Country of ref document: EP Kind code of ref document: A1 |