JP6583185B2 - 自動運転システム及び自動運転車両 - Google Patents

自動運転システム及び自動運転車両 Download PDF

Info

Publication number
JP6583185B2
JP6583185B2 JP2016157600A JP2016157600A JP6583185B2 JP 6583185 B2 JP6583185 B2 JP 6583185B2 JP 2016157600 A JP2016157600 A JP 2016157600A JP 2016157600 A JP2016157600 A JP 2016157600A JP 6583185 B2 JP6583185 B2 JP 6583185B2
Authority
JP
Japan
Prior art keywords
lane
vehicle
autonomous driving
standard
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157600A
Other languages
English (en)
Other versions
JP2018025976A (ja
Inventor
竜太 橋本
竜太 橋本
義徳 渡邉
義徳 渡邉
青木 健一郎
健一郎 青木
智行 栗山
智行 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016157600A priority Critical patent/JP6583185B2/ja
Priority to SG10201705352TA priority patent/SG10201705352TA/en
Priority to EP17179480.3A priority patent/EP3282226B1/en
Priority to US15/644,136 priority patent/US10699579B2/en
Priority to MYPI2017702541A priority patent/MY186563A/en
Priority to RU2017128096A priority patent/RU2671446C1/ru
Priority to KR1020170100395A priority patent/KR102017780B1/ko
Priority to CN201710682431.4A priority patent/CN107731002B/zh
Priority to BR102017017212-0A priority patent/BR102017017212A2/pt
Publication of JP2018025976A publication Critical patent/JP2018025976A/ja
Application granted granted Critical
Publication of JP6583185B2 publication Critical patent/JP6583185B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0289Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/14Cruise control

Description

この発明は、自動運転システム及び自動運転車両に係り、特に、複数の自動運転車両によって実現される自動運転システム、及び当該システムの構成要素として好適な自動運転車両に関する。
特許文献1には、自動運転車両の進路決定に用い得る自車進路決定方法が開示されている。この方法では、先ず、自車及び他車等の進路が予測される。次いで、自車と他車等とが干渉する確率に基づいて安全性の高い進路候補が複数選択される。そして、それらの複数候補の夫々について、走行効率が比較される。走行効率は、目的地に早く到着するまでの時間や燃料消費量が評価項目とされる。そして、安全性の赤い進路候補の中で最も走行効率の高い進路が自車進路として選択される。
国際公開第2007/102405号公報
上述した特許文献1に記載の進路決定方法によれば、安全に、かつ短時間で目的地に到達するのに適した進路を自車進路として選択することができる。このため、この方法によれば、自動車両の利便性を高めることができる。
しかしながら、この進路決定方法が多数の自動運転車両に等しく実装された場合、多数の車両が同じ環境下では同じ決定を下すことになり、交通流に偏りが生じ易くなる。より具体的には、多数の自動運転車両が、同じ箇所で等しくレーンチェンジを欲する事態が生じ、その結果、交通の流れが妨げられる事態が生じ得る。
この発明は、上述のような課題を解決するためになされたもので、進路決定の機能を有する自動運転車両を多数包含する交通流において局所的な偏りを生じさせることのない自動運転システムを提供することを第1の目的とする。
また、この発明は、進路決定の機能を有するとともに、多数の自動運転車両が参加する交通流の中で自動走行する際にも局所的な交通の偏りを生じさせることのない自動運転車両を提供することを第2の目的とする。
第1の発明は、上記の目的を達成するため、複数の自動運転車両を含む自動運転システムであって、
前記自動運転車両は、
目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
個々の自動運転車両に搭載されている前記制御装置は、同一環境に置かれた同一の複数レーンエリアにおいて前記複数の自動運転車両が決定する前記標準走行レーンに、ばらつきが生ずるように構成されていることを特徴とする。
また、第2の発明は、第1の発明において、前記制御装置は、
乱数を発生させる処理と、
レーン閾値を読み出す処理と、
前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定するレーン決定処理と、
を実行することを特徴とする。
また、第3の発明は、第2の発明において、前記レーン決定処理は、
車両の走行に関わる情報に基づいて前記複数レーンエリアにおける仮走行レーンを決定する処理と、
前記乱数と前記レーン閾値との比較に基づいて、前記仮走行レーンを前記標準走行レーンとするか、前記仮走行レーンと異なるレーンを前記標準走行レーンとするかを決定する処理と、
を含むことを特徴とする。
また、第4の発明は、第2又は第3の発明において、前記制御装置は、
前記複数レーンエリアにおける車両の分布目標を設定する処理と、
前記分布目標に対応させて前記レーン閾値を設定する処理と、
を実行することを特徴とする。
また、第5の発明は、第1の発明において、前記制御装置は、
レーン特性値を記憶しており、
当該レーン特性値に基づいて前記標準走行レーンを決定し、
前記複数の自動運転車両の夫々に記憶されているレーン特性値はばらつきを有していることを特徴とする。
また、第6の発明は、第5の発明において、前記制御装置は、
乱数を発生させる処理と、
前記レーン特性値に基づいてレーン閾値を設定する閾値設定処理と、
前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定する処理と、
を実行することを特徴とする。
また、第7の発明は、第6の発明において、前記制御装置は、
前記複数レーンエリアにおける車両の分布目標を設定する処理と、
前記レーン特性値が変動域の全域にばらついた場合に前記分布目標が実現されるようなレーン特性値とレーン閾値との関係を設定する処理と、を実行し、
前記閾値設定処理では、自車のレーン特性値を前記関係に当て嵌めて前記レーン閾値を設定することを特徴とする。
また、第8の発明は、第5の発明において、前記制御装置は、
前記複数の自動運転車両において共通に用いられるレーン閾値を設定する閾値設定処理と、
前記レーン閾値と前記レーン特性値との比較に基づいて前記標準走行レーンを決定する処理と、
を実行することを特徴とする。
また、第9の発明は、第8の発明において、前記制御装置は、前記複数レーンエリアにおける車両の分布目標を設定する処理を実行し、
前記閾値設定処理は、前記分布目標に対応させて前記レーン閾値を設定する処理を含むことを特徴とする。
また、第10の発明は、第5乃至第9の発明の何れかに記載の発明において、前記制御装置は、
自車のドライバのレーン選択に関わる特性を検知する処理と、
前記レーン特性値に、当該特性を反映させる処理と、
を実行することを特徴とする。
また、第11の発明は、第4、第7及び第9の発明の何れかにおいて、前記制御装置は、
前記複数レーンエリアにおける現実の車両分布を取得する処理と、
前記現実の車両分布が前記分布目標に近づくように前記レーン閾値を修正する処理と、
を実行することを特徴とする。
また、第12の発明は、第4、第7、第9及び第11の発明の何れかにおいて、前記制御装置は、
前記目的地に向かうルート上で前記分布目標が変化する変化点を抽出する処理と、
前記変化点を含む複数レーンエリアの一区間を徐変区間として設定する処理と、
前記徐変区間において前記分布目標を、変化前の分布から変化後の分布に向けて徐々に変化させる処理と、
を実行することを特徴とする。
また、第13の発明は、第1乃至第12の発明の何れかにおいて、前記制御装置は、
レーンの維持が推奨される維持推奨事象を検出する処理と、
前記維持推奨事象が検出された場合に、同一環境下に置かれた前記複数の自動運転車両に同一の決定を導かせるモードで前記標準走行レーンを決定する処理と、
を実行することを特徴とする。
また、第14の発明は、目的地に向かって自動走行する機能を有する自動運転車両であって、
前記目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
前記制御装置は、同一環境に置かれた同一の複数レーンエリアで決定される前記標準走行レーンにばらつきが生ずるように構成されていることを特徴とする。
また、第15の発明は、第14の発明において、前記制御装置は、
乱数を発生させる処理と、
レーン閾値を読み出す処理と、
前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定するレーン決定処理と、
を実行することを特徴とする。
また、第16の発明は、第15の発明において、前記レーン決定処理は、
車両の走行に関わる情報に基づいて前記複数レーンエリアにおける仮走行レーンを決定する処理と、
前記乱数と前記レーン閾値との比較に基づいて、前記仮走行レーンを前記標準走行レーンとするか、前記仮走行レーンと異なるレーンを前記標準走行レーンとするかを決定する処理と、
を含むことを特徴とする。
また、第17の発明は、第15又は第16の発明において、前記制御装置は、
前記複数レーンエリアにおける車両の分布目標を設定する処理と、
前記分布目標に対応させて前記レーン閾値を設定する処理と、
を実行することを特徴とする。
また、第18の発明は、目的地に向かって自動走行する機能を有する自動運転車両であって、
前記目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
前記制御装置は、同一環境に置かれた同一の複数レーンエリアにおいて個々のレーンが前記標準走行レーンに決定される確率が、レーン毎に、100%を除く一定値となるように構成されていることを特徴とする。
また、第19の発明は、第18の発明において、前記制御装置は、
レーン特性値を記憶しており、
乱数を発生させる処理と、
前記レーン特性値に基づいてレーン閾値を設定する閾値設定処理と、
前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定する処理と、
を実行することを特徴とする。
また、第20の発明は、第19の発明において、前記制御装置は、
前記複数レーンエリアにおける車両の分布目標を設定する処理と、
前記レーン特性値が変動域の全域にばらついた場合に前記分布目標が実現されるようなレーン特性値とレーン閾値との関係を設定する処理と、を実行し、
前記閾値設定処理では、自車のレーン特性値を前記関係に当て嵌めて前記レーン閾値を設定することを特徴とする。
また、第21の発明は、第18の発明において、前記制御装置は、
レーン特性値を記憶しており、
前記複数レーンエリアの夫々のレーンに対応するレーン閾値を設定する閾値設定処理と、
前記レーン閾値と前記レーン特性値との比較に基づいて前記標準走行レーンを決定する処理と、
を実行することを特徴とする。
また、第22の発明は、第21の発明において、前記制御装置は、前記複数レーンエリアにおける車両の分布目標を設定する処理を実行し、
前記閾値設定処理は、前記分布目標に対応させて前記レーン閾値を設定する処理を含むことを特徴とする。
また、第23の発明は、第19乃至第22の発明の何れかにおいて、前記制御装置は、
自車のドライバのレーン選択に関わる特性を検知する処理と、
前記レーン特性値に、当該特性を反映させる処理と、
を実行することを特徴とする。
また、第24の発明は、第17、第20及び第22の発明の何れかにおいて、前記制御装置は、
前記複数レーンエリアにおける現実の車両分布を取得する処理と、
前記現実の車両分布が前記分布目標に近づくように前記レーン閾値を修正する処理と、
を実行することを特徴とする。
また、第25の発明は、第17、第20、第22及び第24の発明の何れかにおいて、前記制御装置は、
前記目的地に向かうルート上で前記分布目標が変化する変化点を抽出する処理と、
前記変化点を含む複数レーンエリアの一区間を徐変区間として設定する処理と、
前記徐変区間において前記分布目標を、変化前の分布から変化後の分布に向けて徐々に変化させる処理と、
を実行することを特徴とする。
また、第26の発明は、第14乃至第25の発明の何れかにおいて、前記制御装置は、
レーンの維持が推奨される維持推奨事象を検出する処理と、
前記維持推奨事象が検出された場合に、同一環境下では同一の決定が導かれるモードで前記標準走行レーンを決定する処理と、
を実行することを特徴とする。
第1の発明によれば、自動運転車両は複数レーンエリアにおいて標準走行レーンを選択する。個々の自動運転車両で選択される標準走行レーンは、システム全体においてばらつきを有する。このため、本発明によれば、標準走行レーンが特定のレーンに偏るのを防ぐことができる。
第2の発明によれば、個々の自動運転車両の標準走行レーンは、レーン閾値に応じた確率で複数レーンエリアの夫々のレーンに振り分けられる。個々の自動運転車両がこのように標準走行レーンを決定すれば、システム全体として、標準走行レーンはレーン閾値に応じた確率で複数レーンの夫々にばらつくことになる。
第3の発明によれば、レーン閾値に対応する確率で、標準走行レーンが、仮走行レーンか、それ以外のレーンかに決定される。個々の自動運転車両がこのように標準走行レーンを決定すると、システム全体として標準走行レーンにばらつきを生じさせることができる。
第4の発明によれば、レーン閾値は、車両の分布目標に応じて設定される。ここで、レーン閾値は、システム全体の中で標準走行レーンが各レーンにばらつく確率を決定する値である。このため、本発明によれば、システム全体として、標準走行レーンの分布を車両の分布目標に合致させることができる。
第5の発明では、レーン特性値がシステム全体の中でばらつきを有している。レーン特性値の異なる自動運転車両は、異なる標準走行レーンを決定し易い。このため、本発明によれば、システム全体の中で標準走行レーンにばらつきを生じさせることができる。
第6の発明によれば、自動運転車両は、レーン閾値と乱数とを比較して標準走行レーンを決定する。この場合、個々の自動運転車両において決定される標準走行レーンは、レーン閾値に応じた確率でばらつきを示す。また、本発明においては、レーン閾値がレーン特性値に基づいて設定される。そして、レーン特性値にばらつきが与えられていることから、レーン閾値もシステム全体の中でばらつきを示す。このため、本発明によれば、システム全体としても、標準走行レーンをばらつかせることができる。
第7の発明によれば、レーン特性値が変動域の全域にばらついた場合に、車両の分布目標が実現されるようなレーン特性値とレーン閾値との関係が設定される。システム全体としてのレーン特性値のばらつきは、自動運転車両の数が多くなるに連れて変動域の全域に広がる。このため、本発明によれば、自動運転車両の数が増えるに連れて、標準走行レーンの分布を分布目標に近づけることができる。
第8の発明によれば、レーン閾値とレーン特性値の比較に基づいて標準走行レーンが決定される。そして、本発明では、レーン閾値がシステム全体で共通であるのに対して、レーン特性値にはばらつきが与えられている。このため、本発明によれば、システム全体として標準走行レーンにばらつきを与えることができる。
第9の発明によれば、システム全体で共通に用いられるレーン閾値が、車両の分布目標に対応して設定される。システム全体における標準走行レーンの分布は、レーン閾値に応じて変化する。このため、そのレーン閾値を分布目標に対応して設定すれば、システム全体において、標準走行レーンの分布を車両の分布目標に合致させることができる。
第10の発明によれば、ドライバのレーン選択に関わる特性がレーン特性値に反映される。標準走行レーンは、レーン特性値に応じて設定される。このため、本発明によれば、自動運転中に設定される標準走行レーンを、ドライバの特性に沿ったものとすることができる。
第11の発明によれば、現実の車両分布が分布目標に近づくようにレーン閾値を修正することができる。レーン閾値が修正された自動運転車両では、現実の車両分布が分布目標に近づくように標準走行レーンを決定する。このため、本発明によれば、システム全体として、現実の車両分布を分布目標に近づけることができる。
第12の発明によれば、分布目標の変化点を含む区間に徐変区間を設定し、この徐変区間において分布目標を徐々に変化させることができる。徐変区間の設定がなければ、変化点の前後で複数の自動運転車両が一斉にレーンチェンジを行う。本発明によれば、このようなレーンチェンジの集中を回避することができる。
第13の発明によれば、レーンの維持が推奨される状況下では、ばらつきを生じさせないモードで標準走行レーンを決定することができる。車両の走行中には、緊急車両の通過や工事によるレーン規制など、特定レーンへのレーンチェンジが不適切な状況に遭遇することがある。本発明によれば、このような状況下で、一部の自動運転車両が適切でないレーンにレーンチェンジしてしまうのを防ぐことができる。
第14の発明によれば、自動運転車両は、同一環境に置かれた同一の複数レーンエリアでばらつきを持って標準走行レーンを選択する。多数の自動運転車両が同一環境下で走行する際には、個々の車両がばらつきを持って標準走行レーンを選択するため、特定のレーンに車両が偏ることがない。このため、本発明によれば交通流に偏りが生ずるのを防ぐことができる。
第15の発明によれば、個々の自動運転車両の標準走行レーンは、レーン閾値に応じた確率で複数レーンエリアの夫々のレーンに振り分けられる。個々の自動運転車両がこのように標準走行レーンを決定すれば、多数の自動運転車両からなるシステム全体の中では、標準走行レーンがレーン閾値に応じた確率で複数レーンの夫々にばらつくことになる。
第16の発明によれば、レーン閾値に対応する確率で、標準走行レーンが、仮走行レーンか、それ以外のレーンかに決定される。個々の自動運転車両がこのように標準走行レーンを決定すると、多数の自動運転車両を含むシステム全体の中では、標準走行レーンがばらつきを有するものとなる。
第17の発明によれば、レーン閾値は、車両の分布目標に応じて設定される。ここで、レーン閾値は、多数の自動運転車両が存在する場合に、個々の車両の標準走行レーンが各レーンにばらつく確率を決定する値である。このため、本発明によれば、多数の自動運転車両が集まった場合に、標準走行レーンの分布を車両の分布目標に合致させることができる。
第18の発明によれば、自動運転車両は、複数レーンエリアにおいて、走行レーンや追い越しレーンを、夫々一定の確率で標準走行レーンとする。自動運転車両の、レーン選択に関する個性が一貫しているため、ドライバは安心してその選択を受け入れることができる。また、個々の自動運転車両の個性にばらつきを与えることで交通流の偏りを防止することができる。
第19の発明によれば、自動運転車両は、レーン閾値と乱数とを比較して標準走行レーンを決定する。この場合、個々の自動運転車両において決定される標準走行レーンは、レーン閾値に応じた確率でばらつきを示す。個々の自動運転車両でこのように標準走行レーンが決定されれば、多数の自動運転車両が集まった場合に、それらの車両の標準走行レーンを適切にばらつかせることができる。更に、本発明においては、レーン特性値にばらつきを与えれば、レーン閾値にもばらつきを与えることができる。このため、本発明によれば、多数の自動運転車両にばらつきを持つレーン特性値を与えることで、それらの標準走行レーンを更に細かく分散させることができる。
第20の発明によれば、自動運転車両に与えられるレーン特性値が変動域の全域にばらつくことで分布目標を達成することができる。個々の自動運転車両に異なるレーン特性値が与えられるとすれば、多数の自動運転車両が集まることでレーン特性値が変動域の全域にばらつく。このため、本発明によれば、個々の自動運転車両に異なるレーン特性値を与えることで、分布目標を実現することができる。
第21の発明によれば、レーン閾値とレーン特性値の比較に基づいて標準走行レーンが決定される。そして、個々の自動運転車両に異なるレーン特性値が与えられるとすれば、個々の車両で決定される標準走行レーンには、レーン特性値のばらつきに対応するばらつきが生ずる。このため、本発明によれば、多数の自動運転車両にばらつきを持つレーン特性値を与えることで、それらの標準走行レーンを更に細かく分散させることができる。
第22の発明によれば、複数レーンエリアの夫々のレーンについて定められるレーン閾値が、車両の分布目標に対応して設定される。多数の自動運転車両が集まった場合における標準走行レーンの分布は、レーン閾値に応じて変化する。このため、そのレーン閾値を分布目標に対応して設定すれば、多数の自動運転車両の標準走行レーンを、車両の分布目標に合致するようにばらつかせることができる。
第23の発明によれば、ドライバのレーン選択に関わる特性がレーン特性値に反映される。標準走行レーンは、レーン特性値に応じて設定される。このため、本発明によれば、自動運転中に設定される標準走行レーンを、ドライバの特性に沿ったものとすることができる。
第24の発明によれば、現実の車両分布が分布目標に近づくようにレーン閾値が修正される。レーン閾値が修正された自動運転車両では、現実の車両分布が分布目標に近づくように標準走行レーンを決定する。このため、本発明によれば、多数の車両によって現実に実現される車両分布を分布目標に近づけることができる。
第25の発明によれば、分布目標の変化点を含む区間に徐変区間を設定し、この徐変区間において分布目標を徐々に変化させることができる。徐変区間の設定がなければ、変化点の前後で多数の自動運転車両が一斉にレーンチェンジを行う。本発明によれば、このようなレーンチェンジの集中を回避することができる。
第26の発明によれば、レーンの維持が推奨される状況下では、ばらつきを生じさせないモードで標準走行レーンを決定することができる。車両の走行中には、緊急車両の通過や工事によるレーン規制など、特定レーンへのレーンチェンジが不適切な状況に遭遇することがある。本発明によれば、このような状況下で、一部の自動運転車両が適切でないレーンにレーンチェンジしてしまうのを防ぐことができる。
本発明の実施の形態1に係る自動運転車両のハードウェア構成を説明するための図である。 図1に示す自動運転車両がレーンプランを作成する手順を説明するための図である。 図1に示す自動運転車両におけるレーン選択の規則を説明するための図である。 図1に示す自動運転車両の特徴部のブロック図である。 図4に示すレーン選択部で実行される処理の内容を説明するためのフローチャートである。 本発明の実施の形態2のレーン選択部で実行される処理の内容を説明するためのフローチャートである。 本発明の実施の形態3の特徴部のブロック図である。 本発明の実施の形態3のレーン選択部で実行される処理の内容を説明するためのフローチャートである。 本発明の実施の形態4の特徴部のブロック図である。 本発明の実施の形態4のレーン選択部で実行される処理の内容を説明するためのフローチャートである。 本発明の実施の形態5の特徴部のブロック図である。 本発明の実施の形態5で用いられるレーン特性値とレーン閾値との関係を示すマップの一例である。 図12に示すレーン閾値thr1及びthr2で区分される3つの領域の分布確率を説明するための図である。 本発明の実施の形態5のレーン選択部で実行される処理の内容を説明するためのフローチャートである。 図14に示すフローチャート中で参照されるマップの一例である。 本発明の実施の形態6の特徴部のブロック図である。 本発明の実施の形態6のレーン選択部で実行される処理の内容を説明するためのフローチャートである。 本発明の実施の形態6のレーン選択部で実行される処理の第1の変形例の内容を説明するためのフローチャートである。 本発明の実施の形態6のレーン選択部で実行される処理の第2の変形例の内容を説明するためのフローチャートである。 本発明の実施の形態7の特徴部のブロック図である。 本発明の実施の形態7のレーン選択部で実行される処理の内容を説明するためのフローチャートである。 本発明の実施の形態8の特徴部のブロック図である。 本発明の実施の形態8が徐変区間で分布目標を徐々に変化させる様子を模式的に表した図である。 本発明の実施の形態9の特徴部のブロック図である。 本発明の実施の形態9において自動運転車両にレーンの維持が推奨される維持推奨事象の例を説明するための図である。 本発明の実施の形態9のレーン選択部で実行される処理の内容を説明するためのフローチャートである。
実施の形態1.
[実施の形態1のハードウェア構成]
図1は本発明の実施の形態1に係る自動運転車両10のハードウェア構成を示す図である。図1に示すように、車両10には、ステレオカメラ12が搭載されている。ステレオカメラ12は、車両10の前方を所定の視野角でステレオ撮像することができる。尚、ステレオカメラ12は、単眼カメラに置き換えることも可能である。
車両10には、また、車両を取り巻くように複数のLIDAR(Laser Imaging Detection and Ranging)ユニット14が搭載されている。より具体的には、LIDARユニット14は、車両前方、車両前方左右、車両後方、及び車両後方左右を検出領域とするように合計6台が搭載されている。LIDARユニット14によれば、夫々の検出領域内に存在する物体の輪郭とその物体までの距離とを検知することができる。
車両10には、更に、車両を取り巻くように複数のミリ波レーダユニット16が搭載されている。ミリ波レーダユニット16は、車両前方、車両前方左右、及び車両後方左右を検出範囲とするように合計5台が搭載されている。ミリ波レーダユニット16によれば、夫々の検出領域内に存在する物体までの距離、並びにその物体と車両10との相対速度を検知することができる。
以下、上述したステレオカメラ12、LIDARユニット14及びミリ波レーダユニット16を総称して「物体認識センサ」と称す。
車両10には、また、GPS(Global Positioning System)ユニット18が搭載されている。GPSユニット18によれば、GPSを利用して車両10の現在位置を検知することができる。
車両10には、ECU(Electronic Control Unit)20が搭載されている。上述した「物体認識センサ」及びGPSユニット18の検出信号はECU20に供給される。ECU20は、それらの信号に基づいて、ガードレールのような路上構成物や周辺車両等(以下、「周辺物体」と称す)を検知することができる。尚、ECU20は、物理的には機能別に複数台に分かれていても良いが、ここでは、それらを総称してECU20と称するものとする。
[自動運転車両におけるレーンプラン]
図2は、図1に示す自動運転車両10がレーンプランを作成する手順を説明するための図である。本実施形態において、ECU20には、ナビゲーション機能が搭載されている。ナビゲーション機能によれば、車両10の現在地から指定された目的地までのルートを検索することができる。
ECU20には、また、地図データが記憶されている。地図データには、目的地の位置、ルート中のレーン接続構造、レーン及び白線の属性、制限速度等の情報が含まれている。図2の上段に示すグレーエリア22は、ナビゲーションの機能によって検索されたルート上で、目的地への到達が物理的に可能な点の集合である。
車両10が現在地から目的地まで走行する過程においては、レーンチェンジが必要になることがある。図2の中段に示す矢印区間24は、レーンチェンジに必要な距離(マージンを含む)を示している。また、図中に示す白抜きの三角形26は、車両10がレーンチェンジを完了しなければならない位置を示している。ECU20は、図2上段のグレーエリア22から矢印区間24を消すことにより、自動運転車両10が走行可能な全エリアを図2中段のグレーエリア28にように演算する。以下、このエリアを「走行可能エリア」と称す。走行可能エリア28は、車両10が現在地から目的地に向かう過程で現実に走行可能なエリアである。
走行可能エリア28の中には、車両の走行が許されるレーンが複数存在するエリア(以下、「複数レーンエリア」と称す)30が存在する。ECU20には、複数レーンエリア30でレーンを選択するための規則が記憶されている。
図2の下段は、ECU20が、上記の規則に従って走行可能エリア28の中で作成したレーンプラン32の一例を示す。レーンプラン32が作成されると、車両10は、基本的にそのプラン32に沿って走行し、追い越し等の必要が生じた場合は、適宜レーンプラン32を修正して目的地に向かう。
図3は、ECU20がレーンを選択する際の規則を説明するための図である。車両10には、標準走行レーンが設定されている。例えば、左側通行の道路では、左レーンが標準走行レーンとして設定されている。また、複数レーンの存在する左側通行の道路では、通常、左端レーンが走行レーン、右側レーンが追い越しレーンと定められている。このような道路では、左端の走行レーンが標準走行レーンとして設定されている。
図3は、車両10が、基本的に標準走行レーンである左端レーンを走行している様子を表している。但し、走行レーンに速度の遅い先行車両が存在するような場合は、追い越しの実行が判断されることがある。この場合、ECU20は、追い越しの間だけ追い越しレーンを選択する。更に、目的地に向かう分岐路が追い越しレーン側に設けられている場合がある。ECU20は、このような場合にも、標準走行レーンを諦めて追い越しレーンを選択する。
ところで、自動運転車両10が一台で道路を走行している状況下では、車両10が、上記の規則に従ってレーンを選択することで問題は生じない。しかしながら、複数の自動運転車両10が同じ規則に従って同じレーンを選択するとすれば、特定の箇所で一斉にレーンチェンジが行われ、円滑な交通流が損なわれ得る。そこで、本実施形態では、走行可能なレーンが複数存在する「複数レーンエリア」では、標準走行レーンにばらつきが生ずるように、ECU20にレーンを選択させることとした。
[実施の形態1の特徴]
図4は、本実施形態におけるECU20の特徴部を表すブロック図である。図4において、周辺物体認識部34は、ECU20が周辺物体認識処理を行うことで実現される。物体認識処理では、ステレオカメラ12等の「物体認識センサ」の検出結果に基づいて周辺車両等の「周辺物体」が認識される。
走路認識部36は、ECU20が、走路認識処理を実行することで実現される。走路認識処理では、地図情報、GPS情報、及び認識した白線の情報等に基づいて、自動運転車両10の走路が認識される。より具体的には、車両10の現在位置が特性され、更に、現在地から目的地に向かうルートの各種状況が認識される。周辺物体認識部34の処理結果、及び走路認識部36の処理結果は、レーン選択部38に提供される。
レーン選択部38は、ECU20が、レーン選択処理を実行することで実現される。レーン選択処理では、認識された周辺物体及び走路の状況に基づいて車両10の走行レーンが決定される。レーン選択処理を行うに当たり、ECU20では、道路の種別(自動車専用道路、一般道など)等に応じて分解能が設定される。例えば、他車位置については1m、他車速度については5km/hといった分解能が設定される。同じ型式のECU20は、この分解能の下で、同一の入力に対しては同一の処理を行う。本実施形態のECU20は、このような条件の下で、複数レーンエリアにおける標準走行レーンにばらつきを生じさせる点に特徴を有している。この特徴を生じさせる処理については、後に図5を参照して詳細に説明する。
レーン選択部38の処理結果は、LC(Lane Change)トラジェクトリ部40に供給される。また、LCトラジェクトリ部40の処理結果は、運動制御部42に提供される。LCトラジェクトリ部40では、レーン選択部38によって選択された走行レーンに基づいて自動運転車両10の軌道(時間毎の位置)が計算される。また、運動制御部42では、計算された軌道を実現するために、操舵、駆動、制動等に関わる各種アクチュエータが制御される。
図5は、本実施形態においてECU20がレーン選択処理の一部として実行する走行レーン決定処理の特徴部を説明するためのフローチャートである。図5に示すルーチンは、ECU20が「レーン再選択指示」を認識することで開始される(ステップ44)。ここで、ECU20は、例えば以下のようなタイミングでレーン再選択指示を認識する。
(1)前回のレーン選択から一定距離走行
(2)前回のレーン選択から一定時間経過
(3)走路のレーン数増加又は減少
ECU20がレーン再選択指示を認識すると、次に、現在の走路は複数レーンエリアであるか否かが判別される(ステップ46)。
現在の走路が複数レーンエリアでないと判別された場合は、レーン選択の余地がないと判断できる。この場合は、現在のレーンが引き続き走行レーンとして選択される(ステップ48)。以後、速やかに今回のルーチンが終了される。
一方、現在の走路が複数レーンエリアであると判別された場合は、先ず、0から1の間で実数の乱数が生成される(ステップ50)。
ECU20は、道路上のレーンの数nと同数のレーン閾値thri(i=1〜n)を記憶している。例えば、2レーンの道路については2つのレーン閾値thr1及びthr2が記憶されている。また、3レーンの道路については3つのレーン閾値thr1、thr2及びthr3が記憶されている。これらのレーン閾値thriは、複数レーンの何れを標準走行レーンとするかを決めるための閾値である。何れの場合でも、レーン閾値thriは0から1の範囲内で設定される。また、n番目のレーン閾値thrnは1.0に設定される。
尚、本実施形態では、乱数の範囲を0から1の間としているが、その範囲はレーン閾値thriの変動域に整合させたものである。乱数の範囲とレーン閾値thriの範囲とが整合していれば、その範囲は上記の範囲に限定されるものではない。
本実施形態は、左側通行を前提として構成されている。つまり、複数レーンエリアにおいて走行レーンは左側に存在し、追い越しレーンが右側に存在することを前提としている。そして、レーン閾値thr1は、最左レーンを標準走行レーンとするか否かを決める閾値として設定されている。また、レーン閾値thrnは、左からn番目のレーンを標準走行レーンとするか否かを決める閾値として設定されている。
図5に示すルーチンでは、上記ステップ50の処理が終わると、次に、生成された乱数が第1のレーン閾値thr1より小さいか否かが判別される(ステップ52)。その結果、乱数がレーン閾値thr1より小さいと判別された場合は、複数レーンエリアの最左レーンが標準走行レーンとして選択される(ステップ54)。
例えば、2レーン又は3レーンの自動車専用道路では、レーン閾値thr1が0.6に設定される。この場合、乱数がthr1を下回る確率は60%である。従って、自動運転車両10は、60%の確率で最左レーン(走行レーン)を選択することになる。そして、複数の自動運転車両10が、何れも60%の確率で最左レーンを標準走行レーンとして選択すれば、60%の車両が3レーン中の最左レーンを走行することになる。
上記ステップ52の条件が不成立であった場合、次に、乱数がレーン閾値thr2より小さいか否かが判別される(ステップ56)。その結果、上記の条件が成立すると認められる場合は、左から2番目のレーンが標準走行レーンとされる(ステップ58)。
複数レーンエリアが2レーン道路である場合は、左から2番目がn番目となる。この場合、レーン閾値thr2が1.0に設定されるため、乱数が如何なる値であってもステップ56の条件が成立する。この場合、上記ステップ58の処理が終了した時点で今回のルーチンは終了される。そして、走路が2レーンの自動車専用道路であれば、自動運転車両10は40%の確率で左から2番目のレーンを標準走行レーンに選択する。その結果、多数の自動運転車両が走行する場合には、60%の車両が最左レーンに割り振られ、40%の車両が2番目のレーンに割り振られることになる。
複数レーンエリアが3レーン以上の道路である場合は、thr2が1.0より小さな値に設定されることがある。そのような設定下では、上記ステップ56の条件が不成立と判定される事態が生じ得る。この場合、以後、乱数とthr3以降のレーン閾値thriとの比較に基づいて標準走行レーンが決定される(ステップ60参照)。
以上説明した通り、本実施形態の自動運転車両10は、複数レーンエリアにおいて、同じ入力に対して、レーン閾値thriに応じた確率で異なるレーンを標準走行レーンとして選択する。つまり、本実施形態の自動運転車両10は、複数レーンエリアにおいて同じ環境が与えられた場合に、ばらつきを持って標準走行レーンを決定する。
個々の自動運転車両10がばらつきを持って標準走行レーンを決定すれば、複数の自動運転車両10を含む交通システムにおいて、車両10が走行するレーンにばらつきが生ずる。このため、本実施形態によれば、多数の自動運転車両10が参加する交通システムにおいて、交通流に局所的な偏りが生ずるのを有効に防ぐことができる。
実施の形態2.
次に、図6を参照して本発明の実施の形態2について説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成を有している。本実施形態は、ECU20に、走行レーン決定処理として、上記図5に示すルーチンに代えて図6に示すルーチンを実行させることにより実現することができる。
ECU20は、図5に示すルーチンの場合と同様に、レーン再選択指示を認識することで図6に示すルーチンを開始する(ステップ44)。以下、図6において図5に示すステップと同一又は対応するステップについては、共通する符号を付してその説明を省略又は簡略する。
図6に示すルーチンが開始されると、先ず、走行レーンが仮決定される(ステップ62)。ここでは、ばらつきの生成を考慮することなく、周辺物体の認識結果と、走路の認識結果に基づいて走行レーンが仮決定される。従って、同じ環境に置かれた自動運転車両10においては、同じレーンが走行レーンとして仮決定される。以下、このレーンを「仮走行レーン」と称す。
次に、ステップ46において、現在の走路が複数レーンエリアであるか否かが判別される。上記の判別が否定された場合は、レーン選択の余地がないため、仮走行レーンがそのまま走行レーンとして選択される(ステップ64)。
一方、現在の走路が複数レーンエリアであると判別された場合は、ステップ50及び52の処理が順次行われる。レーン閾値thriは、実施の形態1の場合と同様に、走路のレーン数nと同数のn個設定されている。また、第n番目のレーン閾値thrnは1.0とされる。但し、本実施形態では、第1のレーン閾値thr1が仮走行レーンの採否を決める閾値として用いられる。このため、ステップ52で乱数がレーン閾値thr1より小さいと判別された場合は、仮走行レーンが標準走行レーンとして選択される(ステップ66)。
本実施形態において、第2のレーン閾値thr2は「仮走行レーンを除く左から1番目のレーン」の採否を決める閾値として用いられる。また、第3のレーン閾値thr3は、「仮走行レーンを除く左から2番目のレーン」の採否を決める閾値として用いられる。Thr4以降のレーン閾値についても同様である。上記ステップ52の条件が成立しなかった場合は、それらのレーン閾値に基づいて、適宜標準走行レーンが決定される(ステップ68、70参照)。
以上説明した通り、本実施形態の自動運転車両10は、周辺物体や走路の状況に即した仮走行レーンを先ず決定する。そして、この仮走行レーンを前提としつつ、ばらつきが生ずるように標準走行レーンを決定する。実施の形態1では第1のレーン閾値thr1を0.6とする例を示している。本実施形態でも、第1のレーン閾値thr1は、0.5を超える値とすることが望ましい。このような設定によれば、50%を超える確率で仮走行レーンが標準走行レーンに選択される。仮走行レーンは、周辺物体や走路の現状に即して決定されたレーンであり、ばらつきの生成を考慮しない限り、自動運転車両10にとって最適なレーンである。本実施形態によれば、そのような最適なレーンが標準走行レーンとして選択される確率を50%以上に確保しつつ、実施の形態1の場合と同様に局所的な交通流の偏りを防ぐことができる。
実施の形態3.
次に、図7及び図8を参照して本発明の実施の形態3について説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成を有している。本実施形態は、自動運転車両10が、走路に合わせて車両の分布目標を決定し、その分布目標が達成されるように標準走行レーンにばらつきを持たせる点に特徴を有している。
図7は、本実施形態におけるECU20の特徴部を表すブロック図である。以下、図7において、図4に示す要素と同一又は対応する要素については、共通する符号を付してその説明を省略又は簡略する。
本実施形態では、レーン選択部38が、走行レーン決定部72と共に分布目標決定部74を備えている。走行レーン決定部72は、ECU20が実施の形態1における走行レーン決定処理(図5参照)を実行することで実現される部分である。一方、分布目標決定部74は、ECU20が分布目標決定処理を実行することにより実現される。分布目標決定処理では、現在の走路についてレーン毎に車両の分布目標が決定され、更に、その分布目標に応じて各レーンのレーン閾値thriが設定される。
図8は、本実施形態においてECU20が実行するレーン選択処理の特徴部を説明するためのフローチャートである。図8に示すルーチンは、図5に示すルーチンと同様に、ECU20がレーン再選択指示を認識することで開始される(ステップ44)。
図8に示すルーチンが開始されると、先ず、自動運転車両10の現在の走路が3レーン道路であり、かつ最右レーンが追い越しレーンであるかが判別される(ステップ76)。例えば、現在の走路が3レーンの自動車専用道路である場合は、上記条件の成立が判定される。
上記条件の成立が認められた場合は、次に、その走路が有する各レーンについて、車両の分布目標が決定される(ステップ78)。ECU20は、道路の特徴(レーン構成及び道路種別)に対応させてレーン毎の分布目標を記憶している。ここでは、その記憶が読み出されることにより、最左レーン、中央レーン、追い越しレーンの分布目標が、夫々、例えば60%、40%、0%に決定される。
次に、決定された分布目標に従って各レーンのレーン閾値thriが設定される(ステップ80)。ここでは、具体的には、最左レーンに対応するレーン閾値thr1が0.6、中央レーンに対応するレーン閾値thr2が1.0に設定される。追い越しレーンのレーン閾値thr3は、処理に用いられることがないため、ここでは設定が省略される。
以後、上記の処理で設定されたレーン閾値thr1、thr2を用いて、実施の形態1の場合と同様の走行レーン決定処理が実行される(ステップ46〜60)。走行レーン決定処理の内容は実施の形態1の場合と同様である。乱数は0から1の間で設定されるため、60%の乱数はレーン閾値thr1より小さな値となる。このため、自動運転車両10は、60%の確率で最左レーンを標準走行レーンとして選択する(ステップ52,54参照)。
また、全ての乱数はthr2(=1.0)より小さな値であるから、thr1以上となる40%の乱数は、全てthr2を下回ると判断される(ステップ56参照)。このため、自動運転車両10は、40%の確率で中央レーンを標準走行レーンとして選択する(ステップ58参照)。
以上説明した通り、図8に示すルーチンによれば、最右レーンが追い越しレーンとされた3レーン道路では、自動運転車両10に、最左レーン、中央レーン、追い越しレーンを、夫々60%、40%、0%の確率で標準走行レーンとして選択させることができる。そして、個々の自動運転車両10がこのような確率で各レーンに散らばれば、複数の自動運転車両10を含む交通流では、ステップ78で決定された分布目標通りの分布が形成される。
図8に示すルーチン中、上記ステップ76において、自動運転車両10の走路が、最右レーンを追い越しレーンとする3レーン道路ではないと判別された場合は、他の閾値設定処理が実行される(ステップ82)。ここでは先ず、現在の走路に適合する道路条件が見つかるまで、順次条件を変えてステップ76に対応する判定処理が実行される。そして、現在の走路に適合する道路条件が見つかったら、ステップ78及び80に対応する処理により、その道路条件に適合する分布目標とレーン閾値thriが設定される。
以上の処理によれば、複数レーンエリアにおいて、道路の特徴に適した分布目標で、複数の自動運転車両10を各レーンに分散させることができる。また、実施の形態1の場合と同様に、個々の自動運転車両10はばらつきを持って標準走行レーンを決定する。このため、実施の形態1の場合と同様に交通流に局所的な偏りが生ずるのを防ぐこともできる。
[実施の形態3の変形例]
ところで、上述した実施の形態3では、ECU20が、実施の形態1の場合と同様の走行レーン決定処理(ステップ46〜60)を実行している。この走行レーン決定処理は、実施の形態2で実行される処理(図6参照)に置き換えてもよい。
また、上述した実施の形態3では、走路の分布目標を自動運転車両10に記憶させることとしている。この分布目標は、道路側に整備された通信システムから自動運転車両10に提供することとしてもよい。或いは、車外に設置されたサーバが配信する分布目標を自動運転車両10に搭載された通信システムに受信させ、ECU20が、その通信システムから分布目標を受信することとしてもよい。
実施の形態4.
上述した実施の形態1乃至3では、全ての自動運転車両10において、同じ確率でレーン選択が行われる。例えば、レーン閾値thr1に0.6、レーン閾値thr2に1.0である走路では、全ての自動運転車両10が60%の確率で第1レーンを選択し、40%の確率で第2レーンを選択する。
上記の手法によれば、多数の自動運転車両10が集まる交通流において、全体として6:4の比率での車両分散を実現することできる。しかしながら、個々の自動運転車両10においては、一貫性なくランダムにレーンが選択される事態が生じている。この場合、レーン選択の予測が付かないことから、車両10のドライバは違和感を覚え易い。
自動運転車両10を6:4の比率で分散させることは、上記の手法の他、60%の自動運転車両10に主として第1レーンを選択させ、40%の自動運転車両10に主として第2レーンを選択させることによっても実現できる。そして、このような手法によれば、個々の自動運転車両10に、レーン選択に関する一貫性を与えることができる。本発明の実施形態4は、個々の自動運転車両10に、ランダムに設定した固有のレーン特性値を与えるとともに、そのレーン特性値に応じた確率でレーン選択を行わせる点に特徴を有している。
以下、図9及び図10を参照して本発明の実施の形態4の特徴を詳細に説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成により実現することができる。図9は、本実施形態におけるECU20の特徴部を表すブロック図である。尚、図9において、図7に示す要素と同一又は対応する要素については、共通する符号を付してその説明を省略又は簡略する。
図9に示すように、本実施形態では、レーン選択部38が、走行レーン決定部72と共にレーン特性値部84を備えている。ECU20には、自動運転車両10の工場出荷時又はディーラ入庫時に、ランダムに設定されたレーン特性値が記録される。レーン特性値部84は、ECU20が、そのレーン特性値に基づいて後述するレーン特性値処理を実行することにより実現される。
図10は、本実施形態においてECU20が実行するレーン選択処理の特徴部を説明するためのフローチャートである。図10に示すルーチンには、レーン特性値処理(ステップ86,88)と、走行レーン決定処理(ステップ46〜60)が含まれている。走行レーン決定処理は、実施の形態1の場合(図5参照)と同様であるため、ここでは説明を省略する。
図10に示すルーチンは、図5に示すルーチンと同様に、ECU20がレーン再選択指示を認識することで開始される(ステップ44)。このルーチンが開始されると、先ず、自動運転車両10に与えられているレーン特性値が読み出される(ステップ86)。
次いで、レーン特性値に基づいてレーン閾値thriの設定が行われる(ステップ88)。例えば、2レーン道路に対応するレーン閾値thriについては、thr1とthr2の値が設定される。また、3レーン道路に対応するレーン閾値thriについては、thr1、thr2及びthr3の値が設定される。
thr1とthr2の二つが設定される場合を例に採ると、それらは例えば、レーン特性値に応じて(thr1、thr2)=(0.8、1.0)或いは(thr1、thr2)=(0.2、1.0)のように設定される。前者の設定が施された自動運転車両は、80%の確率で第1レーンを標準走行レーンとして選択し、20%の確率で第2レーンを標準走行レーンとして選択する。一方、後者の設定による自動運転車両は、20%の確率で第1レーンを選択し、80%の確率で第2レーンを選択する。つまり、前者の設定によれば、主として第1レーンを選択する個性を自動運転車両10に与えることができ、後者の設定によれば主として第1レーンを選択する個性を自動運転車両10に与えることができる。
更に、(thr1、thr2)=(1.0、任意の値)の設定によれば、100%の確率で第1レーンを選択する個性を自動運転車両10に与えることができる。そして、(thr1、thr2)=(0.0、1.0)の設定によれば、100%の確率で第2レーンを選択する個性を自動運転車両10に与えることができる。このように、本実施形態によれば、個々の自動運転車両10に、レーン選択に関して一貫した個性を与えることができる。
上述した通り、個々の自動運転車両10には、ランダムに設定したレーン特性値が与えられる。このため、多数の自動運転車両10が集まると、それらに与えられているレーン特性値は、レーン特性値の変動域内で均一に散らばった状態となる。レーン特性値が異なる自動運転車両10は、レーン選択に関して異なる個性を示す。このため、多数の自動運転車両10が参加する交通流においては、標準走行レーンにばらつきが生まれ、偏りのない交通流が実現される。このように、本実施形態によれば、個々の自動運転車両10に、レーン選択に関する個性を与えつつ、多数の自動運転車両10が参加する交通流に局所的偏りが生ずるのを有効に防ぐことができる。
[実施の形態4の変形例]
ところで、上述した実施の形態4では、ランダムに設定されたレーン特性値に基づいてレーン閾値thriを設定することで、個々の自動運転車両10にレーン選択に関する個性を与えることとしている。しかしながら、自動運転車両10に個性を与える手法はこれに限定されるものではない。例えば、レーン閾値thriは全車両10で共通に用いることとし、個々の自動運転車両10に、レーン特性値とレーン閾値thriの比較に基づいて標準走行レーンを選択させることとしてもよい。この場合、個々の自動運転車両10は、レーン特性値に応じた個性を有することになる。また、レーン特性値がランダムな値であることから、多数の自動運転車両10が集まれば、多様な個性が混在することとなり、偏りのない交通流が実現できる。
また、上述した実施の形態4では、工場出荷時又はディーラ入庫時に自動運転車両10にレーン特性値を記録することとしている。しかしながら、レーン特性値を記録するタイミングはこれに限定されるものではない。例えば、車外に設置された外部装置から自動運転車両10が書き込みの指令を受信したときに、レーン特性値を記録することとしてもよい。
実施の形態5.
次に、図11乃至図15を参照して本発明の実施の形態5について説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成を有している。本実施形態は、自動運転車両10が、実施の形態3の特徴と実施の形態4の特徴を併せ持つ点に特徴を有している。具体的には、自動運転車両10が、レーン選択に関する個性を有し、かつ、走路の分布目標が達成されるように標準走行レーンを決定する点に特徴を有している。
図11は、本実施形態におけるECU20の特徴部を表すブロック図である。以下、図11において、図7に示す要素と同一又は対応する要素については、共通する符号を付してその説明を省略又は簡略する。
本実施形態では、レーン選択部38が、走行レーン決定部72と共に分布目標決定部90とレーン特性値部92を備えている。実施の形態4の場合と同様に本実施形態においても自動運転車両10には、ランダムに設定されたレーン特性値が与えられる。レーン特性値部92は、ECU20が、そのレーン特性値を読み出して分布目標決定部90に提供する処理を行うことで実現される。
また、分布目標決定部90は、ECU20が、分布目標決定処理において下記の処理を行うことにより実現される。
(1)現在の走路における車両の分布目標の設定、
(2)設定した分布目標を実現するための閾値マップの設定、及び
(3)設定した閾値マップに従って各レーンのレーン閾値thriを設定。
図12は、3レーン道路を対象として上記(2)のステップで設定される閾値マップの一例を示す。図12は、レーン特性値の変動域の全域に渡って、第1レーンのレーン閾値thr1と第2レーンのレーン閾値thr2が定められている。個々の自動運転車両10は、自車に与えられたレーン特性値を図12に示すマップに当てはめることにより、自車におけるレーン閾値thr1及びthr2を設定する。
図13の上段は、図12に示すマップにより第1レーンが選択される期待値S1を示す。本実施形態において、レーン特性値はランダムに設定される。このため、多数の自動運転車両10が集まれば、それらの車両10のレーン特性値は変動域の全域に均等にばらつく。そして、個々の自動運転車両10は、実施の形態1の場合と同様に、生成した乱数がレーン閾値thr1より小さい場合に第1レーンを標準走行レーンとして選択する。この場合、多数の自動運転車両10が参加する交通流において、それらの車両10が第1レーンを選択する期待値は、図13の上段に示す面積S1と一致する。
図13の中段は、図12に示すマップにより第2レーンが選択される期待値S2を示す。自動運転車両10は、実施の形態1の場合と同様に、生成した乱数が第1のレーン閾値thr1以上であり、かつ第2のレーン閾値thr2より小さい場合に第2レーンを標準走行車両として選択する。このため、多数の自動運転車両10が参加する交通流において、それらの車両10が第2レーンを選択する期待値は、図13の中段に示す面積S2と一致する。
図13の下段は、図12に示すマップにより第3レーンが選択される期待値S3を示す。自動運転車両10は、実施の形態1の場合と同様に、生成した乱数が第1のレーン閾値thr1以上であり、かつ第2のレーン閾値thr2以上である場合に第3レーンを標準走行車両として選択する。このため、多数の自動運転車両10が参加する交通流において、それらの車両10が第2レーンを選択する期待値は、図13の下段に示す面積S3と一致する。
上述した分布目標決定処理では、S1:S2:S3が分布目標と一致するように閾値マップが設定される。この閾値マップによれば、夫々がレーン特性値に応じた個々を持つ多数の自動運転車両10を、分布目標通りに分散させることができる。
図14は、本実施形態においてECU20が実行するレーン選択処理の特徴部を説明するためのフローチャートである。図14に示すルーチンには、レーン特性値処理(ステップ94)及び分布目標決定処理(ステップ96〜104)に加えて走行レーン決定処理(ステップ46〜60)が含まれている。走行レーン決定処理は、実施の形態1の場合(図5参照)と同様であるためここでは説明を省略する。
図14に示すルーチンは、図5に示すルーチンと同様に、ECU20がレーン再選択指示を認識することで開始される(ステップ44)。このルーチンが開始されると、先ず、自動運転車両10に与えられているレーン特性値が読み出される(ステップ94)。
次に、現在の走路が3レーン道路であり、かつ最右レーンが追い越しレーンであるかが判別される(ステップ96)。そして、この条件の成立が認められた場合は、走路の各レーンについて車両の分布目標が決定される(ステップ98)。これらステップ96及び98の処理は、図8に示すステップ76及び78の処理と同様に進められる。ここでは、走路の第1レーン、第2レーン及び第3レーンの分布目標が、例えば、60%、20%、20%と決定されたものとする。
分布目標が決定されると、次に、閾値マップが設定される(ステップ100)。上記の例によれば、図13に示すS1:S2:S3が60:20:20となるようにレーン閾値thr1及びthr2とレーン特性値との関係を定めた閾値マップが設定される。
次に、設定された閾値マップに従って各レーンのレーン閾値thriが設定される(ステップ102)。
図15は、閾値マップに従ってthr1及びthr2を設定する手法を示す。図15に示す閾値マップは、S1:S2:S3=60:20:20が成立するように設定されたマップである。自動運転車両10のレーン閾値が図示のLであるとすると、thr1が0.2より僅かに大きな値に、またthr2が0.8より僅かに小さな値に設定される。この場合、ほぼ20%の確率で第1レーンを選択し、ほぼ60%の確率で第2レーンを選択し、ほぼ20%の確率で第3レーンを選択する個性が自動運転車両10に与えられる。
図14に示すルーチン中、上記ステップ96の条件が否定された場合は、他の閾値設定処理が実行される(ステップ104)。ここでは先ず、現在の走路に適合する道路条件が見つかるまで、順次条件を変えてステップ96に対応する判定処理が実行される。そして、現在の走路に適合する道路条件が見つかったら、ステップ98〜102に対応する処理により、その道路条件に適合する分布目標とレーン閾値thriが設定される。
以上の処理によれば、実施の形態3の場合と同様に、多数の自動運転車両10を分布目標通りに各レーンに分散させることができる。また、実施の形態4の場合と同様に、個々の自動運転車両10に、レーン選択に関する個性を与えることができる。そして、個々の自動運転車両10がばらつきを持って標準走行レーンを決定し、かつ、多数の自動運転車両10がばらつきのある個性を示すため、交通流に局所的な偏りが生ずるのを有効に防ぐことができる。
[実施の形態5の変形例]
ところで、上述した実施の形態5では、分布目標を実現するための閾値マップを作成して、個々の自動運転車両10に、その閾値マップに従ってレーン閾値thriを設定させることとしている。しかしながら、分布目標を実現する手法はこれに限定されるものではない。例えば、分布目標の通りにレーン閾値thriを設定し、個々の自動運転車両10に、レーン特性値とレーン閾値thriの比較に基づいて標準走行レーンを選択させることとしてもよい。例えば、分布目標が60:20:20であればthr1=0.6、thr2=0.8とする。個々の自動運転車両10には、0から1の範囲でランダムに設定したレーン特性値を与える。この場合、0.6未満のレーン特性値が与えられた車両10は常に第1レーンを選択する。また、0.6以上0.8未満のレーン特性値が与えられた車両10は常に第2レーンを選択する。そして、0.8以上のレーン特性値が与えられた車両10は常に第3レーンを選択する。その結果、個々の自動運転車両10にはレーン選択に関する個性が与えられる。また、多数の自動運転車両10が集まれば、多様な個性の結果として分布目標通りの交通流が実現される。
実施の形態6.
次に、図16及び図17を参照して本発明の実施の形態6について説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成を有している。また、本実施形態の自動運転車両10には、実施の形態4の場合と同様に、ランダムに設定されたレーン特性値が与えられている。そして、ECU20は、実施の形態4の場合と同様に、そのレーン特性値を用いて図10に示すレーン選択処理を実行する。本実施形態は、ECU20が、ドライバの入力操作をレーン特性値に反映させる機能を有する点に特徴を有している。
図16は、本実施形態におけるECU20の特徴部を表すブロック図である。図16に示すように、本実施形態の自動運転車両10はドライバ入力部106を備えている。ドライバ入力部106は、車両10のドライバがレーン特性値の再設定をECU20に指示するためのインターフェースである。
図16に示すブロック図は、ドライバ入力部106からの信号がレーン特性値部108に提供されている点を除いて、図9に示す実施の形態4のブロック図と同様である。以下、図16において、図9に示す要素と同一の要素については、共通する符号を付してその説明を省略又は簡略する。
図17は、本実施形態のレーン特性値部108を実現するためにECU20が実行する特性再設定処理のフローチャートである。このルーチンは、自動運転車両10の始動後、所定の周期で繰り返し起動されるものとする。
図17に示すルーチンが起動されると、先ず、ドライバによるレーン特性値の再設定操作がなされたか否かが判別される(ステップ110)。再設定操作が検知されない場合は、そのまま今回のルーチンが終了される。一方、レーン特性値の再設定操作が検知された場合は、レーン特性値をランダムに設定する処理がなされる(ステップ112)。
上述した実施の形態4において、レーン特性値は、自動運転車両10の工場出荷時、又はディーラ入庫時にランダムに設定することとしている。そして、自動運転車両10のレーン選択に関する個性は、そのレーン特性値に従って決定される。この場合、自動運転車両10の個性がドライバの感覚と合致しない事態が生じ得る。
本実施形態によれば、ドライバは、自動運転車両10の個性が自己の感覚と合致しない場合には、レーン特性値を設定し直すことで車両10の個性を変化させることができる。このため、本実施形態によれば、実施の形態4の場合と同様の効果を達成しつつ、更に、レーン選択の個性をドライバの感覚に適合させることができる。
[実施の形態6の変形例]
上述した実施の形態6では、ドライバの再設定操作に応じてレーン特性値をランダムに設定し直すこととしているが、再設定の手法はこれに限定されるものではない。例えば、ドライバが、実現したい個性に合わせてレーン特性値そのものを直接入力することとしてもよい。更に、レーン特性値の書き換えは、ドライバ以外の者の入力操作により、或いは、車外に設置された外部装置からの書き換え指令により行うこととしてもよい。
また、上述した実施の形態6では、ドライバの再設定操作に応えてレーン特性値を再設定することとしているが、レーン特性値の変更手法はこれに限定されるものではない。例えば、ドライバ操作に現れる嗜好をレーン特性値に反映させることとしてもよい。
図18は、ドライバの嗜好をレーン特性値に反映させる特性再設定処理の第1例のフローチャートである。このルーチンを実装する場合は、操舵操作を検出する操舵角センサ等がドライバ入力部106となる。
図18に示すルーチンでは、先ず、自動運転の実行中であるか否かが判別される(ステップ114)。自動運転中でなければ、そのまま今回の処理が終了される。一方、自動運転中であると判別された場合は、次に、ドライバのトリガ操作によるレーンチェンジが行われたか否かが判別される(ステップ116)。
自動運転車両10は、自動運転中にドライバが運転操作を行った場合には、その操作をトリガ操作と認識して車両制御の主権をドライバに戻す。トリガ操作によるレーンチェンジは、ドライバが、自動運転によるレーン選択に違和感を覚えた際に行われる。このため、そのトリガ操作にはレーン選択に関するドライバの嗜好が反映されている。
上記ステップ116で、トリガ操作によりレーンチェンジが認識されない場合は、そのまま今回の処理が終了される。一方、トリガ操作によるレーンチェンジが認識された場合は、変更後のレーンがレーン特性値に反映される(ステップ118)。例えば、トリガ操作によって追い越し車線へのレーンチェンジが行われた場合は、追い越し車線の選択確率が上がるようにレーン特性値が修正される。また、トリガ操作によって登坂車線へのレーンチェンジが行われた場合は、登坂車線の選択確率が上がるようにレーン特性値が修正される。このような処理によれば、自動運転車両10の個性をドライバの嗜好に適切に合致させることができる。
図19は、ドライバの嗜好をレーン特性値に反映させる特性再設定処理の第2例のフローチャートである。このルーチンを実装する場合も、操舵操作を検出する操舵角センサ等がドライバ入力部106となる。
図19に示すルーチンでは、先ず、自動運転の実行中であるか否かが判別される(ステップ120)。自動運転中でないと判別された場合はドライバが自動運転車両10を手動で操縦していると判断できる。この場合、ECU20は、ドライバが選択するレーンの学習を進める。この学習により、ECU20は、レーン選択に関するドライバの嗜好を検知することができる。
上記ステップ120で、自動運転中との判断がなされた場合は、今回の処理サイクルが、自動運転の開始時に当たるか否かが判別される(ステップ124)。自動運転の開始時でないと判別された場合は、そのまま今回の処理が終了される。一方、自動運転の開始時であると判断された場合は、上記ステップ122で学習したレーンの結果がレーン特性値に反映される(ステップ126)。具体的には、ドライバが走行車線を好むと学習されている場合は、走行車線が選択される確率が上がるようにレーン特性値が修正される。また、追い越し車線を好むと学習されている場合は、追い越し車線の選択確率が上がるようにレーン特性値が修正される。以上の処理によれば、自動運転車両10の個性をドライバの嗜好に適切に合致させることができる。
また、レーン特性値には、車両挙動に影響するドライバによる指示値を反映させることとしてもよい。ドライバの設定した指示値をレーン特性値に反映させる第1の例としては、オートクルーズの設定速度に応じてレーン特性値を設定することが考えられる。オートクルーズは、ドライバの設定速度に車速を維持する機能である。設定車速が高い場合は、ドライバが、高速巡航を好んでいると判断することができる。反対に、設定車速が低い場合は、ドライバが、低速巡航を好んでいると判断することができる。このため、オートクルーズの設定車速が高いほど高速レーンが選択され易くなるようにレーン特性値を再設定することとしてもよい。この例によれば、例えば右端が追い越しレーンの左側通行道路では、オートクルーズの設定速度が高いほど、右寄りのレーンが選択され易くなる。また、その設定速度が低いほど左寄りのレーンが選択され易くなる。その結果、自動運転車両10に、ドライバの嗜好に合致した個性を発揮させることができる。
ドライバの設定した指示値をレーン特性値に反映させる第2の例としては、目的地までの距離に応じてレーン特性値を設定することが考えられる。目的地までの距離が十分に長い場合は、一般に高い巡航速度が好まれる。他方、目的地までの距離が短い場合には、高い巡航速度を得ることよりレーンチェンジの頻度を抑えることが望まれる。このため、走行開始の地点から目的地までの距離が長いほど高速レーンが選択され易くなるようにレーン特性値を設定することとしてもよい。この例によれば、例えば右端が追い越しレーンの左側通行道路では、走行開始の地点から目的地までの距離が長いほど、右寄りのレーンが選択され易くなる。また、目的地までの距離が短いほど左寄りのレーンが選択され易くなる。その結果、長距離移動の場合には高速巡航の個性を自動運転車両10に与えることができる。また、短距離移動の場合には堅実に走行レーンを走行する個性を自動運転車両10に与えることができる。
ところで、上述した実施の形態6及びその変形例では、レーン特性値の変更に関してガードを設けないこととしている。この場合、レーン特性値が大きく変化して、自動運転車両10の個性が急変する事態が生じ得る。このような個性の急変を避けるために、一度の変更で許容されるレーン特性値の変化量にガードを設けることとしてもよい。
また、上述した実施の形態6及びその変形例では、自動運転車両10がレーン特性値を一つだけ保持することとしているが、複数の使用者を想定して、単一の車両10に複数のレーン特性値を保持させることとしてもよい。この場合、シートポジション等と同様に、使用者毎にレーン特性値を設定し直すこととしてもよい。
また、上述した実施の形態6及びその変形例では、ECU20が、実施の形態4の場合と同様のレーン選択処理(図10)を実行することとされている。しかしながら、ECU20が実行するレーン選択処理は、図10に示す処理に限定されるものではない。この処理は、例えば、図14に示す実施の形態5のレーン選択処理に変更してもよい。
実施の形態7.
次に、図20及び図21を参照して本発明の実施の形態7について説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成を有している。また、本実施形態の自動運転車両10は、実施の形態3(図7及び図8参照)の場合と同様に、複数レーンエリアにおいて車両の分布目標を定め、その分布目標が実現されるように標準走行レーンを決定する。
上述した実施の形態3では、道路の特徴(レーン構成及び道路種別)に応じて分布目標が設定される。そして、現実の車両分布が分布目標から大きく乖離している場合であっても、自動運転車両10は、既定の分布目標に従って標準走行レーンを選択する。例えば、第1レーンと第2レーンの分布目標が60:40である走路で、現実の車両分布が80:20である場合、分布目標を達成するためには第2レーンを選択する車両10を増やす必要がある。しかしながら、実施の形態3によれば、このような場合にも60%の自動運転車両10が第1レーンを選択し、現実の車両分布が分布目標から更に乖離してしまう事態が生じ得る。本実施形態は、このような不都合を回避するため、現実の車両分布が分布目標に近づくように、個々の自動運転車両10において分布目標に修正が施される点に特徴を有している。
図20は、本実施形態におけるECU20の特徴部を表すブロック図である。以下、図20において、図7に示す要素と同一の要素については、共通する符号を付してその説明を省略又は簡略する。
本実施形態ではレーン選択部38に交通流解釈部128が含まれている。交通流解釈部128は、周辺物体認識部34及び走路認識部36から提供される情報に基づいて、自動運転車両10の周辺における現実の車両分布を検知する。
交通流解釈部128によって検知された車両分布は、分布目標決定部130に提供される。分布目標決定部130は、ECU20が分布目標決定処理を行うことにより実現される。本実施形態では、分布目標決定処理により、道路の特徴に応じて設定した分布目標が、現実の車両分布に基づいて修正される。そして、個々の自動運転車両10では、修正された分布目標に基づいてレーン閾値thriが設定される。
図21は、本実施形態においてECU20が実行するレーン選択処理のフローチャートである。図21に示すルーチンには、分布目標決定処理(ステップ132,134、138〜144)及び交通流解釈処理(ステップ136)に加えて走行レーン決定処理(ステップ46〜60)が含まれている。走行レーン決定処理は、実施の形態1の場合(図5参照)と同様であるためここでは説明を省略する。
図21に示すルーチンは、図8に示すルーチンと同様に、ECU20がレーン再選択指示を認識することで開始される(ステップ44)。このルーチンが開始されると、先ず、現在の走路が3レーン道路であり、かつ最右レーンが追い越しレーンであるかが判別される(ステップ132)。そして、この条件の成立が認められた場合は、走路の各レーンについて車両の分布目標が決定される(ステップ134)。これらステップ132及び134の処理は、図8に示すステップ76及び78の処理と同様に進められる。ここでは、走路の特徴に基づいて、第1レーン、第2レーン及び第3レーンの分布目標が、例えば、60%、20%、20%と決定される。
分布目標が決定されると、次に、現実の車両分布が検知される(ステップ136)。具体的には、先ず、周辺物体認識部34から提供される情報に基づいて、走路のレーン毎に車両密度が算出される。次いで、各レーンの車両密度を比較することで、現在の走路における車両分布が算出される。
次に、車両の分布割合が分布目標の割合を超えているレーンが存在するか否かが判別される(ステップ138)。その結果、分布目標の割合を超えるレーンが存在すると判別された場合は、そのレーンの割合が下がるように分布目標が修正される(ステップ140)。例えば、60:20:20の分布目標に対して、現実の車両分布が80:20:0である場合は、第1レーンの分布目標割合が下げられ(例えば60→40)、かつ、第3レーンの分布目標が高められる(例えば20→40)。一方、分布目標の割合を超えるレーンが存在しないと判別された場合は、ステップ140の処理がジャンプされ、上記ステップ134で設定された分布目標がそのまま維持される。
上記の処理が終わると、次に、修正後又は修正不要と判断された分布目標に従って各レーンのレーン閾値thriが設定される(ステップ142)。例えば、分布目標が40:20:40に修正されていた場合は、第1レーンのレーン閾値thr1が0.2、第2レーンのレーン閾値thr2が0.6に設定される。この場合、自動運転車両10だけの分布割合は40:20:40となり、現実の車両分布(80:20:0)が走路の分布目標(60:20:20)に近づけられる。
図21に示すルーチン中、上記ステップ132の条件が否定された場合は、他の閾値設定処理が実行される(ステップ144)。ここでは先ず、現在の走路に適合する道路条件が見つかるまで、順次条件を変えてステップ132に対応する判定処理が実行される。そして、現在の走路に適合する道路条件が見つかったら、ステップ134〜142に対応する処理により、その道路条件に適合する分布目標とレーン閾値thriが設定される。
以上の処理によれば、現実の車両分布が分布目標から乖離している場合に、個々の自動運転車両10の分布目標を適宜修正することで、現実の車両分布を本来の分布目標に近づけることができる。そして、最終的には、非自動運転車両を含む交通流において、走路本来の分布目標を達成することができる。
[実施の形態7の変形例]
ところで、上述した実施の形態7においては、ECU20が、走路の分布目標を実施の形態3の場合と同様の手順で設定している(ステップ132、134参照)。しかしながら、その設定は、実施の形態5の場合と同様の手順で進めることとしてもよい。例えば、図14に示すルーチンにおいて、ステップ98と100の間に、図21に示すステップ136から140の処理を挿入することで所望の機能を実現することができる。
また、上述した実施の形態7においては、現実の車両分布を、個々の自動運転車両10が周辺物体認識部34からの情報等に基づいて検知することとしている。しかしながら、この車両分布は、路車間通信により路上のインフラストラクチャから受信することとしてもよい。
或いは、現実の車両分布は、車外に設置されたサーバから自動運転車両10に搭載された通信システムに配信させることとしてもよい。そして、ECU20は、その通信システムから車両分布を受信することとしてもよい。この場合の情報伝達の経路としては、例えば、下記の2例が考えられる。
(1)車外インフラストラクチャが車両分布を計算する例
車外インフラストラクチャ→車外サーバ→各自動運転車両10の経路で車両分布を配信。
(2)車外サーバが車両分布を計算する例
各自動運転車両10が自車位置及び/又は周辺認識情報を車外サーバに送信。
車外サーバが情報を集約して現在の車両分布を計算。
車外サーバから各自動運転車両10に車両分布を配信。
実施の形態8.
上述した実施の形態3、5及び7では、ECU20が、分布目標決定部74,90、130を備えている(図7、図11及び図20参照)。そして、分布目標決定部74,90,130は、道路の特徴に応じて分布目標を設定し、その分布目標が実現されるように個々の自動運転車両10に標準走行レーンを選択させる。
道路の特徴に応じて設定される分布目標は、道路の特徴が変化する地点の前後で変化する。具体的には、実施の形態3、5及び7では、レーン数が増減する地点の前後において、走路の分布目標が変化する。
多数の自動運転車両10を含む交通流において、個々の車両10の分布目標が特定の地点で一斉に変化すれば、その変化に追従して、多数の自動運転車両10がその地点で一斉にレーンチェンジしようとする。このような一斉レーンチェンジは、交通流を混乱させる原因となり好ましいものではない。本実施形態は、このような混乱を避けるために、道路の特徴が変化する地点の前後に分布目標の徐変区間を設け、その徐変区間において分布目標を徐々に変化させる点に特徴を有している。
以下、図8と共に図22及び図23を参照して本発明の実施の形態8の特徴を詳細に説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成により実現することができる。
図22は、本実施形態におけるECU20の特徴部を表すブロック図である。尚、図22において、図7に示す要素と同一又は対応する要素については、共通する符号を付してその説明を省略又は簡略する。
図22に示すように、本実施形態では、レーン選択部38が、走行レーン決定部72と共に分布目標決定部146を備えている。分布目標決定部146は、更に、周辺地形解釈部148、徐変区間設定部150及び目標設定部152を備えている。周辺地形解釈部148は、走路認識部36からの情報等に基づいて現在の走路の特徴を認識する。徐変区間設定部150は、道路の特徴が変化する地点の前後に分布目標を徐変させるための徐変区間を設定する。そして、目標設定部152は、その徐変区間において徐変する分布目標を設定するための処理を行う。これらは、何れもECU20が分布目標決定処理を行うことにより実現される。
図23は、本実施形態における分布目標決定処理の特徴部の内容を説明するための図である。本実施形態における分布目標決定処理は、図8に示すステップ76〜82の処理により実現される。但し、本実施形態では、ステップ78において以下に説明する処理が実行されるものとする。
図23の上段は、周辺地形解釈部148が認識した走路の特徴に基づいて設定された走路本来の分布目標を示す。具体的には、現在の2レーン道路が地点P1で3レーン道路に変化する特徴が示されている。また、2レーン区間の分布目標が70:30であり、3レーン区間の分布目標が60:40:0であることが示されている。
図23の中段は、地点P1と地点P2の間が徐変区間に設定された様子を示す。レーン数が増える場合は、現実にレーン数が増えるまでは本来の分布目標が維持されることが望ましい。そして、交通流の混乱を避けるためには、レーン数が増加する地点P1から、新たなレーン環境に合わせてレーンチェンジが徐々に進められることが望ましい。このため、レーン増の変化が生ずる場合は、その変化が生ずる地点P1の後に徐変区間が設けられる。他方、レーン減の変化が生ずる場合は、現実にレーンが減少する以前に、車両の分布を減少後の環境に向けて徐々に変化させておくことが望ましい。このため、レーン減の変化が生ずる場合は、変化点の前に徐変区間が設定される。
ECU20は、道路の特徴に生ずる変化の種類に応じて、変化点に対する徐変区間の相対的位置、及び徐変区間の長さを記憶している。徐変区間設定部150では、それらの記憶に基づいて徐変区間が設定される。
図23の下段は、徐変区間において、70:30の分布目標が、60:40:0に向けて徐々に変化する様子を示す。目標設定部152では、徐変区間の前方に設定されている分布目標が、徐変区間の後方に設定されている分布目標に向かってスムーズに変化するように、徐変区間の細分化と、目標数値の設定とが行われる。
図8に示すルーチン中、ステップ78では、目標設定部152が設定した数値が分布目標とされる。そして、ステップ80では、その分布目標に従ってレーン閾値thr1及びthr2が設定される。この場合、レーン閾値thr1及びthr2が徐変区間において徐変し、変化点の前後で自動運転車両10の分布が緩やかに変化することになる。
以上説明した通り、本実施形態によれば、道路上の変化点の前後で、自動運転車両10の分布目標を、新たな分布目標に向けて緩やかに変化させることができる。自動運転車両10の分布目標が緩やかに変化すれば、変化点で一斉にレーンチェンジが行われることがない。このため、本実施形態によれば、多数の自動運転車両が変化点を通過する際にも、スムーズな交通流を維持することができる。
[実施の形態8の変形例]
ところで、上述した実施の形態8では、分布目標の徐変区間で、何れのレーン間でもレーンチェンジを許可することとしているが、徐変区間においては、レーンチェンジを許可するレーンに制限をかけることとしてもよい。例えば、変化点から300mまでの区間は、第2レーンから第1レーンへのレーンチェンジだけを許可し、300mから600mの区間は第3レーンから第2レーンへのレーンチェンジだけを許可することとしてもよい。レーンチェンジに対してこのような制限をかけると、第2レーンにおいて進入車両と脱出車両が干渉することがなく、交通流の混乱を有効に防ぐことができる。
実施の形態9.
次に、図24乃至図26を参照して本発明の実施の形態9について説明する。本実施形態の自動運転車両10は、実施の形態1の場合と同様のハードウェア構成により実現することができる。
図24は、本実施形態におけるECU20の特徴部を表すブロック図である。尚、図24において、図7に示す要素と同一又は対応する要素については、共通する符号を付してその説明を省略又は簡略する。
図24に示すように、本実施形態では、レーン選択部38が、走行レーン決定部72と共に、周辺地形解釈部154、交通流解釈部156及びばらつき停止指示部158を備えている。周辺地形解釈部154は、走路認識部36からの情報等に基づいて自動運転車両10の現在の走路の状況を検知する。また、交通流解釈部156は、周辺物体認識部34からの情報等に基づいて、自動運転車両10を取り巻く環境でどのような車両がどのように走行しているかを検知する。
ばらつき停止指示部158は、周辺地形解釈部154の検出結果、及び交通流解釈部156の検出結果に基づいて、自動運転車両10の周辺に維持推奨事象が生じているか否かを判断する。維持推奨事象は、ばらつきの必要性を考慮することなく、自動運転車両10の周辺状況から決まる最適レーンを走行レーンとして選択するべき事象である。ばらつき停止指示部158は、このような維持推奨事象の発生を認識すると、ばらつきの生ずるモードでの標準走行レーンの決定処理の停止指示を発生する。
図25は、上述した維持推奨事象の典型例を説明するための図である。図25の上段は、自動運転車両10が渋滞した車列の中で走行している様子を示す。渋滞の中で個々の車両が無闇にレーンチェンジを行うと交通流が更に停滞する。このため、ばらつき停止指示部158は、渋滞を検知すると維持推奨事象が生じたと判断して上記の停止指示を発生する。渋滞の発生は、走行レーン及び隣接レーンにおける周辺車両の密度、並びに自車の平均速度等に基づいて検知することができる。
但し、渋滞が生じているか否かは、路車間通信によりインフラストラクチャ側から提供される情報に基づいて判断することとしてもよい。或いは、現実の車両分布は、車外に設置されたサーバから自動運転車両10に搭載された通信システムに配信させることとしてもよい。そして、ECU20は、その通信システムから車両分布を受信することとしてもよい。この場合の情報伝達の経路としては、例えば、下記の2例が考えられる。
(1)車外インフラストラクチャが渋滞を検知する例
車外インフラストラクチャ→車外サーバ→各自動運転車両10の経路で渋滞の発生情報を配信。
(2)車外サーバが渋滞の発生を判定する例
各自動運転車両10が自車位置及び/又は周辺認識情報を車外サーバに送信。
車外サーバが情報を集約して渋滞の有無を判断。
車外サーバから各自動運転車両10に渋滞の発生情報を配信。
図25の中段は、自動運転車両10が走行レーンを走行している際に、緊急車両160が追い越しレーンを高速走行してきた様子を示している。このような場合には、緊急車両160の通過を妨げるようなレーンチェンジが行われないことが望ましい。このため、ばらつき停止指示部158は、緊急車両160の接近を検知すると維持推奨事象が生じたと判断して上記の停止指示を発生する。緊急車両160の接近は、緊急車両160が発する音や光、接近車両と自車の相対速度等に基づいて検知することができる。但し、緊急車両の接近についても、路車間通信により提供される情報に基づいて判断することとしてもよい。
図25の中段に示す状況と類似した状況は、追い越しレーンを高速車両が走行している場合にも発生する。このような場合には、円滑な交通流を維持する観点より、高速車両の走行を妨げないことが望ましい。このため、ばらつき停止指示部158は、追い越しレーン上に相対速度が著しく高い接近車両を認識した場合にも維持推奨事象が生じたと判断して上記の停止指示を発生する。
図25の下段は、走路の第1レーンが工事区間に差し掛かる状況を示している。このような状況下では、第2レーンに車両が集中してくることから、車両の分布が偏ったものとなる。しかし、このような状況下では、円滑な交通流を維持する観点から、自動運転車両10に第1レーンを選択させるべきではない。このため、ばらつき停止指示部158は、工事区間を検知した場合にも、維持推奨事象が生じたと判断して上記の停止指示を発生する。工事区間の発生は、路上に並べられるロードコーン(パイロン)や車線規制を知らせるサインボードなどを認識することで検知することができる。
図25の下段に示す状況と類似した状況は、例えば、路上に落下物が存在しているような場合にも発生する。この場合も、落下物の存在するレーンから他のレーンに多数の車両がレーンチェンジすることで、交通流に偏りが生ずる。しかし、この場合も、自動運転車両10に空いたレーンを選択させるべきではない。このため、ばらつき停止指示部158は、特定のレーンから他のレーンに多数の車両がレーンチェンジしている場合にも、維持推奨事象が生じたと判断して上記の停止指示を発生する。先行車両のレーンチェンジは、例えば、方向指示器の作動や、先行車両の軌道変化に基づいて検知することができる。
図26は、本実施形態においてECU20が実行するレーン選択処理のフローチャートである。図26に示すルーチンには、周辺地形及び交通流を検出する処理(ステップ162)並びにばらつき停止指示の発生を判断する処理(ステップ164)に加えて走行レーン決定処理(ステップ46〜60)が含まれている。走行レーン決定処理は、実施の形態1の場合(図5参照)と同様であるためここでは説明を省略する。
図26に示すルーチンは、図5に示すルーチンと同様に、ECU20がレーン再選択指示を認識することで開始される(ステップ44)。このルーチンが開始されると、先ず、周辺地形・交通流検出処理が実行される(ステップ162)。具体的には、周辺物体認識部34及び走路認識部36から提供される各種の情報に基づいて、現在の走路の情況、並びに周辺車両の情況が検出される。
次に、ばらつき停止指示の発生条件が生じているか否かが判別される(ステップ164)。具体的には、上記ステップ162の検出結果に基づいて、下記の維持推奨事象の何れかが成立しているか否かが判別される。
(1)渋滞
(2)緊急車両の通過
(3)高速車両の通過
(4)工事区間の発生
(5)特定のレーンから他のレーンへの多数車両のレーンチェンジ
ステップ164において、何れの維持推奨事象についても発生が認められない場合は、以後、ステップ46以降の処理により、実施の形態1の場合と同様に標準走行レーンが決定される。この場合、多数の自動運転車両10が参加する交通流では、標準走行レーンにばらつきが生じ、偏った交通流の発生が回避される。
一方、上記ステップ164において、何れかの維持推奨事象の発生が認められた場合は、ステップ48において、現在のレーンが走行レーンとして選択される。自動運転車両10は、他のルーチンにおいて、現在の走路の情況並びに周辺車両の情況に応じた最適なレーンを選択する機能を有している。ここでは、その機能によって決定されたレーンが走行レーンとして選択される。この場合、同じ情況に置かれた多数の自動運転車両10は、同じレーンを走行レーンとして選択する。維持推奨事象が生じている状況下では、多数の自動運転車両10がばらつきなく最適レーンを選択することが、交通流をスムーズに維持するうえで望ましい。上記の処理によれば、その要求を満たすことができる。
以上説明した通り、本実施形態によれば、個々の自動運転車両10がばらばらにレーンチェンジをするべきでない状況下では、ばらつきの生ずるモードで標準走行レーンを決定する処理を停止させることができる。このため、本実施形態によれば、そのような状況下でも交通流をスムーズに維持することができる。
ところで、上述した実施の形態9では、ばらつき停止指示を発生する機能を、実施の形態1の処理に組み合わせることとしているが、その組み合わせはこれに限定されるものではない。即ち、ばらつき停止指示を発生する機能は、上述した実施の形態1乃至8の何れと組み合わせてもよい。
10 自動運転車両
12 ステレオカメラ
14 LIDARユニット
16 ミリ波レーダユニット
18 GPSユニット
20 ECU
28 走行可能エリア
30 複数レーンエリア
34 周辺物体認識部
36 走路認識部
38 レーン選択部
72 走行レーン決定部
74、90、130,146 分布目標決定部
84、92,108 レーン特性値部
128、156 交通流解釈部
148、154 周辺地形解釈部
150 徐変区間設定部
152 目標設定部
158 ばらつき停止指示部
thr1、thr2、thr3、thri レーン閾値

Claims (23)

  1. 複数の自動運転車両を含む自動運転システムであって、
    前記自動運転車両は、
    目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
    個々の自動運転車両に搭載されている前記制御装置は、同一環境に置かれた同一の複数レーンエリアにおいて前記複数の自動運転車両が決定する前記標準走行レーンに、ばらつきが生ずるように構成されており、
    前記制御装置は、
    乱数を発生させる処理と、
    レーン閾値を読み出す処理と、
    前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定するレーン決定処理と、
    を実行することを特徴とする自動運転システム。
  2. 前記レーン決定処理は、
    車両の走行に関わる情報に基づいて前記複数レーンエリアにおける仮走行レーンを決定する処理と、
    前記乱数と前記レーン閾値との比較に基づいて、前記仮走行レーンを前記標準走行レーンとするか、前記仮走行レーンと異なるレーンを前記標準走行レーンとするかを決定する処理と、
    を含むことを特徴とする請求項に記載の自動運転システム。
  3. 前記制御装置は、
    前記複数レーンエリアにおける車両の分布目標を設定する処理と、
    前記分布目標に対応させて前記レーン閾値を設定する処理と、
    を実行することを特徴とする請求項又はに記載の自動運転システム。
  4. 複数の自動運転車両を含む自動運転システムであって、
    前記自動運転車両は、
    目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
    個々の自動運転車両に搭載されている前記制御装置は、同一環境に置かれた同一の複数レーンエリアにおいて前記複数の自動運転車両が決定する前記標準走行レーンに、ばらつきが生ずるように構成されており、
    前記制御装置は、
    レーン特性値を記憶しており、
    当該レーン特性値に基づいて前記標準走行レーンを決定し、
    前記複数の自動運転車両の夫々に記憶されているレーン特性値はばらつきを有しており、
    乱数を発生させる処理と、
    前記レーン特性値に基づいてレーン閾値を設定する閾値設定処理と、
    前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定する処理と、
    を実行することを特徴とする自動運転システム。
  5. 前記制御装置は、
    前記複数レーンエリアにおける車両の分布目標を設定する処理と、
    前記レーン特性値が変動域の全域にばらついた場合に前記分布目標が実現されるようなレーン特性値とレーン閾値との関係を設定する処理と、を実行し、
    前記閾値設定処理では、自車のレーン特性値を前記関係に当て嵌めて前記レーン閾値を設定することを特徴とする請求項に記載の自動運転システム。
  6. 複数の自動運転車両を含む自動運転システムであって、
    前記自動運転車両は、
    目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
    個々の自動運転車両に搭載されている前記制御装置は、同一環境に置かれた同一の複数レーンエリアにおいて前記複数の自動運転車両が決定する前記標準走行レーンに、ばらつきが生ずるように構成されており、
    前記制御装置は、
    レーン特性値を記憶しており、
    当該レーン特性値に基づいて前記標準走行レーンを決定し、
    前記複数の自動運転車両の夫々に記憶されているレーン特性値はばらつきを有しており、
    前記複数の自動運転車両において共通に用いられるレーン閾値を設定する閾値設定処理と、
    前記レーン閾値と前記レーン特性値との比較に基づいて前記標準走行レーンを決定する処理と、
    を実行することを特徴とする自動運転システム。
  7. 前記制御装置は、前記複数レーンエリアにおける車両の分布目標を設定する処理を実行し、
    前記閾値設定処理は、前記分布目標に対応させて前記レーン閾値を設定する処理を含むことを特徴とする請求項に記載の自動運転システム。
  8. 前記制御装置は、
    自車のドライバのレーン選択に関わる特性を検知する処理と、
    前記レーン特性値に、当該特性を反映させる処理と、
    を実行することを特徴とする請求項乃至の何れか1項に記載の自動運転システム。
  9. 前記制御装置は、
    前記複数レーンエリアにおける現実の車両分布を取得する処理と、
    前記現実の車両分布が前記分布目標に近づくように前記レーン閾値を修正する処理と、
    を実行することを特徴とする請求項3、5及び7の何れか1項に記載の自動運転システム。
  10. 前記制御装置は、
    前記目的地に向かうルート上で前記分布目標が変化する変化点を抽出する処理と、
    前記変化点を含む複数レーンエリアの一区間を徐変区間として設定する処理と、
    前記徐変区間において前記分布目標を、変化前の分布から変化後の分布に向けて徐々に変化させる処理と、
    を実行することを特徴とする請求項3、5、7及び9の何れか1項に記載の自動運転システム。
  11. 前記制御装置は、
    レーンの維持が推奨される維持推奨事象を検出する処理と、
    前記維持推奨事象が検出された場合に、同一環境下に置かれた前記複数の自動運転車両に同一の決定を導かせるモードで前記標準走行レーンを決定する処理と、
    を実行することを特徴とする請求項1乃至10の何れか1項に記載の自動運転システム。
  12. 目的地に向かって自動走行する機能を有する自動運転車両であって、
    前記目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
    前記制御装置は、
    同一環境に置かれた同一の複数レーンエリアで決定される前記標準走行レーンにばらつきが生ずるように構成されており、
    乱数を発生させる処理と、
    レーン閾値を読み出す処理と、
    前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定するレーン決定処理と、
    を実行することを特徴とする自動運転車両。
  13. 前記レーン決定処理は、
    車両の走行に関わる情報に基づいて前記複数レーンエリアにおける仮走行レーンを決定する処理と、
    前記乱数と前記レーン閾値との比較に基づいて、前記仮走行レーンを前記標準走行レーンとするか、前記仮走行レーンと異なるレーンを前記標準走行レーンとするかを決定する処理と、
    を含むことを特徴とする請求項12に記載の自動運転車両。
  14. 前記制御装置は、
    前記複数レーンエリアにおける車両の分布目標を設定する処理と、
    前記分布目標に対応させて前記レーン閾値を設定する処理と、
    を実行することを特徴とする請求項12又は13に記載の自動運転車両。
  15. 目的地に向かって自動走行する機能を有する自動運転車両であって、
    前記目的地に向かう過程で走行可能な走行可能エリアを設定し、当該走行可能エリアのうち二以上のレーンを含む複数レーンエリアでは一のレーンを標準走行レーンとして決定する制御装置を備え、
    前記制御装置は、同一環境に置かれた同一の複数レーンエリアにおいて個々のレーンが前記標準走行レーンに決定される確率が、レーン毎に、100%を除く一定値となるように構成されていることを特徴とする自動運転車両。
  16. 前記制御装置は、
    レーン特性値を記憶しており、
    乱数を発生させる処理と、
    前記レーン特性値に基づいてレーン閾値を設定する閾値設定処理と、
    前記乱数と前記レーン閾値との比較に基づいて前記標準走行レーンを決定する処理と、
    を実行することを特徴とする請求項15に記載の自動運転車両。
  17. 前記制御装置は、
    前記複数レーンエリアにおける車両の分布目標を設定する処理と、
    前記レーン特性値が変動域の全域にばらついた場合に前記分布目標が実現されるようなレーン特性値とレーン閾値との関係を設定する処理と、を実行し、
    前記閾値設定処理では、自車のレーン特性値を前記関係に当て嵌めて前記レーン閾値を設定することを特徴とする請求項16に記載の自動運転車両。
  18. 前記制御装置は、
    レーン特性値を記憶しており、
    前記複数レーンエリアの夫々のレーンに対応するレーン閾値を設定する閾値設定処理と、
    前記レーン閾値と前記レーン特性値との比較に基づいて前記標準走行レーンを決定する処理と、
    を実行することを特徴とする請求項15に記載の自動運転車両。
  19. 前記制御装置は、前記複数レーンエリアにおける車両の分布目標を設定する処理を実行し、
    前記閾値設定処理は、前記分布目標に対応させて前記レーン閾値を設定する処理を含むことを特徴とする請求項18に記載の自動運転車両。
  20. 前記制御装置は、
    自車のドライバのレーン選択に関わる特性を検知する処理と、
    前記レーン特性値に、当該特性を反映させる処理と、
    を実行することを特徴とする請求項16乃至19の何れか1項に記載の自動運転車両。
  21. 前記制御装置は、
    前記複数レーンエリアにおける現実の車両分布を取得する処理と、
    前記現実の車両分布が前記分布目標に近づくように前記レーン閾値を修正する処理と、
    を実行することを特徴とする請求項14、17及び19の何れか1項に記載の自動運転車両。
  22. 前記制御装置は、
    前記目的地に向かうルート上で前記分布目標が変化する変化点を抽出する処理と、
    前記変化点を含む複数レーンエリアの一区間を徐変区間として設定する処理と、
    前記徐変区間において前記分布目標を、変化前の分布から変化後の分布に向けて徐々に変化させる処理と、
    を実行することを特徴とする請求項14、17、19及び21の何れか1項に記載の自動運転車両。
  23. 前記制御装置は、
    レーンの維持が推奨される維持推奨事象を検出する処理と、
    前記維持推奨事象が検出された場合に、同一環境下では同一の決定が導かれるモードで前記標準走行レーンを決定する処理と、
    を実行することを特徴とする請求項12乃至22の何れか1項に記載の自動運転車両。
JP2016157600A 2016-08-10 2016-08-10 自動運転システム及び自動運転車両 Active JP6583185B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016157600A JP6583185B2 (ja) 2016-08-10 2016-08-10 自動運転システム及び自動運転車両
SG10201705352TA SG10201705352TA (en) 2016-08-10 2017-06-29 Autonomous driving system and autonomous driving vehicle
EP17179480.3A EP3282226B1 (en) 2016-08-10 2017-07-04 Autonomous driving system and autonomous driving vehicle
US15/644,136 US10699579B2 (en) 2016-08-10 2017-07-07 Autonomous driving system and autonomous driving vehicle
MYPI2017702541A MY186563A (en) 2016-08-10 2017-07-12 Autonomous driving system and autonomous driving vehicle
RU2017128096A RU2671446C1 (ru) 2016-08-10 2017-08-07 Система автономного вождения и транспортное средство автономного вождения
KR1020170100395A KR102017780B1 (ko) 2016-08-10 2017-08-08 자동 운전 시스템 및 자동 운전 차량
CN201710682431.4A CN107731002B (zh) 2016-08-10 2017-08-10 自动驾驶系统及自动驾驶车辆
BR102017017212-0A BR102017017212A2 (pt) 2016-08-10 2017-08-10 Sistema de condução autônomo e veículo de condução autônomo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157600A JP6583185B2 (ja) 2016-08-10 2016-08-10 自動運転システム及び自動運転車両

Publications (2)

Publication Number Publication Date
JP2018025976A JP2018025976A (ja) 2018-02-15
JP6583185B2 true JP6583185B2 (ja) 2019-10-02

Family

ID=59294949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157600A Active JP6583185B2 (ja) 2016-08-10 2016-08-10 自動運転システム及び自動運転車両

Country Status (9)

Country Link
US (1) US10699579B2 (ja)
EP (1) EP3282226B1 (ja)
JP (1) JP6583185B2 (ja)
KR (1) KR102017780B1 (ja)
CN (1) CN107731002B (ja)
BR (1) BR102017017212A2 (ja)
MY (1) MY186563A (ja)
RU (1) RU2671446C1 (ja)
SG (1) SG10201705352TA (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583185B2 (ja) * 2016-08-10 2019-10-02 トヨタ自動車株式会社 自動運転システム及び自動運転車両
JP6686871B2 (ja) 2016-12-26 2020-04-22 トヨタ自動車株式会社 自動運転システム
US20180315314A1 (en) * 2017-04-28 2018-11-01 GM Global Technology Operations LLC Automated vehicle route traversal
US10713940B2 (en) * 2017-10-31 2020-07-14 Waymo Llc Detecting and responding to traffic redirection for autonomous vehicles
US10401862B2 (en) 2017-10-31 2019-09-03 Waymo Llc Semantic object clustering for autonomous vehicle decision making
US10365652B2 (en) * 2017-11-22 2019-07-30 GM Global Technology Operations LLC Feasible lane routing
CN110544389A (zh) * 2018-05-28 2019-12-06 上海汽车集团股份有限公司 一种自动驾驶管控方法、装置及系统
RU2760241C1 (ru) * 2018-06-29 2021-11-23 Ниссан Мотор Ко., Лтд. Способ помощи при вождении и устройство управления транспортным средством
JP7229710B2 (ja) * 2018-09-26 2023-02-28 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN110619757A (zh) * 2018-12-29 2019-12-27 长城汽车股份有限公司 自动驾驶车辆的车道选择方法、系统及车辆
CN110667578B (zh) * 2018-12-29 2021-09-17 毫末智行科技有限公司 自动驾驶车辆的横向决策系统及横向决策确定方法
CN109949611B (zh) 2019-03-28 2021-11-30 阿波罗智能技术(北京)有限公司 无人车的变道方法、装置及存储介质
CN109782776B (zh) * 2019-03-28 2022-07-29 北京百度网讯科技有限公司 无人车的车道选择方法、装置及存储介质
US11454971B2 (en) * 2019-08-29 2022-09-27 GM Global Technology Operations LLC Methods and systems for learning user preferences for lane changes
JP6902589B2 (ja) * 2019-10-07 2021-07-14 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11880201B2 (en) * 2019-12-30 2024-01-23 Baidu Usa Llc Fastest lane determination algorithm under traffic jam
JP6946495B2 (ja) * 2020-03-04 2021-10-06 本田技研工業株式会社 車両制御装置及び車両制御方法
JP7061148B2 (ja) 2020-03-31 2022-04-27 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7174025B2 (ja) * 2020-10-30 2022-11-17 株式会社 日立産業制御ソリューションズ 交通流を最適化するシステム及び方法
CN113283335B (zh) * 2021-05-21 2022-08-19 际络科技(上海)有限公司 施工区域的识别方法、装置、车辆、电子设备及存储介质
CN114973737B (zh) * 2022-06-07 2023-09-26 清华大学 一种自动驾驶车辆进出自动驾驶专用车道方式控制方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769927B2 (ja) 1998-03-30 2006-04-26 オムロン株式会社 移動局および車両走行位置制御システム
JP3455153B2 (ja) 2000-02-16 2003-10-14 松下電器産業株式会社 交差点における車線誘導案内表示方法およびそのナビゲーション装置並びに記録媒体
DE10036276A1 (de) 2000-07-26 2002-02-07 Daimler Chrysler Ag Automatisches Brems- und Lenksystem für ein Fahrzeug
JP2006098232A (ja) * 2004-09-29 2006-04-13 Clarion Co Ltd ナビゲーション装置、方法及びプログラム
US8457892B2 (en) 2006-03-01 2013-06-04 Toyota Jidosha Kabushiki Kaisha Own-vehicle-path determining method and own-vehicle-path determining apparatus
JP2008262418A (ja) * 2007-04-12 2008-10-30 Toyota Motor Corp 渋滞緩和システム、地上システム、渋滞予測制御装置
RU2422907C2 (ru) * 2009-02-25 2011-06-27 Низовцев Юрий Михайлович Способ регулирования транспортных потоков на магистрали, пересекаемой потоками автомобилей, движущихся в поперечном направлении
US20120123660A1 (en) * 2009-07-28 2012-05-17 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control method, and vehicle control system
JP2011237329A (ja) * 2010-05-12 2011-11-24 Clarion Co Ltd 車線誘導装置、ナビゲーション装置
CN103827938A (zh) * 2011-09-22 2014-05-28 丰田自动车株式会社 驾驶辅助装置
JP2013109495A (ja) * 2011-11-18 2013-06-06 Denso Corp 車両制御装置
US9008961B2 (en) * 2012-11-30 2015-04-14 Google Inc. Determining and displaying auto drive lanes in an autonomous vehicle
US9053636B2 (en) * 2012-12-30 2015-06-09 Robert Gordon Management center module for advanced lane management assist for automated vehicles and conventionally driven vehicles
JP2014137741A (ja) * 2013-01-17 2014-07-28 Sumitomo Electric System Solutions Co Ltd 交通評価装置、コンピュータプログラム及び交通評価方法
US9275545B2 (en) * 2013-03-14 2016-03-01 John Felix Hart, JR. System and method for monitoring vehicle traffic and controlling traffic signals
KR20150128712A (ko) * 2013-03-15 2015-11-18 칼리퍼 코포레이션 차량 라우팅 및 교통 관리를 위한 차선 레벨 차량 내비게이션
JP5900454B2 (ja) * 2013-10-09 2016-04-06 トヨタ自動車株式会社 車両用車線案内システム及び車両用車線案内方法
JP6197691B2 (ja) * 2014-02-26 2017-09-20 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
US9409570B2 (en) * 2014-05-09 2016-08-09 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for predicting most probable path of vehicle travel and vehicle control loss preview
US10697790B2 (en) * 2014-06-10 2020-06-30 Clarion Co., Ltd. Lane selecting device, vehicle control system and lane selecting method
JP6299496B2 (ja) * 2014-07-10 2018-03-28 日産自動車株式会社 走行支援装置及び走行支援方法
KR20160013713A (ko) * 2014-07-28 2016-02-05 현대자동차주식회사 자율주행차량의 전역경로 생성장치 및 방법
US9298186B2 (en) * 2015-02-01 2016-03-29 Thomas Danaher Harvey Methods for operation of autonomous vehicles in special control zones
US9384666B1 (en) * 2015-02-01 2016-07-05 Thomas Danaher Harvey Methods to operate autonomous vehicles to pilot vehicles in groups or convoys
WO2016126321A1 (en) * 2015-02-06 2016-08-11 Delphi Technologies, Inc. Method and apparatus for controlling an autonomous vehicle
US20160231746A1 (en) * 2015-02-06 2016-08-11 Delphi Technologies, Inc. System And Method To Operate An Automated Vehicle
US9811743B2 (en) * 2015-06-29 2017-11-07 Sharp Laboratories Of America, Inc. Tracking road boundaries
US9718471B2 (en) * 2015-08-18 2017-08-01 International Business Machines Corporation Automated spatial separation of self-driving vehicles from manually operated vehicles
CN105631793B (zh) 2015-12-18 2020-01-14 华南理工大学 一种车流拥堵中车辆群自主协同调度的智能疏导方法
US10386835B2 (en) * 2016-01-04 2019-08-20 GM Global Technology Operations LLC System and method for externally interfacing with an autonomous vehicle
CN105739495B (zh) * 2016-01-29 2019-05-14 大连楼兰科技股份有限公司 行车路径规划方法、装置和自动转向系统
US10309789B2 (en) * 2016-03-25 2019-06-04 Qualcomm Incorporated Automated lane assignment for vehicles
US9672734B1 (en) * 2016-04-08 2017-06-06 Sivalogeswaran Ratnasingam Traffic aware lane determination for human driver and autonomous vehicle driving system
CN105739534B (zh) * 2016-04-22 2020-02-21 百度在线网络技术(北京)有限公司 基于车联网的无人驾驶车多车协同驾驶方法及装置
JP6520862B2 (ja) * 2016-08-10 2019-05-29 トヨタ自動車株式会社 自動運転システム
JP6583185B2 (ja) * 2016-08-10 2019-10-02 トヨタ自動車株式会社 自動運転システム及び自動運転車両
CN115343947A (zh) * 2016-09-23 2022-11-15 苹果公司 自主车辆的运动控制决策
US10032373B2 (en) * 2016-09-29 2018-07-24 Cubic Corporation Systems and methods for using autonomous vehicles in traffic

Also Published As

Publication number Publication date
EP3282226B1 (en) 2019-10-16
CN107731002A (zh) 2018-02-23
BR102017017212A2 (pt) 2018-04-03
RU2671446C1 (ru) 2018-10-31
MY186563A (en) 2021-07-27
US10699579B2 (en) 2020-06-30
SG10201705352TA (en) 2018-03-28
KR102017780B1 (ko) 2019-09-03
EP3282226A1 (en) 2018-02-14
KR20180018379A (ko) 2018-02-21
JP2018025976A (ja) 2018-02-15
CN107731002B (zh) 2021-08-27
US20180047292A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6583185B2 (ja) 自動運転システム及び自動運転車両
EP3725631B1 (en) Lane changing method, device for driverless vehicle and computer-readable storage medium
JP7159533B2 (ja) ホスト車両用のナビゲーションシステム
US11231286B2 (en) Dynamic routing for self-driving vehicles
CN113071520B (zh) 车辆行驶控制方法及装置
CN109598934B (zh) 一种基于规则与学习模型的无人驾驶汽车驶离高速的方法
US11320282B2 (en) Driving control method and driving control device
US9689706B2 (en) Enabling alert messages in a vehicle
JP7347523B2 (ja) 車両制御装置及び車両制御方法
US20210191394A1 (en) Systems and methods for presenting curated autonomy-system information of a vehicle
US11433897B2 (en) Method and apparatus for determination of optimal cruising lane in an assisted driving system
JP2016193719A (ja) 自動運転システムのための間隔に基づく速度制御法
US20190202458A1 (en) Travel control apparatus of self-driving vehicle
US20190202457A1 (en) Travel control apparatus of self-driving vehicle
US11447155B2 (en) Vehicle control device, map information management system, vehicle control method, and storage medium
JP6605257B2 (ja) 車載装置、車線変更判定プログラム、車線変更判定方法
WO2023050811A1 (zh) 行驶设备控制方法、装置、电子设备、存储介质及计算机程序产品
JP7216766B2 (ja) 車両制御装置
JP7379033B2 (ja) 運転支援方法及び運転支援装置
JP6888538B2 (ja) 車両制御装置
JP2019059262A (ja) 車両走行制御方法及び装置
JP7362899B2 (ja) 車両の走行支援方法及び走行支援装置
JP7233299B2 (ja) 運転挙動制御方法及び運転挙動制御装置
KR102551283B1 (ko) 메타인지 기반 자율주행 보정 장치 및 방법
JP2020166625A (ja) 車両制御方法及び車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R151 Written notification of patent or utility model registration

Ref document number: 6583185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151