JP6580457B2 - 回転慣性質量ダンパ - Google Patents

回転慣性質量ダンパ Download PDF

Info

Publication number
JP6580457B2
JP6580457B2 JP2015212777A JP2015212777A JP6580457B2 JP 6580457 B2 JP6580457 B2 JP 6580457B2 JP 2015212777 A JP2015212777 A JP 2015212777A JP 2015212777 A JP2015212777 A JP 2015212777A JP 6580457 B2 JP6580457 B2 JP 6580457B2
Authority
JP
Japan
Prior art keywords
shaft
screw shaft
connecting portion
respect
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212777A
Other languages
English (en)
Other versions
JP2017082932A (ja
Inventor
義仁 渡邉
義仁 渡邉
量司 友野
量司 友野
卓聖 中村
卓聖 中村
中村 誠
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2015212777A priority Critical patent/JP6580457B2/ja
Priority to US15/770,836 priority patent/US10508439B2/en
Priority to PCT/JP2016/080908 priority patent/WO2017073420A1/ja
Priority to EP16859650.0A priority patent/EP3369961A4/en
Priority to CN201680058924.4A priority patent/CN108138894B/zh
Priority to TW105134577A priority patent/TWI703283B/zh
Publication of JP2017082932A publication Critical patent/JP2017082932A/ja
Application granted granted Critical
Publication of JP6580457B2 publication Critical patent/JP6580457B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/0235Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means where a rotating member is in contact with fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1022Vibration-dampers; Shock-absorbers using inertia effect the linear oscillation movement being converted into a rotational movement of the inertia member, e.g. using a pivoted mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/24Detecting or preventing malfunction, e.g. fail safe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/06Translation-to-rotary conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/12Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Description

本発明は、建物等の構造物に取り付けられて、当該構造物に作用する振動を低減するための回転慣性質量ダンパに関する。
回転慣性質量ダンパとしては特許文献1に開示されたものが知られている。この回転慣性質量ダンパは、螺旋状の雄ねじを有すると共に一端が構造物に固定されたねじ軸と、このねじ軸に螺合するナット部材と、前記ナット部材を回転自在に支承すると共に構造物に固定される外筒と、前記ナット部材によって回転を与えられる付加錘とを備えている。
地震等によって前記構造物に生じた相対振動を前記ねじ軸と前記外筒との間に入力すると、当該振動に伴って前記ねじ軸には軸方向加速度が生じ、この軸方向加速度は前記ねじ軸に螺合する前記ナット部材の角加速度に変換される。この角加速度は前記ナット部材に搭載された前記付加錘に伝達され、これらナット部材及び付加錘には回転が生じる。前記ナット部材及び前記付加錘は一体となって回転体を構成し、当該回転体に生じる回転トルクは、当該回転体の慣性モーメントと前記角加速度の積で表される。そして、この回転トルクは、前記ねじ軸の軸方向加速度が反転する度に、前記ナット部材及びねじ軸によって逆変換されて、当該ねじ軸に対して軸方向反力として作用することになる。
このように、前記ねじ軸に前記ナット部材が螺合したボールねじ装置を使用して、前記構造物に作用する振動を前記回転体の回転運動に変換すると、前記ねじ軸の軸方向加速度は前記ナット部材の角加速度に変換される際に、前記ねじ軸の雄ねじのリードに応じた増幅率で増幅される。また、前記回転体に生じた回転トルクを前記ねじ軸の軸方向反力に逆変換する際にも、当該回転トルクは前記雄ねじのリードに応じた増幅率で増幅される。このため、前記回転慣性質量ダンパでは、前記回転体の質量が小さい場合でも大きな反力をねじ軸に与えることができ、装置の小型化を図りつつも大きな振動低減効果を得ることができる。
一方、前記回転体に生じる回転トルクは当該回転体の慣性モーメントと前記角加速度の積で表されるので、構造物から前記ねじ軸に対して過大な軸方向加速度が入力され、それが増幅されて前記ナット部材に過大な角加速度が生じると、前記回転体に発生する回転トルクも過大なものとなってしまう。このため、当該回転トルクをそのままねじ軸の軸方向反力に逆変換すると、前記ねじ軸又は前記ナット部材の破損が懸念され、また、これらねじ軸及びナット部材が破損しないまでも、この回転慣性質量ダンパから過大な軸方向反力が構造物に作用することになり、当該軸方向反力によって構造物が破損する懸念もある。
この点に関し、特許文献1に示された回転慣性質量ダンパでは、前記ナット部材と前記付加錘の間に摩擦部材が設けられ、前記ナット部材と前記付加錘との間で伝達される回転トルクに上限値が設定されている。このため、前記ナット部材と前記付加錘との間で伝達される回転トルクが前記摩擦部材に設定された上限値を超えると、前記ナット部材から前記付加錘が切り離され、前記回転体の慣性モーメントは前記ナット部材に起因するものだけとなる。これにより、前記ねじ軸の軸方向反力に逆変換される回転トルクは抑えられ、前記ねじ軸に対して過大な軸方向反力が作用するのを防いでいる。
特開2011−144831
しかし、特許文献1に開示される回転慣性質量ダンパでは、前記ナット部材と前記付加錘との間に前記摩擦部材が設けられていることから、仮に摩擦部材が滑ることで前記付加錘と前記ナット部材が分離されたとしても、前記ナット部材そのものは前記ねじ軸の軸方向加速度を増幅した角加速度で回転してしまう。このため、回転体の慣性モーメントはナット部材に起因するもののみになるが、前記ねじ軸に対して過大な軸方向加速度が入力されると、それが増幅されて前記ナット部材には大きな回転トルクが発生し、当該回転トルクが逆変換されて大きな軸方向反力が生じることもあり、当該軸方向反力による構造物の破損が懸念された。
本発明はこのような問題点に鑑みなされたものであり、その目的とするところは、過大な加速度を有する振動が入力された場合に、当該入力振動に応じて発生する軸方向反力を可及的に小さく抑えることができ、ダンパそのもの、又は構造物の破損を未然に防止することが可能な回転慣性質量ダンパを提供することにある。
すなわち本発明は、第一の構造体に固定される第一連結部と、第二の構造体に連結される第二連結部と、外周面に所定のリードで螺旋状のねじ溝が形成されると共に一方の軸端が前記第一連結部に接続されて回転不能に保持されるねじ軸と、前記ねじ軸を収容する中空部を有すると共に前記第二連結部に接続される固定筒と、前記固定筒に対して回転自在に保持されると共に前記ねじ軸に螺合し、前記固定筒に対する前記ねじ軸の進退に応じて往復回転する回転体とを備え、前記第一連結部と前記第二連結部の間の距離の変動と前記ねじ軸のリードによって一義的に決定される回転角を前記回転体に与えて、前記第一の構造体と前記第二の構造体との間に作用する振動エネルギを減衰させる回転慣性質量ダンパを前提とするものである。そして、前記ねじ軸の軸端と前記第一連結部の間には、前記ねじ軸に対して所定値を超える回転トルクが作用した際に、前記第一連結部に対する前記ねじ軸の回転を許容して前記回転体の回転角を減じるトルク制限部材を設けている。
本発明によれば、前記第一の構造体と第二の構造体の間に作用する振動に起因して、前記ねじ軸に対して所定値を超える回転トルクが作用すると、前記第一連結部と前記ねじ軸の軸端との間に設けられたトルク制限部材が作用し、前記ねじ軸が回転して当該ねじ軸に形成された雄ねじ溝のリードが疑似的に増大する。これにより、前記回転体に生じる角加速度を小さく抑えることができ、入力振動に応じて発生する軸方向反力を小さく抑えることができ、ダンパそのもの、又は構造物の破損を未然に防止することが可能となる。
本発明の回転慣性質量ダンパの一例を示す概略図である。 回転慣性質量ダンパを構成するダンパ本体の一例を示す斜視図である。 回転慣性質量ダンパを構成するトルク制限部材の一例を示す斜視図である。
以下、添付図面に沿って本発明の回転慣性質量ダンパを詳細に説明する。
図1は本発明を適用した回転慣性質量ダンパの一例を示すものである。この回転慣性質量ダンパ1は、例えば、ビルディング、塔、橋梁等の構造物を含む系内の別々の部位(第一の構造体及び第二の構造体)に固定される第一連結部10と第二連結部11とを備えている。構造物を含む系とは、当該構造物が固定された基礎地盤を含む意であり、例えば構造物の内部に減衰装置が配置されている場合の外、前記第一連結部10は構造物に、第二連結部11は基礎地盤に固定される場合を含む。
前記構造物が振動すると、当該構造物を含む系の別々の部位に固定された前記第一連結部10と第二連結部11との間には軸方向の相対変位が生じることになり、本発明の回転慣性質量ダンパ1はこの相対変位をねじ軸及びナット部材からなるねじ変換機構によってフライホイールの回転運動に変換する。前記フライホイール及び前記ナット部材からなる回転体に生じた回転トルクは前記ねじ変換機構によって前記ねじ軸の軸方向反力に逆変換され、前記相対変位を生じさせている振動エネルギはこの軸方向反力によって減衰される。
この回転慣性質量ダンパ1は、大きく分けて、ダンパ本体部2と、前記ダンパ本体部2と直列に連結されたトルク制限部材3とから構成されている。前記トルク制限部材3は前記ダンパ本体2と前記第一連結部10との間に設けられ、前記ダンパ本体2は前記トルク制限部材3と前記第二連結部11との間に設けられている。
図2は前記ダンパ本体の一例を示す斜視図である。前記ダンパ本体2は、中空部を有して円筒状に形成された固定筒20と、この固定筒20の中空部に対して挿入されたねじ軸30と、多数のボールを介してこのねじ軸30に螺合するナット部材40と、前記固定筒20に対して回転自在に支承されると共に前記ナット部材40が結合された円筒状の軸受ハウジング50と、この軸受ハウジング50に固定された円筒状のフライホイール60と、前記固定筒20に対して回転自在に支承されると共に前記フライホイール60に対して結合されたロータ部材80とを備えている。
前記固定筒20はボールジョイント21を介して前記第二連結部11に結合されている。前記ボールジョイント21は前記第二の構造体に対する前記固定筒2の中心軸の角度変位を吸収する一方、前記固定筒20の中心軸周りの回転は係止するように構成されている。また、前記トルク制限部材3も同様のボールジョイントを介して前記第一連結部10に結合されている。
前記固定筒20と前記軸受ハウジング50との間には軸受(図示せず)が設けられており、前記軸受ハウジング50は前記固定筒20に対して回転自在に支承されている。また、前記軸受ハウジング50の軸方向の一端には前記ナット部材40が固定されており、かかるナット部材40が回転すると、軸受ハウジング50がナット部材40と共に前記固定筒20に対して回転を生じるように構成されている。
前記ねじ軸30及びナット部材40は所謂ボールねじ装置を構成している。前記ねじ軸の外周面には所定のリードで螺旋状のねじ溝が形成されており、前記ナット部材に内蔵された多数のボールが前記ねじ溝内を転動する。これにより、前記ねじ軸30と前記ナット部材40との間では軸方向の直線運動と前記ねじ軸周囲の回転運動を相互に変換することが可能となっており、前記ねじ軸30に対して軸方向の直線運動を与えると、前記ナット部材40が前記ねじ軸30の周囲で回転運動を生じる一方、前記ナット部材40に回転運動を与えると、前記ねじ軸30が軸方向へ直線運動を生じることになる。
前記ねじ軸30の軸端は前記トルク制限部材3を介して第一構造体に固定されることから、地震等によって前記第一連結部10と前記第二連結部11との間に相対変位が生じ、当該ねじ軸30が軸方向へ直線運動を生じると、これに応じてナット部材40がねじ軸30の周囲を回転し、この回転が前記軸受ハウジング50に伝達される。尚、前記フライホイール60から突き出したねじ軸30の一端には後述する伝達軸32が設けられており、当該伝達軸32は前記トルク制限部材3に挿入されている。
前記軸受ハウジング50の外側には円筒状のフライホイール60が設けられている。このフライホイール60は前記軸受ハウジング50に固定されており、前記ナット部材40及び前記軸受ハウジング50と一体で回転するように構成されている。また、前記軸受ハウジング50が固定筒20に対して自由に回転し得ることから、前記フライホイール60は前記固定筒20に対しても自由に回転することが可能である。
一方、前記固定筒20の周囲には前記ロータ部材80が設けられている。このロータ部材80は回転軸受を介して固定筒20の外周面に支承されると共に、エンドプレート61を介して前記フライホイール60に結合されており、前記フライホイール60の回転に伴って前記固定筒20の周囲を回転するように構成されている。
前記ロータ部材80の内周面は固定筒20の外周面とわずかな隙間を介して対向しており、かかる隙間は粘性流体の密閉空間となっている。このため、ロータ部材80が回転すると、前記密閉空間に充填された粘性流体に対して剪断抵抗力が作用し、ロータ部材8の回転運動のエネルギ、ひいてはフライホイール60の回転運動のエネルギが減衰されるようになっている。
図3は前記トルク制限部材3の一例を示すものである。このトルク制限部材3は、中空部を有して円筒状に形成された外筒部材31と、前記外筒部材31の中空部内に挿入された伝達軸32と、前記外筒部材31の中空部内に配置されて当該中空部内で前記伝達軸32を保持する回転軸受33と、前記伝達軸32に押し付けられて前記外筒部材31に対する当該伝達軸32の回転を係止する複数の摩擦部材34とを備えている。
前記外筒部材31に形成された中空部は軸方向の一端が蓋部材35によって塞がれている。この蓋部材35の中央には連結軸36が固定されており、図3では省略されているが、この連結軸36の先端にはボールスタッドが一体に設けられている。前記ボールスタッドはボールジョイントを介して前記第一連結部10に係合し、前記第一の構造体に対する回転慣性質量ダンパ1の角度変位を吸収する。
前記外筒部材31の中空部には前記伝達軸32が挿入されている。この伝達軸は前記ねじ軸30と一体になって回転して回転トルクを伝達すると共に当該ねじ軸との間で軸方向荷重(軸力)を伝達するものであり、前記ねじ軸と一体に形成されても良いし、あるいは継手によってねじ軸と連結されてもよい。前記外筒部材31と前記伝達軸32との間で作用するラジアル荷重及びスラスト荷重を負荷しつつ、当該伝達軸32を前記外筒部材31に対して回転自在に保持するため、前記回転軸受33としては一対の複列ローラ軸受が用いられている。各複列ローラ軸受は所謂アンギュラコンタクト軸受であり、自転軸が90度の角度で交差した2列のローラ列を有し、各ローラ列を構成するローラの自転軸は前記伝達軸32の軸方向に対して45°の角度で傾斜している。これにより、前記外筒部材31と前記伝達軸32との間で大きな軸方向荷重を伝達することが可能となっている。
更に、前記複数の摩擦部材34は前記外筒部材31と前記伝達軸32の間で、当該伝達軸32を取り囲むように配置され、前記伝達軸32の外周面に突出する鍔部37に接している。各摩擦部材34は前記外筒部材31の周方向へは移動不能に、且つ、半径方向へは移動自在に配置されている。前記外筒部材31には複数の調整ねじ38が螺合しており、各調整ねじ38を締結することによって、前記摩擦部材34が前記伝達軸32の鍔部37に向けて進出し、前記鍔部37に対する前記摩擦部材34の押圧力を調整することができる。すなわち、前記摩擦部材34と前記鍔部37との間には前記調整ねじ38の締結量に応じた摩擦力が作用し、前記摩擦部材34が前記伝達軸32の回転を止めるブレーキシューとして機能する。
このため、前記伝達軸32に回転トルクが作用している状態を想定すると、前記鍔部37と前記摩擦部材34との間に生じる摩擦力が前記回転トルクに抗して前記伝達軸32を非回転に保持し得る程度に大きいものであれば、前記伝達軸は前記外筒部材31に対して非回転に保持される。逆に、前記鍔部37と前記摩擦部材34との間に生じる摩擦力が小さければ、前記摩擦力は前記回転トルクに抗して前記伝達軸32の回転を止めることができず、当該伝達軸32は前記外筒部材31に対して回転を生じることになる。
すなわち、前記トルク制限部材3はトルクリミッタとして機能しており、前記伝達軸に作用する回転トルク、換言すれば前記ねじ軸に作用する回転トルクが前記調整ねじの締結によって設定された制限トルク以下であれば、前記伝達軸32及び前記ねじ軸30は前記外筒部材31に対して回転することなく保持される。一方、前記ねじ軸30に作用する回転トルクが前記調整ねじ38の締結によって設定された制限トルクを上回ると、前記伝達軸32及び前記ねじ軸30は前記外筒部材31に対して回転を生じる。
このように構成された回転慣性質量ダンパ1では、前記第一連結部10と第二連結部11との間に相対的な振動が作用すると、前記トルク制限部材3と前記ねじ軸30との間は軸方向荷重が伝達されることから、前記ねじ軸30には軸方向加速度が作用し、前記振動は前記固定筒20に対するねじ軸30の軸方向への直線運動となる。このとき、前記ねじ軸30に作用した軸方向加速度aは以下の式(1)によって前記ナット部材40の角加速度αに変換される。式(1)においてL0は前記ねじ軸30に形成されたねじ溝のリードである。また、前記ナット部材40、前記軸受ハウジング50及び前記フライホイール60が一体となった回転体には角加速度αに起因して回転トルクが発生する。この回転トルクTは以下の式(2)によって表される。この式(2)においてIは前記ナット部材40、前記軸受ハウジング50及び前記フライホイール60から構成される回転体の慣性モーメントである。
α=(2π/L0)・a (1)
T=I・α=I・(2π/L0)・a (2)
前記回転体に生じた回転トルクTは前記ナット部材40によって再変換されて、軸方向の慣性力Qとなる。この軸方向慣性力Qは以下の式(3)によって表される。
Q=T・(2π/L0)=(2π/L02・I・a=M・a (3)
この式(3)に示されるように、軸方向慣性力Qは軸方向加速度aと軸方向に関して等価な質量M=(2π/L02・Iの積と考えることができ、この回転慣性質量ダンパ1は軸方向に関して等価な質量Mを有するダンパであると言える。
式(1)〜(3)から理解されるように、前記回転体の慣性モーメントIが小さいほど、又は前記ねじ軸30のリードL0が大きいほど、軸方向に等価な質量Mは小さくなり、仮に前記ねじ軸30に作用する軸方向加速度を一定とすると、前記回転体に作用する回転トルクT、前記ねじ軸30及び前記固定筒20に作用する軸方向反力は小さくなる。
前記ねじ軸30に対して軸方向加速度aが作用し、それによって前記回転体(前記ナット部材40、前記軸受ハウジング50及び前記フライホイール60)に回転トルクTが発生する際、その反作用として、前記ねじ軸30に対しても同じ大きさの逆方向の回転トルクが作用する。前記トルク制限部材3に挿入された前記伝達軸32は前記ねじ軸30と一体に設けられているので、前記回転トルクTは前記トルク制限部材3の伝達軸32にそのまま作用する。
トルクリミッタとしての前記トルク制限部材3が前記回転トルクTに抗して前記伝達軸32を非回転に保持する場合、すなわち前記ねじ軸30が回転を生じることなく前記固定筒20との間に直線運動を生じる場合、前記回転体には前記ねじ軸30のねじ溝のリードに応じた回転角が与えられる。
一方、前記ねじ軸30に作用する回転トルクTが大きく、前記トルク制限部材3が前記伝達軸32を非回転に保持することができない場合、すなわち前記ねじ軸30が前記固定筒20に対して回転を生じてしまう場合、当該ねじ軸30は前記ナット部材40に対して回転を生じながら前記固定筒20に対して軸方向へ直線運動することになる。このとき、前記ねじ軸の軸方向への移動量が同じであったとしても、前記ナット部材40の回転角は当該ねじ軸30が非回転に保持されている場合と比較して減少し、疑似的に前記ねじ軸30のリードL0が増大したことになる。
すなわち、この第一実施形態の回転慣性質量ダンパ1では、前記トルク制限部材3に設定された制限トルクを超えた回転トルクが前記ねじ軸30に作用すると、当該ねじ軸が回転を生じることで、当該ねじ軸のリードL0が疑似的に増大し、それによって回転トルクT及び軸方向慣性力Qが減少することになる。特に、式(3)で示すように、軸方向慣性力Qは前記ねじ軸30のリードL0の2乗の逆数に比例しているので、リードL0が増加すると、軸方向慣性力Qは大きく減少することになる。
従って、この回転慣性質量ダンパ1を取り付けた構造物が巨大地震等によって振動して、前記第一連結部10と前記第二連結部11の間に過大な加速度の軸方向変位が生じた場合、前記ねじ軸30が回転することによって、前記回転体に作用する回転トルクTは前記トルク制限部材3に設定された制限トルクの範囲内に抑制され、結果として回転慣性質量ダンパから構造物に作用する軸方向反力も抑制されることになる。
1…回転慣性質量ダンパ、2…ダンパ本体、3…トルク制限部材、30…ねじ軸、40…ナット部材

Claims (2)

  1. 第一の構造体に固定される第一連結部と、
    第二の構造体に連結される第二連結部と、
    外周面に所定のリードで螺旋状のねじ溝が形成されると共に一方の軸端が前記第一連結部に接続されて回転不能に保持されるねじ軸と、
    前記ねじ軸を収容する中空部を有すると共に前記第二連結部に接続される固定筒と、
    前記固定筒に対して回転自在に保持されると共に前記ねじ軸に螺合し、前記固定筒に対する前記ねじ軸の進退に応じて往復回転する回転体と、を備え、
    前記第一連結部と前記第二連結部の間の距離の変動と前記ねじ軸のリードによって一義的に決定される回転角を前記回転体に与えて、前記第一の構造体と前記第二の構造体との間に作用する振動エネルギを減衰させる回転慣性質量ダンパにおいて、
    前記ねじ軸の軸端と前記第一連結部の間には、前記ねじ軸に対して所定値を超える回転トルクが作用した際に、前記第一連結部に対する前記ねじ軸の回転を許容して前記回転体の回転角を減じるトルク制限部材を設け、
    前記トルク制限部材は、前記第一連結部に対して非回転に接続された連結軸と、前記連結軸に対して回転自在に保持されると共に前記ねじ軸に対して非回転に保持される伝達軸と、前記連結軸と伝達軸との間で軸方向荷重を伝達すると共に前記連結軸に対して前記伝達軸を回転自在に保持する回転軸受と、前記伝達軸に圧接して前記連結軸に対する当該伝達軸の回転を係止する摩擦部材と、を備えたことを特徴とする回転慣性質量ダンパ。
  2. 前記回転軸受は、自転軸が90度の角度で交差した2列のローラ列を有すると共に各ローラ列を構成するローラの自転軸は前記伝達軸の軸方向に対して45°の角度で傾斜していることを特徴とする請求項1記載の回転慣性質量ダンパ。
JP2015212777A 2015-10-29 2015-10-29 回転慣性質量ダンパ Active JP6580457B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015212777A JP6580457B2 (ja) 2015-10-29 2015-10-29 回転慣性質量ダンパ
US15/770,836 US10508439B2 (en) 2015-10-29 2016-10-19 Rotary inertia mass damper
PCT/JP2016/080908 WO2017073420A1 (ja) 2015-10-29 2016-10-19 回転慣性質量ダンパ
EP16859650.0A EP3369961A4 (en) 2015-10-29 2016-10-19 Rotary inertia mass damper
CN201680058924.4A CN108138894B (zh) 2015-10-29 2016-10-19 旋转惯性质量减震器
TW105134577A TWI703283B (zh) 2015-10-29 2016-10-26 旋轉慣性質量阻尼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212777A JP6580457B2 (ja) 2015-10-29 2015-10-29 回転慣性質量ダンパ

Publications (2)

Publication Number Publication Date
JP2017082932A JP2017082932A (ja) 2017-05-18
JP6580457B2 true JP6580457B2 (ja) 2019-09-25

Family

ID=58630145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212777A Active JP6580457B2 (ja) 2015-10-29 2015-10-29 回転慣性質量ダンパ

Country Status (6)

Country Link
US (1) US10508439B2 (ja)
EP (1) EP3369961A4 (ja)
JP (1) JP6580457B2 (ja)
CN (1) CN108138894B (ja)
TW (1) TWI703283B (ja)
WO (1) WO2017073420A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076899B2 (ja) * 2018-02-20 2022-05-30 Thk株式会社 球面継手及びこれを利用した減衰装置
JP7090437B2 (ja) * 2018-03-16 2022-06-24 清水建設株式会社 球面継手及びこれを利用した減衰装置
EP3599162B1 (en) * 2018-07-27 2020-11-11 LEONARDO S.p.A. Helicopter kit
TWI671163B (zh) * 2019-01-30 2019-09-11 優鋼機械股份有限公司 慣性轉動裝置
CN110528947A (zh) * 2019-07-23 2019-12-03 同济大学 内外筒自平衡式惯容阻尼器
CN110847404B (zh) * 2019-11-26 2021-04-27 西安建筑科技大学 一种可更换的x型软钢复合耗能阻尼器
CN111236724B (zh) * 2020-01-20 2022-01-11 同济大学 装配式套管金属圆棒消能阻尼器
CN111963607A (zh) * 2020-09-07 2020-11-20 成都市新筑路桥机械股份有限公司 旋转摩擦阻尼器
TWI766449B (zh) * 2020-11-25 2022-06-01 國立臺灣科技大學 主動慣質阻尼器
CN112982704B (zh) * 2021-02-08 2022-05-31 同济大学 串并联调谐惯质阻尼器
CN113459277B (zh) * 2021-07-01 2022-07-01 中建中新建设工程有限公司 一种用于桩基施工的灌浆装置及灌浆方法
CN114033832B (zh) * 2021-11-05 2023-03-28 兰州理工大学 一种基于冲击减振的二维一体化半主动振动控制装置
CN114517822A (zh) * 2022-02-14 2022-05-20 中国海洋大学 一种振动器及其控制方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551146A (en) * 1978-10-06 1980-04-14 Nhk Spring Co Ltd Vibration control device
US4407395A (en) * 1981-09-25 1983-10-04 Suozzo Leonard S Mechanical shock and sway arrestor
US4431093A (en) * 1982-03-11 1984-02-14 Pacific Scientific Company Motion snubber
US4536114A (en) * 1983-07-01 1985-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Variable length strut with longitudinal compliance and locking capability
NZ235423A (en) * 1989-10-18 1995-04-27 Mitsubishi Heavy Ind Ltd Dynamic damper which absorbs building vibration in any horizontal direction
WO1998029625A1 (fr) * 1996-12-27 1998-07-09 Sumitomo Construction Co., Ltd. Partie terminale d'amortissement, tige d'amortissement, et dispositif d'amortissement comprenant ces elements
TW571038B (en) * 1999-09-14 2004-01-11 Thk Co Ltd Base isolation device with damping mechanism
US6510660B1 (en) * 1999-11-08 2003-01-28 Thk Co., Ltd. Damping device
JP4633229B2 (ja) * 2000-05-31 2011-02-16 Thk株式会社 減衰装置
JP2005009565A (ja) * 2003-06-18 2005-01-13 Tokkyokiki Corp 振動減衰装置
WO2008041545A1 (fr) * 2006-09-29 2008-04-10 Thk Co., Ltd. Dispositif d'amortissement
US8312783B2 (en) * 2007-02-16 2012-11-20 Parker-Hannifin Corporation Aircraft flight control actuation system with direct acting, force limiting, actuator
TW200918788A (en) * 2007-10-26 2009-05-01 Univ Nat Taiwan Screw-type inerter mechanism
JP5040666B2 (ja) * 2008-01-15 2012-10-03 株式会社ジェイテクト ボールねじ装置
JP5051590B2 (ja) 2008-07-10 2012-10-17 清水建設株式会社 慣性質量ダンパー
JP2011144831A (ja) * 2010-01-12 2011-07-28 Shimizu Corp 軸抵抗型慣性質量ダンパー
JP5521720B2 (ja) * 2010-04-08 2014-06-18 株式会社大林組 接合部の制振構造
JP5096551B2 (ja) * 2010-12-20 2012-12-12 Thk株式会社 ねじ運動機構及びこれを用いた減衰装置
CN202280188U (zh) * 2011-10-11 2012-06-20 浙江精工钢结构有限公司 开合屋盖竖向调节支座
TR201815969T4 (tr) * 2011-10-19 2018-11-21 Aseismic Devices Co Ltd Sönümleme cihazı.
JP5970818B2 (ja) * 2012-01-10 2016-08-17 オイレス工業株式会社 免震機構
JP5945889B2 (ja) * 2012-07-23 2016-07-05 清水建設株式会社 免震構造
JP5925672B2 (ja) * 2012-12-27 2016-05-25 株式会社構造計画研究所 減衰装置、及び構造物の制振装置

Also Published As

Publication number Publication date
WO2017073420A1 (ja) 2017-05-04
CN108138894A (zh) 2018-06-08
TW201738479A (zh) 2017-11-01
US20180305922A1 (en) 2018-10-25
EP3369961A4 (en) 2018-11-14
EP3369961A1 (en) 2018-09-05
US10508439B2 (en) 2019-12-17
CN108138894B (zh) 2020-06-09
TWI703283B (zh) 2020-09-01
JP2017082932A (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6580457B2 (ja) 回転慣性質量ダンパ
JP5096551B2 (ja) ねじ運動機構及びこれを用いた減衰装置
US9494208B2 (en) Damping device
JP2012037005A (ja) 減衰装置
JP2017078432A (ja) ばね機構、及びばね機構を備えた振動抑制装置
JP5915995B2 (ja) 回転慣性質量ダンパー
JP5861883B2 (ja) 回転慣性質量ダンパー及びブレースダンパー並びにブレース架構
JP5387123B2 (ja) 摩擦ダンパー
JP6297454B2 (ja) 免震用ダンパ
JP2011144831A (ja) 軸抵抗型慣性質量ダンパー
JP5555393B2 (ja) 免制震機構
JP5839282B2 (ja) 回転慣性質量ダンパー
JP2017026074A (ja) 回転慣性質量ダンパ
JP6520474B2 (ja) 回転慣性質量ダンパー
JP7076899B2 (ja) 球面継手及びこれを利用した減衰装置
JP6143613B2 (ja) 揺れ防止装置
JP6472291B2 (ja) 減衰装置
JP2019078320A (ja) 慣性質量ダンパ
TWI558932B (zh) Attenuating device
JP2014211239A (ja) 複合制震ダンパー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190828

R150 Certificate of patent or registration of utility model

Ref document number: 6580457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250