JP6560838B1 - 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法 - Google Patents

連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法 Download PDF

Info

Publication number
JP6560838B1
JP6560838B1 JP2019022788A JP2019022788A JP6560838B1 JP 6560838 B1 JP6560838 B1 JP 6560838B1 JP 2019022788 A JP2019022788 A JP 2019022788A JP 2019022788 A JP2019022788 A JP 2019022788A JP 6560838 B1 JP6560838 B1 JP 6560838B1
Authority
JP
Japan
Prior art keywords
cooling
casting
nozzle
mold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019022788A
Other languages
English (en)
Other versions
JP2020131193A (ja
Inventor
優輝 小西
優輝 小西
謙一 蛭川
謙一 蛭川
澤田 洋樹
洋樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019022788A priority Critical patent/JP6560838B1/ja
Application granted granted Critical
Publication of JP6560838B1 publication Critical patent/JP6560838B1/ja
Priority to CN201911256029.5A priority patent/CN111545715B/zh
Priority to US16/738,141 priority patent/US11045867B2/en
Publication of JP2020131193A publication Critical patent/JP2020131193A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/143Plants for continuous casting for horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/188Controlling or regulating processes or operations for pouring responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

【課題】鋳造速度が500mm/minを超えた場合であっても鋳造棒に割れの発生を抑制することができる割れが発生しない連続鋳造用鋳型を提供すること。【解決手段】連続鋳造用鋳型は、溶湯3を冷却鋳型5に設けた冷却装置6によって冷却しながら、鋳造棒4を連続的に鋳造する。冷却装置6は、冷却鋳型5内から引き出された鋳造棒4に冷却水Wを放水して冷却する複数の冷却ノズル62を備えている。複数の冷却ノズル62の噴出口62aは、鋳造棒4の表面の外周方向に沿って複数並べて配置され、短辺、長辺が存在し、長辺が鋳造棒4の軸線方向に沿って配置されている。【選択図】図1

Description

本発明は、金属製の鋳造棒を連続鋳造するのに用いられる連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法に関する。
従来、アルミニウム合金等の溶湯から鋳造棒を冷却装置で冷却しながら連続的に鋳造する装置としては、例えば、特許文献1に記載された水平連続鋳造装置が知られている。
特許文献1に記載の水平連続鋳造装置では、500mm/min以下の鋳造速度で鋳造しても、鋳造棒に割れが発生するのを抑制するために、一次冷却用のウォータジャケットと、二次冷却用ノズルと、三次冷却用ノズルと、から成る冷却装置を備えている。
その冷却装置では、三次冷却ノズルから放水された冷却水が鋳造棒に衝突する三次冷却水衝突中心位置までの冷却水衝突位置間隔(Y)が、鋳造棒の直径に対して30%〜60%の比率(R)になるように設定されている。そして、冷却装置は、ウォータジャケットの冷却水で鋳造棒を、ウォータジャケットと、二次冷却用ノズルと、三次冷却用ノズルと、で三段階に亘って冷却して割れ(「鋳塊割れ」ともいう)の発生を抑制している。
特開2011−131245号公報(図3および図4)
しかし、特許文献1に記載の連続鋳造装置で、さらに生産性を向上させるために、鋳造棒を500mm/minの鋳造速度を超えた速い速度で鋳造した場合、鋳造棒(鋳塊)の中心部に割れが生じるおそれがあった。
そこで、本発明は、鋳造速度が500mm/minを超えた場合であっても鋳造棒に割れが発生するのを抑制することができる連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法を提供することを課題とする。
前記課題を解決するために、本発明の連続鋳造用鋳型は、溶湯を冷却鋳型に設けた冷却装置によって冷却しながら、鋳造棒を連続的に鋳造する連続鋳造用鋳型であって、前記冷却装置は、前記冷却鋳型内から引き出された前記鋳造棒に冷却水を放水して冷却する複数の冷却ノズルを備え、前記複数の冷却ノズルの噴出口は、前記鋳造棒の表面の外周方向に沿って複数並べて配置され、短辺長辺、短軸と長軸、若しくは、長軸と当該長軸に交差する中心線と、が存在して、前記長辺方向または前記長軸方向に長い形状に形成され、前記長辺または前記長軸が前記鋳造棒の軸線方向に沿って配置されていることを特徴とする。
かかる構成によれば、連続鋳造用鋳型は、鋳造棒を高速の鋳造速度で連続的に鋳造する際に、冷却鋳型内から引き出された鋳造棒に放水する冷却ノズルの噴出口を、鋳造棒の表面の外周方向に沿って複数並べて配置している。その冷却ノズルの噴出口は、短辺、長辺が存在し、短辺長辺、短軸と長軸、若しくは、長軸と当該長軸に交差する中心線と、が存在して、長辺方向または長軸方向に長い形状に形成され、長辺または長軸が鋳造棒の軸線方向に沿って配置されていることで、鋳造棒を軸線方向に広範囲に亘って効率よく冷却することができる。このため、鋳造速度が500mm/minを超えた場合であっても、鋳造棒に割れが発生するのを抑制することができる。
また、本発明の連続鋳造用鋳型は、溶湯を冷却鋳型に設けた冷却装置によって冷却しながら、鋳造棒を連続的に鋳造する連続鋳造用鋳型であって、前記冷却装置は、前記冷却鋳型内から引き出された前記鋳造棒に冷却水を放水して冷却する複数の冷却ノズルを備え、前記複数の冷却ノズルは、短辺と長辺とが存在して前記長辺方向に長い形状に形成された噴出口エリア内に複数の噴出口を前記長辺方向に沿って配置して、前記噴出口エリアを前記鋳造棒の表面の外周方向に沿って複数並べて配置し、前記長辺が前記鋳造棒の軸線方向に沿って配置されていることを特徴とする。
かかる構成によれば、連続鋳造用鋳型は、冷却鋳型内から引き出された鋳造棒に冷却水を放水して冷却する複数の冷却ノズルを備えた冷却装置を有している。その冷却ノズルは、短辺と長辺とが存在して長辺方向に長い形状に形成された噴出口エリア内に複数の噴出口を長辺方向に沿って配置し、その噴出口エリアを鋳造棒の表面の外周方向に沿って複数並べて配置し、長辺が鋳造棒の軸線方向に沿って配置されているので、鋳造棒を軸線方向に広範囲に亘って効率よく冷却することができる。このため、鋳造速度が500mm/minを超えた場合であっても、鋳造棒に割れが発生するのを抑制することができる。
また、前記冷却ノズルの噴出口は、噴出口の短辺の長さが0.1mm〜5.0mmに形成されている構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口は、短辺の長さが0.1mm〜5.0mmの細長い形状(スリット状)に形成されている。このため、冷却ノズルの噴出口から放水される冷却液は、その噴出口の形状によって、鋳造棒に対して鋳造方向に亘って広範囲に連続して当たり、効率よく冷却することができる。
また、前記冷却ノズルの噴出口エリアは、噴出口エリアの短辺の長さが0.1mm〜5.0mmに形成されている構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口エリアは、短辺の長さが0.1mm〜5.0mmの細長い形状(スリット状)に形成されている。このため、噴出口エリア内の複数の噴出口から放水される冷却液は、噴出口エリアの形状によって、鋳造棒に対して鋳造方向に亘って広範囲に連続して当たり、効率よく急冷することができる。
また、前記冷却ノズルの噴出口は、噴出口の長辺の長さが2.5mm〜20.0mmに形成されて、短辺と長辺との比が5倍以上である構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口は、噴出口の長辺の長さが短辺の長さよりも5倍以上の長さに形成されて細長いため、冷却液を広範囲に放水することができる。
また、前記冷却ノズルの噴出口エリアは、噴出口エリアの長辺の長さが2.5mm〜20.0mmに形成され、短辺と長辺との比が5倍以上である構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口エリアは、噴出口エリアの長辺の長さが短辺の長さよりも5倍以上の長さに形成されて細長いため、冷却液を広範囲に放水することができる。
また、前記冷却ノズルの噴出口の形状は、長方形、長円形、楕円形、卵形状、台形、あるいは、三角形とする構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口の形状は、四角形や長円形等の円形以外のものであっても同様な効果を得ることができる。
また、前記冷却ノズルの噴出口エリア内の噴出口の形状は、正方形、長方形、円形、長円形、楕円形、卵形状、台形、あるいは、三角形とする構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口エリア内の噴出口の形状は、四角形や長円形等であっても同様な効果を得ることができる。
また、前記冷却ノズルの噴出口は、前記鋳造棒の軸線に直交する径方向に対して傾けて配置している構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口は、鋳造棒の軸線に直交する径方向に対して傾けて配置していることで、長辺を鋳造棒の軸線に直交する径方向に向けて配置されている場合と比較して、鋳造棒の円周方向に広範囲に亘って冷却水を当てて効率よく冷却することができる。
また、前記冷却ノズルの噴出口エリアは、前記鋳造棒の軸線に直交する径方向に対して傾けて配置している構成としてもよい。
かかる構成によれば、冷却ノズルの噴出口エリアは、鋳造棒の軸線に直交する径方向に対して傾けて配置している。このため、噴出口エリア内の複数の噴出口から放水される冷却液は、噴出口エリアの長辺を鋳造棒の軸線に直交する径方向に向けて配置されている場合と比較して、鋳造棒の円周方向に広範囲に亘って冷却水を当てて効率よく冷却することができる。
また、前記冷却ノズルの噴出口は、長方形に形成され、前記噴出口から放水された前記冷却水によって冷却された前記鋳造棒を形成する鋳塊の凝固開始から凝固完了するまでの距離L1は、下記式(1)を満足するように設定され、噴出口の長辺の長さβは、下記式(2)を満足するように設定されている構成としてもよい。
Figure 0006560838

Figure 0006560838

(但し、前記式(1)および式(2)において、
L1は、鋳塊の凝固開始から凝固完了までの距離(mm)を表し、
Dは、鋳造棒の直径(mm)を表し、
δは、鋳造棒の凝固シェル層の厚さ(mm)を表し、
ψは、鋳造棒の中心線に対して溶湯と凝固鋳塊との境界がなす凝固角度(度)を表し、
βは、噴出口の長辺の長さ(mm)を表し、
φは、冷却ノズルの鋳造方向に直交する面と傾斜面(ノズル面)とがなす角度(度)を表す。)
かかる構成によれば、冷却ノズルの噴出口は、長方形に形成されているので、噴出口から放水された冷却水が鋳造棒の外周面に衝突する冷却水衝突領域の鋳造方向の長さが、長い。冷却ノズルは、鋳造棒を形成する鋳塊が凝固開始から凝固完了までの距離L1以上に冷却水が当るように噴出口の長辺の長さβを設定している。また、冷却ノズルは、鋳造棒の鋳造方向に対する角度が斜めになるように設定されている。このため、冷却ノズルから放水される冷却水は、鋳造方向に広範囲に鋳造棒に連続して当たり、割れが発生しないように、効率よく冷却することができる。
また、前記冷却ノズルの噴出口は、長方形に形成され、下記式(3)で定義されるカバー率Cが下記式(4)のように60%〜100%になるように設定されている構成としてもよい。
Figure 0006560838

Figure 0006560838

(但し、前記式(3)および式(4)において、
Cは、カバー率(%)を表し、
Nは、冷却ノズルの噴出口の個数(個)を表し、
θは、鋳造棒の軸線に直交する径方向に対する冷却ノズルの噴出口の傾き角度(度)を表し、
αは、冷却ノズルの噴出口の短辺の長さ(mm)を表し、
βは、冷却ノズルの噴出口の長辺の長さ(mm)を表し、
Dは、鋳造棒の直径(mm)を表し、
πは、円周率を表す。)
かかる構成によれば、冷却ノズルの噴出口は、長方形に形成され、カバー率Cが60%〜100%に設定されていることで、連続鋳造する鋳造棒を効率よく周方向に広範囲に冷却するのに最適な形状にすることができる。
本発明に係る連続鋳造装置は、前記連続鋳造用鋳型を用いた構成としてもよい。
かかる構成によれば、連続鋳造装置は、前記連続鋳造用鋳型を備えていることで、鋳造速度が500mm/minを超えた場合であっても、鋳造棒に割れが発生するのを抑制することができる。
本発明に係る連続鋳造方法は、前記連続鋳造用鋳型を用いて、前記冷却鋳型から引き出された前記鋳造棒を、前記冷却ノズルから放水された冷却水によって冷却しながら製造する構成としてもよい。
かかる手順によれば、連続鋳造方法は、前記連続鋳造用鋳型を用いて冷却鋳型から引き出された鋳造棒を、冷却ノズルの形状に対応して放水された冷却水を鋳造方向に広範囲に当てて冷却しながら製造している。このため、鋳造速度が500mm/minを超えた場合であっても鋳造棒に割れが発生しないようにすることができる。
本発明に係る連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法によれば、鋳造速度が500mm/minを超えた場合であっても鋳造棒に割れが発生するのを抑制することができる。
本発明の実施形態に係る連続鋳造装置を示す一部断面を有する要部斜視図である。 冷却鋳型の冷却ノズルの配置状態を示す要部拡大縦断面図である。 (a)は冷却ノズルの冷却水衝突範囲を示す模式図、(b)は鋳造棒を形成する鋳塊の凝固開始から凝固完了までの距離を示す模式図である。 冷却ノズルの噴出口と鋳造棒との配置関係を示す図であり、(a)は噴出口の長辺を鋳造棒の軸線に直交する径方向に向けて配置した状態を示す説明図、(b)は噴出口の長辺を鋳造棒の軸線に直交する径方向に対して傾けて配置した状態を示す説明図である。 鋳造棒の軸線に直交する径方向に対して傾けて配置した冷却ノズルの噴出口を示す拡大概略図である。 冷却ノズルの噴出口を鋳造棒の軸線に直交する径方向に対して傾けて配置した冷却鋳型の一例を示す要部拡大概略正面図である。 鋳造棒の外周面に対して冷却ノズルの噴出口から放水した冷却水の状態と凝固速度との関係を示す図であり、(a)は噴出口の長辺を鋳造棒の軸線に直交する径方向に向けて配置した場合を示す説明図、(b)は噴出口の長辺を鋳造棒の軸線に直交する径方向に対して傾けて配置した場合を示す説明図、(c)は二次冷却用ノズルと三次冷却用ノズルとで冷却する従来例の場合を示す説明図である。 冷却ノズルの噴出口の長辺を鋳造棒の軸線に直交する径方向に対して傾けて配置した場合の噴出口から放水される冷却水の状態を示す要部拡大概略縦断面図である。 冷却鋳型における冷却ノズルの噴出口の配置状態の一例を示す要部拡大概略斜視図である。 本発明の実施形態に係る連続鋳造装置の変形例を示す図であり、(a)は噴出口エリアに複数の噴出口を配置した場合の状態を示す説明図、(b)は、噴出口エリアに多数の噴出口を配置した場合の状態を示す説明図、(c)は噴出口エリアに四角形の噴出口を配置した場合の状態を示す説明図、(d)は噴出口エリアの長辺を鋳造棒の軸線に直交する径方向に対して傾けて配置した場合の状態を示す説明図である。
以下、図1〜図9を参照して、発明を実施するための形態を説明する。
≪連続鋳造装置≫
図1に示すように、連続鋳造装置1は、金属の溶湯3から丸棒状の鋳造棒4(鋳塊)を凝固させて鋳造する際に、鋳造棒4を冷却装置6で冷却しながら水平方向に送って連続鋳造する装置である。連続鋳造装置1は、脱ガス炉にて脱ガスされた溶湯3を貯溜するタンディッシュ2と、溶湯3が供給される冷却鋳型5(連続鋳造用鋳型)と、冷却鋳型5および鋳造棒4を冷却する冷却装置6と、鋳造棒4を搬送する搬送装置8と、を備えている。この連続鋳造装置1は、例えば、鋳造棒4を500mm/minを超えた速い鋳造速度Vで連続的に鋳造することが可能な鋳型装置である。
≪タンディッシュ≫
タンディッシュ2は、溶解炉(図示省略)で溶融された金属の溶湯3を、保温した状態で一時的に貯溜する炉である。このタンディッシュ2の下部側壁には、冷却鋳型5内に溶湯3を供給するための鋳込口2aが形成されている。
≪溶湯および鋳造棒≫
溶湯3は、前記溶解炉(図示省略)で溶融された金属であり、例えば、アルミニウム合金やマグネシウム合金等の金属からなる。
また、鋳造棒4は、連続鋳造装置1によって鋳造されて溶湯3が凝固した鋳片(鋳塊)である。鋳造棒4は、例えば、直径D(図2参照)が40mm〜120mm程度の丸棒に鋳造される。
≪冷却鋳型≫
冷却鋳型5は、溶湯供給口5bから型内に供給された溶湯3を、冷却鋳型5に設けた冷却装置6で強制冷却しながら、棒状の鋳造棒4として連続的に鋳造する略筒状の鋳型である。図2に示すように、冷却鋳型5には、それぞれ後記する鋳型面5aと、溶湯供給口5bと、開口部5cと、傾斜面5dと、ウォータジャケット61と、冷却ノズル62と、が形成されている。その冷却鋳型5は、タンディッシュ2の下側側面に複数固定されている。冷却鋳型5は、熱伝導率の高い銅合金等の金属によって形成されている。
図1および図2に示すように、溶湯供給口5bは、タンディッシュ2内の溶湯3が供給される供給口である。この溶湯供給口5bは、タンディッシュ2の鋳込口2aに連通している。
鋳型面5aは、溶湯3から棒状の鋳造棒4を鋳造する冷却鋳型5の型面である。この鋳型面5aは、ここでは、溶湯供給口5bに連続して、段差を介してスリーブ状(円筒状)に形成され、冷却鋳型5の内壁面に設けられている。
図2に示すように、開口部5cは、鋳型面5aの鋳造方向(下流方向)側の端部から開口端5eに向けて拡径して形成された傾斜面5dを有している。このため、開口部5c内は、テーパ状(略ラッパ状)に形成されている。この開口部5cには、冷却ノズル62の噴出口62aが形成されている。
傾斜面5dは、鋳造棒4に冷却水Wを放水するための冷却ノズル62の噴出口62aが鋳造棒4から径方向に離間して設置するように所定角度(角度φ)に傾斜して形成されている。傾斜面5dには、複数の冷却ノズル62の噴出口62aが、円周方向に予め設定した所定間隔で複数配置されている(図6参照)。傾斜面5dに形成されている噴出口62aは、冷却ノズル62の鋳造方向に直交する面と傾斜面5dとがなす角度φに傾けた状態で形成されている。この冷却ノズル62の鋳造方向に直交する面と傾斜面5dとがなす角度φは、後で詳しく説明する。このように、傾斜面5dは、傾斜しているので、鋳型面5aから出た直後の鋳造棒4の外周面4aに、噴出口62aから放水された冷却水Wを鋳造方向に連続して広範囲に当てることを可能にしている。
≪冷却装置≫
冷却装置6は、冷却鋳型5および鋳造棒4を冷却するための装置である。冷却装置6に使用される冷媒は、工業用水や水道水等の冷却水Wである。冷却装置6は、それぞれ後記するポンプ装置(図示省略)と、冷却水供給用配管63と、ウォータジャケット61(一次冷却部)と、冷却ノズル62(二次冷却部)と、を備えて構成されている。
前記ポンプ装置(図示省略)は、冷却水Wを冷却鋳型5に送るための動力源である。
冷却水供給用配管63は、一端がこのポンプ装置に接続され、他端が冷却鋳型5内に形成されたウォータジャケット61に接続されている。
<ウォータジャケット>
図1に示すように、ウォータジャケット61は、冷却水供給用配管63から送られた冷却水Wを鋳型面5aの周辺の冷却鋳型5内に形成した流路を通過させることで、冷却鋳型5を介在して溶湯3を冷却するものである。ウォータジャケット61の下流端には、ウォータジャケット61を通過した冷却水Wを放水する冷却ノズル62の噴出口62aが形成されている。このため、ウォータジャケット61は、冷却鋳型5を冷却する冷却水Wを流動させる流路の機能と、冷却ノズル62から噴出させる冷却水Wを供給するための供給路と、の機能を有している。
詳述すると、ウォータジャケット61は、冷却水Wと冷却鋳型5の熱とを熱交換させて強制冷却することにより、冷却鋳型5内を通過する溶湯3を一次冷却して、鋳造棒4の表層に凝固シェル層を形成させる。ウォータジャケット61は、冷却水Wの流路が冷却鋳型5内を蛇行するように形成されている。ウォータジャケット61は、冷却鋳型5において、ウォータジャケット61の上流側に冷却水Wが供給される冷却水供給口61aが形成されて、下流側に複数に分岐した冷却ノズル62が形成されている。ウォータジャケット61内を流れる冷却水Wの流速は、複数の細長い噴出口62aから鋳造棒4に向けて冷却水Wを真っすぐに勢いよく放水するために、従来の鋳型装置の流速よりも速く流れるように設定されている。例えば、冷却装置6において、冷却水Wの流速は、0.2m/s〜2.0m/sである。また、使用される冷却水Wの温度は、20℃〜35℃である。
<冷却ノズル>
図2および図3(a)、(b)に示すように、冷却ノズル62は、ウォータジャケット61内を通過した冷却水Wを、冷却鋳型5内から引き出された鋳造棒4の表面に放水して二次冷却する冷却水噴射ノズルである。換言すると、冷却ノズル62は、冷却鋳型5内から引き出された直後の鋳造棒4に向けて一次冷却で使用した冷却水Wを複数の噴出口62aから放水して、鋳造棒4を強制冷却するノズルである。
冷却ノズル62の複数の噴出口62a(図1参照)は、傾斜面5d内の周方向に、所定間隔を介して環状に配置されている。図4(a)、(b)に示すように、複数の噴出口62aは、鋳造棒4の表面の外周方向に沿って複数並べて配置され、短辺、長辺が存在している。噴出口62aの長辺の長さβは、噴出口62aの短辺の長さαより長く形成されている。噴出口62aの形状は、例えば、長方形、長円形、楕円形、卵形状、台形、三角形等の細長い形状からなり、その形状は長方形が好ましいが、長方形に限定されない。
なお、噴出口62aの形状が楕円形の場合、噴出口62aの短辺の長さαは短軸の長さとし、噴出口62aの長辺の長さβは長軸の長さとする。また、噴出口62aの形状が長円形の場合、噴出口62aの長辺の長さβは長軸の長さとし、噴出口62aの短辺の長さαは長軸に直交する中心線の長さとする。つまり、細長い形状の長い辺、あるいは、軸があるような形であればよい。
図4(a)に示すように、冷却ノズル62の噴出口62aは、例えば、噴出口62aの長辺の向きを、鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θが0度になるように配置されている。つまり、冷却ノズル62の長辺または長軸が鋳造棒4の軸線に沿って配置されていることになる。この場合、噴出口62aから放水された冷却水Wが鋳造棒4に当たる冷却水衝突領域Pの周方向の長さP1は、噴出口62aの短辺の長さαと同じように短い。
この冷却水衝突領域Pの周方向の長さP1を長くして、さらに、冷却水衝突領域Pを広くする場合は、図4(b)および図5に示すように、鋳造棒4の鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θ(以下「噴出口62aの傾き角度θ」と適宜いう)を10度〜50度(好ましくは15度から45度)に設定することが好ましい。
なお、鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θを10度〜50度にすることで、長方形の噴出口62aから放水される冷却水Wは、傾斜面5d内から鋳造棒4の外周面4aに向けて鋳造方向に斜めに放水されるようになる。
噴出口62aの傾き角度θを大きい角度に設定した場合は、冷却ノズル62から放水する冷却水Wを鋳造棒4の外周面4aの外周方向に広範囲に放水するように調整することが可能である。
また、噴出口62aの傾き角度θを小さい角度に設定した場合は、冷却ノズル62から放水する冷却水Wを鋳造棒4の外周面4aの外周方向に狭い範囲に放水するように調整することが可能である。
このようにして噴出口62aの傾き角度θを設定することによって、開口部5c内に形成する噴出口62aの個数Nと、冷却水衝突領域Pの周方向の範囲と、を調整することが可能である。
図3(a)、(b)に示すように、冷却水衝突領域Pは、冷却ノズル62の噴出口62aから上下左右方向に徐々に広がって放水された冷却水Wが、鋳造棒4の外周面4aに衝突する領域である。冷却水衝突領域Pの広さは、冷却ノズル62の形状を適宜に変更することによって調節することができる。噴出口62aは、噴出口62aの長辺の長さβが、鋳造方向に沿って噴出口62aの短辺の長さαより長く形成されて、冷却ノズル62の鋳造方向に直交する面と傾斜面5d(ノズル面)とがなす角度φ(以下「角度φ」と適宜いう)を鋳造棒4に対して傾けて配置されている。つまり、角度φとなる傾斜面5dに噴出口62aが形成されることで、噴出口62aの角度φが設定されている。そして、冷却水Wを放水する噴出口62aの高さは、角度φにより鋳造棒4に対して鋳造方向に徐々に高くなるように形成されている。これに伴って、冷却水Wが鋳造棒4の外周面4aに当たる時間は、冷却水衝突領域Pの基端側と先端側とではずれている。
冷却ノズル62の角度φは、例えば、30度に形成されている。冷却ノズル62の角度φをその30度よりも大きい角度にした場合は、鋳造棒4における鋳型面5a(図2参照)側に寄り過ぎた部位を冷却ノズル62の冷却水Wで冷却することになる。
冷却ノズル62の角度φが30度よりも小さい角度にした場合は、鋳造棒4における噴出口62aから鋳造方向(矢印a方向)に大きく離れた部位を冷却ノズル62の冷却水Wで冷却することになる。
冷却ノズル62の角度φをこのように調整することで、冷却水衝突領域Pの鋳造方向の長さLを調整することが可能である。
その噴出口62aは、図4(a)、(b)に示すように、噴出口62aの短辺の長さαが0.1mm〜5.0mm(好ましくは、0.1mm程度)に形成されている。また、噴出口62aの長辺の長さβは、2.5mm〜20.0mm(好ましくは、5.0mm〜10.0mm程度)に形成されている。このように、噴出口62aの長辺の長さβは、噴出口62aの短辺の長さαの5倍以上、あるいは、10倍以上の長さ(好ましくは25倍〜200倍の長さ、さらに好ましくは50倍〜100倍の長さ)になるように細長いスリット状に形成することが好ましい。その噴出口62aは、適宜なピッチの間隔で、テーパ状の傾斜面5dに複数設けられている(図6参照)。
このように、多数の冷却ノズル62は、鋳造棒4の外周部に周方向に適宜なピッチの間隔で環状に配列されて冷却水衝突領域Pに向けて、鋳造方向に対して長い長方形の噴出口62aから冷却水Wを鋳造方向に広範囲に放水して冷却するように噴出口62aが配置されている。
なお、図3(b)に示す凝固角度ψは、鋳造棒4の中心線に対して溶湯3と凝固鋳塊との境界がなす角度であって、溶湯3の凝固が開始される凝固開始点3aと凝固が完了する凝固終了点3bとを結ぶ直線と、鋳造棒4の中心線と、がなす角度である。鋳塊の凝固開始の凝固開始点3aから凝固完了する凝固終了点3bまでの距離L1が長く、凝固角度ψが鋭角の場合は、内部応力が強く、割れが発生し易い。鋳塊の凝固開始から凝固完了するまでの距離L1と、凝固角度ψと、を割れが発生し難い大きさに設定することが好ましい。そのために、冷却ノズル62の噴出口62aは、噴出口62aから放水された冷却水Wによって冷却された鋳造棒4を形成する鋳塊の凝固開始から凝固完了するまでの距離L1が、下記式(1)を満足するように設定されている。その場合、凝固シェル層の厚さδは、約10mmである。凝固角度ψは、過去の経験から35度以上が好ましい。つまり、式(1)において、L1は鋳塊の凝固開始から凝固完了までの距離(mm)、Dは鋳造棒4の直径(mm)、δは鋳造棒4の凝固シェル層の厚さ(mm)、ψは鋳造棒4の凝固角度(度)を表し、この式(1)の鋳塊の凝固開始から凝固完了までの距離L1において、凝固角度ψが35度以上となるように設定することが好ましい。
Figure 0006560838
また、冷却ノズル62は、噴出口62aから放水された冷却水Wが鋳造棒4に当たる冷却水衝突領域Pの鋳造方向の距離Lを長くして、冷却効率を向上させて割れを防止するために、噴出口62aの長辺の長さβを長く設定することが好ましい。そのために、冷却ノズル62の噴出口62aは、噴出口62aの長辺の長さβが、式(2)を満足するように設定されている。なお、鋳造棒4の凝固シェル層の厚さδ、および、凝固角度ψを計測する場合は、連続鋳造した鋳造棒4(鋳塊)をビレット切断機で中心線に沿って半分に切断して、切断した切断面を研磨し、研磨した研磨面にエッチングを施した後、凝固した溶湯3のプール形状を直接計測する。
Figure 0006560838
但し、式(2)において、βは噴出口62aの長辺の長さ(mm)、L1は鋳塊の凝固開始から凝固完了までの距離(mm)、φは冷却ノズル62の鋳造方向に対する角度(度)を表す。つまり、噴出口62aは、傾斜面5dにスリット状に細長く形成して、鋳造棒4の外周面4aに対して鋳造方向に角度φとなる斜めに冷却水Wを放水するように設定することが好ましい。なお、冷却ノズル62の噴出口62aの長辺の長さβは、冷却ノズル62の冷却効率を向上させるために、鋳塊の凝固開始から凝固完了までの距離L1に対して、冷却水衝突領域Pの鋳造方向の距離Lが、
L1≦L
になるように設定することが好ましい。
図4(a)、(b)に示すように、冷却ノズル62の噴出口62aは、式(3)で定義されるカバー率Cが下記式(4)のように60%〜100%になるように設定されていることが好ましい。
Figure 0006560838

Figure 0006560838
但し、式(3)および式(4)において、Cはカバー率(%)、Nは冷却ノズル62の噴出口62aの個数(個)、θは鋳造棒4の軸線に直交する径方向に対する冷却ノズル62の噴出口62aの傾き角度(度)、αは冷却ノズル62の噴出口62aの短辺の長さ(mm)、βは冷却ノズル62の噴出口62aの長辺の長さ(mm)、Dは鋳造棒4の直径(mm)、πは円周率を表す。つまり、カバー率Cは、鋳造棒4の外周の周方向の長さ(πD)に対する冷却水衝突領域Pの周方向の長さの割合(%)である。カバー率Cは、60%〜100%であって、60%よりも大きく、100%を超えないように設定する。このようにすることで、周方向に隣設した噴出口62aから放水した冷却水Wが鋳造棒4の外周面4a上で互いに重ならないように放水して効率よく冷却することができる。また、噴出口62aは、複数傾けて配置して、鋳造棒4の外周面4aの周方向に広範囲に亘って放水するようにすることが好ましい。
≪搬送装置≫
図1に示すように、搬送装置8は、冷却鋳型5で鋳造された鋳造棒4を搬送する装置である。この搬送装置8は、例えば、モータ(図示省略)によって回転される複数のローラ81等を備えている。ローラ81は、冷却鋳型5の開口部5cの近傍の下側から鋳造棒4が送られる鋳造方向に沿って、鋳造棒4の下側に敷設するように複数配置されている。
≪作用≫
次に、本発明の実施形態に係る連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法の作用を説明する。
図1および図2に示すように、連続鋳造装置1で鋳造棒4を連続鋳造する場合は、まず、タンディッシュ2内の溶湯3を溶湯供給口5bから冷却鋳型5の鋳型面5a内にゆっくりと流し込む。冷却鋳型5は、鋳型面5aの外側の冷却鋳型5内にウォータジャケット61が内設されていることにより、ウォータジャケット61内を流れる冷却水Wと、溶湯3によって加熱された冷却鋳型5とが熱交換されて冷却される。この場合、ウォータジャケット61内を流れる冷却水Wは、長方形の噴出口62aを多数有する冷却ノズル62から放水する都合上、長方形でない噴出口を有する冷却装置を備えた従来の冷却鋳型と比較して、流速が速く、水量が多く、水圧が高く設定されている。
このため、ウォータジャケット61は、従来の循環タイプのウォータジャケットと比較して冷却能力が高く、鋳造速度Vが従来の冷却鋳型で連続鋳造するときの鋳造速度よりも速くても、いわゆる発汗という現象や、溶湯3が鋳型面5aから出るブレークアウトが起きるのを防止することができる。そのウォータジャケット61で冷却された冷却鋳型5内に送られた溶湯3は、鋳型面5aに接触することにより、図2に示す凝固開始点3aから二次冷却開始点3cまでの間が一次冷却されて、溶湯3の表層に凝固シェル層が形成されて丸棒形状(鋳造棒4)に凝固される。このときの鋳造速度Vは、500mm/minを超えている。
<鋳造棒の軸線に直交する径方向に対する噴出口の傾き角度θが0度の場合>
図4(a)に示すように、冷却ノズル62の噴出口62aが鋳造棒4の軸線に直交する径方向に向けて形成されている場合は、鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θが0度である。この場合、短辺、長辺が存在している長方形の噴出口62aから放水される冷却水Wは、図1に示すように、周方向に適宜な間隔で多数の配置された噴出口62aから鋳造棒4の外周面4aに向けて、冷却水衝突領域Pの形状が噴出口62aの形状と同じ鋳造方向に長い長方形になるように放水される。
図3(b)に示すように、冷却ノズル62の鋳造方向に直交する面と傾斜面5dとがなす角度φは、例えば、30度に形成されている。このため、各噴出口62aから放水された冷却水Wは、冷却ノズル62に角度φがあることで、鋳塊に衝突した冷却水Wが跳ね返り、冷却水Wの進行を阻害することが無くなり、かつ、従来技術より広い範囲で冷却しているため、効率よく鋳塊を冷却することが可能となる。その場合、鋳造棒4(鋳塊)は、凝固速度が速くなり、凝固開始から完了までに要する時間が短縮されるので、凝固開始から完了までの距離L1が短くなり、凝固角度ψが鈍角になる。特に、溶湯3の二次冷却開始点3c(図2参照)から凝固が完了する凝固終了点3bまでに要する時間が短縮されて、鋳塊が急冷される。
一般に、鋳造速度Vが速い場合は、凝固開始から鋳塊の中心部が凝固完了するまでの距離L1が長くなるので、鋳塊内部の凝固角度ψが鋭角になる。そのため、従来では、鋳塊中心部が凝固する際に、外周方向に発生する凝固収縮によって受ける内部応力が強くなることで、鋳造棒4に割れが発生していた。その場合、凝固角度ψが大きくなればなるほど割れ難く、凝固開始から鋳塊の中心部が凝固完了するまでの距離L1が長くなるほど割れ易くなっている。
本発明は、前記したように、噴出口62aの形状を短辺、長辺が存在する長方形にして複数設けたことで、冷却水衝突領域Pの鋳造方向の距離Lが長くして広範囲に亘って強制冷却し、凝固開始から完了までに要する時間を短縮させて、凝固角度ψを鈍角にすることができる。
その結果、鋳造速度Vが500mm/minを超えた高速鋳造を行った場合であっても、冷却能力が大きく、鋳造棒4に割れが発生しない最適な冷却領域を冷却することができるので、鋳造棒4に割れが発生するのを抑制することができる。
次に、図7(a)、(c)を参照して鋳造棒4(鋳塊)の冷却速度を速くすることができる理由について、従来例(特許文献1に記載の水平連続鋳造装置)を用いて説明する。
図7(c)に示すように、従来例の冷却鋳型では、二次冷却ノズル621および三次冷却ノズル622の噴出口が、縦・横の長さが同一に形成されて、円筒状の開口面の同心円上に並んで配置されている。このため、二次冷却ノズル621および三次冷却ノズル622から放水された二次冷却水W200および三次冷却水W300は、鋳造棒400に衝突する位置が鋳造方向に離間した2個所になり、鋳造棒400の外周面400aにそれぞれ環状に衝突する。
この場合の鋳造棒400の凝固速度は、二次冷却水W200および三次冷却水W300が衝突する位置が最も速く、二次冷却水W200が衝突する位置と三次冷却水W300が衝突する位置との間では、凝固速度が遅くなっている。
このため、特許文献1に記載されているような水平連続鋳造装置では、鋳造速度が500mm/minを超えた場合に割れが生じるおそれがあった。
なお、その割れの発生を防止するのを目的に、鋳塊の中心部の凝固速度を向上させるためには、二次冷却水W200と三次冷却水W300の衝突位置の間隔を小さくし、凝固速度が遅くなる範囲を極限まで小さくすることと、鋳塊が完全に凝固するまでの範囲において、高い冷却効果を維持することが有効である。
この条件を満たすために、冷却水の噴出口を広げて、常に冷却水が鋳塊に広範囲に衝突するように、噴出口の形状、噴出口の数、噴出口の傾き角度等を工夫して取り決めることが必要である。
これに対して本発明の冷却ノズル62は、鋳造方向(矢印a方向)に噴出口62aの長辺の長さβが短辺の長さαより長い長方形の噴出口62aを有している。このため、図7(a)に示すように、噴出口62aから放水された冷却水Wは、鋳造棒4の外周面4aに衝突する冷却水衝突領域Pの鋳造方向の距離Lが長く、鋳造方向に広範囲に連続してシャワー状に当たる。その結果、冷却水衝突領域P全体の鋳造速度V1を500mm/minを超える速度に速くしても、鋳造棒4に割れが発生するのを抑制することができる。
<鋳造棒の軸線に直交する径方向に対する噴出口の傾き角度θが0度を超えて傾けてある場合>
また、冷却ノズル62は、図4(b)、図5および図6に示すように、短辺、長辺が存在する長方形の噴出口62aが、鋳造棒4の軸線に直交する径方向に対して、傾き角度θを傾けて形成されている。このように、鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θを傾けた場合、図7(b)、図8および図9に示すように、噴出口62aから放水される冷却水Wは、周方向に適宜な間隔で多数の配置された噴出口62aから鋳造棒4の外周面4aの鋳造方向に向けて斜めに放水される。
このため、図7(b)に示すように、各噴出口62aから放水される冷却水Wは、鋳造方向に引っ張られて移動する鋳造棒4の外周面4aに対して、鋳造方向に斜めに放水される。その冷却水Wが鋳造棒4の外周面4aに衝突する冷却水衝突領域Pは、前記した噴出口62aの傾き角θが0度の場合と比較して、図8に示すように、冷却水衝突領域Pの外周方向の距離P2が長くなった分だけ長く、広範囲になる。さらに、冷却水Wは、広範囲にシャワー状に当たるので、冷却能力を向上させて、効率よく鋳造棒4を二次冷却することができる。この二次冷却によって、鋳造棒4の内部の溶融状態であった溶湯3が、強制冷却されて芯まで凝固される。
その結果、鋳造棒4(鋳塊)は、鋳造速度Vが500mm/minを超える高速であっても、凝固速度が速くなり、凝固開始から完了までに要する時間が短縮されるので、凝固角度ψ(図3(b)参照)を鈍角にすることができる。このため、鋳造棒4に割れが発生するのを抑制することができる。これにより、連続鋳造装置1は、鋳造速度Vを500mm/minを超えた速度で連続鋳造しても、割れのない鋳造棒4を鋳造することが可能である。
冷却ノズル62によって強制冷却された鋳造棒4は、さらに、搬送装置8(図1参照)によって引っ張られるようにして鋳造方向へ搬送される。
このように、本発明の実施形態に係る連続鋳造装置1は、溶湯3をウォータジャケット61で一次冷却し、短辺、長辺が存在する長方形の噴出口62aの冷却ノズル62から放水される冷却水Wで、長さのある冷却水衝突領域Pによって広範囲に二次冷却することにより、冷却装置6の冷却能力を向上させることができる。このため、鋳造速度Vが500mm/minを超える高速であっても、割れが発生し難く、品質のよい鋳造棒4をハイスピードで連続鋳造して、短時間で多量に生産できるので、コストの低減を図ることができる。また、連続鋳造装置1は、鋳造速度Vを500mm/min以下にして連続鋳造した場合、特許文献1に記載の連続鋳造装置よりも、冷却能力が高いので、冷却速度が速くなることで、例えば、晶出物の微細化が見込まれる。
[変形例]
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造および変更が可能であり、本発明はこれら改造および変更された発明にもおよぶことは勿論である。なお、既に説明した構成は同じ符号を付してその説明を省略する。
図10は、本発明の実施形態に係る連続鋳造装置の変形例を示す図であり、(a)は噴出口エリアに複数の噴出口を配置した場合の状態を示す説明図、(b)は、噴出口エリアに多数の噴出口を配置した場合の状態を示す説明図、(c)は噴出口エリアに四角形の噴出口を配置した場合の状態を示す説明図、(d)は噴出口エリアの長辺を鋳造棒の軸線に直交する径方向に対して傾けて配置した場合の状態を示す説明図である。
前記実施形態では、図4(a)、(b)に示すように、冷却ノズル62の一例として、鋳造棒4の表面の外周方向に沿って複数並べて配置され、短辺α、長辺βを有する長方形の噴出口62aの場合を例に上げて説明したが、これに限定されるものではない。
例えば、図10(a)に示すように、冷却ノズル62Aは、短辺αと長辺βとが存在する噴出口エリアA内に複数の噴出口62Aaを長辺の方向に沿って配置して、その噴出口エリアAを鋳造棒4の表面の外周方向に沿って複数並べて配置したものであってもよい。この場合、噴出口62Aaは、長方形の噴出口エリアA内の長手方向の一端部と他端部とを含む複数の箇所に適宜な間隔を介して配置されている。そして、噴出口エリアAの長辺が鋳造棒4の軸線に沿って配置されている。
噴出口エリアAは、実施形態の噴出口62a(図4(a)参照)と略同様に、短辺の長さαが、0.1mm〜5.0mm(好ましくは、0.1mm程度)に形成され、噴出口エリアAの長辺の長さβが、2.5mm〜20.0mm(好ましくは、5.0mm〜10.0mm程度)に形成されている。このように、噴出口エリアAは、細長いスリット状に形成されている。
また、図10(b)に示すように、冷却ノズル62Bの噴出口62Baは、長方形の噴出口エリアA内に二つ以上適宜な間隔で長手方向に並べて配置されていればよい。この場合、噴出口62Baから放水された冷却水Wが鋳造棒4に当たる冷却水衝突領域Pの形状は、噴出口62aの場合と同様に、鋳造棒4に対して冷却水Wが鋳造方向に連続的に当たり、鋳造方向に長い長方形になるように放水されることが好ましい。
また、噴出口62Aa,62Ba(図10(a)、(b)参照)の形状は、円形のものに限定されるものではない。図10(c)に示すように、噴出口62Caの形状は、正方形や長方形の四角形であってもよい。その他、噴出口62Caの形状は、正方形、長円形、楕円形、卵形状、台形、三角形等であってもよい。
また、図10(d)に示すように、複数の噴出口62Daを配置した長方形の噴出口エリアAは、実施形態の噴出口62a(図4(b)参照)と同様に、鋳造棒4の軸線に直交する径方向に対して角度θ1だけ傾けて配置してもよい。もちろん、図10(b)、(c)に示す噴出口エリアAについても同様に、角度θ1だけ傾けて配置してもよい。
[その他の変形例]
また、図2に示す冷却鋳型5は、鋳型面5aと、溶湯供給口5bと、開口部5cと、傾斜面5dと、ウォータジャケット61と、冷却ノズル62と、を有していればよく、冷却鋳型5の構造、形状等は適宜変更しても構わない。例えば、冷却鋳型5は、溶湯供給口5bを形成する断熱材と、鋳型面5a、開口部5c、ウォータジャケット61、および、冷却ノズル62を形成する熱伝導率の高い鋼や銅合金から成る複数の部材と、を組み付けて一体化したものでもよい。
また、前記実施形態および実施例では、図3(b)に示す冷却ノズル62の鋳造方向に直交する面と傾斜面5dとがなす角度φを30度の場合を例に挙げて説明したが、30度以外に適宜に変更してもよい。例えば、冷却ノズル62の角度φは、鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θに合わせて、15度〜75度に適宜変更してもよい。
また、鋳造棒4の軸線に直交する径方向に対する噴出口62aの傾き角度θは、この傾き角度θを大きくするのに応じて冷却水衝突領域Pの外周方向の長さP2が長くなって、冷却水衝突領域Pを広くすることができる。このため、冷却ノズル62の角度φは、傾き角度θを大きくして冷却水衝突領域Pが広くした分だけ、角度を大きくして、冷却水衝突領域Pの鋳造方向の距離Lが小さくなるようにしてもよい。
また、周方向に環状に複数配置した冷却ノズル62の噴出口62aの角度φは、全てを同一角度にする必要がない。例えば、周方向に隣設された噴出口62aの角度φは、隣同士を相違した角度にして配置してもよい。
また、冷却ノズル62の噴出口62aは、枠状の部材を冷却ノズル62の噴出口62aの開口部5cに着脱自在に設けることによって、適宜に噴出口62aの形状を変えることができるようにしてもよい。
図2に示すように、冷却装置6は、一次冷却部のウォータジャケット61で使用した冷却水Wを二次冷却部の冷却ノズル62で使用する場合を説明したが、これに限定されるものではない。例えば、ウォータジャケット61と冷却ノズル62とに供給する冷却水Wは、それぞれの別系統の冷却水供給装置から供給したものであってもよい。
1 連続鋳造装置
3 溶湯
4 鋳造棒
4a 鋳造棒の外周面
5 冷却鋳型(連続鋳造用鋳型)
6 冷却装置
61 ウォータジャケット
62,62A,62B,62C,62D 冷却ノズル
62a,62Aa,62Ba,62Ca,62Da 噴出口
A 噴出口エリア
C カバー率
D 鋳造棒の直径
L1 鋳塊の凝固開始から凝固完了までの距離
N 冷却ノズルの噴出口の個数
W 冷却水
α 冷却ノズルの噴出口の短辺の長さ
β 冷却ノズルの噴出口の長辺の長さ
δ 鋳造棒の凝固シェル層の厚さ
θ 鋳造棒の軸線に直交する径方向に対する冷却ノズルの噴出口の傾き角度
π 円周率
ψ 鋳造棒の凝固角度
φ 冷却ノズルの鋳造方向に対する角度

Claims (16)

  1. 溶湯を冷却鋳型に設けた冷却装置によって冷却しながら、鋳造棒を連続的に鋳造する連続鋳造用鋳型であって、
    前記冷却装置は、前記冷却鋳型内から引き出された前記鋳造棒に冷却水を放水して冷却する複数の冷却ノズルを備え、
    前記複数の冷却ノズルの噴出口は、前記鋳造棒の表面の外周方向に沿って複数並べて配置され、短辺長辺、短軸と長軸、若しくは、長軸と当該長軸に交差する中心線と、が存在して、前記長辺方向または前記長軸方向に長い形状に形成され、前記長辺または前記長軸が前記鋳造棒の軸線方向に沿って配置されていること、
    を特徴とする連続鋳造用鋳型。
  2. 溶湯を冷却鋳型に設けた冷却装置によって冷却しながら、鋳造棒を連続的に鋳造する連続鋳造用鋳型であって、
    前記冷却装置は、前記冷却鋳型内から引き出された前記鋳造棒に冷却水を放水して冷却する複数の冷却ノズルを備え、
    前記複数の冷却ノズルは、短辺と長辺とが存在して前記長辺方向に長い形状に形成された噴出口エリア内に複数の噴出口を前記長辺方向に沿って配置して、前記噴出口エリアを前記鋳造棒の表面の外周方向に沿って複数並べて配置し、前記長辺が前記鋳造棒の軸線方向に沿って配置されていること、
    を特徴とする連続鋳造用鋳型。
  3. 前記冷却ノズルの噴出口は、噴出口の短辺の長さが0.1mm〜5.0mmに形成されていること、
    を特徴とする請求項1に記載の連続鋳造用鋳型。
  4. 前記冷却ノズルの噴出口エリアは、噴出口エリアの短辺の長さが0.1mm〜5.0mmに形成されていること、
    を特徴とする請求項2に記載の連続鋳造用鋳型。
  5. 前記冷却ノズルの噴出口は、噴出口の長辺の長さが2.5mm〜20.0mmに形成され、短辺と長辺との比が5倍以上であること、
    を特徴とする請求項1に記載の連続鋳造用鋳型。
  6. 前記冷却ノズルの噴出口エリアは、噴出口エリアの長辺の長さが2.5mm〜20.0mmに形成され、短辺と長辺との比が5倍以上であること、
    を特徴とする請求項2に記載の連続鋳造用鋳型。
  7. 前記冷却ノズルの噴出口の形状は、長方形、長円形、楕円形、卵形状、台形、あるいは、三角形であること、
    特徴とする請求項1に記載の連続鋳造用鋳型。
  8. 前記冷却ノズルの噴出口エリア内の噴出口の形状は、正方形、長方形、円形、長円形、楕円形、卵形状、台形、あるいは、三角形であること、
    特徴とする請求項2に記載の連続鋳造用鋳型。
  9. 前記冷却ノズルの噴出口は、前記鋳造棒の軸線に直交する径方向に対して傾けて配置していること、
    特徴とする請求項1に記載の連続鋳造用鋳型。
  10. 前記冷却ノズルの噴出口エリアは、前記鋳造棒の軸線に直交する径方向に対して傾けて配置していること、
    特徴とする請求項2に記載の連続鋳造用鋳型。
  11. 前記冷却ノズルの噴出口は、長方形に形成され、
    前記噴出口から放水された前記冷却水によって冷却された前記鋳造棒を形成する鋳塊の凝固開始から凝固完了するまでの距離L1は、下記式(1)を満足するように設定され、
    噴出口の長辺の長さβは、下記式(2)を満足するように設定されていること、
    を特徴とする請求項1に記載の連続鋳造用鋳型。
    Figure 0006560838
    Figure 0006560838
    (但し、前記式(1)および式(2)において、
    L1は、鋳塊の凝固開始から凝固完了までの距離(mm)を表し、
    Dは、鋳造棒の直径(mm)を表し、
    δは、鋳造棒の凝固シェル層の厚さ(mm)を表し、
    ψは、鋳造棒の中心線に対して溶湯と凝固鋳塊との境界がなす凝固角度(度)を表し、
    βは、噴出口の長辺の長さ(mm)を表し、
    φは、冷却ノズルの鋳造方向に直交する面と傾斜面とがなす角度(度)を表す。)
  12. 前記冷却ノズルの噴出口は、長方形に形成され、
    前記噴出口から放水された前記冷却水によって冷却された前記鋳造棒を形成する鋳塊の凝固開始から凝固完了するまでの距離L1は、下記式(1)を満足するように設定され、
    噴出口の長辺の長さβは、下記式(2)を満足するように設定されていること、
    を特徴とする請求項3に記載の連続鋳造用鋳型。
    Figure 0006560838
    Figure 0006560838
    (但し、前記式(1)および式(2)において、
    L1は、鋳塊の凝固開始から凝固完了までの距離(mm)を表し、
    Dは、鋳造棒の直径(mm)を表し、
    δは、鋳造棒の凝固シェル層の厚さ(mm)を表し、
    ψは、鋳造棒の中心線に対して溶湯と凝固鋳塊との境界がなす凝固角度(度)を表し、
    βは、噴出口の長辺の長さ(mm)を表し、
    φは、冷却ノズルの鋳造方向に直交する面と傾斜面とがなす角度(度)を表す。)
  13. 前記冷却ノズルの噴出口は、長方形に形成され、下記式(3)で定義されるカバー率Cが下記式(4)のように60%〜100%になるように設定されていること、
    を特徴とする請求項1に記載の連続鋳造用鋳型。
    Figure 0006560838
    Figure 0006560838
    (但し、前記式(3)および式(4)において、
    Cは、カバー率(%)を表し、
    Nは、冷却ノズルの噴出口の個数(個)を表し、
    θは、鋳造棒の軸線に直交する径方向に対する冷却ノズルの噴出口の傾き角度(度)を表し、
    αは、冷却ノズルの噴出口の短辺の長さ(mm)を表し、
    βは、冷却ノズルの噴出口の長辺の長さ(mm)を表し、
    Dは、鋳造棒の直径(mm)を表し、
    πは、円周率を表す。)
  14. 前記冷却ノズルの噴出口は、長方形に形成され、下記式(3)で定義されるカバー率Cが下記式(4)のように60%〜100%になるように設定されていること、
    を特徴とする請求項3に記載の連続鋳造用鋳型。
    Figure 0006560838
    Figure 0006560838
    (但し、前記式(3)および式(4)において、
    Cは、カバー率(%)を表し、
    Nは、冷却ノズルの噴出口の個数(個)を表し、
    θは、鋳造棒の軸線に直交する径方向に対する冷却ノズルの噴出口の傾き角度(度)を表し、
    αは、冷却ノズルの噴出口の短辺の長さ(mm)を表し、
    βは、冷却ノズルの噴出口の長辺の長さ(mm)を表し、
    Dは、鋳造棒の直径(mm)を表し、
    πは、円周率を表す。)
  15. 請求項1から請求項14のいずれか1項に記載の連続鋳造用鋳型を備えていること、
    を特徴とする連続鋳造装置。
  16. 請求項1から請求項14のうちのいずれか1項に記載の連続鋳造用鋳型を用いて、前記冷却鋳型から引き出された前記鋳造棒を、前記冷却ノズルから放水された冷却水によって冷却しながら製造すること、
    を特徴とする連続鋳造方法。
JP2019022788A 2019-02-12 2019-02-12 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法 Active JP6560838B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019022788A JP6560838B1 (ja) 2019-02-12 2019-02-12 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法
CN201911256029.5A CN111545715B (zh) 2019-02-12 2019-12-09 连续铸造用铸模、连续铸造装置以及连续铸造方法
US16/738,141 US11045867B2 (en) 2019-02-12 2020-01-09 Continuous casting mold, continuous casting device, and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022788A JP6560838B1 (ja) 2019-02-12 2019-02-12 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法

Publications (2)

Publication Number Publication Date
JP6560838B1 true JP6560838B1 (ja) 2019-08-14
JP2020131193A JP2020131193A (ja) 2020-08-31

Family

ID=67614885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022788A Active JP6560838B1 (ja) 2019-02-12 2019-02-12 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法

Country Status (3)

Country Link
US (1) US11045867B2 (ja)
JP (1) JP6560838B1 (ja)
CN (1) CN111545715B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248632A1 (ja) * 2022-06-21 2023-12-28 Jfeスチール株式会社 鋳片の連続鋳造設備及び鋳片の連続鋳造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832356B2 (ja) * 1987-07-07 1996-03-29 昭和電工株式会社 金属の水平連続鋳造方法及び装置
WO2000013821A1 (fr) * 1998-09-03 2000-03-16 Nippon Steel Corporation Procede de coulee continue et moule pour coulee continue
WO2002040199A2 (en) * 2000-11-15 2002-05-23 Alcan International Limited Process of and apparatus for ingot cooling during direct casting of metals
JP3765535B2 (ja) * 2002-01-18 2006-04-12 住友軽金属工業株式会社 アルミニウム鋳塊の連続鋳造方法
KR100895618B1 (ko) * 2004-10-25 2009-05-06 쇼와 덴코 가부시키가이샤 연속 주조 장치, 연속 주조 방법 및 알루미늄 합금 주조봉
CN100475385C (zh) * 2007-11-06 2009-04-08 攀钢集团攀枝花钢铁研究院 直弧型铸机低合金钢板坯连铸足辊段窄面冷却方法
US20090301683A1 (en) * 2008-06-06 2009-12-10 Reeves Eric W Method and apparatus for removal of cooling water from ingots by means of water jets
JP5379671B2 (ja) * 2009-12-24 2013-12-25 株式会社神戸製鋼所 水平連続鋳造装置及び水平連続鋳造方法
CN201603846U (zh) * 2010-02-03 2010-10-13 新疆八一钢铁股份有限公司 改进的连铸坯冷却用结晶器
BR112014011190B1 (pt) * 2011-11-15 2020-09-15 Nippon Steel Corporation Aparelho de refrigeração secundário de máquina de lingotamento contínuo e método de refrigeração secundário
US8662145B2 (en) * 2012-03-22 2014-03-04 Novelis Inc. Method of and apparatus for casting metal slab
KR20170005899A (ko) * 2013-09-11 2017-01-16 신닛테츠스미킨 카부시키카이샤 분사 노즐 및 연속 주조의 2차 냉각 방법
CN104511578A (zh) * 2013-09-30 2015-04-15 西安麦特沃金液控技术有限公司 一种立式半连续铸造机结晶器冷却装置
CN106825471B (zh) * 2016-12-20 2019-01-11 中冶连铸技术工程有限责任公司 方坯连铸机和板坯连铸机的喷嘴布置方法及系统
CN107671252A (zh) * 2017-09-29 2018-02-09 四川德胜集团钒钛有限公司 一种连铸二冷配水系统
CN208230812U (zh) * 2018-05-18 2018-12-14 秦皇岛瀚丰长白结晶器有限责任公司 带喷嘴的结晶器铜管

Also Published As

Publication number Publication date
CN111545715A (zh) 2020-08-18
US20200254514A1 (en) 2020-08-13
US11045867B2 (en) 2021-06-29
CN111545715B (zh) 2021-11-30
JP2020131193A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5168591B2 (ja) 連続鋳造用水冷鋳型及び鋳塊の製造方法
WO2015037093A1 (ja) 噴射ノズル及び連続鋳造の二次冷却方法
JP6560838B1 (ja) 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法
CA2095085C (en) Cooling method and apparatus for continuous casting and its mold
JP5379671B2 (ja) 水平連続鋳造装置及び水平連続鋳造方法
WO2021006253A1 (ja) 連続鋳造鋳片の2次冷却方法および2次冷却装置
JP6135616B2 (ja) 連続鋳造鋳片の幅方向均一冷却鋳造方法及び連続鋳造設備
JP7190324B2 (ja) 金属の連続鋳造装置および連続鋳造方法
JPH0577011A (ja) 連続鋳造の冷却方法及び鋳型
JP5094154B2 (ja) 連続鋳造機における鋳片冷却方法
EP2047925A1 (en) Twin roll casting machine
JP4301133B2 (ja) 丸鋳片の連続鋳造方法、丸鋳片および継目無管の製管方法
JP5768774B2 (ja) 中空丸断面鋳片の連続鋳造方法および中空丸断面鋳片の連続鋳造用鋳型
JPS6056448A (ja) 金属パイプの連続鋳造装置
SE450554B (sv) Forfarande for strenggjutning av en stang av stal
JP4401896B2 (ja) アルミニウム又は銅の半連続鋳造方法
JP6792179B2 (ja) 連続鋳造用浸漬ノズル
JP4468267B2 (ja) 連続鋳造装置
JP2746282B2 (ja) 水平連続鋳造設備用モールド
JP6558257B2 (ja) 双ドラム式連続鋳造装置用浸漬ノズル、双ドラム式連続鋳造装置及び薄肉鋳片の製造方法
JP2024035081A (ja) 連続鋳造用鋳型
JP2024000959A (ja) 鋳片の製造方法、2次冷却装置及び連続鋳造機
JP2024020140A (ja) 鋼の連続鋳造方法及び冷却水供給設備
JP2023017235A (ja) 双ロール式連続鋳造装置用浸漬ノズル、双ロール式連続鋳造装置、および、薄肉鋳片の製造方法
JP2023057665A (ja) 双ロール式連続鋳造装置用注湯ノズル、双ロール式連続鋳造装置、および、薄肉鋳片の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190719

R150 Certificate of patent or registration of utility model

Ref document number: 6560838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150