JP6559931B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP6559931B2
JP6559931B2 JP2014094690A JP2014094690A JP6559931B2 JP 6559931 B2 JP6559931 B2 JP 6559931B2 JP 2014094690 A JP2014094690 A JP 2014094690A JP 2014094690 A JP2014094690 A JP 2014094690A JP 6559931 B2 JP6559931 B2 JP 6559931B2
Authority
JP
Japan
Prior art keywords
insulating film
field plate
interlayer insulating
semiconductor substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014094690A
Other languages
English (en)
Other versions
JP2015213110A (ja
Inventor
佳敬 木村
佳敬 木村
裕一郎 鈴木
裕一郎 鈴木
健介 田口
健介 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014094690A priority Critical patent/JP6559931B2/ja
Publication of JP2015213110A publication Critical patent/JP2015213110A/ja
Application granted granted Critical
Publication of JP6559931B2 publication Critical patent/JP6559931B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体装置およびその製造方法に関し、特に、半導体能動領域を囲むターミネーション領域にフィールドプレートを有する高耐圧パワーの半導体装置およびその製造方法に関する。
パワー半導体装置は、自動車やエアコンなどの様々な電力機器の制御に用いられる大電力の半導体装置である。パワー半導体装置の代表例としては、ダイオードやIGBT(Insulated Gate Bipolar Transistor)などがある。パワー半導体装置はコスト低減のために小型化が望まれており、そのためにはパワー半導体装置のターミネーション領域の縮小が必要となる。しかし、ターミネーション領域を単に縮小するだけでは耐圧が低下するため、縮小しても耐圧が低下しないような様々な構造が研究されている。
パワー半導体装置の耐圧は、アバランシェ降伏が発生する電圧として定義される。アバランシェ降伏は半導体基板内部の電界強度が、物質によって決まっている臨界電界強度を超えた時に発生する。このため、印加電圧が低い場合であっても局所的に電界が集中すると半導体内部の電界強度が臨界電界強度に達してしまい、アバランシェ降伏が発生し、耐圧が低くなる。従って、耐圧を高くするには電界を分散させる必要がある。このような理由から、従来のパワー半導体装置では、ターミネーション領域にフィールドプレートを配置し、半導体基板内部の局所的な電界の集中を防ぎ、電界を分散させて、高耐圧化と小型化を両立させている(例えば、特許文献1参照)。
特開2010−251404号公報
しかしながら、高電圧が印加される半導体装置では、アバランシェ降伏の発生する半導体基板内部だけでなく、ターミネーション領域に配置されたフィールドプレート上に形成された絶縁膜の表面部分にも高い電位差が発生する。特に、フィールドプレート上に形成された絶縁膜上端部の角部に電界が集中することで、電極間にかかる電位差によって、絶縁膜の表面の空気中で絶縁破壊が生じて電流が流れる火花放電が発生し、アバランシェ降伏が発生する前に半導体装置が破壊されるという問題があった。
そこで、本発明は、ターミネーション領域に配置されたフィールドプレートを覆う絶縁膜の上端部の角部への電界集中を防ぎ、絶縁膜表面の空気中で火花放電を抑制した半導体装置の提供を目的とする。
本発明は、
半導体基板に設けられた能動領域と、能動領域の周囲に設けられたターミネーション領域とを含む半導体装置であって、ターミネーション領域は、
半導体基板の上に設けられた層間絶縁膜と、
層間絶縁膜の上に設けられたフィールドプレートと、
フィールドプレートを覆うように形成された表面絶縁膜とを含み、
フィールドプレートの上面と斜面との間の角度αが、フィールドプレートの上面と斜面とを覆う表面絶縁膜の上面と斜面との間の角度βに対して、α<βの関係を満たすことを特徴とする半導体装置である。
また、本発明は、
半導体基板に能動領域とターミネーション領域とを作製する半導体装置の製造方法であって、
半導体基板に能動領域を形成する工程と、
半導体基板上に、能動領域を囲むように層間絶縁膜を形成する工程と、
層間絶縁膜の上に第1金属膜を形成する工程と、
エッチングマスクを用いて第1金属膜をエッチングし、上面と斜面とを有するフィールドプレートを層間絶縁膜の上に形成する工程と、
フィールドプレートを覆うように第2金属膜を形成する工程と、
第2金属膜をエッチングして、層間絶縁膜を露出させるとともに、フィールドプレートの斜面上に該第2金属膜を残すエッチング工程と、
第2金属膜を備えたフィールドプレートを覆うように、表面絶縁膜を形成する工程と、を含み、
エッチング工程は、層間絶縁膜側から上方に向かって半導体基板の表面に対する傾斜角が漸次減少する曲面を有するように、フィールドプレートの斜面上の第2金属膜をエッチングする工程であることを特徴とする製造方法でもある。
以上で述べたように、本発明にかかる半導体装置では、ターミネーション領域に存在するフィールドプレート上に形成された絶縁膜の、上端部の角部への電界集中が緩和され、絶縁膜表面での火花放電を抑制し、高耐圧の半導体装置を得ることができる。
本発明の実施の形態1にかかる半導体装置の表面図である。 本発明の実施の形態1にかかる半導体装置の断面図である。 本発明の実施の形態1にかかる半導体装置の断面図と電界分布である。 本発明の実施の形態1にかかる半導体装置の断面図と電界分布である。 本発明の実施の形態1にかかる半導体装置の一部の断面図である。 本発明の実施の形態1にかかる表面絶縁膜の上端部の角部の角度βとその電界強度の関係である。 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態1にかかる半導体装置の一部の断面図である。 本発明の実施の形態1にかかる半導体装置の断面図と電界分布である。 本発明の実施の形態2にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態2にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態2にかかる半導体装置の一部の断面図である。 本発明の実施の形態3にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態3にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態3にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態3にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態3にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態3にかかる半導体装置の一部の断面図である。 本発明の実施の形態3にかかる半導体装置の一部の断面図である。 本発明の実施の形態3にかかる半導体装置の一部の断面図である。 本発明の実施の形態4にかかる半導体装置の製造工程の断面図である。 本発明の実施の形態4にかかる半導体装置の製造工程の断面図である。
実施の形態1.
本発明の実施の形態1について、図1〜図9を参照しながら詳細に説明する。本発明の実施の形態1では、ターミネーション領域を備えた半導体装置としてダイオードを例に説明するが、本発明は、IGBTやMOSトランジスタ等の他の半導体装置にも適用することができる。
図1は、全体が100で表される、本発明の実施の形態1にかかる半導体装置の断面図である。また、図2は、図1のA−A‘における断面図であり、ターミネーション領域の断面を示す。図2に示すように、半導体装置100は、表面と裏面とを有するn型半導体基板1を含む。n型半導体基板1の表面側には、p型領域4が形成される。p型領域4の上には、表面主電極3が設けられ、さらにこれを囲むように層間絶縁膜6が設けられている。さらに層間絶縁膜6の上には、フィールドプレート7a、7bが設けられ、その上を覆うように表面絶縁膜2が設けられている。フィールドプレート7a、7bは、表面主電極3と同じ材料から形成されることが好ましく、例えばアルミニウムから形成される。一方、n型半導体基板1の裏面には、裏面主電極5が設けられている。裏面主電極5は、例えばTi/Ni/Auからなる。
半導体装置100では、n型半導体基板1とp型領域4との間がpn接合ダイオード(能動領域)となっており、表面主電極3と裏面主電極5との間に電圧を印加して、ダイオードとして使用する。例えば、表面主電極3を高電位に、裏面主電極5をGND電位にすると、ダイオードはスイッチがオン状態となり電流が流れる。逆に表面主電極3をGND電位に、裏面主電極5を高電位にするとスイッチがオフ状態となり電流は流れない。
図2に示すターミネーション領域は、スイッチがオフ状態のときの耐圧を保つために存在する。即ち、表面主電極3をGND電位、裏面主電極5を高電位としたとき、図2に示すB−B’間に電位差が生じるが、この電位差によりB−B’間でアバランシェ降伏が発生するのを防ぐために、電界を分散させる効果のあるフィールドプレート7a、7bが設けられている。
図3は、半導体装置100のターミネーション領域の断面と電界分布を示す。フィールドプレート7a、7bを設けない場合の電界分布を波線で、フィールドプレート7a、7bを設けた場合の電界分布を実線で示す。また、一点鎖線は、これ以上の電界が印加された場合はアバランシェ降伏が発生する臨界電界強度を示す。
図3からわかるように、フィールドプレート7a、7bが存在しない場合は局所的な電界集中が発生し、特に、表面主電極3のエッジ部分で電界が集中する。このため、表面主電極3のエッジ部分で電界強度が臨界電界強度に達してアバランシェ降伏が発生するため、耐圧が低くなる。
これに対して、表面主電極3と同じ材料からなるフィールドプレート7a、7bを形成することにより、電界の集中を分散させることができ、この結果、フィールドプレート7a、7bのエッジ部分における電界強度を低く抑えることができ、耐圧を向上させることができる。
ここで、B−B’間に電圧Vを印加した場合、半導体基板1の内部のB−B’間だけでなく、表面絶縁膜2上のC−C’間にも同様の電圧Vが印加される。このとき、C−C’間の電界強度は、特にフィールドプレート7a、7b上に形成された表面絶縁膜2の上端部の角部で最も大きくなる。
図4は、半導体装置100の断面と電界分布との関係を示す。図4から分かるように、表面絶縁膜2の上端部の角部8に電界が集中した場合、半導体基板1の内部でアバランシェ降伏が発生するよりも先に、表面絶縁膜2の上端部の2つの角部8の間で火花放電が発生し、半導体装置が破壊される。
これに対して、本発明の実施の形態1にかかる半導体装置100では、図1のA−A’方向のフィールドプレート7a近傍の断面である図5(a)に示すように、表面絶縁膜2の上端部の角部8の角度(表面絶縁膜2の上面と斜面との間の角度)βが、フィールドプレート7aの上端部11の角度(フィールドプレート7aの上面と斜面との間の角度)αより大きくなっている(β>α)。なお、図5(a)では、角度αは鈍角となっているが、(b)のように直角、または(c)のように鋭角であっても構わない。
図6は、図5の構造における、表面絶縁膜2の上端部の角部8の角度βとその電界強度の関係を示す。図6から分かるように、角度βが大きくなるほど、その部分での電界強度は低くなる。このため、電界強度を低くするためには、角度βは大きくする必要がある。そして、角度βを大きくするためには、フィールドプレート7aの上端部11の角度αも大きくする必要がある。しかし、角度αは、プロセス、配線寸法等の制限により、一定以上には大きくできない。そこで、本発明の実施の形態1にかかる半導体装置100では、図5(a)に示すように、角度αを大きくすることなく、角度βのみを大きくして、角部8における電界集中を防止している。なお、図5(a)に示した点線は、角度β=角度αとなる場合を示す。
このように、本発明の実施の形態1にかかる半導体装置100では、ターミネーション領域にフィールドプレートを設けるとともに、フィールドプレート上に設けた表面絶縁膜の上端部の角部の角度βを、フィールドプレートの上端部の角度αより大きくすることにより(β>α)、電界の集中を防止してアバランシェ降伏の発生を防止するとともに、表面絶縁膜の上端部の角部における火花放電も防止することができる。この結果、高耐圧の半導体装置の提供が可能となる。
次に、図7a〜図7fを参照しながら、半導体装置100の製造方法について説明する。製造方法は、以下の工程1〜工程6を含む。
工程1:図7aに示すように、n型半導体基板1を準備する。n型半導体基板1は、例えばシリコンからなる。続いて、例えばイオン注入法を用いて所定の領域に例えばGeやPのようなp型イオンを注入し、続いて拡散工程を行い、p型領域4を形成する。
工程2:図7bに示すように、n型半導体基板1の上に層間絶縁膜6を形成する。層間絶縁膜6は、例えば、BPSGやBPTEOSなどの酸化膜からなる。
工程3:図7cに示すように、n型半導体基板1と層間絶縁膜6の上に、例えばAl合金からなる金属膜9を形成する。
工程4:図7dに示すように、レジストマスク10を金属膜9の上に形成した後、金属膜9をエッチングし、フィールドプレート7a、7bと表面主電極3を形成する。フィールドプレート7aは表面主電極3に隣接して設けられ、フィールドプレート7bは層間絶縁膜6の端部に設けられる。
図8は、図7d中で、四角で囲んだ部分の断面図である。フィールドプレート7aの上端部の角部11は図8(a)に示すように鈍角となっていることが望ましいが、図8(b)、(c)に示すように、直角や鋭角であっても構わない。
工程5:図7eに示すように、レジストマスク10を除去した後に、表面主電極3、フィールドプレート7a、7bの上に表面絶縁膜2を形成する。表面絶縁膜2は、例えば、窒化膜やTEOS等の絶縁膜で形成される。続いて、表面絶縁膜2の上にレジストマスク12を形成する。
工程6:図7fに示すように、例えばドライエッチングを用いて表面絶縁膜2をエッチングして、表面絶縁膜2を所定の膜厚にする。最後に、n型半導体基板1の裏面上に、例えばTi/Ni/Auからなる裏面主電極5を形成する。以上の工程で、本発明の実施の形態1にかかる半導体装置100が完成する。
図9は、本発明の実施の形態1にかかる半導体装置100の断面図と電界分布である。波線は、角度α=角度βの場合の電界分布であり、実線は、角度α<角度βの場合の電界分布である。図9から明らかなように、角度α<角度βとすることにより、角部8における最大電界強度が低くなるため、アバランシェ降伏が発生する前に表面絶縁膜上端部の角部8で火花放電が発生し半導体装置が破壊されることを防止し、耐圧を高くすることができる。
実施の形態2.
図10a、10bは、全体が200で表される、本発明の実施の形態2にかかる半導体装置の製造工程の断面図である。図10bは、最終構造の断面図であり、図10aは、表面絶縁膜2を形成する前の断面図である。
半導体装置200は、上述の半導体装置100の工程4(図7d)において、レジストマスク10を除去した後に、全面をウェットエッチしてフィールドプレート7aの上端部の角部11をエッチングし、角取りを行う。この結果、フィールドプレートの斜面は、層間絶縁膜に接する第1斜面と、第1斜面とフィールドプレートの上面との間の第2斜面とを備え、第1斜面と第2斜面は、半導体基板の表面に対して互いに異なる傾斜角を有するようになる。その後、半導体装置100と同様に工程5、6を行うことにより、図10bに記載された半導体装置200が完成する。
本発明の実施の形態2にかかる半導体装置200では、フィールドプレート7aの上端部の角部11を角取りすることで、その上に形成する表面絶縁膜2の上端部の角部8の角度βが大きくなり、この結果、電界強度が低くなり火花放電を抑制できる。
表面絶縁膜2の上端部の角部8の角度βが大きいほど、電界集中は緩和されるが、一方で、表面絶縁膜2が薄くなってフィールドプレート7a、7bが露出してはいけない。即ち、表面絶縁膜2の上端部の角部8の角度βには限界が存在する。
図11は、(a)角取りをしたフィールドプレート7aの断面と、(b)角取りをしないフィールドプレート7aの断面とを比較した図である。図11(a)に示すように、角取りをしたフィールドプレート7aの方が、フィールドプレート7aを露出させることなく、表面絶縁膜2の上端部の角部8の角度βをより大きくできる。このため、フィールドプレート7aの角取りをしたほうが、より表面絶縁膜の上端部の角部8の角度βを大きくすることができるため、火花放電の発生を抑制できる。
実施の形態3.
図12a〜図12eは、全体が300で表される、本発明の実施の形態3にかかる半導体装置の製造工程の断面図であり、図12eが完成図である。図12eに示すように、本発明の実施の形態3にかかる半導体装置300では、フィールドプレート7a、7bの上端部の角部11を湾曲させる(曲率を持たせる)ことで、表面絶縁膜2の上端部の角部8の角度βを大きくする。
半導体装置300の製造工程では、実施の形態1の工程4(図7d)まで行った後に、
レジストマスク10を除去し、図12aに示すように、再度、金属膜9を成膜する。
次に、図12bに示すように、ドライエッチングでエッチバックを行い、上端部の角部11が曲率を有する(斜面が層間絶縁膜6側から上方に向かって、半導体基板1の表面に対する傾斜角が漸次減少する曲面を有する)フィールドプレート7a、7bを形成する。
図13は、図12bの四角で囲んだ部分の拡大図である。図13において、波線は、実施の形態1のフィールドプレート7aの形状を示す。実施の形態3のフィールドプレート7aの形状は、実施の形態1の形状と比較して、角部11が曲率のある形状となっている。なお、図12bに示すような曲率のある形状を形成した後に、アニールや全面ウェットエッチングを行うことで、より表面状態を滑らかにし、電界集中をさらに緩和できる。
次に、図12cに示すように、表面主電極3、フィールドプレート7a、7bの上に、表面絶縁膜2を形成する。表面絶縁膜2は、例えば、窒化膜やTEOSなどの絶縁膜で形成される。
次に、図12dに示すように、レジストマスク12を形成し、ドライエッチングにより表面絶縁膜2をエッチングする。
図14は、図12eのフィールドプレート7aおよびその上の表面絶縁膜2の断面図である。このように、本発明の実施の形態3にかかる半導体装置300では、フィールドプレート7aにおいて、点13(表面主電極3との接点)と点14(層間絶縁膜6との接点)とにおけるフィールドプレート7a表面に対する接線が交差する角度15より、表面絶縁膜2の上端部の角部8の角度が大きくなるように、表面絶縁膜2のエッチングを行う。
最後に、レジストマスク12を除去し、n型半導体基板1の裏面に、Ti/Ni/Auなどの裏面主電極5形成することにより、図12eに示すような半導体装置300が完成する。
図15は、(a)本発明の実施の形態3にかかる半導体装置300の、曲率を有するフィールドプレート7aと、(b)曲率を有さないフィールドプレート7aを比較した断面図である。図15から分かるように、(a)曲率を持ったフィールドプレートの方が、より表面絶縁膜2の上端部の角部8の角度を大きくすることができる。このように、曲率を有するフィールドプレート7aの方がより表面絶縁膜の上端部の角部8を大きくすることができるため、火花放電を抑制できる。
実施の形態4.
図16a、16bは、全体が400で表される、本発明の実施の形態4にかかる半導体装置の製造工程の断面図である。実施の形態4では、フィールドプレート7aの上端部の角部11に曲率を持たせる方法として、熱だれレジストを用いる。
本発明の実施の形態4にかかる製造方法では、実施の形態1の製造方法と工程1〜3(図7a〜図7c)は同様である。
次に、図16aに示すように、金属膜9の上に熱だれレジストマスク16を形成する。
次に、酸化が進まないように、窒素雰囲気中でアニールを行い、レジストマスクを熱だれさせて、図16bのような形状にする。
次に、曲率を有するレジストマスク16を用いて金属膜9をエッチングすることで、図12bに示すような、曲率を有するフィールドプレート7a、7bの形成が可能となる。即ち、図16bに示すような曲率を持ったレジストマスク16を用いて金属膜9をエッチングすると、レジストマスク16の膜厚が薄い部分はエッチングされやすいため、曲率をもった形状が形成される。また、曲率のある形状を形成した後に、アニールや全面ウェットエッチを行うことでより表面状態を滑らかにすることができ、さらに電界集中を緩和できる。
本実施の形態4にかかる製造方法では、熱だれレジスト16を用いることで、実施の形態3の製造方法に比較して、金属膜2の成膜工程とエッチングの工程を、それぞれ1回ずつ省略できる。このため、曲率を有するフィールドプレート7a、7bを有する半導体装置300を作製するにあたり、製造工程コストの削減が可能となる。
実施の形態1〜4では、フィールドプレートが2つの場合について説明したが、ターミネーション領域に1つ、3つ以上のフィールドプレートを形成しても良い。これらのフィールドプレートは、図1に示すように、表面主電極3の周囲を囲むように設けられる。
1 n型半導体基板、2 表面絶縁膜、3 表面主電極、4 p型領域、5 裏面主電極、6 層間絶縁膜、7a、7b フィールドプレート、8 表面絶縁膜の上端部の角部、9 金属膜、10 レジストマスク、11 フィールドプレート上端部の角部、12 レジストマスク、13 点、14 点、15 交点の角度、16 熱だれレジストマスク、100、200、300 半導体装置。

Claims (6)

  1. 半導体基板に設けられた能動領域と、該能動領域の周囲に設けられたターミネーション領域とを含む半導体装置であって、該ターミネーション領域は、
    該半導体基板の上に設けられた層間絶縁膜と、
    該層間絶縁膜の上に設けられたフィールドプレートと、
    該フィールドプレートを覆うように形成された表面絶縁膜とを含み、
    該フィールドプレートの斜面は、該層間絶縁膜に接する第1斜面と、該第1斜面と該フィールドプレートの上面との間の第2斜面とを含み、
    該第1斜面と該第2斜面は、該半導体基板の表面に対して互いに異なる傾斜角を有し、かつ、
    該フィールドプレートの上面と、該第1斜面との間の角度αが、該フィールドプレートの上面と斜面とを覆う該表面絶縁膜の上面と斜面との間の角度βに対して、α>90°、β>90°、およびα<βの関係を満たすことを特徴とする半導体装置。
  2. 半導体基板に設けられた能動領域と、該能動領域の周囲に設けられたターミネーション領域とを含む半導体装置であって、該ターミネーション領域は、
    該半導体基板の上に設けられた層間絶縁膜と、
    該層間絶縁膜の上に設けられたフィールドプレートと、
    該フィールドプレートを覆うように形成された表面絶縁膜とを含み、
    該フィールドプレートの該層間絶縁膜に接する斜面は、該層間絶縁膜側から上方に向かって、該半導体基板の表面に対する傾斜角が漸次減少する曲面であり、かつ、
    該フィールドプレートと表面主電極との接点と、該フィールドプレートと該層間絶縁膜との接点との双方における、該フィールドプレートの表面に対する接線が交差する角度αが、該フィールドプレートの上面と斜面とを覆う該表面絶縁膜の上面と斜面との間の角度βに対して、α>90°、β>90°、およびα<βの関係を満たすことを特徴とする半導体装置。
  3. 上記ターミネーション領域は、上記層間絶縁膜の上に設けられた複数のフィールドプレートを含むことを特徴とする請求項1または2に記載の半導体装置。
  4. 半導体基板に能動領域とターミネーション領域とを作製する半導体装置の製造方法であって、
    半導体基板に能動領域を形成する工程と、
    該半導体基板上に、該能動領域を囲むように層間絶縁膜を形成する工程と、
    該層間絶縁膜の上に第1金属膜を形成する工程と、
    エッチングマスクを用いて第1金属膜をエッチングし、上面と該層間絶縁膜に接する斜面とを有するフィールドプレートを該層間絶縁膜の上に形成する工程と、
    該フィールドプレートを覆うように第2金属膜を形成する工程と、
    第2金属膜をエッチングして、該層間絶縁膜を露出させるとともに、該フィールドプレートの斜面上に該第2金属膜を残すエッチング工程と、
    該第2金属膜を備えた該フィールドプレートを覆うように、表面絶縁膜を形成する工程と、を含み、
    該エッチング工程は、該層間絶縁膜側から上方に向かって該半導体基板の表面に対する傾斜角が漸次減少する曲面を有するように、該フィールドプレートの斜面上の該第2金属膜をエッチングし、該フィールドプレートと表面主電極との接点と、該フィールドプレートと該層間絶縁膜との接点との双方における、該フィールドプレートの表面に対する接線が交差する角度αが、該フィールドプレートの上面と斜面とを覆う該表面絶縁膜の上面と斜面との間の角度βに対して、α>90°、β>90°、およびα<βの関係を満たすようにする工程であることを特徴とする製造方法。
  5. 半導体基板に能動領域とターミネーション領域とを作製する半導体装置の製造方法であって、
    半導体基板に能動領域を形成する工程と、
    該半導体基板上に、該能動領域を囲むように層間絶縁膜を形成する工程と、
    該層間絶縁膜の上に金属膜を形成する工程と、
    エッチングマスクを用いて金属膜をエッチングし、上面と該層間絶縁膜に接する斜面とを有するフィールドプレートを該層間絶縁膜の上に形成する工程と、
    該フィールドプレートを覆うように、表面絶縁膜を形成する工程と、を含み、
    該エッチング工程は、
    該エッチングマスクが該半導体基板の表面に対する該斜面の傾斜角が漸次減少することで、該金属膜は、該層間絶縁膜側から上方に向かって該半導体基板の表面に対する該斜面の傾斜角が漸次減少する曲面を有し、かつ、
    該フィールドプレートと表面主電極との接点と、該フィールドプレートと該層間絶縁膜との接点との双方における、該フィールドプレートの表面に対する接線が交差する角度αが、該フィールドプレートの上面と斜面とを覆う該表面絶縁膜の上面と斜面との間の角度βに対して、α>90°、β>90°、およびα<βの関係を満たすように該金属膜がエッチングされることを特徴とする製造方法。
  6. 上記エッチングマスクは、フォトレジストマスクを熱変形させて、上記半導体基板の表面に対する傾斜角が漸次減少する曲面を有する形状としたことを特徴とする請求項に記載の製造方法。
JP2014094690A 2014-05-01 2014-05-01 半導体装置およびその製造方法 Active JP6559931B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094690A JP6559931B2 (ja) 2014-05-01 2014-05-01 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094690A JP6559931B2 (ja) 2014-05-01 2014-05-01 半導体装置およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018078699A Division JP6681935B2 (ja) 2018-04-16 2018-04-16 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2015213110A JP2015213110A (ja) 2015-11-26
JP6559931B2 true JP6559931B2 (ja) 2019-08-14

Family

ID=54697232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094690A Active JP6559931B2 (ja) 2014-05-01 2014-05-01 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP6559931B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159640A1 (ja) * 2016-03-14 2017-09-21 富士電機株式会社 半導体装置および製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582508A (ja) * 1991-09-25 1993-04-02 Fuji Electric Co Ltd 半導体素子の製造方法
US5382825A (en) * 1993-01-07 1995-01-17 Harris Corporation Spiral edge passivation structure for semiconductor devices
JPH10190013A (ja) * 1996-12-26 1998-07-21 Murata Mfg Co Ltd ダイオード装置
JP2000082825A (ja) * 1998-09-07 2000-03-21 Miyazaki Oki Electric Co Ltd 半導体素子
JP2006173437A (ja) * 2004-12-17 2006-06-29 Toshiba Corp 半導体装置
JP6206862B2 (ja) * 2012-05-31 2017-10-04 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Also Published As

Publication number Publication date
JP2015213110A (ja) 2015-11-26

Similar Documents

Publication Publication Date Title
US9711641B2 (en) Semiconductor device with cell trench structures and a contact structure
JP4890780B2 (ja) 電界効果トランジスタ
JP5984282B2 (ja) 縦型トレンチ型絶縁ゲートmos半導体装置
JP3904648B2 (ja) 半導体装置
JP2016072482A (ja) 半導体装置およびその製造方法
CN105074886B (zh) 碳化硅半导体器件及其制造方法
US20100025759A1 (en) Trench type semiconductor device and fabrication method for the same
TW201539750A (zh) 半導體裝置
US20180190806A1 (en) Semiconductor device and method of manufacturing same
CN102044559B (zh) 半导体装置以及半导体装置的制造方法
JP2011199109A (ja) パワーmosfet
JP2009170629A (ja) 半導体装置の製造方法
WO2013077068A1 (ja) 半導体装置の製造方法
JP2019046834A (ja) 半導体装置の製造方法
JP2005322949A (ja) 半導体装置
JP2011176027A (ja) 半導体素子および半導体素子の製造方法
JP2005183633A (ja) 半導体装置とその製造方法
JP6681935B2 (ja) 半導体装置およびその製造方法
JP6559931B2 (ja) 半導体装置およびその製造方法
JP3344381B2 (ja) 半導体装置及びその製造方法
US10439056B2 (en) Power semiconductor device and method of manufacturing power semiconductor device
US20160380061A1 (en) Method for manufacturing termination structure of semiconductor device
TW200952176A (en) Semiconductor devices and methods for fabricating the same
JP5994238B2 (ja) 半導体装置の製造方法
JP4100071B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180423

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6559931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250