JP6551281B2 - 車両の駆動力自動制御装置 - Google Patents

車両の駆動力自動制御装置 Download PDF

Info

Publication number
JP6551281B2
JP6551281B2 JP2016069637A JP2016069637A JP6551281B2 JP 6551281 B2 JP6551281 B2 JP 6551281B2 JP 2016069637 A JP2016069637 A JP 2016069637A JP 2016069637 A JP2016069637 A JP 2016069637A JP 6551281 B2 JP6551281 B2 JP 6551281B2
Authority
JP
Japan
Prior art keywords
driving force
downshift
gear
gear stage
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069637A
Other languages
English (en)
Other versions
JP2017180703A (ja
Inventor
廣瀬 誠
誠 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016069637A priority Critical patent/JP6551281B2/ja
Publication of JP2017180703A publication Critical patent/JP2017180703A/ja
Application granted granted Critical
Publication of JP6551281B2 publication Critical patent/JP6551281B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は車両の駆動力自動制御装置に係り、特に、駆動力自動制御走行中における自動変速機のダウンシフト制御に関するものである。
(a) 駆動源と、変速比が異なる複数のギヤ段に自動的に切り換えることができる自動変速機と、を有する車両に関し、(b) 運転者のアクセル操作とは独立に駆動力を制御する駆動力自動制御走行を行なう駆動力自動制御装置が知られている。特許文献1に記載のクルーズコントロールシステムはその一例である。また、自動変速機の変速制御においては、アクセル操作量或いはスロットル開度に関して定められた変速線に従って変速判断を行なうことが一般的であるが、近年、アクセル操作量等から求められる要求駆動力に基づいて変速判断を行なう駆動力デマンド型の変速技術が提案されている(特許文献2参照)。このような駆動力デマンド型の変速技術は、アクセル操作と独立に駆動力を制御する上記駆動力自動制御走行中の自動変速機の変速制御にも好適に適用される。
WO2014/069176号公報 特開2009−264548号公報
ところで、自動変速機のダウンシフト判断において、要求駆動力が現在の車両状態で実現可能な最大駆動力を上回った場合、その要求駆動力を実現できないことから、ダウンシフト判断を行なう際の駆動力閾値であるダウンシフト判断用駆動力を最大駆動力によって上限ガード(最大駆動力以下に制限)し、ダウンシフトし易くすることが考えられる。しかしながら、このようにダウンシフト判断用駆動力に上限ガードを設けた場合、飛びダウンシフトが可能な変速制御においては、適切なギヤ段を超えて、許容される最低ギヤ段までダウンシフトしてしまう可能性があった。例えば、図15のタイムチャートに示すように、現在第8速ギヤ段で走行中で、第5速ギヤ段まで飛びダウンシフトが許容される場合に、その第5速ギヤ段へのダウンシフト判断用駆動力Fsft(5)が最大駆動力Fmaxによって上限ガードされると、時間t1で要求駆動力Freqが最大駆動力Fmaxを上回った場合に、第5速ギヤ段までダウンシフトしてしまう。その場合、変速による駆動源回転速度の上昇等に伴って駆動源最大トルクが上昇し、更に最大駆動力Fmaxが上昇することで、要求駆動力Freqを超える時間t2以後ではその要求駆動力Freqを実現できるが、第6速ギヤ段で要求駆動力Freqを実現できるにも拘らず第5速ギヤ段までダウンシフトすることで、駆動源回転速度が必要以上に高くなったり直後にアップシフトが行なわれたりするなどの問題が生じる。第4速ギヤ段まで飛びダウンシフトが可能な場合には、その第4速ギヤ段へのダウンシフト判断用駆動力Fsft(4)も最大駆動力Fmaxによって上限ガードされることで、その第4速ギヤ段までダウンシフトしてしまう。
飛びダウンシフトを禁止すれば、過度のダウンシフトを防止できるが、例えば前車両のレーン変更などで追従クルーズモード(予め定められた車間距離で前車両に追従して走行するモード)から定速クルーズモード(予め定められた目標車速で定速走行するモード)に切り換わった場合に、現在車速と目標車速との速度差が大きいと、要求駆動力が急増するにも拘らずギヤ段を1段ずつ下げることしかできず、もたつき感を生じさせる可能性がある。定速クルーズモードでの走行中に平坦路から急な登坂路へ切り換わった場合にも、同様の問題が生じる可能性がある。
本発明は以上の事情を背景として為されたもので、その目的とするところは、最大駆動力による上限ガードで適切にダウンシフトが行なわれるとともに、過度のダウンシフトを防止しつつ飛びダウンシフトが許容されるようにすることにある。
かかる目的を達成するために、本発明は、(a) 駆動源と、変速比が異なる複数のギヤ段に自動的に切り換えることができる自動変速機と、を有する車両に関し、(b) 運転者のアクセル操作とは独立に駆動力を制御する駆動力自動制御走行を行なうとともに、その駆動力自動制御走行中は、ダウンシフトの種類毎に設定されるダウンシフト判断用駆動力と要求駆動力とに基づいて前記自動変速機のダウンシフト判断を行なう駆動力自動制御装置において、(c) 現在のギヤ段および車速で実現可能な最大駆動力により前記ダウンシフト判断用駆動力を上限ガードして、前記ダウンシフト判断を行なって第1目標ギヤ段を求める第1ダウンシフト判断部と、(d) 前記最大駆動力による上限ガードを行なうことなく、2段以上下のギヤ段への飛びダウンシフトを含んで前記ダウンシフト判断を行なって第2目標ギヤ段を求める第2ダウンシフト判断部と、(e) 前記第1ダウンシフト判断部によって求められた前記第1目標ギヤ段、および前記第2ダウンシフト判断部によって求められた前記第2目標ギヤ段のうち、低速側のギヤ段を最終目標ギヤ段として選択する最終目標ギヤ段設定部と、を備えていることを特徴とする。
このような車両の駆動力自動制御装置においては、最大駆動力によりダウンシフト判断用駆動力を上限ガードしてダウンシフト判断を行なう第1ダウンシフト判断部により、上限ガードされたダウンシフト判断用駆動力を要求駆動力が上回った場合に適切にダウンシフト判断が行なわれて、その要求駆動力を速やかに実現できる一方、2段以上下のギヤ段への飛びダウンシフトを含めてダウンシフト判断を行なう第2ダウンシフト判断部では、最大駆動力による上限ガードが行なわれないため、過度のダウンシフトを防止しつつ飛びダウンシフトが許容されて、要求駆動力の急増時に飛びダウンシフト判断が行なわれることにより、適切な低速ギヤ段まで直ちにダウンシフトして要求駆動力を速やかに実現できる。
すなわち、第1ダウンシフト判断部によって求められた第1目標ギヤ段、および第2ダウンシフト判断部によって求められた第2目標ギヤ段のうち、低速側のギヤ段が最終目標ギヤ段に設定され、その最終目標ギヤ段に応じて変速制御が行なわれる。これにより、要求駆動力の変化が小さい時には第1目標ギヤ段に従って、最大駆動力による上限ガードで適切にダウンシフトが行なわれるとともに、要求駆動力の変化が大きい時には第2目標ギヤ段に従って、過度のダウンシフトを防止しつつ飛びダウンシフトが許容されて、急増する要求駆動力を速やかに実現できる。
本発明が適用された車両用駆動装置を説明する図で、オートクルーズ走行(駆動力自動制御走行)に関する制御系統の要部を併せて示した概略構成図である。 図1の第1ダウンシフト判断部が連続変速用要求駆動力を算出する際の信号処理を具体的に説明するフローチャートである。 第1ダウンシフト判断部が最大駆動力を算出する際の信号処理を具体的に説明するフローチャートである。 図3のS2−1で用いられる最大エンジントルクを説明する図で、エンジン回転速度に対するエンジントルク特性の一例を示した図である。 第1ダウンシフト判断部が連続変速用要求駆動力に基づいてダウンシフト判断を行なう際の信号処理を具体的に説明するフローチャートである。 図5のS3−1で選択されるダウンシフト線の一例を示した図である。 図5のS3−3で求められる連続ダウンシフト判断用駆動力を、車速をパラメータとして例示した図である。 第1ダウンシフト判断部によって目標ギヤ段が1段ずつ下げられた場合のタイムチャートの一例である。 第1ダウンシフト判断部によって最大駆動力の上限ガードによりダウンシフト判断が為された場合のタイムチャートの一例である。 図1の第2ダウンシフト判断部が飛び変速用要求駆動力を算出する際の信号処理を具体的に説明するフローチャートである。 第2ダウンシフト判断部が飛び変速用要求駆動力に基づいてダウンシフト判断を行なう際の信号処理を具体的に説明するフローチャートである。 図11のS5−1の飛び変速可能なギヤ段の一例を説明する図である。 第2ダウンシフト判断部によって飛びダウンシフト判断が為された場合のタイムチャートの一例である。 図1のクルーズ目標ギヤ段設定部が連続変速の目標ギヤ段および飛び変速の目標ギヤ段の何れか一方を選択する際の信号処理を具体的に説明するフローチャートである。 要求駆動力に基づくダウンシフト判断で、最大駆動力の上限ガードによって過度の飛びダウンシフトが為される場合を説明するタイムチャートの一例である。
駆動源としては、ガソリンエンジンやディーゼルエンジン等の内燃機関や、電動モータ、或いは内燃機関および電動モータの両方を有するハイブリッド駆動源など、種々の駆動源を採用できる。駆動源の回転速度が上昇することにより、その駆動源の最大トルクが増大する特性を有する駆動源が好適に用いられる。自動変速機としては、遊星歯車式や2軸噛合い式等の有段変速機が好適に用いられるが、ベルト式等の無段変速機を用いて有段変速機と同様の変速制御を行なうこともできる。
駆動力自動制御走行としては、例えば予め定められた目標車速で定速走行する定速クルーズモードや、予め定められた車間距離で前車両に追従して走行する追従クルーズモードを実行するオートクルーズ走行が広く知られているが、雪道等で車両を安定走行させるVSC(Vehicle Stability Control )走行などでも良く、アクセル操作とは独立に駆動力を制御して走行する種々の駆動力自動制御走行に本発明は適用され得る。オートクルーズ走行は、必ずしも定速クルーズモードおよび追従クルーズモードの両方で走行できる必要はなく、何れか一方のクルーズモードで走行するだけでも良い。
第1ダウンシフト判断部は、例えば現在ギヤ段から1段下の低速ギヤ段へのダウンシフト判断のみを行うように構成されるが、第2ダウンシフト判断部と同様に飛びダウンシフトを含めてダウンシフト判断するものでも良い。また、ビジーシフト等を抑制するために、要求駆動力の変化幅を制限してダウンシフト判断することが望ましいが、要求駆動力の変化幅の制限無しでダウンシフト判断を行なうこともできる。第2ダウンシフト判断部は、飛びダウンシフトによる比較的大きな駆動力変化を許容するため、第1ダウンシフト判断部よりも要求駆動力の変化幅の制限を緩くすることが望ましく、要求駆動力の変化幅の制限が無しでも良い。要求駆動力の変化幅の制限は、要求駆動力そのものの変化幅や変化率を制限するものでも良いが、要求駆動力が、例えば現在車速と目標車速との速度差に基づいて設定される目標加速度から算出される場合、その目標加速度の変化幅(勾配)を予め定められた制限閾値以下に制限しても良い。
ダウンシフト判断用駆動力は、例えば車速およびスロットル開度(或いはアクセル操作量)をパラメータとして定められた変速マップから、現在車速におけるダウンシフト判断用スロットル開度を求め、該ダウンシフト判断用スロットル開度からダウンシフト判断用駆動力を算出するようにしても良いが、車速や変速比等をパラメータとして予め定められた変速駆動力マップなどを用いて算出することもできる。現在のギヤ段および車速で実現可能な最大駆動力は、駆動源の構成等に応じて適宜定められるが、例えば駆動源がエンジン(内燃機関)の場合、そのエンジンのトルク特性から現在のエンジン回転速度における最大トルクを求め、その最大トルクおよび現在ギヤ段の変速比等から算出することができる。
最終的な目標ギヤ段は、例えば第1ダウンシフト判断部によって求められた第1目標ギヤ段、および第2ダウンシフト判断部によって求められた第2目標ギヤ段のうち、小さい方すなわち低速側のギヤ段を選択することが望ましい。具体的には、例えば第1目標ギヤ段が第2目標ギヤ段よりも大きい場合は第2目標ギヤ段を最終目標ギヤ段に設定し、第1目標ギヤ段が第2目標ギヤ段以下の場合は第1目標ギヤ段を最終目標ギヤ段に設定する。また、例えば追従クルーズモードから定速クルーズモードへの変化時や、平坦路から登坂路への変化時など、要求駆動力の急増が予測される場合には第2ダウンシフト判断部によって目標ギヤ段を設定するなど、車両状態に応じて第1ダウンシフト判断部と第2ダウンシフト判断部とを使い分けることもできるし、運転者が手動操作で何れか一方を選択できるようにしても良いなど、種々の態様が可能である。
以下、本発明の実施例を、図面を参照して詳細に説明する。
図1は、本発明が適用された車両用駆動装置10を説明する図で、オートクルーズ走行に関する制御系統の要部を併せて示した概略構成図である。車両用駆動装置10は、燃料の燃焼で動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン12を駆動源として備えており、そのエンジン12の出力はトルクコンバータ(T/C)14、自動変速機16等を経て差動歯車装置18に伝達され、その差動歯車装置18によって左右の駆動輪20に分配される。エンジン12は、電子スロットル弁や燃料噴射装置などのエンジン12の出力制御に必要な種々の機器等を有するエンジン制御装置30を備えており、電子制御装置50から出力されるエンジン制御信号に従ってエンジン出力、すなわちエンジントルクTEやエンジン回転速度NEが制御される。自動変速機16は、例えば複数の油圧式摩擦係合装置(クラッチやブレーキ)の係合解放状態によって変速比γが異なる複数のギヤ段が成立させられる遊星歯車式等の有段の自動変速機で、電磁式の油圧制御弁や切換弁等を有する油圧制御装置32が電子制御装置50から出力される変速制御信号に従って制御されることにより、所定のギヤ段が成立させられる。本実施例では、例えば第1速ギヤ段〜第8速ギヤ段の多段変速が可能な遊星歯車式の自動変速機16が採用される。
駆動輪20および図示しない従動輪(非駆動輪)には、それぞれホイールブレーキ36が設けられているとともに、それ等のホイールブレーキ36のブレーキ力すなわちブレーキ油圧を制御するブレーキ制御装置34を備えている。そのブレーキ制御装置34が、電子制御装置50から出力されるブレーキ制御信号に従って制御されることにより、各ホイールブレーキ36のブレーキ力が電気的に制御される。ホイールブレーキ36にはまた、図示しないブレーキペダルが足踏み操作されることにより、ブレーキマスターシリンダを介してブレーキ油圧が供給されるようになっており、そのブレーキ油圧すなわちブレーキ操作力に応じたブレーキ力を機械的に発生する。
以上のように構成された車両用駆動装置10は、電子制御装置50を備えている。電子制御装置50は、CPU、ROM、RAM、及び入出力インターフェースなどを有する所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、前記エンジン12の出力制御や自動変速機16の変速制御、ホイールブレーキ36のブレーキ力制御等を行なうコントローラとして機能する。電子制御装置50には、アクセル操作量センサ70、エンジン回転速度センサ72、車速センサ74、スロットル開度センサ76等が接続されており、アクセルペダル40の操作量(アクセル操作量)Acc、エンジン12の回転速度(エンジン回転速度)NE、車速V、電子スロットル弁の開度(スロットル開度)TAなど、各種の制御に必要な種々の情報が供給される。
上記電子制御装置50にはまた、運転者のアクセル操作とは独立に駆動力を制御するオートクルーズ走行を行なうために、クルーズコントロールスイッチ78、車間距離設定スイッチ80、およびレーダーセンサ82が接続されている。クルーズコントロールスイッチ78は、例えばオートクルーズ走行のON(作動)、OFF(非作動)を切り換えるメインスイッチと、オートクルーズ走行中の目標車速Vtgtを設定する目標車速セットスイッチと、その目標車速セットスイッチによって設定された目標車速Vtgtを増減する増減速スイッチ等を備えており、ステアリングホイール等に配設されている。車間距離設定スイッチ80は、オートクルーズ走行中における前車両との間の目標車間距離Dtgtを設定するもので、例えば車速Vに対して3段階で予め定められた「長」、「中」、「短」の中から選択できるように構成され、ステアリングホイール等の運転席の近傍に配置される。レーダーセンサ82は、自車走行車線上の前車両の有無、前車両との車間距離D、前車両との相対速度等を演算できるもので、例えばミリ波レーダーセンサ等であり、車両前部に取り付けられる。
電子制御装置50は、オートクルーズ走行を行なうクルーズコントロール装置としての機能を有し、具体的には定速クルーズ制御部52および追従クルーズ制御部54を機能的に備えている。オートクルーズ走行は駆動力自動制御走行に相当し、クルーズコントロール装置は駆動力自動制御装置に相当する。そして、定速クルーズ制御部52は、クルーズコントロールスイッチ78の目標車速セットスイッチが操作されることにより、その走行中の車速Vを目標車速Vtgtに設定し、車速Vがその目標車速Vtgtに保持されるようにエンジン12の出力を制御する定速クルーズモードを実行する。また、この定速クルーズモードでのオートクルーズ走行中に増減速スイッチが操作されると、その操作に応じて目標車速Vtgtを増速または減速し、その新たな目標車速Vtgtで定速走行するようにエンジン12を制御する。追従クルーズ制御部54は、車間距離設定スイッチ80によって設定された目標車間距離Dtgtが維持されるように、すなわち前車両に追従する車速となるように、エンジン12の出力制御およびホイールブレーキ36のブレーキ力制御を行なう追従クルーズモードを実行する。この追従クルーズモードでは、レーダーセンサ82によって前車両が有ると判定された場合に、予め設定された目標車速Vtgtを上限に目標車間距離Dtgtで前車両に追従走行し、レーダーセンサ82によって前車両がいないと判定された場合には、追従クルーズモードから定速クルーズモードへ移行して、前記目標車速Vtgtで定速走行する。
電子制御装置50はまた、オートクルーズ走行時に必要に応じて前記自動変速機16のギヤ段を自動的に切り換える自動変速機能を備えており、変速比γが大きい低速側ギヤ段へ切り換えるダウンシフトに関連して第1ダウンシフト判断部56、第2ダウンシフト判断部58、およびクルーズ目標ギヤ段設定部60を備えている。第1ダウンシフト判断部56は、連続するギヤ段へダウンシフトする連続変速を判断するもので、連続変速用要求駆動力算出部、最大駆動力算出部、連続ダウンシフト判断用駆動力算出部、上限ガード部、および第1目標ギヤ段設定部を機能的に備えている。また、第2ダウンシフト判断部58は、2段以上下のギヤ段へダウンシフトする飛び変速を判断するもので、飛び変速用駆動力算出部、飛びダウンシフト判断用駆動力算出部、および第2目標ギヤ段設定部を機能的に備えている。
第1ダウンシフト判断部56の連続変速用要求駆動力算出部は、図2のフローチャートのステップS1−1〜S1−3(以下、単にS1−1〜S1−3という。他のフローチャートについても同様である。)に従って連続変速用要求駆動力Freq1を算出する。S1−1では、定速クルーズモードの場合、現在の車速Vと目標車速Vtgtとの速度差に応じて目標加速度Aを算出する。追従クルーズモードの場合は、例えば目標車間距離Dtgtを維持するための目標車速に基づいて目標加速度Aを算出することができる。S1−2では、S1−1で求めた目標加速度Aの勾配を予め定められた上限値ΔAmax以下に制限する。すなわち、現在加速度と目標加速度Aとの変化幅ΔAが上限値ΔAmaxより小さい場合は、目標加速度Aをそのまま維持し、ΔA≧Amaxの場合は、ΔA=ΔAmaxとなるように目標加速度Aを制限する。S1−3では、目標加速度Aから予め定められた演算式に従って連続変速用要求駆動力Freq1を算出する。目標加速度Aの変化幅ΔAが上限値ΔAmax以下に制限されることで、この連続変速用要求駆動力Freq1の変化率(勾配)も所定の制限閾値以下に制限される。連続変速用要求駆動力Freq1は第1要求駆動力に相当する。
第1ダウンシフト判断部56の最大駆動力算出部は、図3のフローチャートに従って現在のギヤ段および車速Vで実現可能な最大駆動力Fmaxを算出する。すなわち、現在のギヤ段および車速Vが一定であれば現在のエンジン回転速度NEも変化しないため、そのエンジン回転速度NEで実現可能な最大駆動力Fmaxを算出する。具体的には、先ずS2−1で、現在のエンジン回転速度NEにおける最大エンジントルクと、トルクコンバータ14のトルク比から最大タービントルクTTmaxを算出する。最大エンジントルクは、例えば図4に示す予め定められたエンジン12のトルク特性から求められ、現在エンジン回転速度をNEnとすると、その時の最大のエンジントルクTEnが最大エンジントルクである。S2−2では、最大タービントルクTTmaxに、自動変速機16の現在ギヤ段の変速比γを含むトルクコンバータ14から駆動輪20に至る動力伝達経路のギヤ比を掛け算するなどして最大駆動力Fmaxを算出する。
第1ダウンシフト判断部56の連続ダウンシフト判断用駆動力算出部、上限ガード部、および第1目標ギヤ段設定部は、図5のフローチャートに従って信号処理を行なう。図5のS3−1〜S3−3は連続ダウンシフト判断用駆動力算出部に相当し、S3−4およびS3−5は上限ガード部に相当し、S3−6〜S3−8は第1目標ギヤ段設定部に相当する。
図5のS3−1では、現在ギヤ段より1段下のギヤ段へのダウンシフト線を選択する。例えば現在ギヤ段が第8速ギヤ段の場合は第7速ギヤ段へのダウンシフト線が選択され、現在ギヤ段が第7速ギヤ段の場合は第6速ギヤ段へのダウンシフト線が選択される。ダウンシフト線は、例えば図6に示すように車速Vおよびスロットル開度TAをパラメータとして予めダウンシフトの種類毎に設定されており、白抜き矢印Sdで示すようにスロットル開度TAが高スロットル開度側へ跨ぐか、車速Vが低車速側へ跨いだ場合に、ダウンシフト判断を行なうものである。S3−2では、図6に示すように、選択したダウンシフト線と現在車速Vnとに基づいて、連続ダウンシフト判断用スロットル開度TA1を算出する。S3−3では、その連続ダウンシフト判断用スロットル開度TA1を、現在車速Vn、トルクコンバータ14のトルク比や自動変速機16の現在ギヤ段の変速比γ等を含む動力伝達経路のギヤ比等に基づいて、予め定められたマップなどにより連続ダウンシフト判断用駆動力Fsft1に変換する。図7は、このようにして求められる連続ダウンシフト判断用駆動力Fsft1を、車速Vをパラメータとして例示した図である。この連続ダウンシフト判断用駆動力Fsft1は第1ダウンシフト判断用駆動力に相当する。
次のS3−4では、上記連続ダウンシフト判断用駆動力Fsft1が、図3で求めた最大駆動力Fmaxよりも大きいか否かを判断し、Fsft1≦Fmaxであれば直ちにS3−6以下を実行するが、Fsft1>Fmaxの場合はS3−5で上限ガードを実施し、連続ダウンシフト判断用駆動力Fsft1=Fmaxにした後にS3−6以下を実行する。すなわち、連続ダウンシフト判断用駆動力Fsft1が最大駆動力Fmaxよりも大きい場合は、図2で求めた連続変速用要求駆動力Freq1が最大駆動力Fmaxより大きい場合でも、連続ダウンシフト判断用駆動力Fsft1に満たない時にはダウンシフト判断が為されず、現在のエンジン回転速度NEnがそのまま維持されて連続変速用要求駆動力Freq1を実現できないため、連続ダウンシフト判断用駆動力Fsft1を最大駆動力Fmaxで上限ガードすることにより、ダウンシフト判断が行なわれ易くするのである。ダウンシフトが行なわれれば、変速比γの増大に応じてエンジン回転速度NEが上昇するため、図4から明らかなように実用域では最大エンジントルクTEが上昇し、更に最大駆動力Fmaxが増大して、連続変速用要求駆動力Freq1を実現できるようになる。
S3−6では、連続変速用要求駆動力Freq1が連続ダウンシフト判断用駆動力Fsft1よりも大きいか否かを判断し、Freq1>Fsft1の場合、すなわち図7に白抜き矢印で示すように連続変速用要求駆動力Freq1が連続ダウンシフト判断用駆動力Fsft1を超えて増大した場合には、S3−7を実行し、現在ギヤ段から1を引いたギヤ段へダウンシフトするように第1目標ギヤ段SFT1として(現在ギヤ段−1)のギヤ段を設定する。また、S3−6の判断がNO(否定)の場合、すなわちFreq1≦Fsft1の場合は、S3−8を実行し、現在ギヤ段を維持するように第1目標ギヤ段SFT1として現在ギヤ段を設定する。
図8は、オートクルーズ走行中に上記第1ダウンシフト判断部56によるダウンシフト判断に従って変速制御が行なわれた場合のタイムチャートの一例で、変化率が制限された連続変速用要求駆動力Freq1の増加に伴って時間t1、t2、t3で自動変速機16のギヤ段が1段ずつダウンシフトされる場合である。ダウンシフトに伴うエンジン回転速度NEの上昇で最大駆動力Fmaxが段階的に増大させられ、徐々に増大する連続変速用要求駆動力Freq1を適切に実現することができる。図9は、第6速ギヤで走行中に、第5速ギヤ段への連続ダウンシフト判断用駆動力Fsft1が最大駆動力Fmaxによって上限ガードされた場合で、時間t1で連続変速用要求駆動力Freq1が最大駆動力Fmaxを超えて増大すると、第5速ギヤ段へのダウンシフト判断が行なわれ、そのダウンシフトに伴うエンジン回転速度NEの上昇により、時間t2で最大駆動力Fmaxが連続変速用要求駆動力Freq1を超えて増大し、その連続変速用要求駆動力Freq1を実現できる。これに対し、最大駆動力Fmaxによる上限ガードが行なわれない場合は、破線で示す連続ダウンシフト判断用駆動力Fsft1が連続変速用駆動力Freq1を上回ったままであるため、連続変速用要求駆動力Freq1が最大駆動力Fmaxを超える時間t1以後もダウンシフト判断が行なわれず、最大駆動力Fmaxも殆ど変化しないため、その連続変速用要求駆動力Freq1と最大駆動力Fmaxとの差分だけ駆動力が不足して連続変速用要求駆動力Freq1を実現できない。
次に、第2ダウンシフト判断部58の機能について具体的に説明する。第2ダウンシフト判断部58の飛び変速用要求駆動力算出部は、図10のフローチャートに従って飛び変速用要求駆動力Freq2を算出する。図10のS4−1では、前記S1−1と同様にして目標加速度Aを算出する。S4−2では、目標加速度Aから予め定められた演算式に従って飛び変速用要求駆動力Freq1を算出する。第2ダウンシフト判断部58は、駆動力が急増する飛びダウンシフトを許容するため、前記S1−2のような勾配(変化率)の制限を加えることなく、目標加速度Aに応じて飛び変速用要求駆動力Freq2を算出する。この飛び変速用要求駆動力Freq2は第2要求駆動力に相当する。なお、前記第1ダウンシフト判断部56においても、S1−2による加速度勾配の制限を加えることなく、連続変速用要求駆動力Freq1(=Freq2)を求めるようにしても良い。
第2ダウンシフト判断部58の飛びダウンシフト判断用駆動力算出部、および第2目標ギヤ段設定部は、図11のフローチャートに従って信号処理を行なう。図11のS5−1〜S5−3は飛びダウンシフト判断用駆動力算出部に相当し、S5−4〜S5−6は第2目標ギヤ段設定部に相当する。
図11のS5−1では、現在ギヤ段および現在車速Vに基づいて飛び変速可能なギヤ段へのダウンシフト線を選択する。図12は、現在ギヤ段が第8速ギヤ段の場合の飛び変速先ギヤ段の一例で、車速V(km/h)が80〜125の範囲内では第6速ギヤ段、50〜80の範囲内では第5速ギヤ段および第6速ギヤ段、50以下では第4速ギヤ段〜第6速ギヤ段が、それぞれ設定されており、それ等のギヤ段へのダウンシフト線を選択する。飛び変速先ギヤ段が複数ある場合は、複数のダウンシフト線を選択する。飛び変速先ギヤ段は、複数のギヤ段の変速比γやエンジン特性等に応じて予め設定される。ダウンシフト線は、前記図6と同様に予めダウンシフトの種類毎に設定されている。連続ダウンシフト判断用のダウンシフト線をそのまま用いることもできるが、要求駆動力の増大を先読みして、よりダウンシフトし易くなるように低スロットル開度側へ補正したり、飛びダウンシフト判断用のダウンシフト線を別個に設定したりしても良い。
S5−2では、選択したダウンシフト線と現在車速Vnとに基づいて、前記S3−2と同様にして飛びダウンシフト判断用スロットル開度TA2を算出する。また、S5−3では、その飛びダウンシフト判断用スロットル開度TA2を、前記S3−3と同様にして飛びダウンシフト判断用駆動力Fsft2に変換する。飛びダウンシフト判断用駆動力Fsft2は第2ダウンシフト判断用駆動力に相当する。
次のS5−4では、前記S3−4、S3−5のような最大駆動力Fmaxによる上限ガードを行なうことなく、上記飛びダウンシフト判断用駆動力Fsft2をそのまま用いて、前記飛び変速用要求駆動力Freq2がその飛びダウンシフト判断用駆動力Fsft2よりも大きいか否かを判断する。そして、Freq2>Fsft2の場合にはS5−5を実行し、飛び変速先のギヤ段へダウンシフトするように第2目標ギヤ段SFT2として飛び変速先ギヤ段を設定する。飛び変速先ギヤ段が複数で、その複数の飛びダウンシフト判断用駆動力Fsft2を飛び変速用要求駆動力Freq2が上回った場合は、最も小さい飛び変速先ギヤ段(低速側のギヤ段)を第2目標ギヤ段SFT2とする。また、S5−4の判断がNOの場合、すなわちFreq2≦Fsft2の場合は、S5−6を実行し、現在ギヤ段を維持するように第2目標ギヤ段SFT2として現在ギヤ段を設定する。
図13は、第8速ギヤ段でのオートクルーズ走行中に上記第2ダウンシフト判断部58によるダウンシフト判断に従って変速制御が行なわれた場合のタイムチャートの一例で、目標加速度Aに対応する飛び変速用要求駆動力Freq2の増加に伴って自動変速機16が第6速ギヤ段へ飛びダウンシフトされる場合である。飛びダウンシフト判断が為された時間t1では、最大駆動力Fmaxよりも飛び変速用要求駆動力Freq2の方が大きいが、ダウンシフトに伴うエンジン回転速度NEの上昇で最大駆動力Fmaxが増大させられることにより、時間t2以後では最大駆動力Fmaxが飛び変速用要求駆動力Freq2を上回り、飛びダウンシフトによって飛び変速用要求駆動力Freq2を速やかに実現できる。この場合に、図5のフローチャートのように最大駆動力Fmaxによって第5速ギヤ段への飛びダウンシフト判断用駆動力Fsft2(5)が上限ガードされると、時間t1で飛び変速用要求駆動力Freq2が増大した場合に、その第5速ギヤ段への飛びダウンシフト判断が為され、そのダウンシフトによってエンジン回転速度NEが必要以上に上昇する可能性がある。本実施例では、最大駆動力Fmaxによる上限ガードを行なうことなく飛びダウンシフト判断を行なうことで、そのような過度の飛びダウンシフトを防止しつつ、飛びダウンシフトによって飛び変速用要求駆動力Freq2を速やかに実現できる。
図1に戻って、クルーズ目標ギヤ段設定部60は、第1ダウンシフト判断部56によって設定された第1目標ギヤ段SFT1、および第2ダウンシフト判断部58によって設定された第2目標ギヤ段SFT2の何れか一方を選択してクルーズ目標ギヤ段に設定するもので、図14のフローチャートに従って信号処理を実行する。図14のS6−1では、第1目標ギヤ段SFT1が第2目標ギヤ段SFT2よりも大きいか否かを判断し、SFT1>SFT2の場合は、S6−2で第2目標ギヤ段SFT2をクルーズ目標ギヤ段に設定する。また、SFT1≦SFT2の場合は、S6−3で第1目標ギヤ段SFT1をクルーズ目標ギヤ段に設定する。すなわち、第1目標ギヤ段SFT1および第2目標ギヤ段SFT2のうち小さい方のギヤ段(低速側のギヤ段)をクルーズ目標ギヤ段に設定するのであり、このクルーズ目標ギヤ段に従って自動変速機16が低速側ギヤ段へダウンシフトされることにより、要求駆動力Freq1またはFreq2を速やかに実現できる。クルーズ目標ギヤ段は最終目標ギヤ段に相当し、クルーズ目標ギヤ段設定部60は最終目標ギヤ段設定部に相当する。
このように本実施例の車両用駆動装置10のクルーズコントロール装置によれば、最大駆動力Fmaxにより連続ダウンシフト判断用駆動力Fsft1を上限ガードしてダウンシフト判断を行なう第1ダウンシフト判断部56により、上限ガードされた連続ダウンシフト判断用駆動力Fsft1を連続変速用要求駆動力Freq1が上回った場合に適切にダウンシフト判断が行なわれて、その連続変速用要求駆動力Freq1を速やかに実現できる。一方、2段以上下のギヤ段への飛びダウンシフト判断を行なう第2ダウンシフト判断部58では、最大駆動力Fmaxによる上限ガードが行なわれないため、過度のダウンシフトを防止しつつ飛びダウンシフトが許容されて、飛び変速用要求駆動力Freq2の急増時に飛びダウンシフト判断が行なわれることにより、適切な低速ギヤ段まで直ちにダウンシフトして、変化率等の制限が無い飛び変速用要求駆動力Freq2を速やかに実現できる。
本実施例では、第1ダウンシフト判断部56によって設定された第1目標ギヤ段SFT1、および第2ダウンシフト判断部58によって設定された第2目標ギヤ段SFT2のうち小さい方のギヤ段(低速側のギヤ段)がクルーズ目標ギヤ段に設定され、そのクルーズ目標ギヤ段に応じて変速制御が行なわれる。したがって、要求駆動力の変化が小さい時には第1目標ギヤ段SFT1に従って、最大駆動力Fmaxによる上限ガードで適切にダウンシフトが行なわれるとともに、要求駆動力の変化が大きい時には第2目標ギヤ段に従って、過度のダウンシフトを防止しつつ飛びダウンシフトが許容されて、急増する要求駆動力を速やかに実現できる。
なお、上記実施例では、第1ダウンシフト判断部56によって設定された第1目標ギヤ段SFT1、および第2ダウンシフト判断部58によって設定された第2目標ギヤ段SFT2のうち小さい方のギヤ段(低速側のギヤ段)が選択されてクルーズ目標ギヤ段に設定されるが、例えば要求駆動力の変化幅(勾配)等から飛びダウンシフトの可能性があるか否かを判断し、飛びダウンシフトの可能性がある場合には第2ダウンシフト判断部58によってダウンシフト判断を行い、飛びダウンシフトの可能性が無い場合は第1ダウンシフト判断部56によってダウンシフト判断を行なうなど、車両状態に応じて予め第1ダウンシフト判断部56および第2ダウンシフト判断部58の何れか一方を選択するようにしても良い。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
12:エンジン(駆動源) 16:自動変速機 50:電子制御装置(駆動力自動制御装置) 56:第1ダウンシフト判断部 58:第2ダウンシフト判断部 60:クルーズ目標ギヤ段設定部(最終目標ギヤ段設定部) Fsft1:連続ダウンシフト判断用駆動力 Fsft2:飛びダウンシフト判断用駆動力 Fmax:最大駆動力 Freq1:連続変速用要求駆動力 Freq2:飛び変速用要求駆動力 SFT1:第1目標ギヤ段 SFT2:第2目標ギヤ段

Claims (1)

  1. 駆動源と、変速比が異なる複数のギヤ段に自動的に切り換えることができる自動変速機と、を有する車両に関し、
    運転者のアクセル操作とは独立に駆動力を制御する駆動力自動制御走行を行なうとともに、該駆動力自動制御走行中は、ダウンシフトの種類毎に設定されるダウンシフト判断用駆動力と要求駆動力とに基づいて前記自動変速機のダウンシフト判断を行なう駆動力自動制御装置において、
    現在のギヤ段および車速で実現可能な最大駆動力により前記ダウンシフト判断用駆動力を上限ガードして、前記ダウンシフト判断を行なって第1目標ギヤ段を求める第1ダウンシフト判断部と、
    前記最大駆動力による上限ガードを行なうことなく、2段以上下のギヤ段への飛びダウンシフトを含んで前記ダウンシフト判断を行なって第2目標ギヤ段を求める第2ダウンシフト判断部と、
    前記第1ダウンシフト判断部によって求められた前記第1目標ギヤ段、および前記第2ダウンシフト判断部によって求められた前記第2目標ギヤ段のうち、低速側のギヤ段を最終目標ギヤ段として選択する最終目標ギヤ段設定部と、
    を備えていることを特徴とする車両の駆動力自動制御装置。
JP2016069637A 2016-03-30 2016-03-30 車両の駆動力自動制御装置 Active JP6551281B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069637A JP6551281B2 (ja) 2016-03-30 2016-03-30 車両の駆動力自動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069637A JP6551281B2 (ja) 2016-03-30 2016-03-30 車両の駆動力自動制御装置

Publications (2)

Publication Number Publication Date
JP2017180703A JP2017180703A (ja) 2017-10-05
JP6551281B2 true JP6551281B2 (ja) 2019-07-31

Family

ID=60004271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069637A Active JP6551281B2 (ja) 2016-03-30 2016-03-30 車両の駆動力自動制御装置

Country Status (1)

Country Link
JP (1) JP6551281B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304308B2 (ja) * 2020-03-31 2023-07-06 本田技研工業株式会社 車両用自動変速機の変速制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496467B2 (ja) * 1997-08-04 2004-02-09 三菱ふそうトラック・バス株式会社 車両用定速走行装置
JP2010084868A (ja) * 2008-09-30 2010-04-15 Aisin Aw Co Ltd 自動変速機の制御装置

Also Published As

Publication number Publication date
JP2017180703A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4857518B2 (ja) 車両の制御装置
JP4367425B2 (ja) 車両の制御装置
JP4639834B2 (ja) 自動変速機の制御装置
JP5293878B2 (ja) 車両用変速指示装置
JP6423895B2 (ja) 車両用無段変速機の制御装置
JP2017024479A (ja) クルーズコントロール装置
JP5780104B2 (ja) 車両の制御装置
JP2012187965A (ja) 運転支援装置
CN110562255B (zh) 车辆的控制装置
JP5729539B2 (ja) オートクルーズ制御装置
EP1961605B1 (en) Control device for vehicle
JP6551281B2 (ja) 車両の駆動力自動制御装置
JP6313807B2 (ja) 無段変速機の制御装置
JP2016210376A (ja) 車両の変速指示装置
JP5725280B2 (ja) オートクルーズ制御装置
JP6036524B2 (ja) 車両の制御方法および制御装置
JP4207482B2 (ja) 自動変速機の変速制御装置
JP2010112502A (ja) 車両用変速制御装置
JP5958649B2 (ja) ハイブリッド車両の制御装置
JP5500243B2 (ja) 車両、変速機の制御方法および制御装置
JP6673110B2 (ja) セーリング制御方法及びセーリング制御装置
JP2009014105A (ja) 車両用無段変速機の制御装置
JP2006300141A (ja) パワートレーンの制御装置
JP6501686B2 (ja) 車両のセーリングストップ制御方法及び制御装置
JP5186928B2 (ja) 自動変速機の制御装置および制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6551281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151