JP6542971B1 - Inspection apparatus and inspection method - Google Patents

Inspection apparatus and inspection method Download PDF

Info

Publication number
JP6542971B1
JP6542971B1 JP2018212421A JP2018212421A JP6542971B1 JP 6542971 B1 JP6542971 B1 JP 6542971B1 JP 2018212421 A JP2018212421 A JP 2018212421A JP 2018212421 A JP2018212421 A JP 2018212421A JP 6542971 B1 JP6542971 B1 JP 6542971B1
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
plate
electrode
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018212421A
Other languages
Japanese (ja)
Other versions
JP2020080358A (en
Inventor
道也 横田
道也 横田
亮一 稲葉
亮一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Engineering Co Ltd
Priority to JP2018212421A priority Critical patent/JP6542971B1/en
Application granted granted Critical
Publication of JP6542971B1 publication Critical patent/JP6542971B1/en
Priority to KR1020190132885A priority patent/KR102463163B1/en
Priority to TW108139161A priority patent/TWI819130B/en
Publication of JP2020080358A publication Critical patent/JP2020080358A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/27Testing of devices without physical removal from the circuit of which they form part, e.g. compensating for effects surrounding elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Led Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Pens And Brushes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】分離された複数の半導体発光素子が実装直前に一括検査して発光不良な半導体発光素子を選別する。
【解決手段】絶縁膜体に分離配列された複数の半導体発光素子Eを光学的に検査する検査装置Aであって、第一電極1aを有する第一プレート1と、第一電極との間に複数の半導体発光素子及び絶縁膜体Fを挟んで対向するように設けられた第二電極2aを有する第二プレート2と、第一電極及び前記第二電極に対して電気的に接続される駆動電源3と、第一プレート又は第二プレートのいずれか一方の側から複数の半導体発光素子の発光を観察する光学器械4と、を備え、第一電極と第二電極の間には、複数の半導体発光素子のそれぞれに絶縁膜体からなるコンデンサが直列接続される個々に分離した複数の発光回路部Cが配置され、複数の発光回路部は、駆動電源から複数の半導体発光素子に順方向の電流が流れる時に誘導電流を生じて複数の半導体発光素子が発光する。
【選択図】図1
A plurality of separated semiconductor light emitting devices are collectively inspected immediately before mounting to sort out semiconductor light emitting devices having defective light emission.
An inspection apparatus for optically inspecting a plurality of semiconductor light emitting elements E separated and arrayed in an insulating film, which is provided between a first plate 1 having a first electrode 1a and the first electrode A second plate 2 having a plurality of semiconductor light emitting elements and a second electrode 2a provided to face each other with the insulating film F interposed therebetween, and a drive electrically connected to the first electrode and the second electrode A power supply 3 and an optical instrument 4 for observing the light emission of a plurality of semiconductor light emitting devices from either one side of the first plate or the second plate A plurality of individually separated light emitting circuit portions C in which capacitors made of insulating films are connected in series are disposed in each of the semiconductor light emitting elements, and the plurality of light emitting circuit portions are arranged in the forward direction from the driving power supply to the plurality of semiconductor light emitting elements. Create an induced current when the current flows The number of the semiconductor light emitting element emits light.
[Selected figure] Figure 1

Description

本発明は、発光ダイオード(LED)などからなる複数の半導体発光素子を機能的(光学的)に検査するために用いられる検査装置、及び、検査装置を用いた検査方法に関する。
詳しくは、複数の半導体発光素子が実装される前の時点で、配列形成された複数の発光素子を分離状態で発光検査するための検査装置及び検査方法に関する。
The present invention relates to an inspection apparatus used for functionally (optically) inspecting a plurality of semiconductor light emitting elements including light emitting diodes (LEDs) and the like, and an inspection method using the inspection apparatus.
More particularly, the present invention relates to an inspection apparatus and an inspection method for inspecting a plurality of light emitting elements formed in an array in a separated state before the plurality of semiconductor light emitting elements are mounted.

従来、この種の検査装置及び検査方法として、支持基板(support substrate)に形成した複数のLEDデバイス(LED devices)のp−n接合した発光部と対向するように、上側の電極(electrode)を有するフィールドプレート(field plate)が配置され、複数のLEDデバイスの下側の電極として共通電極(common electrode)が電気的にアース接地され、外部の電圧源(voltage source)から上側電極に印可することにより、複数のLEDデバイスが発光して、その発光輝度を観察で測定するものがある(例えば、特許文献1参照)。
複数のLEDデバイスは、トレンチ(trench)でハーフカットされるが、トレンチが下側電極となる共通コンタクト層(common contact layer)を貫通しておらず、支持基板上に未分離状態となっている([0048]、Figure3A,3Bなど)。
つまり、複数のLEDデバイスは、支持基板と未分離状態で発光テストされ、発光の測定によりその機能を評価している。
Conventionally, as an inspection apparatus and inspection method of this type, an upper electrode is opposed to a light emitting portion of a plurality of LED devices formed on a support substrate, which are formed by pn junction. With the field plate in place and the common electrode as the lower electrode of multiple LED devices electrically grounded to ground and applied to the upper electrode from an external voltage source Thus, some LED devices emit light and the emission brightness is measured by observation (for example, see Patent Document 1).
A plurality of LED devices are half-cut in a trench, but the trench does not penetrate the common contact layer which is the lower electrode, and is not separated on the support substrate ([0048], Figure 3A, 3B, etc.).
That is, a plurality of LED devices are tested for light emission without separation from the support substrate, and their functions are evaluated by measuring the light emission.

国際公開第2018/112267号WO 2018/112267

ところで、半導体発光素子の中でもLEDチップは、コスト低減のために小型化され、小型化したLEDチップを高速・高精度に実装するための取組みが行われている。特にLEDディスプレイに用いられるLEDは、マイクロLEDと呼ばれるサイズが50μm×50μm以下のLEDチップであり、確実に発光する分断状態のLEDチップを数μmの精度で高速に転写して実装することが求められている。
しかし乍ら、特許文献1では、複数のLEDデバイスが未分離状態で発光テストされるため、各LEDデバイスを実装するダイボンディング工程においては、未分離状態では取り扱えず、実装前にはダイシングなどにより複数のLEDデバイスを個々に分離する必要があった。
このような場合には、仮に複数のLEDデバイスが支持基板と未分離状態で発光テストにより「機能に問題無し」と評価されても、その後の分離工程などにより新たな不良が発生する可能性は否定できず、実装直前に発光を確認できないため信頼性に劣るというという問題があった。
このような状況下で、分離された複数のLEDデバイスを実装前に検査して発光不良なLEDデバイスが選別可能な検査装置や検査方法が要望されている。
また、発光テストによるLEDデバイスのダメージを防ぐためには、電気的接触を避けた低電圧環境での検査が求められている。
Among semiconductor light emitting elements, LED chips are miniaturized for cost reduction, and efforts are being made to mount the miniaturized LED chips at high speed and with high accuracy. In particular, LEDs used in LED displays are LED chips of a size called 50 μm × 50 μm or less called micro LEDs, and it is required to rapidly transfer and mount divided LED chips that reliably emit light with an accuracy of several μm. It is done.
However, in Patent Document 1, since a plurality of LED devices are tested for light emission in a non-separated state, they can not be handled in the non-separated state in the die bonding process of mounting each LED device. It was necessary to separate multiple LED devices individually.
In such a case, even if a plurality of LED devices are evaluated as “no problem in function” by the light emission test in a state where they are not separated from the support substrate, there is a possibility that a new defect may occur due to the subsequent separation process or the like. There is a problem that it can not be denied and the light emission can not be confirmed immediately before mounting, resulting in poor reliability.
Under such circumstances, there is a demand for an inspection apparatus and an inspection method that can inspect a plurality of separated LED devices before mounting and select defective LED devices.
In addition, in order to prevent damage to the LED device due to the light emission test, inspection in a low voltage environment in which electrical contact is avoided is required.

このような課題を解決するために本発明に係る検査装置は、絶縁膜体に分離配列された複数の半導体発光素子を光学的に検査する検査装置であって、第一電極を有する第一プレートと、前記第一電極との間に前記複数の半導体発光素子及び前記絶縁膜体を挟んで対向するように設けられた第二電極を有する第二プレートと、前記第一電極及び前記第二電極に対して電気的に接続される駆動電源と、前記第一プレート又は前記第二プレートのいずれか一方の側から前記複数の半導体発光素子の発光を観察する光学器械と、を備え、前記複数の半導体発光素子及び前記絶縁膜体は、前記複数の半導体発光素子の表裏のいずれが一方か若しくは両方に対して前記絶縁膜体が粘着で着脱自在に仮止めされた膜付きチップであり、前記第一電極と前記第二電極の間には、前記複数の半導体発光素子のそれぞれに前記絶縁膜体からなるコンデンサが直列接続される個々に分離した複数の発光回路部が配置され、前記複数の発光回路部は、前記駆動電源から前記複数の半導体発光素子に順方向の電流が流れる時に誘導電流を生じて前記複数の半導体発光素子が発光することを特徴とする。
また、このような課題を解決するために本発明に係る検査方法は、絶縁膜体に分離配列された複数の半導体発光素子を光学的に検査する検査方法であって、前記複数の半導体発光素子及び前記絶縁膜体は、前記複数の半導体発光素子の表裏のいずれが一方か若しくは両方に対して前記絶縁膜体が粘着で着脱自在に仮止めされた膜付きチップであり、第一プレートの第一電極と第二プレートの第二電極との間に、前記複数の半導体発光素子のそれぞれに前記絶縁膜体からなるコンデンサが直列接続される個々に分離した複数の発光回路部を形成するセット工程と、駆動電源の電圧を前記第一電極及び前記第二電極から前記複数の発光回路部に与える供給工程と、前記複数の発光回路部に対する電圧の供給により発光する前記複数の半導体発光素子を前記第一プレート又は前記第二プレートのいずれか一方の側から光学器械で観察する観察工程と、を含み、前記観察工程では、前記駆動電源から前記複数の半導体発光素子に順方向の電流が流れる時に誘導電流を生じて前記複数の半導体発光素子が発光することを特徴とする。
In order to solve such problems, an inspection apparatus according to the present invention is an inspection apparatus for optically inspecting a plurality of semiconductor light emitting elements separated and arrayed in an insulating film, and a first plate having a first electrode A second plate having a second electrode disposed opposite to each other with the plurality of semiconductor light emitting elements and the insulating film interposed between the first electrode and the first electrode; and the first electrode and the second electrode And a drive power source electrically connected thereto, and an optical instrument for observing the light emission of the plurality of semiconductor light emitting elements from either one side of the first plate or the second plate , The semiconductor light emitting device and the insulating film are chip with a film in which the insulating film is temporarily tacked and attached to one or both of the front and back of the plurality of semiconductor light emitting devices . An electrode and the first A plurality of individually separated light emitting circuit units are disposed between the electrodes, in which a capacitor made of the insulating film is connected in series to each of the plurality of semiconductor light emitting elements, and the plurality of light emitting circuit units are driven When a forward current flows from a power supply to the plurality of semiconductor light emitting devices, an induced current is generated to cause the plurality of semiconductor light emitting devices to emit light.
Further, in order to solve such problems, an inspection method according to the present invention is an inspection method for optically inspecting a plurality of semiconductor light emitting devices separated and arrayed in an insulating film, wherein the plurality of semiconductor light emitting devices And the insulating film body is a chip with a film in which the insulating film body is tacked detachably for adhesion to one or both of the front and back sides of the plurality of semiconductor light emitting devices, A set step of forming a plurality of individually separated light emitting circuit units in which capacitors made of the insulating film are connected in series to each of the plurality of semiconductor light emitting elements between one electrode and the second electrode of the second plate. A step of supplying a voltage of a driving power supply from the first electrode and the second electrode to the plurality of light emitting circuit units, and a plurality of semiconductor light emitting elements emitting light by the supply of voltage to the plurality of light emitting circuit units. An observation step of observing with an optical instrument from either one side of the first plate or the second plate, and in the observation step, a forward current flows from the drive power supply to the plurality of semiconductor light emitting elements When flowing, an induced current is generated to cause the plurality of semiconductor light emitting elements to emit light.

本発明の実施形態に係る検査装置及び検査方法の全体構成を示す説明図であり、(a)が印加工程及び検査工程の一部切欠正面図、(b)が同横断平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the whole structure of the inspection apparatus and inspection method which concern on embodiment of this invention, (a) is a partially notched front view of an application process and an inspection process, (b) is the cross top view. 本発明の実施形態に係る検査装置及び検査方法の変形例を示す説明図であり、(a)〜(c)が印加工程及び検査工程の一部切欠正面図である。It is an explanatory view showing the modification of the inspection device and inspection method concerning the embodiment of the present invention, and (a)-(c) is a partially notched front view of an application process and an inspection process. 本発明の実施形態に係る検査装置及び検査方法の変形例を示す説明図であり、印加工程及び検査工程の一部切欠正面図である。It is explanatory drawing which shows the modification of the inspection apparatus and inspection method which concern on embodiment of this invention, and is a partially notched front view of an application process and an inspection process. 本発明の実施形態に係る検査装置及び検査方法の変形例を示す説明図であり、印加工程及び検査工程の一部切欠正面図である。It is explanatory drawing which shows the modification of the inspection apparatus and inspection method which concern on embodiment of this invention, and is a partially notched front view of an application process and an inspection process. 本発明の実施形態に係る検査装置及び検査方法の変形例を示す説明図であり、(a)が光学器械及び駆動部の具体例を示す一部切欠縮小正面図、(b)が同縮小横断平面図である。It is an explanatory view showing the modification of the inspection device and inspection method concerning the embodiment of the present invention, and (a) is a partial notch reduction front view showing the example of an optical instrument and a drive part, (b) is the same reduction crossing It is a top view. 本発明の実施形態に係る検査装置及び検査方法の変形例を示す説明図であり、複数の半導体発光素子を搬送可能にした場合の部分的な一部切欠正面図である。It is an explanatory view showing the modification of the inspection device concerning the embodiment of the present invention, and the inspection method, and is a partially notched front view in case a plurality of semiconductor light emitting elements can be transported. 同回路図であり、(a)が図1〜図5に対応する等価回路、(b)が変形例の等価回路である。It is the circuit diagram, (a) is an equivalent circuit corresponding to FIGS. 1-5, (b) is an equivalent circuit of a modification.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係る検査装置Aは、図1〜図7に示すように、配列形成された複数の半導体発光素子Eを実装する前に、複数の半導体発光素子Eを個々に分離した配列状態で機能的(光学的)に検査して、光学的に不良な発光素子Eの実装を未然に防止するために用いられる光学特性測定装置である。
詳しく説明すると、本発明の実施形態に係る検査装置Aは、第一電極1aを有する第一プレート1と、第二電極2aを有する第二プレート2と、第一電極1a及び第二電極2aに電気的に接続するために設けられる駆動電源3と、第一プレート1又は第二プレート2の一方側から複数の半導体発光素子Eの発光を観察するために設けられる光学器械4と、を主要な構成要素として備えている。
さらに、第一電極1a又は第二電極2aのいずれか一方の表面か若しくは両方の表面に設けられる誘電層5と、第一プレート1や第二プレート2を相対的に移動させるために設けられる駆動部6と、駆動電源3及び駆動部6を作動制御するために設けられる制御部7と、を備えることが好ましい。
なお、第一プレート1と第二プレート2は、通常上下方向へ対向するように設けられる。図示例では、下方に第一プレート1が配置され、第二プレート2が上方に配置されている。ここで、第一プレート1と第二プレート2が対向する方向を以下「Z方向」という。Z方向と交差する第一プレート1や第二プレート2に沿った方向を以下「XY方向」という。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
An inspection apparatus A according to an embodiment of the present invention, as shown in FIGS. 1 to 7, is an array in which a plurality of semiconductor light emitting elements E are individually separated before mounting the plurality of semiconductor light emitting elements E formed in an array. It is an optical characteristic measurement device used to prevent the mounting of an optically defective light emitting element E in advance by performing functional (optical) inspection in a state.
Explaining in detail, the inspection apparatus A according to the embodiment of the present invention includes the first plate 1 having the first electrode 1a, the second plate 2 having the second electrode 2a, and the first electrode 1a and the second electrode 2a. The driving power supply 3 provided for electrical connection and the optical instrument 4 provided for observing the light emission of the plurality of semiconductor light emitting elements E from one side of the first plate 1 or the second plate 2 It is equipped as a component.
Furthermore, a drive provided to move the first plate 1 and the second plate 2 relative to the dielectric layer 5 provided on one surface or both surfaces of the first electrode 1a or the second electrode 2a. It is preferable to include a unit 6 and a control unit 7 provided to control the operation of the drive power supply 3 and the drive unit 6.
The first plate 1 and the second plate 2 are usually provided to face each other in the vertical direction. In the illustrated example, the first plate 1 is disposed below and the second plate 2 is disposed above. Here, the direction in which the first plate 1 and the second plate 2 face each other is hereinafter referred to as the "Z direction". The direction along the first plate 1 and the second plate 2 intersecting the Z direction is hereinafter referred to as "XY direction".

複数の半導体発光素子Eは、図1(a)(b)などに示されるように、それぞれが平滑な略矩形(長方形及び正方形を含む角が直角の四辺形)の薄板状に形成された発光ダイオード(LED)やレーザダイオード(LD)などの半導体ダイオードである。この半導体ダイオードとしては、赤(Red)緑(Green)青(Blue)のチップLEDも含まれる。
複数の半導体発光素子Eの具体例としては、主にマイクロLEDと呼ばれる50μm×50μm以下、詳しくは30μm×30μm以下、さらに詳しくは数十μm角のLEDチップやLDチップなどが挙げられる。
また複数の半導体発光素子Eの他の例としては、例えばミニLEDと呼ばれる100μm角前後のLEDチップや200〜300μm角などの一般的なLEDチップや、LDチップなどの一般的なサイズの半導体ダイオードを含むことも可能である。
一般的なチップの取扱いにおいて複数の半導体発光素子Eは、シリコンなどの材料からなる素子形成用基板やウエハに、XY方向へ所定の周期で配列形成され、その表面側又は裏面側に発光部E1をそれぞれ有している。配列形成された複数の半導体発光素子Eは、ダイシングなどの分断工程により配列状態を維持するようにそれぞれ分離され、この配列状態を維持したまま後述する絶縁膜体Fに転写されて実装工程に移行する。
特に複数の半導体発光素子Eとしては、個々に分離配列された複数の半導体発光素子Eが、後述する絶縁膜体Fに仮止めされた膜付きチップEFを用いている。
なお、図示例では説明のため、複数の半導体発光素子Eの配列として、矩形の半導体発光素子Eをすべて同じサイズに設定している。またその他の例として図示しないが、複数の半導体発光素子Eの配列を図示例以外に変更することも可能である。
The plurality of semiconductor light emitting elements E are light emitting members formed in a thin plate shape having a smooth and substantially rectangular shape (a rectangular shape including a rectangular shape and a square having a right angle) as shown in FIGS. 1A and 1B and the like. A semiconductor diode such as a diode (LED) or a laser diode (LD). The semiconductor diode also includes a chip LED of red, green and blue.
Specific examples of the plurality of semiconductor light emitting elements E include 50 μm × 50 μm or less, which is mainly referred to as a micro LED, in detail 30 μm × 30 μm or less, and more specifically an LED chip or LD chip of several tens μm square.
In addition, as another example of the plurality of semiconductor light emitting elements E, for example, LED chips of around 100 μm square called mini LEDs, general LED chips such as 200 to 300 μm square, semiconductor diodes of general sizes such as LD chips, etc. Is also possible.
In general chip handling, a plurality of semiconductor light emitting devices E are arrayed on a device forming substrate or wafer made of a material such as silicon in a predetermined cycle in the X and Y directions, and light emitting portions E1 are formed on the front side or the back side. Respectively. The plurality of semiconductor light emitting elements E formed by arraying are separated so as to maintain the arrayed state by a dividing step such as dicing, transferred to an insulating film F described later while maintaining the arrayed state, and transferred to the mounting step Do.
In particular, as the plurality of semiconductor light emitting devices E, a chip EF with a film is used in which the plurality of semiconductor light emitting devices E separately arranged separately are temporarily fixed to the insulating film body F described later.
Note that, in the illustrated example, as the arrangement of the plurality of semiconductor light emitting devices E, the rectangular semiconductor light emitting devices E are all set to the same size. Further, although not shown as another example, the arrangement of the plurality of semiconductor light emitting elements E can be changed to other than the illustrated example.

絶縁膜体Fは、ポリエチレンテレフタラート(PET),ポリプロピレン(PP),ポリ塩化ビニル(PVC)などの透明又は不透明な絶縁材料(比誘電率が3程度)でフィルム状又はシート状に形成され、絶縁材料からなるダイシングテープなどを用いることも可能である。
さらに絶縁膜体Fは、複数の半導体発光素子Eにおいて発光部E1が配置される表面側か又は裏面側のいずれが一方か、若しくは表面側及び裏面側の両方に対して粘着などにより着脱自在に仮止めすることで、膜付きチップEFが構成される。
つまり、絶縁膜体Fとしては、複数の半導体発光素子Eにおいて発光部E1が配置された表面側に仮止めされる透明な発光側絶縁膜体F1や、複数の半導体発光素子Eにおいて発光部E1の反対側となる裏面側に仮止めされる透明や不透明の裏側絶縁膜体F2がある。
個々に分離された複数の半導体発光素子Eは、発光側絶縁膜体F1や裏側絶縁膜体F2によって離散せずに保持され、発光側絶縁膜体F1や裏側絶縁膜体F2を剥離することにより、複数の半導体発光素子Eの発光部E1や裏面が露出して取り出し可能になると同時に実装も可能になる。
The insulating film body F is formed in the form of a film or sheet of a transparent or opaque insulating material (with a dielectric constant of about 3) such as polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), etc. It is also possible to use a dicing tape or the like made of an insulating material.
Furthermore, the insulating film body F is detachably attachable to the plurality of semiconductor light emitting elements E by adhesion or the like to either one of the surface side or the back surface side on which the light emitting unit E1 is disposed. By temporarily fixing, a filmed chip EF is configured.
That is, as the insulating film body F, the transparent light emitting side insulating film body F1 temporarily fixed on the surface side of the plurality of semiconductor light emitting devices E on which the light emitting unit E1 is disposed, and the light emitting unit E1 in the plurality of semiconductor light emitting devices E There is a transparent or opaque backside insulating film body F2 temporarily fixed on the back side opposite to the above.
The plurality of semiconductor light emitting elements E separated individually are held without being separated by the light emitting side insulating film body F1 and the back side insulating film body F2, and the light emitting side insulating film body F1 and the back side insulating film body F2 are peeled off. At the same time, the light emitting unit E1 and the back surface of the plurality of semiconductor light emitting devices E can be exposed and taken out, and mounting becomes possible.

第一プレート1及び第二プレート2は、図1(a)(b),図2(a)(b)(c)及び図3などに示されるように、石英や硬質合成樹脂などの透明又は不透明の剛性材料で板状に形成された定盤からなる。第一プレート1において第二プレート2と対向する面には、第一電極1aが形成され、第二プレート2において第一プレート1と対向する面には、第二電極2aが形成される。
第一電極1a及び第二電極2aについても第一プレート1や第二プレート2と同様に透明又は不透明の材料で積層形成されている。
第一プレート1の第一電極1aと第二プレート2の第二電極2aは、第一電極1a及び第二電極2aの間に膜付きチップEF(複数の半導体発光素子Eと絶縁膜体F)を挟むように対向して配置されるとともに、後述する駆動電源3が電気的に接続される。
これにより、第一電極1aと第二電極2aの間には、複数の半導体発光素子Eのそれぞれに絶縁膜体Fからなるコンデンサが直列接続される個々に分離した複数の発光回路部Cが配置される。
さらに第一プレート1と第二プレート2は、図4及び図5(a)(b)に示されるように、第一プレート1又は第二プレート2のいずれか一方の面積を他方よりも小さな面積に形成することも可能である。この場合には、第一プレート1又は第二プレート2の一方に対して他方か、若しくは第一プレート1及び第二プレート2の両方を、第一プレート1及び第二プレート2の対向方向(Z方向)と交差する方向(XY方向)へ相対的に移動自在に支持することが好ましい。
また第一プレート1又は第二プレート2のいずれか一方には、搬入された膜付きチップEFが第一電極1aや第二電極2aと接触することにより、移動不能で且つ着脱自在に保持するための保持チャック(図示しない)を設けることが好ましい。保持チャックの具体例としては、真空吸着チャックや粘着チャックや爪などの機械的な把持機構を備えたチャック又は、これらの併用が挙げられる。
The first plate 1 and the second plate 2 may be made of a transparent material such as quartz or hard synthetic resin, as shown in FIGS. 1 (a) and (b), 2 (a) (b) (c) and FIG. It consists of a surface plate formed in a plate shape with an opaque rigid material. The first electrode 1 a is formed on the surface of the first plate 1 facing the second plate 2, and the second electrode 2 a is formed on the surface of the second plate 2 facing the first plate 1.
Similarly to the first plate 1 and the second plate 2, the first electrode 1 a and the second electrode 2 a are laminated and formed of a transparent or opaque material.
The first electrode 1a of the first plate 1 and the second electrode 2a of the second plate 2 are formed between the first electrode 1a and the second electrode 2a in a chip EF with a film (a plurality of semiconductor light emitting devices E and insulating films F) , And a drive power supply 3 described later is electrically connected.
As a result, between the first electrode 1a and the second electrode 2a, a plurality of light emitting circuit portions C which are individually separated and in which capacitors made of the insulating film F are connected in series to the plurality of semiconductor light emitting elements E are arranged. Be done.
Furthermore, the first plate 1 and the second plate 2 have an area of either one of the first plate 1 or the second plate 2 smaller than the other, as shown in FIGS. It is also possible to form In this case, either one of the first plate 1 or the second plate 2 or the first plate 1 and the second plate 2 can be It is preferable to support relatively movably in the direction (XY direction) intersecting with the direction).
In addition, the membrane-mounted chip EF brought into contact with the first electrode 1 a or the second electrode 2 a in one of the first plate 1 and the second plate 2 prevents the film from being moved and detachably. Preferably, a holding chuck (not shown) is provided. Specific examples of the holding chuck include a vacuum suction chuck, a chuck provided with a mechanical holding mechanism such as an adhesive chuck and a claw, or a combination of these.

駆動電源3は、交流電圧源や直流電圧源からなり、駆動電源3から第一電極1a及び第二電極2aを介して複数の発光回路部Cに交流(AC)電圧や直流(DC)電圧が与えられる。
駆動電源3となる交流電圧源から複数の発光回路部Cに交流電圧を印加した場合には、複数の半導体発光素子Eとなる半導体ダイオードが有する整流作用により、複数の半導体発光素子Eに対し電流が順方向に流れて発光部E1を発光させる。
The driving power supply 3 includes an AC voltage source and a DC voltage source, and an alternating current (AC) voltage and a direct current (DC) voltage are transmitted from the driving power supply 3 to the plurality of light emitting circuit units C via the first electrode 1a and the second electrode 2a. Given.
When an alternating voltage is applied to the plurality of light emitting circuit units C from an alternating voltage source serving as the driving power supply 3, the rectifying action of the semiconductor diodes serving as the plurality of semiconductor light emitting elements E Flows forward to cause the light emitting unit E1 to emit light.

光学器械4は、第一プレート1(第一電極1a)又は第二プレート2(第二電極2a)のいずれか一方側から複数の半導体発光素子Eの発光の輝度を観察する検査カメラなどからなる。
つまり、複数の半導体発光素子Eのそれぞれに絶縁膜体Fからなるコンデンサを直列接続した個々に分離される複数の発光回路部Cと、光学器械4との間に配置された第一プレート1(第一電極1a)又は第二プレート2(第二電極2a)のうち一方側は透明材料で形成され、他方側は不透明材料で形成してもよい。
光学器械4の検査カメラとして複数の半導体発光素子Eが可視光を発光する場合は、可視光のCCDカメラなどを用いることが好ましい。複数の半導体発光素子Eが赤外光を発光する場合は、赤外線カメラを用いて、複数の半導体発光素子Eに対する検査エリアの視野に合わせて所定の解像度に見合うように配置することが好ましい。
検査カメラの配置は、高解像度の固定カメラ41を用いるか、又は第一プレート1又は第二プレート2の移動に合わせて移動可能な移動カメラ42を用いるか、若しくは固定カメラ41及び移動カメラ42を併用する。特に複数の半導体発光素子EがマイクロLEDのような微小サイズで多数配列形成される場合には、移動カメラ42を用いることが好ましい。これにより、複数の半導体発光素子Eに対する検査エリアが制限されるため、低解像度のカメラであっても観察解像度を十分に確保することが可能となる。
固定カメラ41や移動カメラ42などにより得られた複数の半導体発光素子Eの平均輝度データは、検査バッチ毎の平均輝度データを各半導体発光素子Eの位置と関連付けすることにより、後工程において参照可能なデータベースとして作成することができる。
詳しく説明すると、固定カメラ41や移動カメラ42などによる検査データとしては、発光状態にある複数の半導体発光素子Eを1枚の画像データとして計測しておき、各半導体発光素子Eの面積に相当する複数個の画素データから各半導体発光素子Eの輝度平均値を求めるなどして、各半導体発光素子Eの発光の有無と、代表発光輝度を定量データとして、検査バッチ毎の輝度データベースを作成する。また駆動電源3からの印可電圧を変動させた時の発光により、各半導体発光素子Eの発光最低電圧と輝度バラツキを合わせて計測可能になる。
特に複数の半導体発光素子EがRGBチップLEDである場合には、検査カメラとして、RGBチップLEDに対する解像度を十分確保したカラーカメラが用いられ、RGB三色の輝度成分をそれぞれの色味としてデータベース化することが好ましい。
また、これらのチップ発光輝度のデータベースは、検査バッチ毎における複数の半導体発光素子Eの位置とデータとの紐付けを行うことができる。この場合には、次工程となるダイボンダ―などによる各半導体発光素子Eの実装工程において、各半導体発光素子Eの取り出し直前に対象チップの選別基準に利用可能となる。
The optical instrument 4 includes an inspection camera or the like for observing the luminance of the light emission of the plurality of semiconductor light emitting elements E from either one side of the first plate 1 (first electrode 1 a) or the second plate 2 (second electrode 2 a). .
That is, the first plate 1 disposed between the optical instrument 4 and the plurality of individually separated light emitting circuit units C in which a capacitor formed of the insulating film F is connected in series to each of the plurality of semiconductor light emitting elements E One side of the first electrode 1a) or the second plate 2 (second electrode 2a) may be formed of a transparent material, and the other side may be formed of an opaque material.
When a plurality of semiconductor light emitting elements E emit visible light as an inspection camera of the optical instrument 4, it is preferable to use a CCD camera of visible light or the like. When the plurality of semiconductor light emitting devices E emit infrared light, it is preferable to use an infrared camera and arrange the semiconductor light emitting devices E to meet the predetermined resolution according to the field of view of the inspection area for the plurality of semiconductor light emitting devices E.
The arrangement of inspection cameras uses a high resolution fixed camera 41, or a movable camera 42 movable according to the movement of the first plate 1 or the second plate 2, or the fixed camera 41 and the movable camera 42 Combined. In particular, in the case where a plurality of semiconductor light emitting elements E are arrayed in a very small size such as a micro LED, the mobile camera 42 is preferably used. As a result, the inspection area for the plurality of semiconductor light emitting elements E is limited, so that even a low resolution camera can sufficiently ensure the observation resolution.
The average brightness data of the plurality of semiconductor light emitting devices E obtained by the fixed camera 41 and the moving camera 42 can be referred to in the subsequent process by associating the average brightness data for each inspection batch with the position of each semiconductor light emitting device E Database can be created.
Explaining in detail, as inspection data by the fixed camera 41 and the moving camera 42, a plurality of semiconductor light emitting elements E in a light emitting state are measured as image data of one sheet, and corresponds to the area of each semiconductor light emitting element E The luminance average value of each semiconductor light emitting element E is obtained from a plurality of pixel data, and the luminance database for each inspection batch is created as quantitative data of the presence / absence of light emission of each semiconductor light emitting element E and the representative light emission luminance. The light emission minimum voltage and the luminance variation of each semiconductor light emitting element E can be measured together by light emission when the applied voltage from the drive power supply 3 is changed.
In particular, when the plurality of semiconductor light emitting devices E are RGB chip LEDs, a color camera with sufficient resolution for the RGB chip LEDs is used as the inspection camera, and the RGB three color luminance components are made into a database as respective colors. It is preferable to do.
Further, in the chip light emission luminance database, it is possible to associate the data with the positions of the plurality of semiconductor light emitting devices E in each inspection batch. In this case, in the mounting step of each semiconductor light emitting element E by a die bonder or the like, which is the next step, it becomes possible to use it as the sorting reference of the target chip immediately before taking out each semiconductor light emitting element E.

発光テストによる更に正確な検査を行うには、図5(a)(b)に示されるように、本発明の実施形態に係る検査装置Aを検査機Bの暗室Dに備えて、外光が入らない状態で発光テストを行うことが好ましい。
暗室Dを発光テストを行う理由は、複数の半導体発光素子Eに対して各半導体発光素子Eの発光周波数未満の外光が入光すると、各半導体発光素子Eの内部電荷に励起現象が起こることで、正確な発光状態を観察することが困難になるからである。
このような外光による励起現象は、逆に各半導体発光素子Eにおける発光の光励起補助による観察方法として用いることができる。複数の半導体発光素子Eの発光周波数未満の短波長光線を発光する光源(図示しない)を暗室Dに備え、光源から複数の半導体発光素子Eの発光部E1に向けて短波長光線を微弱で定量ずつ均等に照射することが好ましい。これにより、発光に必要とされる最低電圧を下げることが可能になる。このため、駆動電源3を低電圧としても各半導体発光素子Eの発光を観察できる。例えば赤色LEDに対しては、短波長となる青色や紫外光を微弱に照射することで実施できる。
詳しく説明すると、複数の半導体発光素子Eにおいて発光を観察する検査カメラの観察視野に対して、各半導体発光素子Eの発光周波数未満の短波長光からなる照明装置(図示しない)の照射領域を一致させることが好ましい。具体的には、短波長照明装置を固定カメラ41に併設させるか、移動カメラ42に併設させる。
このような構成で、事前に短波長照明装置の照射のみによるカメラ視野内の観察値の暗時レベルを計測しておき、検査時には、カメラ観察値から暗時レベルを差し引いてデータを補正する。なお、各半導体発光素子Eへの外光照度が強過ぎると、フォトルミネッセンス効果による光励起発光が生じてしまうので、駆動電流には依存しない発光を生じさせないように短波長照明装置の照度レベルを事前に調整しておくことが好ましい。
また、複数の半導体発光素子EとしてRGBチップLEDの発光状態の色味を判別する場合には、カラーカメラにより発光状態を観察して、RGB成分毎の観察値とすればよい。観察時に短波長照明装置を併用する場合は、事前に短波長照明装置の照射のみによるカメラ視野内の観察値におけるRGB成分の色味の暗時レベルを計測しておき、検査時には、カメラ観察値から色味の暗時レベルを差し引いてデータを補正することが好ましい。
In order to conduct a more accurate inspection by the light emission test, as shown in FIGS. 5 (a) and 5 (b), the inspection apparatus A according to the embodiment of the present invention is provided in the dark room D of the inspection machine B. It is preferable to carry out the light emission test without entering.
The reason why the light emission test is performed in the dark room D is that when external light smaller than the light emission frequency of each semiconductor light emitting element E enters the plurality of semiconductor light emitting elements E, an excitation phenomenon occurs in the internal charge of each semiconductor light emitting element E This makes it difficult to observe an accurate light emission state.
Conversely, such an excitation phenomenon by external light can be used as an observation method by light excitation assistance of light emission in each semiconductor light emitting element E. A light source (not shown) for emitting short wavelength light beams less than the light emission frequency of the plurality of semiconductor light emitting devices E is provided in the dark room D, and the short wavelength light beams are weakly quantified toward the light emitting portions E1 of the plurality of semiconductor light emitting devices E It is preferable to irradiate uniformly. This makes it possible to lower the minimum voltage required for light emission. Therefore, the light emission of each semiconductor light emitting element E can be observed even when the driving power supply 3 is set to a low voltage. For example, red LEDs can be implemented by weakly irradiating blue or ultraviolet light having short wavelengths.
Explaining in detail, the irradiation area of the illumination device (not shown) consisting of short wavelength light less than the light emission frequency of each semiconductor light emitting element E matches the observation view field of the inspection camera that observes light emission in the plurality of semiconductor light emitting elements E It is preferable to Specifically, the short wavelength illumination device is attached to the fixed camera 41 or to the moving camera 42.
With such a configuration, the dark level of the observed value in the camera field of view only by the irradiation of the short wavelength illumination device is measured in advance, and at the time of inspection, the dark level is subtracted from the camera observed value to correct the data. It should be noted that if the ambient light illuminance to each semiconductor light emitting element E is too strong, photoexcitation emission is generated due to the photoluminescence effect, so the illuminance level of the short wavelength illumination device is set in advance so as not to generate light emission independent of the drive current. It is preferable to adjust.
In addition, in the case of determining the color of the light emission state of the RGB chip LED as the plurality of semiconductor light emitting elements E, the light emission state may be observed by a color camera to be an observation value for each RGB component. When using a short wavelength illumination device in combination during observation, measure the dark level of the color of the RGB component in the observation value in the camera field of view only by the irradiation of the short wavelength illumination device in advance. It is preferable to correct the data by subtracting the dark level of color from.

第一プレート1の第一電極1a又は第二プレート2の第二電極2aのいずれか一方か、若しくは第一電極1a及び第二電極2aの両方には、誘電層5を第一電極1aの表面や第二電極2aの表面に沿って設けることが好ましい。
つまり、誘電層5としては、複数の半導体発光素子Eにおいて発光部E1の反対側と対向するように配置される不透明な裏側誘電層5aや、複数の半導体発光素子Eにおいて発光部E1と対向するように配置される透明な発光側誘電層5bがある。
裏側誘電層5aや発光側誘電層5bは、高比誘電率の誘電材料で構成することができ、その具体例としては比誘電率が80程度の酸化チタンなどの高誘電材料を用いる。
第一プレート1の第一電極1aや第二プレート2の第二電極2aに対する誘電層5の形成方法としては、スパッタなどによる硬質な薄膜形成以外に、紫外線照射や加熱による硬化性を有する液状の軟質樹脂を基材に用いることで、予め微粉末状態の高比誘電材料が液中分散配合された軟質樹脂を薄く塗布して硬化させた軟質膜の形成方法がある。
特に誘電層5となる軟質膜を硬化後も柔軟性を有するシリコーン樹脂などで形成した場合には、絶縁膜体Fや半導体発光素子Eの表面形状又は裏面形状の凹凸や歪みに対する変位吸収性が期待できる。これにより、柔軟性に乏しい絶縁膜体Fや半導体発光素子Eの表面又は裏面に対しても面接触性が向上し、第一電極1aと第二電極2aの間に生じる静電容量をより安定化させることができる。
Either the first electrode 1a of the first plate 1 or the second electrode 2a of the second plate 2, or both the first electrode 1a and the second electrode 2a, use the dielectric layer 5 as the surface of the first electrode 1a. It is preferable to provide along the surface of the second electrode 2a.
That is, as the dielectric layer 5, the opaque back side dielectric layer 5a disposed so as to face the opposite side of the light emitting unit E1 in the plurality of semiconductor light emitting devices E, and the light emitting unit E1 in the plurality of semiconductor light emitting devices E There is a transparent light emitting side dielectric layer 5b arranged as such.
The back side dielectric layer 5a and the light emitting side dielectric layer 5b can be made of a high relative dielectric constant dielectric material, and as a specific example thereof, a high dielectric material such as titanium oxide having a relative dielectric constant of about 80 is used.
As a method of forming the dielectric layer 5 on the first electrode 1a of the first plate 1 and the second electrode 2a of the second plate 2, in addition to the formation of a hard thin film by sputtering or the like, a liquid having curing properties by ultraviolet irradiation or heating By using a soft resin as a base material, there is a method of forming a soft film in which a soft resin in which a high dielectric material in a finely powdered state is dispersedly mixed in a liquid is thinly applied and cured.
In particular, in the case where the soft film to be the dielectric layer 5 is formed of silicone resin or the like having flexibility even after curing, displacement absorption with respect to irregularities or distortion of the surface shape or the back surface shape of the insulating film F or the semiconductor light emitting element E I can expect it. Thereby, the surface contact property is improved also on the front surface or the back surface of the insulating film body F or the semiconductor light emitting element E which is poor in flexibility, and the capacitance generated between the first electrode 1a and the second electrode 2a is more stable. Can be

第一プレート1や第二プレート2には、第一電極1aと第二電極2aの間に膜付きチップEF(複数の半導体発光素子Eと絶縁膜体F)を挟み込むため、第一プレート1又は第二プレート2のいずれか一方か若しくは第一プレート1及び第二プレート2の両方を相対的に移動させる駆動部6を設けることが好ましい。
駆動部6は、第一プレート1又は第二プレート2のいずれか一方か若しくは第一プレート1及び第二プレート2の両方と連係して、昇降やスライド又は反転などにより往復動させるアクチュエーターなどで構成され、後述する制御部7により作動制御している。
駆動部6による第一プレート1や第二プレート2の相対的に移動方向としては、第一プレート1及び第二プレート2の対向方向(Z方向)だけでなく、必要に応じて対向方向(Z方向)と交差する方向(XY方向)も含まれる。
つまり、駆動部6としては、少なくとも第一プレート1や第二プレート2をZ方向へ相対的に移動させる昇降用駆動部61や、第一プレート1や第二プレート2をXY方向へ相対的に移動させる水平移動用駆動部62がある。
後述する制御部7による昇降用駆動部61の制御例としては、図1(a)などに二点鎖線で示される膜付きチップEFの搬入時と搬出時には、第一プレート1と第二プレート2をZ方向へ相対的に離隔移動させる。それ以外は、図1(a)などに実線で示されるように、第一プレート1と第二プレート2をZ方向へ相対的に接近移動させて、第一プレート1の第一電極1a及び第二プレート2の第二電極2aが膜付きチップEFに対し、直接的又は誘電層5を介して間接的に接触し通電するように加圧している。
In the first plate 1 or the second plate 2, the first plate 1 or the second plate 2 is used to sandwich the film-coated chip EF (a plurality of semiconductor light emitting elements E and insulating films F) between the first electrode 1 a and the second electrode 2 a. It is preferable to provide the drive part 6 which relatively moves any one of the second plate 2 or both the first plate 1 and the second plate 2.
The driving unit 6 is configured by an actuator or the like that is reciprocated by raising and lowering, sliding or reversing in cooperation with either one of the first plate 1 or the second plate 2 or both the first plate 1 and the second plate 2 The operation is controlled by the control unit 7 described later.
The relative movement direction of the first plate 1 and the second plate 2 by the drive unit 6 is not only the opposing direction (Z direction) of the first plate 1 and the second plate 2 but also the opposing direction (Z The direction (XY direction) intersecting with the direction is also included.
That is, as the driving unit 6, the lifting driving unit 61 for relatively moving at least the first plate 1 and the second plate 2 in the Z direction, and the first plate 1 and the second plate 2 in the XY direction are relatively There is a horizontal movement drive unit 62 to be moved.
As an example of control of the raising / lowering drive unit 61 by the control unit 7 described later, the first plate 1 and the second plate 2 are loaded and unloaded at the time of loading and unloading of the filmed chip EF indicated by the two-dot chain line in FIG. Relative to each other in the Z direction. Otherwise, the first plate 1 and the second plate 2 are moved relatively close to each other in the Z direction, as shown by a solid line in FIG. The second electrode 2a of the two plate 2 is pressed against the filmed chip EF so as to be in direct contact with or indirectly through the dielectric layer 5 so as to be energized.

膜付きチップEF(複数の半導体発光素子Eと絶縁膜体F),光学器械4,誘電層5及び駆動部6の具体例を図1〜図6に示し、これらの等価回路を図7に示す。
図1(a)(b),図2(a)(b)(c)及び図4〜図6に示される例は、複数の半導体発光素子Eにおいて発光部E1が下向きとなるように配置され、透明に形成された第一電極1aや第一プレート1などを透して、発光部E1の発光状態が光学器械4により第一プレート1側から観察されるように構成している。
特に図1(a)(b),図2(c)及び図4〜図6に示される例は、第二電極2aの表面に沿って裏側誘電層5aが形成され、図1(a)(b)及び図4〜図6の場合は、裏側誘電層5aを裏側絶縁膜体F2と接触させる点で相違する。図2(c)の場合は、裏側誘電層5aを複数の半導体発光素子Eの裏面側に対し直接的に接触させて、裏側絶縁膜体F2が無い点で相違する。
図2(a)(b)に示される例は、第一電極1aの表面に沿って発光側誘電層5bが形成され、図2(a)の場合は、発光側誘電層5bを発光側絶縁膜体F1と接触させる点で相違する。図2(b)の場合は、発光側誘電層5bを複数の半導体発光素子Eにおいて発光部E1が配置される表面側に対し直接的に接触させて、発光側絶縁膜体F1が無い点で相違する。
1 to 6 show specific examples of the chip with film EF (a plurality of semiconductor light emitting elements E and insulating films F), the optical instrument 4, the dielectric layer 5 and the drive unit 6, and the equivalent circuit thereof is shown in FIG. .
In the examples shown in FIGS. 1 (a) and (b), 2 (a) (b) and (c) and FIGS. 4 to 6, in the plurality of semiconductor light emitting devices E, the light emitting unit E1 is disposed downward. The light emission state of the light emitting unit E1 is configured to be observed from the first plate 1 side by the optical instrument 4 through the transparent first electrode 1a, the first plate 1 and the like.
In particular, in the examples shown in FIGS. 1 (a) and (b), FIG. 2 (c) and FIGS. 4 to 6, the back side dielectric layer 5a is formed along the surface of the second electrode 2a. 4 b and FIG. 4 to FIG. 6 differ in that the back side dielectric layer 5 a is in contact with the back side insulating film F 2. The case of FIG. 2C is different in that the back side dielectric layer 5a is brought into direct contact with the back side of the plurality of semiconductor light emitting devices E, and the back side insulating film F2 is not present.
In the example shown in FIGS. 2A and 2B, the light emission side dielectric layer 5b is formed along the surface of the first electrode 1a, and in the case of FIG. 2A, the light emission side dielectric layer 5b is isolated from the light emission side It differs in that it is in contact with the membrane F1. In the case of FIG. 2B, the light emitting side dielectric layer 5b is brought into direct contact with the surface side on which the light emitting portion E1 is disposed in the plurality of semiconductor light emitting elements E, and there is no light emitting side insulating film F1. It is different.

さらに図1(a)(b),図2(a)(b)(c)及び図4に示される例は、駆動部6の昇降用駆動部61により第二プレート2が第一プレート1に向けZ方向へ移動制御される点で相違する。
これと逆に図3図5(a)(b)及び図6に示される例は、駆動部6の昇降用駆動部61により第一プレート1が第二プレート2に向けZ方向へ移動制御される点で相違する。図3の場合は、複数の半導体発光素子Eにおいて発光部E1が上向きとなるように配置され、透明な発光側絶縁膜体F1や裏側誘電層5aや第二電極2aや第二プレート2を透して、発光部E1の発光状態が光学器械4により第二プレート2側から観察される点において、図1(a)(b)の場合と相違する。
また、その他の例として図示しないが、図1(a)(b),図2(a)(b)(c)及び図4に示された例において、駆動部6の昇降用駆動部61で第一プレート1を第二プレート2に向けZ方向へ移動制御させることや、図2(b)(c)及び図4に示された例において、発光部E1の発光状態を光学器械4で第二プレート2側から観察させるなどの変更が可能である。
Further, in the examples shown in FIGS. 1 (a) and (b), 2 (a) (b) and (c) and FIG. The difference is that movement control is performed in the direction Z.
On the contrary, in the example shown in FIG. 3 , FIG. 5 (a) (b) and FIG. 6 , the movement of the first plate 1 toward the second plate 2 in the Z direction is controlled by the lifting drive 61 of the drive 6 They differ in that they are In the case of FIG. 3, the plurality of semiconductor light emitting elements E are disposed such that the light emitting portion E1 faces upward, and the transparent light emitting side insulating film F1, the back side dielectric layer 5a, the second electrode 2a, and the second plate 2 are transparent. The light emitting state of the light emitting unit E1 is observed by the optical instrument 4 from the second plate 2 side, which is different from the case of FIGS. 1 (a) and 1 (b).
Further, although not shown as another example, in the examples shown in FIGS. 1 (a) and (b), FIGS. 2 (a), 2 (b) and 2 (c) and FIG. The movement of the first plate 1 toward the second plate 2 is controlled in the Z direction, and in the examples shown in FIGS. 2 (b) and 2 (c) and FIG. A change such as observation from the two plate 2 side is possible.

これに加えて図4及び図5(a)(b)に示される例は、第一プレート1の面積よりも第二プレート2の面積が小さく形成され、第一プレート1に対して第二プレート2を駆動部6の水平移動用駆動部62でXY方向へ移動させる点で相違する。
特に図5(a)(b)の場合は、検査機Bの暗室Dに第一プレート1及び第二プレート2や光学器械4が収納配備され、暗室Dにおいて第一プレート1の支持部材11を第二プレート2に向けてZ方向へ昇降させる昇降用駆動部61と、暗室Dにおいて第一プレート1の支持部材11に対し第二プレート2をXY方向へ移動させる水平移動用駆動部62と、を備えている。
暗室Dは、検査機Bの内部に外光から遮光して形成され、暗室Dに設けられる昇降用駆動部61としては、スライダーや直動ガイドなどのアクチュエーターが用いられる。
暗室Dに設けられる水平移動用駆動部62としては、XYステージなどのアクチュエーターが用いられる。
暗室Dに配備される光学器械4が固定カメラ41の場合には、第一プレート1の中心軸の延長線上で且つ光学焦点位置に固定配置される。移動カメラ42の場合には、第二プレート2の中心軸の延長線上で且つ光学焦点位置に配置され、水平移動用駆動部62による第二プレート2のXY方向への移動と同期して移動させるように支持される。
また、その他の例として図示しないが、検査対象となる複数の半導体発光素子EがLEDである場合は、LEDの発光周波数より短波長の発光を行う光源を備えることも可能である。この場合には、暗室Dにおける移動カメラ42の動きに追従して光源を移動させるなどして、検査対象エリアを低照度で均一に照射させることが好ましい。
In addition to this, in the example shown in FIGS. 4 and 5 (a) and (b), the area of the second plate 2 is smaller than the area of the first plate 1, and the second plate 2 in that the horizontal movement drive unit 62 of the drive unit 6 moves 2 in the X and Y directions.
Particularly, in the case of FIGS. 5A and 5B, the first plate 1 and the second plate 2 and the optical instrument 4 are accommodated and disposed in the dark room D of the inspection machine B, and the support member 11 of the first plate 1 is An elevation drive 61 moving the second plate 2 up and down in the Z direction, and a horizontal movement drive 62 moving the second plate 2 in the dark room D relative to the support 11 of the first plate 1 in the XY direction; Is equipped.
The dark room D is formed inside the inspection machine B so as to be shielded from external light, and an actuator such as a slider or a linear guide is used as the elevation driving unit 61 provided in the dark room D.
As the horizontal movement drive unit 62 provided in the dark room D, an actuator such as an XY stage is used.
When the optical instrument 4 deployed in the dark room D is a fixed camera 41, it is fixedly disposed on an extension of the central axis of the first plate 1 and at an optical focus position. In the case of the movable camera 42, it is disposed on an extension of the central axis of the second plate 2 and at an optical focal position, and is moved synchronously with the movement of the second plate 2 by the horizontal movement drive unit 62 in the XY direction. As supported.
In addition, although not illustrated as another example, when the plurality of semiconductor light emitting elements E to be inspected are LEDs, it is possible to provide a light source that emits light of a wavelength shorter than the emission frequency of the LEDs. In this case, it is preferable to uniformly irradiate the inspection target area with a low illuminance by moving the light source following the movement of the moving camera 42 in the dark room D or the like.

図6に示される例は、第一電極1aと第二電極2aの間に形成される空間に対して、膜付きチップEF(複数の半導体発光素子Eと絶縁膜体F)を搬送(搬入及び搬出)可能にしている。
図6の場合は、図5(a)に示した支持部材11に対して、膜付きチップEFが載置された第一プレート1を搬送可能している。詳しく説明すると、支持部材11に設けられた保持チャック(図示しない)により、膜付きチップEF及び第一プレート1支持部材11に対して移動不能で且つ着脱自在に保持している。
また、その他の例として図示しないが、図1(a),図2(a)(b)(c),図3及び図4に示された例において、膜付きチップEFが載置された第一プレート1を搬送可能な構造に変更することや、膜付きチップEFが吊持された第二プレート2を搬送可能な構造に変更することも可能である。
In the example shown in FIG. 6, the film-coated chip EF (a plurality of semiconductor light emitting elements E and insulating films F) is transported (carried in and out) to the space formed between the first electrode 1a and the second electrode 2a. It is possible to carry out.
In the case of FIG. 6, the first plate 1 on which the membrane-mounted chip EF is placed can be transported with respect to the support member 11 shown in FIG. 5 (a). In detail, the holding chuck provided on the support member 11 (not shown), and and detachably held immovable relative to the film chip with EF and the first plate 1 and the support member 11.
Also, although not shown as another example, in the examples shown in FIGS. 1 (a), 2 (a), 2 (b), 2 (c), 3 and 4, the filmed chip EF is placed It is also possible to change one plate 1 to a transferable structure, or change the second plate 2 on which the membrane-mounted chip EF is suspended to a transferable structure.

図7(a)に示される等価回路は、図1,図3〜図6に示された例に該当し、複数の半導体発光素子Eのそれぞれに絶縁膜体Fからなるコンデンサを直列接続した個々に分離される複数の発光回路部Cに対して、駆動電源(交流電圧源)3の交流電圧が第一電極1a及び第二電極2aから誘電層5を介して与えられる。交流電圧の印加により複数の発光回路部Cに誘導電流が流れる。また図2(a)〜(c)に示された例に該当する等価回路は、図7(a)と類似した等価回路となるため省略する。
複数の発光回路部C内の誘導電流は、複数の半導体発光素子(半導体ダイオード)Eが有する整流作用で電流が順方向に流れる。詳しく説明すると、駆動電源3から複数の発光回路部Cに印加した交流電圧が、複数の半導体発光素子Eで半波整流される。
このため、複数の半導体発光素子Eに順方向の電流が流れる時のみ、誘導電流を生じて複数の半導体発光素子Eが発光する。この発光状態を光学器械4で観察することにより、複数の半導体発光素子Eの発光状態に基づいて良否の選別が可能となる。
図7(a)の場合は、回路中に半導体ダイオード保護用の電流制限抵抗器RLが直列接続されて直列RC回路を構成している。つまり逆方向耐電圧範囲内の交流電圧のみが複数の半導体発光素子Eに与えられる。これにより、電流制限抵抗器RLで複数の半導体発光素子Eに過大電流が流れることを制限して破壊が防止される。
この時、半導体発光素子Eの発光で必要となる電流の確保には、直列RC回路のインピーダンスの大小が重要になる。複数の発光回路部Cのインピーダンスは、静電容量や周波数によって変化する。理想的なコンデンサのインピーダンスZは、周波数をω,静電容量をCとすると、下記の式で表わされる。
Z=1/jωC
つまり、インピーダンスZと周波数ωや静電容量Cは、反比例の関係にあるから、静電容量Cが大きくなるとインピーダンスZが低くなり、周波数ωが高くなるとインピーダンスZが低くなる。しかし、半導体発光素子Eの発光における周波数ωの応答範囲は、限界があるのであまり高くできない。インピーダンスZが高いと駆動に高電圧を必要とするが、高電圧による発光テストは、半導体発光素子Eにダメージのリスクがあるため、低電圧が維持可能な静電容量Cを大きく取ることが好ましい。
静電容量Cを高めるには、第一電極1aと第二電極2aの間の投影面積(電極面積)を大きく取ることも有効であるが、電極面積は発光テストする半導体発光素子Eの数に依存するため限定的である。
そこで、第一電極1aと第二電極2aの間の誘電率を高めるために、高比誘電率の誘電材料からなる誘電層5を追加している。
The equivalent circuit shown in FIG. 7A corresponds to the example shown in FIGS. 1 and 3 to 6, and each of the plurality of semiconductor light emitting elements E is connected in series with a capacitor made of an insulating film F in series. An alternating current voltage of the driving power supply (AC voltage source) 3 is applied from the first electrode 1a and the second electrode 2a to the plurality of light emitting circuit units C separated into two through the dielectric layer 5. The induction current flows through the plurality of light emitting circuit units C by the application of the alternating voltage. Further, equivalent circuits corresponding to the examples shown in FIGS. 2A to 2C will be omitted because they are equivalent circuits similar to FIG. 7A.
The induced current in the plurality of light emitting circuit units C flows in the forward direction by the rectifying action of the plurality of semiconductor light emitting elements (semiconductor diodes) E. Specifically, the AC voltage applied from the drive power supply 3 to the plurality of light emitting circuit sections C is half-wave rectified by the plurality of semiconductor light emitting elements E.
For this reason, only when current flows in the forward direction in the plurality of semiconductor light emitting devices E, the induced current is generated and the plurality of semiconductor light emitting devices E emit light. By observing the light emission state with the optical instrument 4, it is possible to select the quality based on the light emission states of the plurality of semiconductor light emitting elements E.
In the case of FIG. 7A, a current limiting resistor R L for protecting a semiconductor diode is connected in series in the circuit to form a series RC circuit. That is, only the AC voltage within the reverse withstand voltage range is applied to the plurality of semiconductor light emitting elements E. As a result, the current limiting resistor R L limits the flow of an excessive current to the plurality of semiconductor light emitting elements E, thereby preventing destruction.
At this time, the magnitude of the impedance of the series RC circuit is important for securing the current required for light emission of the semiconductor light emitting element E. The impedances of the plurality of light emitting circuit units C change depending on the capacitance and the frequency. The impedance Z of the ideal capacitor is expressed by the following equation, where the frequency is ω and the capacitance is C.
Z = 1 / jωC
That is, since the impedance Z and the frequency ω and the capacitance C are in inverse proportion to each other, the impedance Z decreases as the capacitance C increases, and decreases as the frequency ω increases. However, the response range of the frequency ω in the light emission of the semiconductor light emitting device E can not be made very high because of the limit. If the impedance Z is high, a high voltage is required for driving, but in the light emission test by high voltage, it is preferable to take a large capacitance C capable of maintaining a low voltage because there is a risk of damage to the semiconductor light emitting element E .
It is also effective to increase the projected area (electrode area) between the first electrode 1a and the second electrode 2a in order to increase the capacitance C, but the electrode area corresponds to the number of semiconductor light emitting elements E to be subjected to the light emission test. It is limited because it depends.
Therefore, in order to increase the dielectric constant between the first electrode 1a and the second electrode 2a, a dielectric layer 5 made of a high relative dielectric constant dielectric material is added.

図7(b)に示される等価回路は、複数の半導体発光素子Eの発光テストにおいて破壊を避けるために可能な限り低電圧で発光させることを目的とした回路である。
駆動電源(交流電圧源)3から複数の発光回路部Cに与えられる順方向の半波電流は、図7(a)の場合と同様であるが、駆動電源3において逆方向の電圧(−E2)を制限する。駆動電源3からの逆耐電圧(−E2)として下限が制限された電圧波形を複数の半導体発光素子Eに与えることで、低電圧の発光テストが可能になる。
図7(a)(b)に示される等価回路において、符号C1は誘電層5による静電容量、符号C2は各半導体発光素子Eによる静電容量、符号C3は絶縁膜体Fによる静電容量、符号C4は分離した複数の半導体発光素子Eの間に配置された隙間(空気層)による静電容量である。
なお、図7(a)(b)の場合には、駆動電源(交流電圧源)3として正弦波形のみを記載している。交流波形であれば図示しないが正弦波形に代えて矩形波や三角波や台形波などであってもよい。
また、誘導発光による半導体発光素子Eの除電の容易さと除電管理によるが、駆動電源3の電圧(−E2)をゼロ電位に設定すれば、交流電圧源に代えて直流電圧源を用いることも可能である。
The equivalent circuit shown in FIG. 7B is a circuit intended to emit light at a voltage as low as possible in order to avoid destruction in the light emission test of a plurality of semiconductor light emitting devices E.
The forward half-wave current applied from the drive power supply (AC voltage source) 3 to the plurality of light emitting circuit units C is the same as in the case of FIG. 7A, but the reverse voltage (-E 2 ) Limit. By applying a voltage waveform whose lower limit is limited as the reverse withstand voltage (−E 2 ) from the drive power supply 3 to the plurality of semiconductor light emitting elements E, a low voltage light emission test can be performed.
In the equivalent circuit shown in FIG. 7 (a) (b), reference numeral C 1 is the capacitance due to the dielectric layer 5, reference numeral C 2 is the capacitance due to the semiconductor light-emitting elements E, code C 3 is due to the insulating film material F capacitance, reference numeral C 4 is the capacitance due arranged gap between the plurality of semiconductor light emitting elements E separated (air layer).
In the case of FIGS. 7A and 7B, only a sine waveform is shown as the driving power supply (AC voltage source) 3. Although it is not shown in the figure as long as it is an AC waveform, it may be a rectangular wave, a triangular wave or a trapezoidal wave instead of the sine waveform.
Also, depending on the ease of charge removal of the semiconductor light emitting element E by induced light emission and charge removal management, if the voltage (−E 2 ) of the drive power supply 3 is set to zero potential, using a DC voltage source instead of the AC voltage source is also possible. It is possible.

制御部7は、駆動電源3や駆動部6だけでなく、膜付きチップEFの搬入機構や搬出機構などにも電気的に接続するコントローラーである。
制御部7となるコントローラーは、その制御回路(図示しない)に予め設定されたプログラムに従って、予め設定されたタイミングで順次それぞれ作動制御している。
そして、制御部7の制御回路に設定されたプログラムを、検査装置Aによる複数の半導体発光素子Eの光学的な検査方法として説明する。
本発明の実施形態に係る検査方法は、第一プレート1の第一電極1aと第二プレート2の第二電極2aとの間に膜付きチップEFを挟むように配置するセット工程と、駆動電源3から膜付きチップEFに電圧を与える供給工程と、膜付きチップEFの発光状態を第一プレート1や第二プレート2のいずれか一方の側から光学器械4で観察する観察工程と、を主要な工程として含んでいる。
さらに、セット工程の前に膜付きチップEFを搬入する搬入工程と、観察工程の後に検査終了済みの膜付きチップEFを搬出する搬出工程を含むことが好ましい。
セット工程では、搬入された膜付きチップEFを第一電極1aと第二電極2aとの間の所定位置に挟み込んで電気的に接続させることにより、複数の半導体発光素子Eのそれぞれに絶縁膜体Fからなるコンデンサが直列接続される個々に分離した複数の発光回路部Cが形成される。
供給工程では、駆動電源3の電圧を第一電極1a及び第二電極2aから膜付きチップEFに供給することにより、複数の発光回路部Cに交流電圧が印加される。
観察工程では、複数の発光回路部Cへ交流電圧の印加に伴って発光した複数の半導体発光素子Eを、第一プレート1及び第一電極1aや第二プレート2及び第二電極2aのいずれか一方の側から光学器械4の観察により、複数の半導体発光素子Eの発光状態に基づいて、発光良好な半導体発光素子Eと発光不良な半導体発光素子Eに選別している。
複数の半導体発光素子Eにおける発光状態に基づいた選別方法としては、発光の有無による良否の判別や、輝度バラツキによる選別や、色味の選別などの予め設定された基準より行うことが好ましい。
The control unit 7 is a controller electrically connected not only to the drive power supply 3 and the drive unit 6 but also to a loading mechanism and a unloading mechanism of the filmed chip EF.
The controller serving as the control unit 7 sequentially operates and controls at predetermined timing according to a program preset in the control circuit (not shown).
The program set in the control circuit of the control unit 7 will be described as an optical inspection method of the plurality of semiconductor light emitting elements E by the inspection apparatus A.
In the inspection method according to the embodiment of the present invention, a setting step of disposing the film coated chip EF so as to sandwich the first electrode 1a of the first plate 1 and the second electrode 2a of the second plate 2; Mainly the supply step of applying a voltage from 3 to the filmed chip EF, and the observation step of observing the light emission state of the filmed chip EF with the optical instrument 4 from either one side of the first plate 1 or the second plate 2 Process is included.
Furthermore, it is preferable to include a carrying-in step of carrying in the filmed chip EF before the setting process, and a carrying-out process of carrying out the filmed chip EF after the inspection process after the observation process.
In the setting step, the insulating film body is provided for each of the plurality of semiconductor light emitting elements E by sandwiching the filmed chip EF carried in at a predetermined position between the first electrode 1a and the second electrode 2a and electrically connecting them. A plurality of individually separated light emitting circuit parts C in which capacitors made of F are connected in series are formed.
In the supply step, an alternating voltage is applied to the plurality of light emitting circuit units C by supplying the voltage of the drive power supply 3 from the first electrode 1a and the second electrode 2a to the filmed chip EF.
In the observation step, the plurality of semiconductor light emitting elements E which emit light in response to the application of the alternating voltage to the plurality of light emitting circuit portions C are selected from the first plate 1 and the first electrode 1a, the second plate 2 and the second electrode 2a. By observation of the optical instrument 4 from one side, based on the light emission state of the plurality of semiconductor light emitting devices E, the semiconductor light emitting devices E with good light emission and the semiconductor light emitting devices E with poor light emission are sorted.
As a selection method based on the light emission state of the plurality of semiconductor light emitting elements E, it is preferable to perform based on preset criteria such as determination of quality based on the presence or absence of light emission, selection by luminance variation, and selection of color.

このような本発明の実施形態に係る検査装置A及び検査方法によると、駆動電源3の交流電圧を第一電極1a及び第二電極2aから、複数の半導体発光素子Eのそれぞれに絶縁膜体Fからなるコンデンサが直列接続される個々に分離した複数の発光回路部Cに与えることにより、複数の半導体発光素子(半導体ダイオード)Eの整流作用で電流が順方向に流れる。
このため、複数の半導体発光素子Eに順方向の電流が流れる時に、誘導電流を生じて良好な半導体発光素子Eが発光する。このような複数の半導体発光素子Eの発光状態を光学器械4で観察することにより、複数の半導体発光素子Eの発光状態がそれぞれ光学的に検査されて、発光状態に基づいた良否の選別が可能となる。
したがって、分離された複数の半導体発光素子Eが実装直前に一括検査して発光不良な半導体発光素子Eを選別することができる。
その結果、複数のLEDデバイスがハーフカットされた未分離状態で発光テストする従来のものに比べ、複数の半導体発光素子Eから絶縁膜体Fを剥離するだけで複数の半導体発光素子Eが分離されるため、検査された複数の半導体発光素子Eを実装前に分離する必要がなく、この分離工程による新たな不良の発生を防止できて信頼性に優れ、且つ取り扱いが容易である。
特に複数の半導体発光素子EがマイクロLEDであっても実装を容易に行える作業性に優れて利便性の向上が図れる。
これにより、機能的(光学的)に不良な半導体発光素子Eの実装を未然に防止できて、歩留まりの向上が図れる。
According to the inspection apparatus A and the inspection method according to the embodiment of the present invention, the insulating film F is applied to each of the plurality of semiconductor light emitting elements E from the first electrode 1a and the second electrode 2a. By supplying the plurality of light emitting circuit units C separated in series, each of which includes a capacitor in series, a current flows in the forward direction by the rectifying action of the plurality of semiconductor light emitting elements (semiconductor diodes) E.
For this reason, when current in the forward direction flows through the plurality of semiconductor light emitting devices E, an induced current is generated and the favorable semiconductor light emitting devices E emit light. By observing the light emission states of the plurality of semiconductor light emitting elements E with the optical instrument 4, the light emission states of the plurality of semiconductor light emitting elements E are optically inspected, and the selection of the quality based on the light emission states is possible. It becomes.
Therefore, a plurality of separated semiconductor light emitting devices E can be collectively inspected immediately before mounting to sort out the semiconductor light emitting devices E that are defective in light emission.
As a result, the plurality of semiconductor light emitting devices E are separated only by peeling the insulating film body F from the plurality of semiconductor light emitting devices E as compared with the conventional one in which the plurality of LED devices are subjected to light emission test in an unseparated state with half cut. Therefore, it is not necessary to separate the inspected plurality of semiconductor light emitting elements E before mounting, and it is possible to prevent the occurrence of new defects due to this separation process, to be excellent in reliability, and easy to handle.
In particular, even if the plurality of semiconductor light emitting elements E are micro LEDs, the workability can be easily achieved and the convenience can be improved.
As a result, mounting of the functionally (optically) defective semiconductor light emitting element E can be prevented in advance, and the yield can be improved.

特に、第一電極1a又は第二電極2aのいずれか一方の表面か若しくは両方の表面に設けられる誘電層5を備え、誘電層5が高比誘電率の材料からなることが好ましい。
この場合には、駆動電源3の交流電圧が第一電極1a及び第二電極2aから誘電層5を介して複数の発光回路部Cに与えられることにより、高比誘電率の誘電層5で第一電極1aと第二電極2aの間の静電容量が大きくなる。
静電容量とインピーダンスは反比例の関係にあるため、第一電極1aと第二電極2aの間のインピーダンスが小さくなって電流が流れ易くなる。
したがって、複数の半導体発光素子Eを低電圧で発光させることができる。
その結果、高電圧による不本意な半導体発光素子Eの破壊を防止できると同時に短絡(ショート)の危険性を軽減できる。これにより装置側の耐電圧と漏洩対策もできる。
In particular, it is preferable to include a dielectric layer 5 provided on one or both surfaces of either the first electrode 1a or the second electrode 2a, and the dielectric layer 5 is made of a material with a high dielectric constant.
In this case, the alternating current voltage of the driving power supply 3 is applied from the first electrode 1a and the second electrode 2a to the plurality of light emitting circuit portions C via the dielectric layer 5, so that the dielectric layer 5 of high relative dielectric constant The capacitance between the one electrode 1a and the second electrode 2a is increased.
Since the electrostatic capacity and the impedance are in inverse proportion to each other, the impedance between the first electrode 1a and the second electrode 2a is reduced to facilitate the flow of current.
Therefore, the plurality of semiconductor light emitting devices E can emit light at a low voltage.
As a result, it is possible to prevent the unintended destruction of the semiconductor light emitting element E due to the high voltage and at the same time reduce the risk of short circuit. This also makes it possible to take measures against withstanding voltage and leakage on the device side.

さらに、図4及び図5(a)(b)に示されるように、第一プレート1又は第二プレート2の一方が他方よりも小さい面積で形成され、第一プレート1又は第二プレート2の一方に対して他方を第一プレート1及び第二プレート2の対向方向(Z方向)と交差する方向(XY方向)へ移動自在に支持することが好ましい。
この場合には、第一電極1aと第二電極2aの間に複数の発光回路部Cが、第一プレート1又は第二プレート2のうち大きな方(第一プレート1)に対する小さな方(第二プレート2)の接触面積と同サイズで形成される。
大きな方(第一プレート1)に対して小さな方(第二プレート2)を、両者の対向方向(Z方向)と交差する方向(XY方向)へ移動させ、且つ駆動電源3から複数の発光回路部Cに交流電圧を与えることにより、大きな方(第一プレート1)の全体領域が複数に分割されて、分割領域単位で複数の半導体発光素子Eの発光状態が検査可能となる。
したがって、絶縁膜体Fに分離配列された複数の半導体発光素子Eを適宜数の分割領域毎に検査することができる。
その結果、多数の半導体発光素子Eが配列された大型の膜付きチップEFを検査する際に有効である。
Furthermore, as shown in FIGS. 4 and 5 (a) and (b), one of the first plate 1 or the second plate 2 is formed to have a smaller area than the other, and the first plate 1 or the second plate 2 is It is preferable to support the other movably in the direction (XY direction) intersecting the opposite direction (Z direction) of the first plate 1 and the second plate 2 with respect to one.
In this case, the plurality of light emitting circuit portions C between the first electrode 1a and the second electrode 2a is smaller than the larger one (first plate 1) of the first plate 1 or the second plate 2 (second It is formed in the same size as the contact area of the plate 2).
The smaller one (second plate 2) with respect to the larger one (first plate 1) is moved in the direction (XY direction) intersecting with the opposing direction (Z direction) of both, and a plurality of light emission circuits from the drive power supply 3 By applying an alternating voltage to the part C, the entire area of the larger one (first plate 1) is divided into a plurality of parts, and the light emission states of the plurality of semiconductor light emitting elements E can be inspected in divided area units.
Therefore, the plurality of semiconductor light emitting devices E separated and arrayed in the insulating film F can be inspected for each of the divided regions of a suitable number.
As a result, it is effective in inspecting a large film-coated chip EF in which a large number of semiconductor light emitting elements E are arranged.

また、検査機Bの外光から遮光された暗室Dに検査装置Aを配置することが好ましい。
この場合には、暗室Dで複数の半導体発光素子Eの発光テストを行うことにより、各半導体発光素子Eの発光周波数未満の外光が遮光され、各半導体発光素子Eの内部電荷に励起現象が起きない状態で発光テストが行える。
したがって、駆動電源3に対する複数の半導体発光素子Eの正確な発光を観察することができる。
その結果、発光不良な半導体発光素子Eをより正確に選別できて、信頼性の更なる向上が図れる。
Moreover, it is preferable to arrange the inspection apparatus A in the dark room D shielded from the outside light of the inspection machine B.
In this case, by performing a light emission test of the plurality of semiconductor light emitting devices E in the dark room D, external light below the light emission frequency of each semiconductor light emitting device E is blocked, and the internal charge of each semiconductor light emitting device E is excited. A light emission test can be performed without any trouble.
Therefore, accurate light emission of the plurality of semiconductor light emitting devices E with respect to the driving power supply 3 can be observed.
As a result, it is possible to more accurately sort out the semiconductor light emitting devices E that are defective in light emission, and it is possible to further improve the reliability.

特に、暗室Dには、複数の半導体発光素子Eの発光周波数未満の短波長光線を発光する光源が備えられ、光源から複数の半導体発光素子Eの発光部E1に向けて短波長光線を均等に照射することが好ましい。
この場合には、複数の半導体発光素子Eの発光部E1の発光に必要とされる最低電圧を下げることが可能になる。
したがって、駆動電源3を低電圧としても複数の半導体発光素子Eの発光を観察することができる。
その結果、低電圧化により複数の半導体発光素子Eの破壊を更に防止できる。
In particular, the dark room D is provided with a light source for emitting short wavelength light beams less than the light emission frequency of the plurality of semiconductor light emitting devices E, and the short wavelength light beams are uniformly directed from the light source toward the light emitting portions E1 of the plurality of semiconductor light emitting devices E Irradiation is preferred.
In this case, it is possible to lower the minimum voltage required for light emission of the light emitting portions E1 of the plurality of semiconductor light emitting elements E.
Therefore, the light emission of the plurality of semiconductor light emitting elements E can be observed even when the driving power supply 3 is set to a low voltage.
As a result, breakdown of the plurality of semiconductor light emitting devices E can be further prevented by lowering the voltage.

なお、前示の実施形態では、第一電極1aや第二電極2aに誘電層5(裏側誘電層5a,発光側誘電層5b)を設けた場合のみを説明したが、これに限定されず、誘電層5が無くてもよい。誘電層5に代えて絶縁性の確保のため、膜付きチップEFと第一電極1aや第二電極2aの間に空気層を介在させて非接触にすることも可能である。
また図4に示された例では、第一プレート1よりも第二プレート2を小さい面積で形成して、第一プレート1に対し第二プレート2を水平移動用駆動部62でXY方向へ移動させたが、これに限定されず、第二プレート2よりも第一プレート1を小さい面積で形成して、第二プレート2に対し第一プレート1を水平移動用駆動部62でXY方向へ移動させることや、第一プレート1及び第二プレート2の両方を水平移動用駆動部62でXY方向へ相対的に移動させてもよい。
In the embodiment described above, only the case where the dielectric layer 5 (the back side dielectric layer 5a and the light emitting side dielectric layer 5b) is provided on the first electrode 1a and the second electrode 2a has been described, but it is not limited thereto. The dielectric layer 5 may not be present. Instead of the dielectric layer 5, in order to ensure insulation, it is also possible to interpose an air layer between the film-coated chip EF and the first electrode 1 a or the second electrode 2 a to make it non-contact.
Further, in the example shown in FIG. 4, the second plate 2 is formed in a smaller area than the first plate 1, and the second plate 2 is moved in the XY direction by the horizontal movement drive unit 62 with respect to the first plate 1. Although not limited to this, the first plate 1 is formed to have a smaller area than the second plate 2, and the first plate 1 is moved in the XY direction by the horizontal movement drive unit 62 with respect to the second plate 2 Alternatively, both the first plate 1 and the second plate 2 may be relatively moved in the X and Y directions by the horizontal movement drive unit 62.

A 検査装置 1 第一プレート
1a 第一電極 2 第二プレート
2a 第二電極 3 駆動電源
4 光学器械 5 誘電層
C 発光回路部 E 半導体発光素子
E1 発光部 F 絶縁膜体
B 検査機 D 暗室
A inspection apparatus 1 first plate 1a first electrode 2 second plate 2a second electrode 3 drive power source 4 optical instrument 5 dielectric layer C light emitting circuit E light emitting element E1 light emitting portion F insulating film B inspection machine D dark chamber

Claims (6)

絶縁膜体に分離配列された複数の半導体発光素子を光学的に検査する検査装置であって、
第一電極を有する第一プレートと、
前記第一電極との間に前記複数の半導体発光素子及び前記絶縁膜体を挟んで対向するように設けられた第二電極を有する第二プレートと、
前記第一電極及び前記第二電極に対して電気的に接続される駆動電源と、
前記第一プレート又は前記第二プレートのいずれか一方の側から前記複数の半導体発光素子の発光を観察する光学器械と、を備え、
前記複数の半導体発光素子及び前記絶縁膜体は、前記複数の半導体発光素子の表裏のいずれが一方か若しくは両方に対して前記絶縁膜体が粘着で着脱自在に仮止めされた膜付きチップであり、
前記第一電極と前記第二電極の間には、前記複数の半導体発光素子のそれぞれに前記絶縁膜体からなるコンデンサが直列接続される個々に分離した複数の発光回路部が配置され、
前記複数の発光回路部は、前記駆動電源から前記複数の半導体発光素子に順方向の電流が流れる時に誘導電流を生じて前記複数の半導体発光素子が発光することを特徴とする検査装置。
An inspection apparatus for optically inspecting a plurality of semiconductor light emitting devices separately arrayed in an insulating film, comprising:
A first plate having a first electrode;
A second plate having a second electrode provided opposite to the first electrode with the plurality of semiconductor light emitting elements and the insulating film interposed therebetween;
A driving power source electrically connected to the first electrode and the second electrode;
An optical instrument for observing the light emission of the plurality of semiconductor light emitting devices from one side of the first plate or the second plate;
The plurality of semiconductor light emitting elements and the insulating film body are film-coated chips in which the insulating film body is tacked and fixed temporarily to one or both of the front and back of the plurality of semiconductor light emitting elements by adhesion. ,
A plurality of individually separated light emitting circuit units are disposed between the first electrode and the second electrode, in which capacitors made of the insulating film are connected in series to the plurality of semiconductor light emitting elements, respectively.
The inspection apparatus, wherein the plurality of light emitting circuit units generate an induced current when forward current flows from the driving power supply to the plurality of semiconductor light emitting devices, and the plurality of semiconductor light emitting devices emit light.
前記第一電極又は前記第二電極のいずれか一方の表面か若しくは両方の表面に設けられる誘電層を備え、前記誘電層が高比誘電率の材料からなることを特徴とする請求項1記載の検査装置。   A dielectric layer provided on one or both surfaces of the first electrode or the second electrode, the dielectric layer comprising a material having a high dielectric constant. Inspection device. 前記第一プレート又は前記第二プレートのいずれか一方の面積が他方よりも小さい面積で形成され、前記第一プレート又は前記第二プレートの一方に対して他方か若しくは両方を、前記第一プレート及び前記第二プレートの対向方向と交差する方向へ相対的に移動自在に支持することを特徴とする請求項1又は2記載の検査装置。   The area of one of the first plate and the second plate is smaller than the other, and the other of the first plate or the second plate or the other, or both, The inspection apparatus according to claim 1, wherein the inspection apparatus is supported so as to be relatively movable in a direction intersecting with the opposing direction of the second plate. 請求項1、2又は3記載の検査装置を備えた検査機であって、
前記検査機の外光から遮光された暗室に前記検査装置を配置することを特徴とする検査機。
An inspection machine comprising the inspection device according to claim 1, 2 or 3, wherein
An inspection machine characterized by disposing the inspection apparatus in a dark room shielded from external light of the inspection machine.
前記暗室には、前記複数の半導体発光素子の発光周波数未満の短波長光線を発光する光源が備えられ、前記光源から前記複数の半導体発光素子の発光部に向けて前記短波長光線が均等に照射されることを特徴とする請求項4記載の検査機。   The dark room is provided with a light source for emitting a short wavelength light beam having a wavelength less than the light emission frequency of the plurality of semiconductor light emitting devices, and the short wavelength light beam is uniformly emitted from the light source toward light emitting portions of the plurality of semiconductor light emitting devices. The inspection machine according to claim 4, characterized in that: 絶縁膜体に分離配列された複数の半導体発光素子を光学的に検査する検査方法であって、
前記複数の半導体発光素子及び前記絶縁膜体は、前記複数の半導体発光素子の表裏のいずれが一方か若しくは両方に対して前記絶縁膜体が粘着で着脱自在に仮止めされた膜付きチップであり、
第一プレートの第一電極と第二プレートの第二電極との間に、前記複数の半導体発光素子のそれぞれに前記絶縁膜体からなるコンデンサが直列接続される個々に分離した複数の発光回路部を形成するセット工程と、
駆動電源の電圧を前記第一電極及び前記第二電極から前記複数の発光回路部に与える供給工程と、
前記複数の発光回路部に対する電圧の供給により発光する前記複数の半導体発光素子を前記第一プレート又は前記第二プレートのいずれか一方の側から光学器械で観察する観察工程と、を含み、
前記観察工程では、前記駆動電源から前記複数の半導体発光素子に順方向の電流が流れる時に誘導電流を生じて前記複数の半導体発光素子が発光することを特徴とする検査方法。
An inspection method for optically inspecting a plurality of semiconductor light emitting devices separately arranged in an insulating film, comprising:
The plurality of semiconductor light emitting elements and the insulating film body are film-coated chips in which the insulating film body is tacked and fixed temporarily to one or both of the front and back of the plurality of semiconductor light emitting elements by adhesion. ,
A plurality of separate light emitting circuit units in which capacitors made of the insulating film are connected in series to each of the plurality of semiconductor light emitting elements between the first electrode of the first plate and the second electrode of the second plate A set process to form
Supplying a voltage of a driving power supply from the first electrode and the second electrode to the plurality of light emitting circuit units;
And observing the plurality of semiconductor light emitting elements that emit light by supplying voltage to the plurality of light emitting circuit units from either one side of the first plate or the second plate with an optical instrument,
In the inspection step, an induced current is generated when a forward current flows from the driving power supply to the plurality of semiconductor light emitting devices, and the plurality of semiconductor light emitting devices emit light.
JP2018212421A 2018-11-12 2018-11-12 Inspection apparatus and inspection method Active JP6542971B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018212421A JP6542971B1 (en) 2018-11-12 2018-11-12 Inspection apparatus and inspection method
KR1020190132885A KR102463163B1 (en) 2018-11-12 2019-10-24 Inspection apparatus and inspection method
TW108139161A TWI819130B (en) 2018-11-12 2019-10-30 Inspection equipment and inspection methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212421A JP6542971B1 (en) 2018-11-12 2018-11-12 Inspection apparatus and inspection method

Publications (2)

Publication Number Publication Date
JP6542971B1 true JP6542971B1 (en) 2019-07-10
JP2020080358A JP2020080358A (en) 2020-05-28

Family

ID=67212152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212421A Active JP6542971B1 (en) 2018-11-12 2018-11-12 Inspection apparatus and inspection method

Country Status (3)

Country Link
JP (1) JP6542971B1 (en)
KR (1) KR102463163B1 (en)
TW (1) TWI819130B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279911A1 (en) * 2021-07-08 2023-01-12 重庆康佳光电技术研究院有限公司 Chip detection device, detection method, and chip component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331578A (en) * 2020-11-06 2021-02-05 业成科技(成都)有限公司 Method and device for detecting light-emitting element, and substrate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200717682A (en) * 2005-10-11 2007-05-01 Orbotech Ltd Method for inspecting microelectronic components on a substrate and apparatus for testing same
KR20110139812A (en) * 2010-06-24 2011-12-30 서울옵토디바이스주식회사 Esd tester for light emitting diode chip and method of selecting good light emitting diode chip
JP2013093496A (en) * 2011-10-27 2013-05-16 Panasonic Corp Inspection apparatus for resin light emission and inspection method for resin light emission
KR20150021838A (en) * 2013-08-21 2015-03-03 삼성전자주식회사 Led driving apparatus and lighting apparatus
DE102013112885A1 (en) * 2013-11-21 2015-05-21 Osram Opto Semiconductors Gmbh Method for optically characterizing an optoelectronic semiconductor material and device for carrying out the method
DE102014112171B4 (en) * 2014-08-26 2018-01-25 Osram Oled Gmbh Method for detecting a short circuit in a first light emitting diode element and optoelectronic assembly
KR20160056167A (en) * 2014-11-11 2016-05-19 삼성전자주식회사 Method of manufacturing a light emitting device, apparatus for inspection of a light emitting module, and method of making a decision on whether a light emitting module meets a quality requirement
JP6675216B2 (en) * 2015-02-27 2020-04-01 株式会社半導体エネルギー研究所 Power storage device
KR101798134B1 (en) * 2016-10-14 2017-11-16 서울바이오시스 주식회사 Light emitting diode array on wafer level and method of forming the same
WO2018112267A1 (en) 2016-12-16 2018-06-21 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
CN110462387A (en) * 2017-01-23 2019-11-15 特索罗科技有限公司 Light emitting diode (LED) test equipment and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279911A1 (en) * 2021-07-08 2023-01-12 重庆康佳光电技术研究院有限公司 Chip detection device, detection method, and chip component
CN115602661A (en) * 2021-07-08 2023-01-13 重庆康佳光电技术研究院有限公司(Cn) Detection device and detection method of light-emitting element
CN115602661B (en) * 2021-07-08 2024-05-17 重庆康佳光电科技有限公司 Detection device and detection method of light-emitting element

Also Published As

Publication number Publication date
TWI819130B (en) 2023-10-21
KR20200054869A (en) 2020-05-20
JP2020080358A (en) 2020-05-28
KR102463163B1 (en) 2022-11-03
TW202024654A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP7232193B2 (en) Light-emitting diode (LED) inspection device and manufacturing method
JP2020506541A (en) Light emitting diode (LED) inspection apparatus and manufacturing method
CN112098049B (en) Test device, test method, and computer-readable medium
CN110945637A (en) Light Emitting Diode (LED) testing apparatus and method of manufacture
JP5895332B2 (en) Position detection apparatus, overlay apparatus, position detection method, and device manufacturing method
JP6542971B1 (en) Inspection apparatus and inspection method
JP2009170730A (en) Inspecting apparatus for back irradiating type solid-state imaging device
KR102529649B1 (en) Inspection apparatus and inspection method
WO2022221628A1 (en) System and method for probing and sorting led chips
US7589541B2 (en) Method and apparatus for inspecting solid-state image pick-up device
KR102326855B1 (en) Laser welding device and method for semicnductor components
JP2020004856A (en) Method for manufacturing semiconductor device
KR101215306B1 (en) Electonic parts inspecting apparatus and method
KR101447716B1 (en) Device for Investigating Epiwafer and Method for Investigating the Same
KR102602029B1 (en) Micro LED Inspection Device for Performing Photoluminescence Inspection and Automatic Optical Inspection Simultaneously
KR102548400B1 (en) Led transport method
KR102539964B1 (en) Electrostatic Chuck And Substrate Inspection Apparatus Using The Same
KR101703656B1 (en) Apparatus for manufacturing led package
WO2023032036A1 (en) Energization testing device and energization testing method
KR101496050B1 (en) Apparatus for inspecting light-emitting devices
JP6118801B2 (en) Light quantity measuring device and light quantity measuring method
WO2014007543A1 (en) Multifunctional light-emitting diode inspection apparatus comprising confocal sensor
JP2023069742A (en) Inspection device and inspection method
KR101482872B1 (en) Method of inspecting light-emitting devices and apparatus for inspecting light-emitting devices
JP3934664B2 (en) Circuit board inspection apparatus and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150