WO2014007543A1 - Multifunctional light-emitting diode inspection apparatus comprising confocal sensor - Google Patents

Multifunctional light-emitting diode inspection apparatus comprising confocal sensor Download PDF

Info

Publication number
WO2014007543A1
WO2014007543A1 PCT/KR2013/005906 KR2013005906W WO2014007543A1 WO 2014007543 A1 WO2014007543 A1 WO 2014007543A1 KR 2013005906 W KR2013005906 W KR 2013005906W WO 2014007543 A1 WO2014007543 A1 WO 2014007543A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light emitting
unit
confocal
confocal sensor
Prior art date
Application number
PCT/KR2013/005906
Other languages
French (fr)
Korean (ko)
Inventor
김성현
박찬화
오상민
조영일
신나라
Original Assignee
주식회사 미르기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미르기술 filed Critical 주식회사 미르기술
Publication of WO2014007543A1 publication Critical patent/WO2014007543A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention relates to a light emitting diode inspection device, and more particularly, to a multi-function light emitting diode inspection device including a confocal sensor.
  • a light emitting diode is an electronic component that generates a small number of carriers (electrons or holes) injected using a p-n junction structure of a semiconductor and emits light by recombination thereof.
  • carriers electrons or holes
  • LED light emitting diode
  • Such light emitting diodes have recently been improved in light emission efficiency, and their application ranges are light sources of flat panel display devices such as backlight units (BLUs) and liquid crystal displays (LCDs) for mobile phones in the early signal display. It is getting wider for lighting purposes. This is because the light emitting diode consumes less power and has a longer life than a light bulb or a fluorescent lamp used as a conventional lighting.
  • BLUs backlight units
  • LCDs liquid crystal displays
  • the light emitting diode may be manufactured in a light emitting diode package.
  • the light emitting diode package includes a light emitting diode chip, a body on which the light emitting diode chip is mounted, and fluorescent silicon covering the light emitting diode chip on the body.
  • the light emitting diode package may further include a zener diode next to the light emitting diode chip.
  • a light emitting diode chip is manufactured by growing different conductive semiconductor layers on a substrate and an active layer activating light emission therebetween, and then forming electrodes on each semiconductor layer.
  • the light emitting diode chip and the zener diode are electrically connected to a lead frame through wire bonding.
  • An object of the present invention is to provide an inspection apparatus and inspection method capable of accurately and quickly measuring the quality of the surface state of an LED package.
  • Another object of the present invention is to provide an inspection apparatus and an inspection method capable of providing various states information of an LED package.
  • Multi-function light emitting diode inspection apparatus is mounted on the light emitting diode, the stage portion for fixing or transporting the light emitting diode to the inspection position, the height of the surface of the light emitting diode while scanning the surface of the light emitting diode
  • a control unit for determining whether the light emitting diode surface state is normal.
  • the confocal sensor unit rotates about a central axis to adjust the heat formed by the confocal sensors and the angle formed by the light emitting diodes.
  • the confocal sensor unit may include a position adjusting device capable of adjusting the position of each of the plurality of confocal sensors.
  • the controller may include an algorithm for interpolating and estimating heights between surfaces scanned by adjacent confocal sensors based on the light emitting diode surface height data measured by each confocal sensor.
  • Multi-function light emitting diode inspection apparatus is mounted on the light emitting diode, the stage portion for fixing or transporting the light emitting diode at the inspection position, located on top of the stage portion, providing illumination to the light emitting diode A lighting unit, and a camera positioned above the lighting unit to capture an image of the light emitting diode, a vision processing unit which reads the image captured by the camera to determine whether the light emitting diode is good or bad, and the stage unit and the camera.
  • An optical inspection unit including a control unit including a motion controller for controlling the unit, and a confocal sensor unit having a plurality of confocal sensors and capable of measuring the height of the surface of the light emitting diode.
  • the present invention can provide a variety of status information of the LED package.
  • FIG. 1 is a schematic view of a non-contact light emitting diode surface inspection apparatus according to an aspect of the present invention.
  • FIG. 2 is a view schematically showing the structure of a confocal sensor.
  • Figure 3 (a) is a side view of the confocal sensor unit according to an embodiment of the present invention
  • Figure 3 (b) is an exploded view of the confocal sensor unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating a method of inspecting a surface of a light emitting diode package using a confocal sensor unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a method of inspecting a light emitting diode package surface by a confocal sensor unit according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a trajectory of scanning of probes of a plurality of confocal sensors along a surface of a light emitting diode.
  • the non-contact type light emitting diode surface inspection apparatus includes a stage unit 10, a confocal sensor unit 20, an optical inspection unit 30, a control unit 40, a vision processing unit 50, and the like.
  • the stage unit 10 provides a space in which the light emitting diode 5 as an inspection object is seated.
  • the stage unit 10 may include a position adjusting unit (not shown) and a fixing unit (not shown) for adjusting and fixing the position of the light emitting diode 5.
  • the confocal sensor unit 20 is a portion for measuring the height of the surface of the light emitting diode package, in particular, the surface of the encapsulant containing a fluorescent material while scanning the surface of the light emitting diode seated on the stage unit 10.
  • the confocal sensor unit 20 includes a plurality of confocal sensors to drive the plurality of confocal sensors to pass over the surface of the light emitting diode package.
  • FIG. 2 is a view schematically showing the structure of a confocal sensor.
  • the light 2 emitted from the laser 5 converges through the objective lens 3 of the confocal sensor and is incident on the optical focus of the inspection object 1.
  • the focus of the light 2 emitted from the laser through the objective lens 3 and the optical focus of the naked eye are almost the same.
  • the scattered light 6 scattered in the local region of the inspection object 1 exposed to the light 2 emitted from the laser passes through the objective lens 3 and separates only the light that is precisely focused into the detector aperture 7. It is received by the detector and digitally converted into a signal.
  • the advantage of the confocal sensor is that the spatial structure of the sample can be analyzed by analyzing the Raman intensity by obtaining a series of Raman spectra while examining the inspection object in two or three dimensions.
  • This method is broadly called Raman imaging.
  • various analysis can be performed in two or three dimensions such as the surface and thickness of the inspection object.
  • the laser light sources generated by the plurality of confocal sensors are automatically moved along the surface of the light emitting diode package, morphological information of the encapsulant surface of the light emitting diode package can be obtained accurately and quickly.
  • Figure 3 (a) is a side view of the confocal sensor unit according to an embodiment of the present invention
  • Figure 3 (b) is an exploded view of the confocal sensor unit according to an embodiment of the present invention.
  • the confocal sensor unit includes a plurality of confocal sensors 22.
  • the plurality of confocal sensors 22 are fixed to the sensor head by the fixing block 24, so that the plurality of confocal sensors 22 move together.
  • the plurality of confocal sensors 22 and the fixed block 24 may be coupled to the rotating plate 26 again to rotate the central confocal sensor about its axis. The reason why the plurality of confocal sensors 22 are rotated will be described with reference to FIG. 4.
  • the confocal sensor unit 20 may be coupled to the optical inspection unit 30 by having a connection block 28.
  • FIG. 4 is a schematic diagram illustrating a method of inspecting a surface of a light emitting diode package using a confocal sensor unit according to an embodiment of the present invention.
  • the probe 22a of the confocal sensor when scanning the light emitting diode package 11 with the probe 22a of the confocal sensor, the probe 22a of the confocal sensor is placed on the encapsulant 12 of the light emitting diode package.
  • the width W2 of the encapsulant 12 'of the light emitting diode package 11' disclosed in FIG. 4B is larger than that W1 disclosed in FIG. 4A. Therefore, the angle between the line A connecting the probe of the confocal sensor and the trajectory of the probe of the confocal sensor should be greater than that disclosed in FIG. As such, by rotating the confocal sensor around the center of the confocal sensor, it is possible to effectively cope with light emitting diode packages having various sizes.
  • FIG. 5 is a schematic diagram illustrating a method of inspecting a light emitting diode package surface by a confocal sensor unit according to another embodiment of the present invention.
  • the plurality of confocal sensors 22 ' are connected to the position adjusting device 27, respectively. Since the position adjusting device 27 can move up and down, the interval between the confocal sensors 22 'can be adjusted.
  • Each confocal sensor 22 ' may scan the surface of the encapsulant with respect to one light emitting diode 11, and the plurality of light emitting diodes 11a, 11b, 11c of the plurality of light emitting diodes 11b as shown in FIG.
  • the confocal sensor 22 ' may simultaneously scan the surface of the encapsulant.
  • FIG. 6 is a schematic diagram showing a trajectory of scanning of probes of a plurality of confocal sensors along a surface of a light emitting diode.
  • FIG. 6 surface information of a trajectory scanned by a probe of a confocal sensor may be acquired, but information on the surface between the trajectories may not be directly obtained. In this case, the surface information between the trajectories may be estimated using an interpolation algorithm previously inputted to the controller 40 shown in FIG. 1.
  • Interpolation is a method used when you need to find an unmeasured or unmeasurable value.
  • X 0 ⁇ x 1 ⁇ ⁇ .
  • n + 1 variables given by ⁇ x n
  • the smaller the interval between data points the better the approximation, because the smaller the interval, the better the approximation of the continuous function in a straight line.
  • the entire surface of the light emitting diode is based on the light emitting diode surface height data measured by each confocal sensor and the height data of the light emitting diode estimated by the surface height calculating device. It may further include a display unit (not shown) for displaying a three-dimensional image.
  • the optical inspection unit 30 may be connected to the confocal sensor unit 20 to perform optical inspection on the light emitting diode mounted on the stage unit 10.
  • the optical inspection unit 30 is an illumination unit 32 that provides illumination to the light emitting diodes, a camera 34 positioned above the illumination unit to take an image of the light emitting diodes, and reads the image taken by the camera to determine whether or not the light emitting diode is good or not. It may include a vision processing unit 50 for determining a failure.
  • the controller 40 compares the surface height data of the LED encapsulation material collected by the confocal sensor unit 20 and the surface height data estimated through the interpolation algorithm with previously input data to determine the surface of the LED surface. It can be determined whether it is normal.
  • the confocal sensor unit 20 and the optical inspection unit 30 coupled to the transfer conveyor 60 may be controlled to be driven forward, backward, left and right on the light emitting diode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The multi-functional light-emitting diode inspection apparatus according to one embodiment of the present invention comprises: a stage unit on which the light-emitting diode is loaded, and which fixes the light-emitting diode on an inspection location or transfers the light-emitting diode to the inspection location; a focal sensor unit having a plurality of focal sensors for scanning the surface of the light-emitting diode and measuring the height of the surface of the light-emitting diode; and a control unit for controlling the operation of the stage unit and the focal sensor unit and comparing the surface height data collected by the focal sensor unit with pre-inputted data to determine whether or not the surface of the light-emitting diode is normal.

Description

공초점센서를 포함하는 다기능 발광다이오드 검사장치Multifunctional light emitting diode inspection device including confocal sensor
본 발명은 발광다이오드 검사장치에 관한 것으로서, 보다 상세하게는, 공초점센서를 포함하는 다기능 발광다이오드 발광다이오드 검사장치에 관한 것이다.The present invention relates to a light emitting diode inspection device, and more particularly, to a multi-function light emitting diode inspection device including a confocal sensor.
발광다이오드(light emitting diode; LED)는 반도체의 p-n 접합구조를 이용하여 주입된 소수 캐리어(전자 또는 양공)를 만들어내고, 이들의 재결합에 의하여 발광시키는 전자부품이다. 즉, 특정 원소의 반도체에 순방향 전압을 가하면 양극과 음극의 접합 부분을 통해 전자의 정공이 이동하면서 서로 재결합하는데, 전자의 정공이 떨어져 있을 때보다 작은 에너지가 되므로, 이때 발생하는 에너지의 차이로 인해 빛을 방출한다.A light emitting diode (LED) is an electronic component that generates a small number of carriers (electrons or holes) injected using a p-n junction structure of a semiconductor and emits light by recombination thereof. In other words, when a forward voltage is applied to a semiconductor of a specific element, holes of electrons recombine with each other while the holes of the electrons move through the junction of the anode and the cathode, which is less energy than when the holes of the electrons are apart, Emits light.

이러한 발광다이오드는 최근 발광 효율의 향상으로 그 응용범위가 초기의 신호 표시용에서 휴대폰용 백라이트 유닛(Back Light Unit, BLU)이나 액정표시장치(Liquid Crystal Display, LCD)와 같은 평판 표시장치의 광원 및 조명용으로 더욱 넓어지고 있다. 이는 발광다이오드가 종래의 조명으로 사용되는 전구나 형광등에 비해 소모전력이 적고 수명이 길기 때문이다.Such light emitting diodes have recently been improved in light emission efficiency, and their application ranges are light sources of flat panel display devices such as backlight units (BLUs) and liquid crystal displays (LCDs) for mobile phones in the early signal display. It is getting wider for lighting purposes. This is because the light emitting diode consumes less power and has a longer life than a light bulb or a fluorescent lamp used as a conventional lighting.

발광다이오드는 발광다이오드 패키지로 제조될 수 있다. 일반적으로, 발광다이오드 패키지는 발광다이오드 칩과, 발광다이오드 칩이 실장되는 몸체와, 몸체 상부에 발광다이오드 칩을 덮는 형광성 실리콘을 포함한다. 발광다이오드 패키지는 발광다이오드 칩 옆에 제너다이오드(zener diode)를 더 포함하기도 한다.The light emitting diode may be manufactured in a light emitting diode package. In general, the light emitting diode package includes a light emitting diode chip, a body on which the light emitting diode chip is mounted, and fluorescent silicon covering the light emitting diode chip on the body. The light emitting diode package may further include a zener diode next to the light emitting diode chip.

발광다이오드 칩은, 기판상에 서로 다른 도전형의 반도체층과 그 사이에 발광을 활성화하는 활성층을 성장시킨 후, 각 반도체층에 전극을 형성하여 제조된다. 발광다이오드 칩과 제너다이오드는 와이어 본딩(wire bonding)을 통해 리드 프레임(lead frame)과 전기적으로 연결된다.A light emitting diode chip is manufactured by growing different conductive semiconductor layers on a substrate and an active layer activating light emission therebetween, and then forming electrodes on each semiconductor layer. The light emitting diode chip and the zener diode are electrically connected to a lead frame through wire bonding.

발광다이오드 칩과 제너다이오드의 상부에 형광성 실리콘을 충전하는 과정에서, 형광성 실리콘이 과소하게 충전될 경우, 내부의 본딩 와이어가 노출되어 발열로 인해 끊어질 수 있다. 이와 반대로, 형광성 실리콘이 과다하게 충전될 경우, 추후 모듈에 조립될 때 조립이 불가능하게 되고 빛의 발산각이 설정 수치보다 커지게 되는 불량이 야기된다. 따라서 발광다이오드 패키지의 형광성 실리콘의 충전 상태 및 본딩 와이어의 연결 상태 등을 검사하는 공정이 필요하게 된다.In the process of filling fluorescent silicon on top of the light emitting diode chip and the zener diode, when the fluorescent silicon is undercharged, the bonding wires inside are exposed and may be disconnected due to heat generation. On the contrary, when the fluorescent silicon is overcharged, it becomes impossible to assemble the module when it is assembled later, resulting in a defect that the divergence angle of light becomes larger than the set value. Therefore, a process of inspecting the state of charge of the fluorescent silicon of the light emitting diode package and the connection state of the bonding wires is required.
본 발명의 배경기술로는 대한민국공개특허공보 제2009-0053591호를 참조하여 이해할 수 있다.Background of the present invention can be understood with reference to the Republic of Korea Patent Publication No. 2009-0053591.
본 발명의 목적은 LED 패키지 표면 상태의 양부를 정확하고 신속하게 측정할 수 있는 검사장치 및 검사방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide an inspection apparatus and inspection method capable of accurately and quickly measuring the quality of the surface state of an LED package.
본 발명의 다른 목적은 LED 패키지의 상태 정보를 다각적으로 제공할 수 있는 검사장치 및 검사방법을 제공하는 데 있다.Another object of the present invention is to provide an inspection apparatus and an inspection method capable of providing various states information of an LED package.
본 발명의 일 실시예에 따른 다기능 발광다이오드 검사장치는 상기 발광다이오드를 탑재하고, 상기 발광다이오드를 검사위치에 고정 또는 이송시키는 스테이지부, 상기 발광다이오드의 표면을 스캔하면서, 발광다이오드 표면의 높낮이를 측정할 수 있는 복수의 공초점센서를 구비하는 공초점센서부, 상기 스테이지부 및 상기 공초점센서부의 구동을 제어하고, 상기 공초점센서부가 수집한 표면 높이 데이터를 미리 입력된 데이터와 비교하여 상기 발광다이오드 표면 상태의 정상 여부를 판별하는 제어부를 포함한다.Multi-function light emitting diode inspection apparatus according to an embodiment of the present invention is mounted on the light emitting diode, the stage portion for fixing or transporting the light emitting diode to the inspection position, the height of the surface of the light emitting diode while scanning the surface of the light emitting diode Controls the driving of the confocal sensor unit, the stage unit and the confocal sensor unit having a plurality of confocal sensors that can be measured, and compares the surface height data collected by the confocal sensor unit with previously input data. And a control unit for determining whether the light emitting diode surface state is normal.
상기 공초점센서부는 중심축을 기준으로 회전함으로써 상기 복수의 공초점센서가 이루는 열과 상기 발광다이오드가 이루는 각도를 조절할 수 있다.The confocal sensor unit rotates about a central axis to adjust the heat formed by the confocal sensors and the angle formed by the light emitting diodes.
상기 공초점센서부는 상기 복수의 공초점 센서 각각의 위치를 조절할 수 있는 위치조절장치를 구비할 수 있다.The confocal sensor unit may include a position adjusting device capable of adjusting the position of each of the plurality of confocal sensors.
상기 제어부는 각각의 공초점센서에 의해 측정된 상기 발광다이오드 표면 높낮이 데이터를 기초로 인접하는 상기 공초점센서가 스캔한 표면 사이의 높이를 보간하여 추정하는 알고리즘을 내장할 수 있다.The controller may include an algorithm for interpolating and estimating heights between surfaces scanned by adjacent confocal sensors based on the light emitting diode surface height data measured by each confocal sensor.
각각의 공초점센서에 의해 측정된 상기 발광다이오드 표면 높낮이 데이터 및 상기 표면 높이 연산장치에 의해 추정된 상기 발광다이오드의 높낮이 데이터를 기초로 상기 발광다이오드의 전체 표면을 3차원 이미지로 디스플레이하는 디스플레이부를 더 포함할 수 있다.A display unit for displaying the entire surface of the light emitting diode as a three-dimensional image based on the light emitting diode surface height data measured by each confocal sensor and the height data of the light emitting diode estimated by the surface height calculator; It may include.
본 발명의 다른 실시예에 따른 다기능 발광다이오드 검사장치는 상기 발광다이오드를 탑재하고, 상기 발광다이오드를 검사위치에 고정 또는 이송시키는 스테이지부, 상기 스테이지부의 상부에 위치하며, 상기 발광다이오드에 조명을 제공하는 조명부, 및 상기 조명부의 상부에 위치하여 상기 발광다이오드의 영상을 촬영하는 카메라, 상기 카메라에서 촬영된 영상을 판독하여 상기 발광다이오드의 양호 또는 불량을 판별하는 비전처리부, 및 상기 스테이지부 및 상기 카메라부를 제어하는 모션 컨트롤러를 포함하는 제어부를 포함하는 광학검사부, 및 복수의 공초점센서를 구비하고 상기 발광다이오드 표면의 높낮이를 측정할 수 있는 공초점센서부를 포함한다.Multi-function light emitting diode inspection apparatus according to another embodiment of the present invention is mounted on the light emitting diode, the stage portion for fixing or transporting the light emitting diode at the inspection position, located on top of the stage portion, providing illumination to the light emitting diode A lighting unit, and a camera positioned above the lighting unit to capture an image of the light emitting diode, a vision processing unit which reads the image captured by the camera to determine whether the light emitting diode is good or bad, and the stage unit and the camera. An optical inspection unit including a control unit including a motion controller for controlling the unit, and a confocal sensor unit having a plurality of confocal sensors and capable of measuring the height of the surface of the light emitting diode.
본 발명의 실시예에 따르면 LED 패키지 표면 상태의 양부를 정확하고 신속하게 측정할 수 있다.According to the embodiment of the present invention, it is possible to accurately and quickly measure the quality of the LED package surface state.
또한, 본 발명의 실시예에 따르면 LED 패키지의 상태 정보를 다각적으로 제공할 수 있다.In addition, according to an embodiment of the present invention can provide a variety of status information of the LED package.
도 1은 본 발명의 일 측면에 따른 비접촉식 발광다이오드 표면검사장치의 개략도이다.1 is a schematic view of a non-contact light emitting diode surface inspection apparatus according to an aspect of the present invention.
도 2는 공초점센서의 구조를 개략적으로 나타낸 그림이다.2 is a view schematically showing the structure of a confocal sensor.
도 3의 (a)는 본 발명의 일 실시예에 따른 공초점센서부의 측면도이고, 도 3의 (b)는 본 발명의 일 실시예에 따른 공초점센서부의 분해도이다.Figure 3 (a) is a side view of the confocal sensor unit according to an embodiment of the present invention, Figure 3 (b) is an exploded view of the confocal sensor unit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 공초점센서부를 이용하여 발광다이오드 패키지의 표면을 검사하는 방법을 설명하는 모식도이다.4 is a schematic diagram illustrating a method of inspecting a surface of a light emitting diode package using a confocal sensor unit according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따라 공초점센서부가 발광다이오드 패키지 표면을 검사하는 방법을 설명하는 모식도이다.5 is a schematic diagram illustrating a method of inspecting a light emitting diode package surface by a confocal sensor unit according to another embodiment of the present invention.
도 6은 복수의 공초점센서의 탐침이 발광다이오드의 표면을 따라 스캔하는 궤적을 나타내는 모식도이다.FIG. 6 is a schematic diagram showing a trajectory of scanning of probes of a plurality of confocal sensors along a surface of a light emitting diode. FIG.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다.However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity, and the elements denoted by the same reference numerals in the drawings are the same elements.

도 1은 본 발명의 일 측면에 따른 비접촉식 발광다이오드 표면검사장치의 개략도이다. 도1을 참조하면, 비접촉식 발광다이오드 표면검사장치는 스테이지부(10), 공초점센서부(20), 광학검사부(30), 제어부(40), 비전처리부(50) 및 를 포함한다.1 is a schematic view of a non-contact light emitting diode surface inspection apparatus according to an aspect of the present invention. Referring to FIG. 1, the non-contact type light emitting diode surface inspection apparatus includes a stage unit 10, a confocal sensor unit 20, an optical inspection unit 30, a control unit 40, a vision processing unit 50, and the like.

스테이지부(10)는 검사대상물인 발광다이오드(5)가 착좌되는 공간을 제공한다. 스테이지부(10)는 발광다이오드(5)의 위치를 조절 및 고정시키기 위한 위치조절부(미도시) 및 고정부(미도시)를 포함할 수 있다.The stage unit 10 provides a space in which the light emitting diode 5 as an inspection object is seated. The stage unit 10 may include a position adjusting unit (not shown) and a fixing unit (not shown) for adjusting and fixing the position of the light emitting diode 5.

공초점센서부(20)는 스테이지부(10)에 착좌되어 있는 발광다이오드의 표면을 스캔하면서 발광다이오드 패키지의 표면, 특히 형광물질을 함유하는 봉지재의 표면의 높낮이를 측정하는 부분이다. 공초점센서부(20)는 복수의 공초점센서를 구비하여 복수의 공초점센서로 하여금 발광다이오드 패키지 표면 위를 함께 지나가도록 구동한다.The confocal sensor unit 20 is a portion for measuring the height of the surface of the light emitting diode package, in particular, the surface of the encapsulant containing a fluorescent material while scanning the surface of the light emitting diode seated on the stage unit 10. The confocal sensor unit 20 includes a plurality of confocal sensors to drive the plurality of confocal sensors to pass over the surface of the light emitting diode package.

도 2는 공초점센서의 구조를 개략적으로 나타낸 그림이다. 검사대상물을 스테이지부에 올려놓고 육안 또는 모니터 화상으로 분석하고자 하는 검사대상물의 한 부분에 광학 초점을 맞춘다. 다음은 레이저(5)에서 나온 빛(2)이 공초점센서의 대물렌즈(3)를 통해 수렴되어 검사대상물(1)의 광학 초점에 입사된다. 이때 레이저에서 나온 빛(2)이 대물렌즈(3)를 통해 집중화된 초점과 육안의 광학 초점은 거의 동일하다. 레이저로부터 나온 빛(2)에 노출된 검사대상물(1)의 국부적인 영역에서 산란되는 산란광(6)은 다시 대물렌즈(3)를 거쳐 초점이 정확하게 맞는 빛만을 검출기 조리개(7)로 분리한 후 검출기로 받아 디지털 신호화하여 컴퓨터로 전송하게 된다.2 is a view schematically showing the structure of a confocal sensor. Place the object on the stage and focus optically on a part of the object to be analyzed by visual or monitor image. Next, the light 2 emitted from the laser 5 converges through the objective lens 3 of the confocal sensor and is incident on the optical focus of the inspection object 1. At this time, the focus of the light 2 emitted from the laser through the objective lens 3 and the optical focus of the naked eye are almost the same. The scattered light 6 scattered in the local region of the inspection object 1 exposed to the light 2 emitted from the laser passes through the objective lens 3 and separates only the light that is precisely focused into the detector aperture 7. It is received by the detector and digitally converted into a signal.

공초점센서의 장점은 검사대상물을 2차원 또는 3차원으로 조사하면서 일련의 라만 스펙트럼을 얻어 라만 강도를 분석함으로써, 시료의 공간적인 구조분석이 가능하다. 이러한 방법을 광범위하게 라만 이미징이라고 한다. 레이저 광원의 스캔 방법에 따라 검사대상물의 표면, 두께 등 2차원 또는 3차원적으로 다양한 분석이 가능하다. The advantage of the confocal sensor is that the spatial structure of the sample can be analyzed by analyzing the Raman intensity by obtaining a series of Raman spectra while examining the inspection object in two or three dimensions. This method is broadly called Raman imaging. Depending on the scanning method of the laser light source, various analysis can be performed in two or three dimensions such as the surface and thickness of the inspection object.

본 발명은 발광다이오드 패키지의 표면을 따라 복수의 공초점센서에서 생성되는 레이저 광원이 자동적으로 초점을 이동함으로써, 특히 발광다이오드 패키지의 봉지재 표면의 형태학적 정보를 정확하고 신속하게 얻을 수 있다. According to the present invention, since the laser light sources generated by the plurality of confocal sensors are automatically moved along the surface of the light emitting diode package, morphological information of the encapsulant surface of the light emitting diode package can be obtained accurately and quickly.

도 3의 (a)는 본 발명의 일 실시예에 따른 공초점센서부의 측면도이고, 도 3의 (b)는 본 발명의 일 실시예에 따른 공초점센서부의 분해도이다.Figure 3 (a) is a side view of the confocal sensor unit according to an embodiment of the present invention, Figure 3 (b) is an exploded view of the confocal sensor unit according to an embodiment of the present invention.
도 3의 (a), (b)를 참조하면, 공초점센서부는 복수 개의 공초점센서(22)를 구비한다. 복수의 공초점센서(22)는 고정블록(24)에 의해 센서헤드가 고정됨으로써 복수의 공초점센서(22)가 일체로 움직인다. 복수의 공초점센서(22) 및 고정블록(24)은 다시 회전판(26)과 결합됨으로써 중앙의 공초점센서를 축으로 회전할 수 있다. 복수의 공초점센서(22)가 회전되는 이유는 도 4를 이용하여 설명하기로 한다.3 (a) and 3 (b), the confocal sensor unit includes a plurality of confocal sensors 22. The plurality of confocal sensors 22 are fixed to the sensor head by the fixing block 24, so that the plurality of confocal sensors 22 move together. The plurality of confocal sensors 22 and the fixed block 24 may be coupled to the rotating plate 26 again to rotate the central confocal sensor about its axis. The reason why the plurality of confocal sensors 22 are rotated will be described with reference to FIG. 4.
공초점센서부(20)는 연결블록(28)을 구비하여 광학검사부(30)와 결합될 수도 있다.The confocal sensor unit 20 may be coupled to the optical inspection unit 30 by having a connection block 28.

도 4는 본 발명의 일 실시예에 따라 공초점센서부를 이용하여 발광다이오드 패키지의 표면을 검사하는 방법을 설명하는 모식도이다. 4 is a schematic diagram illustrating a method of inspecting a surface of a light emitting diode package using a confocal sensor unit according to an embodiment of the present invention.
도 4의 (a)를 참조하면, 공초점센서의 탐침(22a)으로 발광다이오드 패키지(11) 위를 스캔할 때 공초점센서의 탐침(22a)은 발광다이오드 패키지의 봉지재(12) 위를 지나야 한다. 따라서 공초점센서 탐침의 중심(C)을 기준으로 복수의 공초점센서를 회전시켜 공초점센서의 탐침(22a) 모두가 봉지재(12) 위를 통과하도록 한다.Referring to FIG. 4A, when scanning the light emitting diode package 11 with the probe 22a of the confocal sensor, the probe 22a of the confocal sensor is placed on the encapsulant 12 of the light emitting diode package. Must pass Therefore, by rotating the plurality of confocal sensors based on the center (C) of the confocal sensor probe so that all the probes 22a of the confocal sensor pass over the encapsulant 12.

도 4의 (b)에 개시된 발광다이오드 패키지(11’)의 봉지재(12’)의 폭(W2)은 도 4의 (a)에 개시된 그것(W1)보다 크다. 따라서 공초점센서의 탐침을 연결한 라인(A)과 공초첨 센서의 탐침의 궤적이 이루는 각도가 도 4의 (a)에 개시된 그것보다 커야 한다. 이와 같이 공초점센서의 중심을 축으로 공초점센서를 회전시킴으로써 다양한 크기를 가진 발광다이오드 패키지에 대해 효과적으로 대응할 수 있다.The width W2 of the encapsulant 12 'of the light emitting diode package 11' disclosed in FIG. 4B is larger than that W1 disclosed in FIG. 4A. Therefore, the angle between the line A connecting the probe of the confocal sensor and the trajectory of the probe of the confocal sensor should be greater than that disclosed in FIG. As such, by rotating the confocal sensor around the center of the confocal sensor, it is possible to effectively cope with light emitting diode packages having various sizes.

도 5는 본 발명의 다른 실시예에 따라 공초점센서부가 발광다이오드 패키지 표면을 검사하는 방법을 설명하는 모식도이다. 도 5의 (a)를 참조하면, 복수의 공초점센서(22’)는 각각 위치조절장치(27)와 연결되어 있다. 위치조절장치(27)는 상하로 이동할 수 있으므로 공초점센서(22’) 사이의 간격을 조절할 수 있다. 각각의 공초점센서(22’)는 하나의 발광다이오드(11)에 대해 봉지재의 표면을 스캔할 수도 있고, 도 5의 (b)에 개시된 것과 같이 복수의 발광다이오드(11a, 11b, 11c)의 봉지재의 표면에 대해 공초점센서(22’)가 동시에 스캔할 수도 있다.5 is a schematic diagram illustrating a method of inspecting a light emitting diode package surface by a confocal sensor unit according to another embodiment of the present invention. Referring to FIG. 5A, the plurality of confocal sensors 22 'are connected to the position adjusting device 27, respectively. Since the position adjusting device 27 can move up and down, the interval between the confocal sensors 22 'can be adjusted. Each confocal sensor 22 'may scan the surface of the encapsulant with respect to one light emitting diode 11, and the plurality of light emitting diodes 11a, 11b, 11c of the plurality of light emitting diodes 11b as shown in FIG. The confocal sensor 22 'may simultaneously scan the surface of the encapsulant.

도 6은 복수의 공초점센서의 탐침이 발광다이오드의 표면을 따라 스캔하는 궤적을 나타내는 모식도이다. 도 6을 참조하면, 공초점센서의 탐침이 스캔하는 궤적의 표면 정보를 획득할 수 있으나 궤적 사이의 표면에 대한 정보는 직접적으로 구할 수 없다. 이 경우 도 1에 도시된 제어부(40)에 미리 입력된 보간 알고리즘(interpolation algorithm)을 이용해 궤적 사이의 표면정보를 추정할 수 있다. FIG. 6 is a schematic diagram showing a trajectory of scanning of probes of a plurality of confocal sensors along a surface of a light emitting diode. FIG. Referring to FIG. 6, surface information of a trajectory scanned by a probe of a confocal sensor may be acquired, but information on the surface between the trajectories may not be directly obtained. In this case, the surface information between the trajectories may be estimated using an interpolation algorithm previously inputted to the controller 40 shown in FIG. 1.

보간법이란 측정하지 않았거나 측정할 수 없는 값을 구해야 할 경우에 사용하는 방법으로서, x0 < x1 <…< xn으로 주어진 n+1개의 변수에 대한 함수 값을 알고 있을 때, 이들 n+1개의 모든 점을 통과하는 근사 함수를 이용하여, 구간 내의 임의의 점에 대한 함수값을 구하는 방법이다. 일반적으로 데이터 점들 사이의 간격이 작으면 작을수록 더욱 좋은 근사값을 얻게 되는 데, 간격이 감소함으로써 연속함수를 직선으로 근사 시키기가 좋기 때문이다.Interpolation is a method used when you need to find an unmeasured or unmeasurable value. X 0 <x 1 <. When we know the function values for n + 1 variables given by <x n , we use the approximation function passing through all these n + 1 points to find the function values for any point in the interval. In general, the smaller the interval between data points, the better the approximation, because the smaller the interval, the better the approximation of the continuous function in a straight line.

본 발명의 일 실시예에 따르면, 각각의 공초점센서에 의해 측정된 상기 발광다이오드 표면 높낮이 데이터 및 상기 표면 높이 연산장치에 의해 추정된 상기 발광다이오드의 높낮이 데이터를 기초로 상기 발광다이오드의 전체 표면을 3차원 이미지로 디스플레이하는 디스플레이부(미도시)를 더 포함할 수 있다.According to an embodiment of the present invention, the entire surface of the light emitting diode is based on the light emitting diode surface height data measured by each confocal sensor and the height data of the light emitting diode estimated by the surface height calculating device. It may further include a display unit (not shown) for displaying a three-dimensional image.
다시, 도1을 참조하면, 광학검사부(30)는 공초점센서부(20)와 연결되어 스테이지부(10)에 탑재된 발광다이오드에 대하여 광학적 검사(optical inspection)를 수행할 수 있다. 광학검사부(30)는 발광다이오드에 조명을 제공하는 조명부(32), 조명부의 상부에 위치하여 발광다이오드의 영상을 촬영하는 카메라(34), 상기 카메라에서 촬영된 영상을 판독하여 발광다이오드의 양호 또는 불량을 판별하는 비전처리부(50)를 포함할 수 있다.Referring back to FIG. 1, the optical inspection unit 30 may be connected to the confocal sensor unit 20 to perform optical inspection on the light emitting diode mounted on the stage unit 10. The optical inspection unit 30 is an illumination unit 32 that provides illumination to the light emitting diodes, a camera 34 positioned above the illumination unit to take an image of the light emitting diodes, and reads the image taken by the camera to determine whether or not the light emitting diode is good or not. It may include a vision processing unit 50 for determining a failure.

제어부(40)는 앞서 설명한 바와 같이 공초점센서부(20)가 수집한 발광다이오드 봉지재의 표면 높이 데이터 및 보간 알고리즘을 통해 추정된 표면 높이 데이터를 미리 입력된 데이터와 비교하여 상기 발광다이오드 표면 상태의 정상 여부를 판별할 수 있다. 또한 이송 컨베이어(60)에 결합된 공초점센서부(20) 및 광학검사부(30)를 발광다이오드 위에서 전, 후, 좌, 우로 구동하도록 제어할 수 있다.As described above, the controller 40 compares the surface height data of the LED encapsulation material collected by the confocal sensor unit 20 and the surface height data estimated through the interpolation algorithm with previously input data to determine the surface of the LED surface. It can be determined whether it is normal. In addition, the confocal sensor unit 20 and the optical inspection unit 30 coupled to the transfer conveyor 60 may be controlled to be driven forward, backward, left and right on the light emitting diode.

본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정된다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이며, 이 또한 첨부된 청구범위에 기재된 기술적 사상에 속한다 할 것이다.The present invention is not limited by the above-described embodiment and the accompanying drawings, but by the appended claims. Therefore, it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible without departing from the technical spirit of the present invention described in the claims, and the appended claims. Will belong to the technical spirit described in.

Claims (6)

  1. 상기 발광다이오드를 탑재하고, 상기 발광다이오드를 검사위치에 고정 또는 이송시키는 스테이지부;
    상기 발광다이오드의 표면을 스캔하면서, 발광다이오드 표면의 높낮이를 측정할 수 있는 복수의 공초점센서를 구비하는 공초점센서부;
    상기 스테이지부 및 상기 공초점센서부의 구동을 제어하고, 상기 공초점센서부가 수집한 표면 높이 데이터를 미리 입력된 데이터와 비교하여 상기 발광다이오드 표면 상태의 정상 여부를 판별하는 제어부;
    를 포함하는 다기능 발광다이오드 검사장치.
    A stage unit for mounting the light emitting diode and fixing or transferring the light emitting diode to an inspection position;
    A confocal sensor unit having a plurality of confocal sensors capable of measuring the height of the surface of the light emitting diode while scanning the surface of the light emitting diode;
    A controller configured to control driving of the stage unit and the confocal sensor unit, and determine whether the surface state of the light emitting diode is normal by comparing surface height data collected by the confocal sensor unit with previously input data;
    Multifunction light emitting diode inspection device comprising a.
  2. 제1항에 있어서,
    상기 공초점센서부는 중심축을 기준으로 회전함으로써 상기 복수의 공초점센서가 이루는 열과 상기 발광다이오드가 이루는 각도를 조절할 수 있는 것을 특징으로 하는 다기능 발광다이오드 검사장치.
    The method of claim 1,
    The confocal sensor unit rotates with respect to a central axis, wherein the plurality of confocal sensors can control the heat formed by the plurality of light emitting diodes and the angle formed by the light emitting diodes.
  3. 제1항에 있어서,
    상기 공초점센서부는 상기 복수의 공초점 센서 각각의 위치를 조절할 수 있는 위치조절장치를 구비하는 것을 특징으로 하는 다기능 발광다이오드 검사장치.
    The method of claim 1,
    The confocal sensor unit has a multi-function light emitting diode inspection device characterized in that it comprises a position adjusting device for adjusting the position of each of the plurality of confocal sensors.
  4. 제1항에 있어서,
    상기 제어부는 각각의 공초점센서에 의해 측정된 상기 발광다이오드 표면 높낮이 데이터를 기초로 인접하는 상기 공초점센서가 스캔한 표면 사이의 높이를 보간하여 추정하는 알고리즘을 내장하는 것을 특징으로 하는 다기능 발광다이오드 검사장치.
    The method of claim 1,
    The control unit includes an algorithm for interpolating and estimating the height between the surfaces scanned by the confocal sensors adjacent to each other based on the light emitting diode surface height data measured by each confocal sensor. Inspection device.
  5. 제4항에 있어서,
    각각의 공초점센서에 의해 측정된 상기 발광다이오드 표면 높낮이 데이터 및 상기 표면 높이 연산장치에 의해 추정된 상기 발광다이오드의 높낮이 데이터를 기초로 상기 발광다이오드의 전체 표면을 3차원 이미지로 디스플레이하는 디스플레이부를 더 포함하는 것을 특징으로 하는 다기능 발광다이오드 검사장치.
    The method of claim 4, wherein
    A display unit for displaying the entire surface of the light emitting diode as a three-dimensional image based on the light emitting diode surface height data measured by each confocal sensor and the height data of the light emitting diode estimated by the surface height calculator; Multifunction light emitting diode inspection apparatus comprising a.
  6. 발광다이오드의 양호 또는 불량을 판별하기 위한 검사장치로서,
    상기 발광다이오드를 탑재하고, 상기 발광다이오드를 검사위치에 고정 또는 이송시키는 스테이지부, 상기 스테이지부의 상부에 위치하며, 상기 발광다이오드에 조명을 제공하는 조명부, 및 상기 조명부의 상부에 위치하여 상기 발광다이오드의 영상을 촬영하는 카메라, 상기 카메라에서 촬영된 영상을 판독하여 상기 발광다이오드의 양호 또는 불량을 판별하는 비전처리부, 및 상기 스테이지부 및 상기 카메라부를 제어하는 모션 컨트롤러를 포함하는 제어부를 포함하는 광학검사부; 및
    복수의 공초점센서를 구비하고 상기 발광다이오드 표면의 높낮이를 측정할 수 있는 공초점센서부;
    를 포함하는 다기능 발광다이오드 검사장치.
    An inspection apparatus for determining good or bad of a light emitting diode,
    A stage unit for mounting the light emitting diode and fixing or transferring the light emitting diode to an inspection position; an illuminating unit positioned above the stage unit and providing illumination to the light emitting diode; and positioned above the illuminating unit; An optical inspection unit including a camera for photographing an image of the camera, a vision processor configured to read an image taken by the camera to determine whether the light emitting diode is good or bad, and a motion controller to control the stage unit and the camera unit. ; And
    A confocal sensor unit having a plurality of confocal sensors and capable of measuring the height of the surface of the light emitting diode;
    Multifunction light emitting diode inspection device comprising a.
PCT/KR2013/005906 2012-07-06 2013-07-03 Multifunctional light-emitting diode inspection apparatus comprising confocal sensor WO2014007543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0073801 2012-07-06
KR1020120073801A KR101350218B1 (en) 2012-07-06 2012-07-06 Inspection apparatus for led including confocal sensor

Publications (1)

Publication Number Publication Date
WO2014007543A1 true WO2014007543A1 (en) 2014-01-09

Family

ID=49882245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005906 WO2014007543A1 (en) 2012-07-06 2013-07-03 Multifunctional light-emitting diode inspection apparatus comprising confocal sensor

Country Status (3)

Country Link
KR (1) KR101350218B1 (en)
TW (1) TW201411123A (en)
WO (1) WO2014007543A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656181B2 (en) 2018-12-21 2023-05-23 Industrial Technology Research Institute Inspection apparatus and inspection method for inspecting light-emitting diodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750331A (en) * 1993-08-06 1995-02-21 Toshiba Corp Method and apparatus for evaluating semiconductor light-emitting element
JP2001059712A (en) * 1999-08-24 2001-03-06 Hitachi Ltd Method and apparatus for detecting stereoscopic shape as well as confocal detector
KR100814628B1 (en) * 2007-02-08 2008-03-18 주식회사 디이엔티 Apparatus for auditing of auto probe
KR20120040406A (en) * 2010-10-19 2012-04-27 (주)아이엠에스나노텍 Apparatus for inspecting chip led surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750331A (en) * 1993-08-06 1995-02-21 Toshiba Corp Method and apparatus for evaluating semiconductor light-emitting element
JP2001059712A (en) * 1999-08-24 2001-03-06 Hitachi Ltd Method and apparatus for detecting stereoscopic shape as well as confocal detector
KR100814628B1 (en) * 2007-02-08 2008-03-18 주식회사 디이엔티 Apparatus for auditing of auto probe
KR20120040406A (en) * 2010-10-19 2012-04-27 (주)아이엠에스나노텍 Apparatus for inspecting chip led surface

Also Published As

Publication number Publication date
TW201411123A (en) 2014-03-16
KR101350218B1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
KR101350214B1 (en) Noncontact inspecting apparatus for light emitting diode and method thereof
JP5319593B2 (en) Solar cell inspection method and inspection apparatus
KR101505702B1 (en) Electronic component inspecting method and apparatus used in the method
CN103765567A (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
JP2008224432A (en) Defect inspection device and method by photo luminescence of solar battery
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP2020047874A (en) Light source driving device and light emitting device
JP2011053204A (en) Optical inspection apparatus and inspection method using the same
EP3767825A1 (en) Inspection system for concentrating photovoltaic apparatus and inspection method for light receiving part
KR101400757B1 (en) Display panel inspection apparatus
KR20190088930A (en) Display Pixel Automatic Inspection System and method
KR20210072820A (en) Inspection device and inspection method
TWI588499B (en) Method and apparatus for testing light-emitting device
CN104678474A (en) Electronic device and electronic apparatus
KR101350218B1 (en) Inspection apparatus for led including confocal sensor
KR101303602B1 (en) Noncontact inspection apparatus for Light Emitting Diode
CN112670201B (en) Detection device
JP2003232749A (en) Failure analyzer for semiconductor device
CN112582383B (en) Chip structure and chip detection method
JP2018152375A (en) Die-bonding device and method of manufacturing semiconductor device
KR101015792B1 (en) Test jig for side luminescence type led array
US20100183224A1 (en) Method and system for evaluating current spreading of light emitting device
JP2018096964A (en) Electronic component transport device and electronic component inspection device
US11656181B2 (en) Inspection apparatus and inspection method for inspecting light-emitting diodes
CN205449774U (en) Little X -ray microscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813562

Country of ref document: EP

Kind code of ref document: A1