JP2001059712A - Method and apparatus for detecting stereoscopic shape as well as confocal detector - Google Patents

Method and apparatus for detecting stereoscopic shape as well as confocal detector

Info

Publication number
JP2001059712A
JP2001059712A JP11236605A JP23660599A JP2001059712A JP 2001059712 A JP2001059712 A JP 2001059712A JP 11236605 A JP11236605 A JP 11236605A JP 23660599 A JP23660599 A JP 23660599A JP 2001059712 A JP2001059712 A JP 2001059712A
Authority
JP
Japan
Prior art keywords
detection
spot
dimensional shape
detected
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11236605A
Other languages
Japanese (ja)
Other versions
JP3611755B2 (en
Inventor
Yoshitada Oshida
良忠 押田
Mineo Nomoto
峰生 野本
Hideo Ishimori
英男 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP23660599A priority Critical patent/JP3611755B2/en
Publication of JP2001059712A publication Critical patent/JP2001059712A/en
Application granted granted Critical
Publication of JP3611755B2 publication Critical patent/JP3611755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for detecting a stereoscopic shape capable of accurately detecting the shape of a ruggedness of a surface of an object to be detected formed with a transparent surface or a height of a protrusion or the like as well as a confocal detector. SOLUTION: The apparatus for detecting a stereoscopic shape comprises a zonal illumination infinitesimal spot irradiating optical system 2 for irradiating a detecting position on an object 3 to be detected with one or more spot illumination lights formed of a zonal or pseudo-zonal illumination light through an objective 27, a confocal detecting optical system 4 having a photoelectric conversion means 44 for detecting a confocal by passing a reflected light of the spot light emitted to a detecting position by the system 2 through the objective 27, and a signal processing circuit 5 for detecting the shape at the detecting position on the object 3 based on an intensity of the signal obtained by the means 44 of the confocal detecting optical system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に凹凸や突起
等を有する被検出対象物、特に表面が透明に形成された
被検出対象物における表面の凹凸や突起等の高さである
立体形状を高精度に検出可能な立体形状検出方法および
その装置並びに共焦点検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an object to be detected having irregularities or projections on its surface, and more particularly, to a three-dimensional shape which is the height of irregularities or projections on the surface of an object to be detected having a transparent surface. TECHNICAL FIELD The present invention relates to a three-dimensional shape detection method and device capable of detecting an object with high accuracy and a confocal detection device.

【0002】[0002]

【従来の技術】表面に凹凸のある物体の表面形状を検出
する方法として、従来共焦点顕微法が知られている。こ
の従来方法は以下の通りである。即ち、物体の表面に顕
微鏡対物レンズにより微小なスポットを照射する。この
投影スポットが物体上で最も小さくなる時、反射光が再
び顕微鏡対物レンズで最小のスポットを結像する位置に
結像スポット像とほぼ同一径の微小開口を通して検出す
る。この様な構成になっていると投影スポットが物体表
面上で最小とならず広がると、即ちデフォーカスすると
微小開口を通過する光量は小さくなる。従って、微小開
口の背後においた検出器で光量を検出すると、物体上で
最小スポットとなるとき検出値が最大となるので表面の
高さを検出することが可能になる。
2. Description of the Related Art As a method of detecting the surface shape of an object having an uneven surface, confocal microscopy has been conventionally known. This conventional method is as follows. That is, a minute spot is irradiated on the surface of the object by the microscope objective lens. When the projected spot becomes smallest on the object, the reflected light is detected again at a position where the smallest spot is imaged by the microscope objective lens through a small aperture having substantially the same diameter as the imaged spot image. With such a configuration, when the projection spot spreads on the object surface instead of being minimized, that is, when defocused, the amount of light passing through the minute aperture decreases. Therefore, when the light amount is detected by the detector placed behind the minute aperture, the detection value becomes maximum when the minimum spot is formed on the object, so that the surface height can be detected.

【0003】[0003]

【発明が解決しようとする課題】上記従来の共焦点検出
法で透明な物体の表面の高さ、更には透明な物質の多層
構造からなる物体を検出する時、特に物体の最上面が透
明で最上面からの反射に比べ下層面の反射率が大きい
と、下層面からの反射光量が大きくなり正確に表面を検
出することが難しく、検出精度が悪くなると云う課題が
あった。
When detecting the height of the surface of a transparent object and the object having a multilayer structure of a transparent substance by the above-mentioned conventional confocal detection method, particularly, the uppermost surface of the object is transparent. If the reflectivity of the lower layer surface is higher than the reflection from the uppermost surface, the amount of reflected light from the lower layer surface becomes large, making it difficult to accurately detect the surface, and the detection accuracy is deteriorated.

【0004】本発明の目的は、上記従来技術の課題を解
決すべく、表面が透明に形成された被検出対象物におけ
る表面の凹凸や突起等の高さである立体形状を高精度に
検出可能にした立体形状検出方法およびその装置並びに
共焦点検出装置を提供することにある。また、本発明の
他の目的は、表面が透明に形成された被検出対象物にお
ける表面の凹凸や突起等の高さである立体形状を高精度
に、且つ高速度で検出可能にした立体形状検出方法およ
びその装置並びに共焦点検出装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art by detecting, with high accuracy, a three-dimensional shape which is the height of irregularities or protrusions on the surface of an object to be detected having a transparent surface. And a confocal detection device. Further, another object of the present invention is to provide a three-dimensional shape capable of detecting a three-dimensional shape, which is the height of irregularities or protrusions on the surface of a detection target having a transparent surface, with high accuracy and high speed. An object of the present invention is to provide a detection method, a device therefor, and a confocal detection device.

【0005】また、本発明の更に他の目的は、被検出対
象物の表面に形成された光に対して透明な膜に形成され
たパターンや透明な膜上に形成された異物や傷等の欠陥
を高精度に検査すること可能にした共焦点検出装置を提
供することにある。
Still another object of the present invention is to provide a method for forming a pattern formed on a film transparent to light formed on the surface of an object to be detected, a foreign matter or a flaw formed on the transparent film, or the like. An object of the present invention is to provide a confocal detection device capable of inspecting a defect with high accuracy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、被検出対象物上の検出箇所に、輪帯もし
くは疑似輪帯の照明光により形成された1個以上のスポ
ット照明光を照射し、前記検出箇所に照射されたスポッ
ト照明光の反射光を共焦点検出することにより得られる
信号の強度に基いて被検出対象物の立体形状を検出する
ことを特徴とする立体形状検出方法である。また、本発
明は、被検出対象物上の複数の検出箇所の各々に、輪帯
もしくは疑似輪帯の照明光により形成された複数のスポ
ット照明光の各々を照射し、前記各検出箇所に照射され
た各スポット照明光の反射光を共焦点検出することによ
り得られる信号の強度に基いて被検出対象物の複数の検
出箇所の立体形状を検出することを特徴とする立体形状
検出方法である。また、本発明は、前記立体形状検出方
法における輪帯の照明光において、輪帯の外輪径に対す
る内輪径の比が0.1以上で0.9以下であることを特
徴とする。
In order to achieve the above-mentioned object, the present invention provides a method for detecting a spot on a detected object by using at least one spot illumination formed by illumination light of a ring or a pseudo-ring. Irradiating light, and detecting the three-dimensional shape of the object to be detected based on the intensity of a signal obtained by confocal detection of reflected light of the spot illumination light applied to the detection point. It is a detection method. In addition, the present invention irradiates each of a plurality of detection locations on an object to be detected with a plurality of spot illumination lights formed by illumination light of an annular zone or a pseudo annular zone, and irradiates each of the detection locations. A three-dimensional shape detection method characterized by detecting three-dimensional shapes of a plurality of detection points of an object to be detected based on signal intensities obtained by confocal detection of reflected light of each spot illumination light. . Further, the present invention is characterized in that the ratio of the inner ring diameter to the outer ring diameter of the ring in the illumination light of the ring in the three-dimensional shape detection method is 0.1 or more and 0.9 or less.

【0007】また、本発明は、前記立体形状検出方法に
おいて、前記被検出対象物もしくは前記スポット照明光
を該スポット照明光の光軸方向に相対的に移動させ、該
動きに応じた前記反射光を共焦点検出することを特徴と
する。また、本発明は、前記立体形状検出方法におい
て、前記動きに応じて得られる複数の共焦点検出信号の
強度を用いて最大となる位置データを内挿して求めるこ
とにより立体形状を検出することを特徴とする。
Further, according to the present invention, in the three-dimensional shape detection method, the object to be detected or the spot illumination light is relatively moved in an optical axis direction of the spot illumination light, and the reflected light corresponding to the movement is reflected. Is detected by confocal detection. Further, in the three-dimensional shape detection method, the three-dimensional shape may be detected by interpolating and obtaining a maximum position data using the intensities of a plurality of confocal detection signals obtained according to the motion. Features.

【0008】また、本発明は、前記立体形状検出方法に
おいて、前記動きとして前記スポット照明光の径が最小
となるフォーカス位置を前記被検出対象物の表面の上下
方向に変化させ、該スポット照明光に対応する共焦点検
出信号の強度が所望の閾値以上になるものの中から、最
も上方の位置データを被検出対象物の表面の立体形状候
補とすることを特徴とする。また、本発明は、前記立体
形状検出方法において、前記被検出対象物もしくは前記
スポット照射光を照射光軸とほぼ直角な方向に移動さ
せ、被検出対象物から広い範囲の立体形状を検出するこ
とを特徴とする。また、本発明は、前記立体形状検出方
法において、前記スポット照明光の複数を少なくとも1
次元的に配列して形成し、該複数配列スポット照明光と
前記被検出対象物とを前記スポット照明光の配列方向に
交差する方向に相対的に位置変化させて被検出対象物の
立体形状の2次元分布を求めることを特徴とする。
The present invention also provides the method for detecting a three-dimensional shape, wherein the focus position at which the diameter of the spot illumination light is minimized as the movement is changed in a vertical direction above and below the surface of the detection target. Is selected as the three-dimensional shape candidate of the surface of the object to be detected, from among those whose intensities of the confocal detection signals corresponding to the above are equal to or greater than a desired threshold value. Further, in the present invention, in the three-dimensional shape detection method, the detection target or the spot irradiation light may be moved in a direction substantially perpendicular to an irradiation optical axis to detect a wide range of three-dimensional shape from the detection target. It is characterized by. Further, in the three-dimensional shape detection method according to the present invention, a plurality of the spot illumination light may be at least one.
The three-dimensional shape of the detection target object is formed by dimensionally arranging the plurality of spot illumination lights and the detection target object relative to each other in a direction intersecting the arrangement direction of the spot illumination light. It is characterized in that a two-dimensional distribution is obtained.

【0009】また、本発明は、被検出対象物上の検出箇
所に、輪帯もしくは疑似輪帯の照明光により形成された
1個以上のスポット照明光を対物レンズを通して照射す
る輪帯照明微小スポット照射光学系と、該輪帯照明微小
スポット照射光学系により前記検出箇所に照射されたス
ポット照明光の反射光を前記対物レンズを通して共焦点
検出する光電変換手段を有する共焦点検出光学系と、該
共焦点検出光学系の光電変換手段によって得られた信号
を処理する信号処理回路とを備えたことを特徴とする共
焦点検出装置である。また、本発明は、被検出対象物上
の複数の検出箇所の各々に、輪帯もしくは疑似輪帯の照
明光により形成された複数のスポット照明光の各々を対
物レンズを通して照射する輪帯照明微小スポット照射光
学系と、該輪帯照明微小スポット照射光学系により前記
各検出箇所に照射された各スポット照明光の反射光を前
記対物レンズを通して共焦点検出する複数の光電変換手
段を有する共焦点検出光学系と、該共焦点検出光学系の
複数の光電変換手段の各々によって得られた信号を処理
する信号処理回路とを備えたことを特徴とする共焦点検
出装置である。
Further, the present invention provides an orbicular illumination minute spot for irradiating, through an objective lens, at least one spot illumination light formed by an orbicular or pseudo-arbicular illumination light to a detection point on an object to be detected. An irradiating optical system, and a confocal detection optical system having photoelectric conversion means for performing confocal detection of reflected light of the spot illumination light applied to the detection location by the orbicular zone illumination minute spot irradiating optical system through the objective lens. And a signal processing circuit for processing a signal obtained by a photoelectric conversion unit of the confocal detection optical system. Further, the present invention provides an annular illumination microscopic device that irradiates each of a plurality of spots formed by illumination light of an annular zone or a pseudo annular zone to each of a plurality of detection locations on an object to be detected through an objective lens. Confocal detection having a spot irradiation optical system and a plurality of photoelectric conversion means for performing confocal detection of reflected light of each spot illumination light applied to each of the detection points by the annular illumination minute spot irradiation optical system through the objective lens. A confocal detection device comprising: an optical system; and a signal processing circuit that processes a signal obtained by each of a plurality of photoelectric conversion units of the confocal detection optical system.

【0010】また、本発明は、前記共焦点検出装置にお
ける共焦点検出光学系において、対物レンズ等による最
小径スポットを結像する位置に、最小スポット径内の光
のみを限定して検出する光学要素を設置して構成するこ
とを特徴とする。また、本発明は、前記共焦点検出装置
における輪帯照明微小スポット照射光学系において、輪
帯の外輪径に対する内輪径の比を0.1以上で0.9以
下で構成したことを特徴とする。また、本発明は、被検
出対象物上の検出箇所に、輪帯もしくは疑似輪帯の照明
光により形成された1個以上のスポット照明光を対物レ
ンズを通して照射する輪帯照明微小スポット照射光学系
と、該輪帯照明微小スポット照射光学系により前記検出
箇所に照射されたスポット照明光の反射光を前記対物レ
ンズを通して共焦点検出する光電変換手段を有する共焦
点検出光学系と、該共焦点検出光学系の光電変換手段に
よって得られた信号の強度に基いて被検出対象物上の検
出箇所における立体形状を検出する信号処理回路とを備
えたことを特徴とする立体形状検出装置である。
Further, according to the present invention, in the confocal detection optical system of the confocal detection device, an optical system for limiting only light within the minimum spot diameter to a position where an image of a minimum diameter spot formed by an objective lens or the like is formed. It is characterized by installing and configuring elements. Further, the present invention is characterized in that, in the orbicular zone illumination minute spot irradiating optical system in the confocal detection device, the ratio of the inner ring diameter to the outer ring diameter of the orb is set to 0.1 or more and 0.9 or less. . Further, the present invention provides an orbicular illumination minute spot irradiating optical system for irradiating, through an objective lens, one or more spot illumination lights formed by illumination light of an orbicular zone or a pseudo-orbicular zone to a detection location on an object to be detected. A confocal detection optical system having photoelectric conversion means for performing confocal detection of reflected light of spot illumination light applied to the detection location by the orbicular zone illumination minute spot irradiation optical system through the objective lens; A signal processing circuit for detecting a three-dimensional shape at a detection position on the detection target based on the intensity of a signal obtained by a photoelectric conversion unit of an optical system.

【0011】また、本発明は、被検出対象物上の複数の
検出箇所の各々に、輪帯もしくは疑似輪帯の照明光によ
り形成された複数のスポット照明光の各々を対物レンズ
を通して照射する輪帯照明微小スポット照射光学系と、
該輪帯照明微小スポット照射光学系により前記各検出箇
所に照射された各スポット照明光の反射光を前記対物レ
ンズを通して共焦点検出する複数の光電変換手段を有す
る共焦点検出光学系と、該共焦点検出光学系の複数の光
電変換手段の各々によって得られた信号の強度に基いて
被検出対象物上の複数の検出箇所の各々における立体形
状を検出する信号処理回路とを備えたことを特徴とする
立体形状検出装置である。また、本発明は、前記立体形
状検出装置において、更に、前記被検出対象物もしくは
前記スポット照明光を該スポット照明光の光軸方向に相
対的に移動させ、この移動量に応じた複数の共焦点検出
信号を前記共焦点検出光学系の光電変換手段から検出さ
せる移動制御手段を備えたことを特徴とする。また、本
発明は、前記立体形状検出装置において、更に、前記ス
ポット照明光を該スポット照明光の光軸方向に移動させ
るように対物レンズを移動させる対物レンズ移動手段を
備えたことを特徴とする。また、本発明は、前記立体形
状検出装置における信号処理回路において、前記共焦点
検出光学系から移動量に応じて得られる複数の共焦点検
出信号の強度を用いて最大となる位置データを内挿して
求めることにより立体形状を検出するように構成したこ
とを特徴とする。
Further, according to the present invention, there is provided a wheel for irradiating each of a plurality of spots on a detection target object with a plurality of spot illuminating lights formed by illuminating light of an annular zone or a pseudo annular zone through an objective lens. Band illumination micro spot irradiation optical system,
A confocal detection optical system having a plurality of photoelectric conversion means for performing confocal detection of reflected light of each spot illumination light applied to each of the detection points by the annular illumination minute spot irradiation optical system through the objective lens; A signal processing circuit for detecting a three-dimensional shape at each of a plurality of detection points on the detection target object based on signal intensities obtained by each of the plurality of photoelectric conversion units of the focus detection optical system. Is a three-dimensional shape detection device. Further, according to the present invention, in the three-dimensional shape detecting device, the object to be detected or the spot illumination light is relatively moved in an optical axis direction of the spot illumination light, and a plurality of common light sources corresponding to the amount of movement are provided. A movement control unit for detecting a focus detection signal from a photoelectric conversion unit of the confocal detection optical system is provided. Further, the present invention is characterized in that the three-dimensional shape detection device further comprises an objective lens moving means for moving an objective lens so as to move the spot illumination light in the optical axis direction of the spot illumination light. . Further, in the signal processing circuit of the three-dimensional shape detection device, the present invention interpolates the maximum position data using the intensities of a plurality of confocal detection signals obtained from the confocal detection optical system according to the amount of movement. The three-dimensional shape is detected by calculating the three-dimensional shape.

【0012】また、本発明は、前記立体形状検出装置に
おいて、更に、前記スポット照明光の径が最小となるフ
ォーカス位置を前記被検出対象物の表面の上下方向に変
化させるように前記被検出対象物もしくは前記スポット
照明光を該スポット照明光の光軸方向に相対的に移動さ
せ、この移動量に応じた複数の共焦点検出信号を前記共
焦点検出光学系の光電変換手段から検出させる移動制御
手段を備え、前記信号処理回路において、共焦点検出信
号の強度が所望の閾値以上になるものの中から所望の検
出面の高さの候補を求めるように構成したことを特徴と
する。また、本発明は、前記立体形状検出装置におい
て、更に、前記被検出対象物もしくは前記スポット照射
光を照射光軸とほぼ直角な方向に移動させる移動手段を
備えたことを特徴とする。また、本発明は、前記立体形
状検出装置において、輪帯照明微小スポット照射光学系
を、スポット照明光の複数を少なくとも1次元的に配列
して構成することを特徴とする。また、本発明は、前記
立体形状検出装置において、更に、前記共焦点検出光学
系と被検出対象物との間の光軸方向の相対変位を検出す
る補助検出手段と、該補助検出手段によって検出された
相対変位に基いて前記被検出対象物もしくは前記スポッ
ト照明光を該スポット照明光の光軸方向に相対的に移動
させるように制御する移動制御手段を備えたことを特徴
とする。
Further, the present invention provides the three-dimensional shape detecting apparatus, further comprising: changing the focus position where the diameter of the spot illumination light is minimized in a vertical direction on the surface of the detection target object. Movement control for relatively moving an object or the spot illumination light in the optical axis direction of the spot illumination light and detecting a plurality of confocal detection signals corresponding to the amount of movement from photoelectric conversion means of the confocal detection optical system. Means, wherein the signal processing circuit is configured to obtain a candidate for a desired height of the detection surface from among those in which the intensity of the confocal detection signal is equal to or more than a desired threshold value. Further, the present invention is characterized in that the three-dimensional shape detecting device further comprises a moving means for moving the object to be detected or the spot irradiation light in a direction substantially perpendicular to an irradiation optical axis. Further, the present invention is characterized in that in the three-dimensional shape detecting device, the annular illumination minute spot irradiation optical system is configured by arranging a plurality of spot illumination lights at least one-dimensionally. Further, according to the present invention, in the three-dimensional shape detecting apparatus, further, an auxiliary detecting means for detecting a relative displacement in the optical axis direction between the confocal detection optical system and the object to be detected; And a movement control unit that controls the object to be detected or the spot illumination light to relatively move in the optical axis direction of the spot illumination light based on the relative displacement.

【0013】以上説明したように、被検出対象物の表面
上の検出する箇所に輪帯照明光からなるスポット照明光
を照射するため、スポット照射光は対物レンズの瞳上で
輪帯状の強度分布(輪帯状の強度の強い部分があり、そ
の内側で光軸付近に近い部分の強度はほぼ0か輪帯状の
強度の強い部分に比べ充分小さな強度になっている。)
を有し、微小なスポットを投影することができ、しか
も、透明な表面層の下に高い反射面があったとしてもそ
れからの共焦点検出信号を小さくして物体面を十分な精
度で検出することが可能となる。更に、同じ開口数の対
物レンズで比較した場合、輪帯照明であるため焦点深度
が浅くなり、その分高さ検出感度を高くすることがで
き、しかも透明な表面に対する入射角が大きくなって反
射率を大きくすることができて表面の検出を正確に行う
ことができる。また、前記構成によれば、輪帯照明光か
らなるスポット照明光を複数にし、この複数のスポット
照射光による反射光を同時に検出できるように構成する
ことにより、高速検出が可能となる。
As described above, since the spot to be detected on the surface of the object to be detected is irradiated with the spot illumination light composed of the annular illumination light, the spot illumination light has an annular intensity distribution on the pupil of the objective lens. (There is a ring-shaped portion with high intensity, and the intensity near the optical axis inside the ring-shaped portion is almost zero or sufficiently smaller than the portion with strong ring-shaped intensity.)
And can project a minute spot, and even if there is a high reflective surface under the transparent surface layer, reduce the confocal detection signal from it and detect the object surface with sufficient accuracy It becomes possible. Furthermore, when compared with an objective lens having the same numerical aperture, because of the annular illumination, the depth of focus becomes shallower, the height detection sensitivity can be increased by that amount, and the angle of incidence on a transparent surface becomes larger, and the reflection occurs. The rate can be increased, and the surface can be detected accurately. Further, according to the above configuration, high-speed detection is possible by configuring a plurality of spot illumination lights composed of the annular illumination light so as to be able to simultaneously detect the reflected lights by the plurality of spot illumination lights.

【0014】[0014]

【発明の実施の形態】本発明に係る立体形状検出方法及
びその装置並びに共焦点検出装置の実施の形態について
図面を用いて説明する。本発明に係る被検出対象物に対
して検出する立体形状としては、透明な物体の表面に形
成された凹凸もしくは支柱状の突起の高さまたは透明な
物質の多層構造からなる物体の表面の層厚さ(高さ)等
がある。このように、本発明は、特に表面が透明な被検
出対象物において、その表面の凹凸や突起等の高さなど
の立体形状を高精度に検出するためのものである。ま
ず、本発明に係る立体形状検出装置並びに共焦点検出装
置の第1の実施の形態について説明する。図1は、本発
明に係る立体形状検出装置並びに共焦点検出装置の第1
の実施の形態を示す構成図である。光源1としては、Y
AGの第二高調波である波長532nmのレーザ光源を
用いた。このように、光源1としてYAGの第二高調波
を用いたのは、レーザパワーが高く、波長として可視光
の内、緑の比較的短い波長が得られるからである。な
お、光源1としてレーザ光を用いているが、ある程度の
検出光量が得られるものであれば良く、例えば、発光ダ
イオード、水銀ランプ等の比較的点光源に近いものを用
いても良い。また、検出光量は小さくなり、高速検出に
は不向きであるがハロゲンランプ等を用いても本発明を
実施することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method and apparatus for detecting a three-dimensional shape and a confocal detection apparatus according to the present invention will be described with reference to the drawings. As the three-dimensional shape to be detected with respect to the detection target object according to the present invention, the height of irregularities or columnar projections formed on the surface of the transparent object or a layer on the surface of the object having a multilayer structure of a transparent substance There is a thickness (height) and the like. As described above, the present invention is to detect a three-dimensional shape such as the height of irregularities and protrusions on the surface of a detection target object having a transparent surface with high accuracy. First, a first embodiment of a three-dimensional shape detection device and a confocal detection device according to the present invention will be described. FIG. 1 shows a first embodiment of a three-dimensional shape detection device and a confocal detection device according to the present invention.
FIG. 2 is a configuration diagram showing an embodiment. As the light source 1, Y
A laser light source having a wavelength of 532 nm, which is the second harmonic of AG, was used. The reason why the second harmonic of YAG is used as the light source 1 is that the laser power is high, and a relatively short wavelength of visible light of green can be obtained. Although the laser light is used as the light source 1, any light source that can obtain a certain amount of detected light may be used. For example, a light source such as a light emitting diode or a mercury lamp that is relatively close to a point light source may be used. Further, although the amount of detected light is small and is not suitable for high-speed detection, the present invention can be implemented by using a halogen lamp or the like.

【0015】即ち、レーザ光源1から出射されたレーザ
ビームは、点線で示した輪帯照明微小スポット照射光学
系2に入射される。入射したレーザ光は、互いに直交し
て配置されたシリンドリカルレンズ201及び202等
によって構成されるビームエキスパンダにより所望の扁
平な形状(少なくとも一次元的に伸びたスリット状光
束)に整形される。この整形されたレーザ光は、少なく
とも一次元的に配列されたレンズアレイ21を通ること
によりΣ0面上で10μm〜数十μm程度の径の少なく
とも一次元的に配列されたビームスポットアレイに変換
される。なお、210は、レンズアレイ21の出射端に
設けられたピンホールを示す。しかし、このピンホール
210は必ずしも必要とされない。要するにレンズアレ
イ21のよってΣ0面上に少なくとも一次元的に配列さ
れたビームスポットアレイの2次光源が形成されれば良
い。このようにΣ0面を通過したスポットアレイレーザ
光は、再び広がって、例えばミラー211で反射されて
レンズ22に入射することになる。このとき、この広が
った光を構成する各スポット光の主光線は、互いに平行
である。そして、レンズ22は、Σ0面を前側焦点に
し、Σ1面を後側焦点にしている。Σ1面には図2に示す
パターンが描画された透明なガラスのフィルター25が
あり、その中心に半径R1の黒丸パターン(遮光パター
ン)251が描画され、この黒丸パターンの外側には半
径R2より大きい部分252が黒く(遮光するように)
描画されている。従って、Σ0面上の各スポット光の複
素振幅は、レンズ22によりΣ1面上でフーリェー変換
され、このフーリェー変換面にあるパターン251によ
りフィルタリングされる。即ち、図2に示すフィルタ2
5により総てのスポット光が、同時に輪帯照明光に変換
される。
That is, the laser beam emitted from the laser light source 1 is incident on the orbicular zone illumination minute spot irradiation optical system 2 shown by the dotted line. The incident laser light is shaped into a desired flat shape (at least a one-dimensionally elongated slit-like light beam) by a beam expander composed of cylindrical lenses 201 and 202 arranged orthogonally to each other. The shaped laser beam is converted into a beam spot array at least one-dimensionally arranged in size of about 10μm~ several tens μm on sigma 0 plane by passing through the lens array 21, which is at least one-dimensionally arranged Is done. Note that reference numeral 210 denotes a pinhole provided at the emission end of the lens array 21. However, this pinhole 210 is not always required. In short the secondary light source of a beam spot array which is at least one-dimensionally arranged by the lens array 21 on the sigma 0 surface may be made of. The spot array laser light passed through the sigma 0 surface as is spread again made incident on the lens 22 is reflected by the example mirror 211. At this time, the principal rays of each spot light constituting the spread light are parallel to each other. Then, the lens 22, the sigma 0 plane in front focus, and the sigma 1 side to the rear side focal point.面 On one surface, there is a transparent glass filter 25 on which the pattern shown in FIG. 2 is drawn, and a black circle pattern (light shielding pattern) 251 having a radius R1 is drawn at the center thereof. Large part 252 is black (so as to shield light)
Is drawn. Thus, the complex amplitude of each spot light on the sigma 0 plane is Furye converted on sigma 1 surface by the lens 22, is filtered by the pattern 251 in this Furye conversion surface. That is, the filter 2 shown in FIG.
5, all the spot lights are simultaneously converted into the annular illumination light.

【0016】そして、このフィルタ25を透過した光
は、再び焦点距離f3のレンズ23によりΣ2面上でフ
ーリェー変換され、Σ2面上では、少なくとも一次元的
に配列された輪帯照明スポットアレイ260が得られ
る。Σ2面上のスポットアレイ260は、焦点距離f4
のレンズ系24により対物レンズ27の瞳271上にフ
ーリェ変換される。即ち、瞳271上には、Σ1面を透
過直後の光強度分布がf4/f3の倍率で結像されてい
る。即ち、瞳271の半径をRpとすると、この瞳中心
からRd(Rd=R1・(f4/f3))の半径の領域
内には光がなく、この外側が半径R2・(f4/f3)
R2または瞳半径Rpの小さい方Reまで光がある照明
光が対物レンズ27の瞳271を通過することになる。
この結果、被検出対象物である物体3の表面は、対物レ
ンズ27を透過した光によって輪帯照明スポットアレイ
で照射されることになる。ところで、対物レンズ27
は、このレンズ27を光軸方向に高速で所望の量だけ駆
動するレンズ駆動機構272に取り付けられている。こ
の対物レンズ27の倍率は40倍〜100倍と大きいた
め、この駆動量が、輪帯照明微小スポットアレイの各ビ
ームウエストの光軸方向移動量に高い精度で等しくな
る。物体(被検出対象)3に投影された輪帯照明微小ス
ポットアレイ光は、物体表面で反射し、再び対物レンズ
27に入射し、一点鎖線で示した共焦点検出光学系4に
導かれ検出される。共焦点検出系4は、ビームスプリッ
タ41及びレンズ42により照射スポットの像をピンホ
ールアレイ43上の少なくとも一次元的に配列された各
ピンホール430上に結像する。この際、輪帯照明微小
スポットアレイ260の例えばn番目のスポット(図3
に示すようにスポット径が最小となる光軸上の位置のス
ポット)が物体面310上にフォーカス状態であればこ
のn番目のピンホール430nを通過する光強度は大き
くなり、逆にm番目のスポットが物体面310上にフォ
ーカス状態でない(デフォーカス状態の)時にはm番目
のスポット像を通すm番目のピンホール430mを通過
する光強度は小さくなる。各ピンホール430を透過す
る光の強度が各々光検出素子アレイ44により個別に検
出される。
The light transmitted through the filter 25 is again Fourier-transformed on the Σ 2 plane by the lens 23 having the focal length f 3, and at least one-dimensionally arranged annular illumination spot array on the Σ 2 plane 260 are obtained.ス ポ ッ ト The spot array 260 on the two surfaces has a focal length f4
Is Fourier transformed on the pupil 271 of the objective lens 27 by the lens system 24. That is, on the pupil 271, the light intensity distribution immediately after passing through the sigma 1 surface is imaged at a magnification of f4 / f3. That is, assuming that the radius of the pupil 271 is Rp, there is no light in a region of a radius of Rd (Rd = R1 · (f4 / f3)) from the center of the pupil, and the outside of the region has a radius R2 · (f4 / f3)
Illumination light having light up to R2 or the smaller Re of the pupil radius Rp passes through the pupil 271 of the objective lens 27.
As a result, the surface of the object 3 that is the detection target is illuminated by the light transmitted through the objective lens 27 with the annular illumination spot array. By the way, the objective lens 27
Is attached to a lens drive mechanism 272 that drives the lens 27 at a high speed in the optical axis direction by a desired amount. Since the magnification of the objective lens 27 is as large as 40 to 100 times, the driving amount is equal to the moving amount in the optical axis direction of each beam waist of the orbicular illumination minute spot array with high accuracy. The orbicular zone illumination minute spot array light projected on the object (detected object) 3 is reflected on the object surface, re-enters the objective lens 27, is guided to the confocal detection optical system 4 shown by a dashed line, and is detected. You. The confocal detection system 4 forms an image of the irradiation spot on each of the pinholes 430 arranged at least one-dimensionally on the pinhole array 43 by the beam splitter 41 and the lens 42. At this time, for example, the n-th spot of the annular illumination minute spot array 260 (FIG. 3)
If the spot at the position on the optical axis where the spot diameter becomes the minimum as shown in FIG. 7) is focused on the object plane 310, the light intensity passing through the n-th pinhole 430n increases, and conversely, the m-th When the spot is not focused on the object plane 310 (in a defocused state), the light intensity passing through the m-th pinhole 430m through which the m-th spot image passes becomes small. The intensity of light transmitted through each pinhole 430 is individually detected by the photodetector array 44.

【0017】次に、対物レンズ27の開口数NAと、輪
帯照明における輪帯の外輪径Reに対する内輪径Rdの
比rとの関係の実施例について説明する。本実施例は、
対物レンズ27の開口数NAを0.7程度にし、輪帯照
明における輪帯の外輪径Reに対する内輪径Rdの比r
=Rd/Reを0.1程度以上で0.9程度以下とし
た。輪帯照明の外径Reは本発明の効果を考えるとでき
るだけ物体への入射角を大きく採る方が良いため対物レ
ンズ27の開口数NAに相当するようにする。即ち、R
e=Rp≦R2とすると、輪帯照明の最大の入射角θx
に対し、最小の入射角θiは次に示す(数1)式で与え
る。 sinθx=NA sinθi=r・NA (数1) ところで、rの値が上記の範囲を超えて0.1以下であ
ると輪帯照明の効果が充分発揮できず、共焦点検出で用
いられる輪帯照明でない(r=0)場合と余り変わらな
くなる。他方r>0.9になると照射スポット周りのリ
ング状光が強くなり、また光の利用効率が不十分にな
る。
Next, an embodiment of the relationship between the numerical aperture NA of the objective lens 27 and the ratio r of the inner ring diameter Rd to the outer ring diameter Re of the annular zone in annular illumination will be described. In this embodiment,
The numerical aperture NA of the objective lens 27 is set to about 0.7, and the ratio r of the inner ring diameter Rd to the outer ring diameter Re of the annular zone in annular illumination is r.
= Rd / Re is about 0.1 or more and about 0.9 or less. The outer diameter Re of the annular illumination is made to correspond to the numerical aperture NA of the objective lens 27 because it is better to take the incident angle to the object as large as possible in consideration of the effects of the present invention. That is, R
If e = Rp ≦ R2, the maximum incident angle θx of the annular illumination
In contrast, the minimum incident angle θi is given by the following (Equation 1). sin θx = NA sin θi = r · NA (Equation 1) By the way, if the value of r exceeds the above range and is 0.1 or less, the effect of annular illumination cannot be sufficiently exhibited, and the annular zone used in confocal detection is used. It is not much different from the case of no illumination (r = 0). On the other hand, when r> 0.9, the ring-shaped light around the irradiation spot becomes strong, and the light use efficiency becomes insufficient.

【0018】次に、輪帯照明によって被検出対象物が透
明であっても測定点の表面から得られる信号のS/N比
を増大させることができることについて図3を用いて説
明する。図3には、対物レンズ27のNA(開口数)を
0.7にしたときにおける、輪帯照明(r=0.5)の
場合と輪帯照明でない(r=0)場合とで比較してフォ
ーカス(Δf=0)及びデフォーカス(Δf≠0)時に
おける物体面上のスポット分布を示す。測定しようとす
る物体面を示すフォーカス位置では、輪帯照明(r=
0.5)の場合は、輪帯照明でない(r=0)の場合に
比べ、中心のスポット径はある程度小さくなる。しか
し、逆に、周辺のリング上のサイドローブが大きくなる
ので、輪帯照明においてrを0.9以上に大きくしすぎ
ると、光のエネルギーも中心部に比べサイドローブ部の
比率が大きくなり不利となる。物体面ではない面を示す
デフォーカス位置においては、輪帯照明(r=0.5)
の場合は、測定点付近の強度が小さくなるのに対して、
輪帯照明でない(r=0)場合には広いデフォーカス範
囲で、測定点中心部の強度が最大になっている。デフォ
ーカスの場合でも、輪帯照明においてrを0.9以上に
大きくしすぎると広いデフォーカス範囲で測定点中心部
の光強度分布が周辺部に比べ小さくならず検出感度を低
下させることになる。従って、輪帯照明におけるrは、
被対象物の層構造によって最適に選べばよい。
Next, the fact that the S / N ratio of the signal obtained from the surface of the measurement point can be increased by the annular illumination even when the object to be detected is transparent will be described with reference to FIG. FIG. 3 shows a comparison between the case of annular illumination (r = 0.5) and the case of no annular illumination (r = 0) when the NA (numerical aperture) of the objective lens 27 is 0.7. 4 shows the spot distribution on the object plane when focusing (Δf = 0) and defocusing (Δf ≠ 0). At the focus position indicating the object plane to be measured, the annular illumination (r =
In the case of 0.5), the spot diameter at the center becomes smaller to some extent than in the case of non-zonal illumination (r = 0). However, conversely, since the side lobes on the peripheral ring become large, if r is too large in the annular illumination, the ratio of the side lobe portion to the light energy becomes large as compared with the central portion, and disadvantageously. Becomes In a defocus position indicating a plane other than the object plane, annular illumination (r = 0.5)
In the case of, the intensity near the measurement point decreases,
When the illumination is not annular illumination (r = 0), the intensity at the center of the measurement point is maximum in a wide defocus range. Even in the case of defocusing, if the value of r is too large to be 0.9 or more in the annular illumination, the light intensity distribution at the center of the measurement point in a wide defocusing range is not reduced as compared with the peripheral portion, and the detection sensitivity is reduced. . Therefore, r in annular illumination is
An optimum choice may be made according to the layer structure of the object.

【0019】以上説明したように、図3から明らかなよ
うに、輪帯照明を用いると、物体面ではない面を示すデ
フォーカス位置から得られるスポット強度が著しく減少
することにより、測定点における測定しようとする物体
面を示すフォーカス位置から得られるスポット強度のS
/N比を著しく増大させることができ、測定しようとす
る物体面の検出感度を著しく増大させることができる。
即ち、被検出対象物の表面の検出したい箇所(測定点)
に対して照射される輪帯照明光からなるスポット照明光
は、対物レンズ27の瞳271上で輪帯状の強度分布
(輪帯状の強度の強い部分とその内側で光軸に近い部分
での強度をほぼ0か輪帯状の強度の強い部分に比べて充
分小さい強度となっている部分とで形成される。)を有
しているため、次に説明する顕著な効果を奏することが
できる。
As described above, as is apparent from FIG. 3, when the annular illumination is used, the spot intensity obtained from the defocus position indicating the surface other than the object surface is significantly reduced, and the measurement at the measurement point is performed. S of the spot intensity obtained from the focus position indicating the object plane to be obtained
The / N ratio can be significantly increased, and the detection sensitivity of the object surface to be measured can be significantly increased.
That is, the point (measurement point) on the surface of the object to be detected to be detected
The spot illumination light composed of the annular illumination light irradiated on the pupil 271 of the objective lens 27 has an annular intensity distribution (intensities at a portion where the annular intensity is strong and a portion near the optical axis inside the annular intensity portion). And a portion having a sufficiently small strength as compared with a portion having a strong or substantially annular shape.), The following remarkable effects can be obtained.

【0020】即ち、第1の効果は、対物レンズ27の瞳
271上において輪帯状のスポット照明光であるため、
検出したい箇所に微小なスポット照明光を投影すること
ができる。第2の効果は、図3に示すように最小に絞ら
れた位置から光軸方向にはずれた位置での分布が輪帯状
になっているため、物体面310が最小スポット位置か
らはずれると、即ちデフォーカス状態では光軸と交わる
物体面には殆ど光が当たらないため、共焦点検出信号が
遙かに小さくなり、その結果、透明な表面層31の下に
高い反射面320があっても物体面310を十分な精度
で検出することが可能となる。第3の効果は、同じ開口
数の対物レンズで比較した場合、輪帯照明であるため焦
点深度が浅くなり、その分高さ検出感度を高くすること
ができる。
That is, the first effect is that the illumination light is annular spot illumination light on the pupil 271 of the objective lens 27.
It is possible to project minute spot illumination light on a portion to be detected. The second effect is that when the object plane 310 deviates from the minimum spot position because the distribution at the position deviated in the optical axis direction from the position narrowed to the minimum as shown in FIG. In the defocused state, almost no light hits the object plane that intersects the optical axis, so that the confocal detection signal is much smaller. As a result, even if there is a high reflective surface 320 under the transparent surface layer 31, The surface 310 can be detected with sufficient accuracy. The third effect is that, when compared with an objective lens having the same numerical aperture, because of annular illumination, the depth of focus becomes shallow, and the height detection sensitivity can be increased accordingly.

【0021】第4の効果は、輪帯照明であるため、反射
率が小さい入射角が0度付近の光がなく、表面310に
は入射角の大きな照明がなされ、透明な表面310での
反射率が図3に示すように大きくなり、表面310の検
出を正確に行うことが可能となる。
The fourth effect is that, because of annular illumination, there is no light having a small reflectance and an incident angle near 0 °, and the surface 310 is illuminated with a large incident angle and reflected by the transparent surface 310. The ratio increases as shown in FIG. 3, and the detection of the surface 310 can be performed accurately.

【0022】次に、輪帯照明における輪帯の外輪径Re
に対する内輪径Rdの比rを制御するための輪帯条件制
御機構255について説明する。輪帯条件制御機構25
5は、図4に示すように異なるrもしくは遮光パターン
251の透過率を変えた複数の輪帯フィルタ25a〜2
5dが用意され、自動的に光路に対して切り替えて実装
されるように構成される。即ち、全体制御部50に対し
てキーボードや記録媒体やネットワーク等の入力手段5
1を用いて被検出対象物3の種類等の情報が入力されて
記憶されると、全体制御部50は、入力された被検出対
象物3の種類等の情報に基いて何の輪帯フィルタを選択
すれば良いかを決定し、この決定された選択データを輪
帯条件制御機構255に提供することによって、被検出
対象物に適合した輪帯フィルタが選択されることにな
る。なお、輪帯フィルタ25として、中央のパターン2
51を遮光パターンによって形成した場合について説明
したが、中央のパターン251を少し光を透過させるよ
うに構成し、疑似輪帯照明光(251の部分が光をわず
か通して強度が弱くなると疑似輪帯照明光となる。)に
してもよい。
Next, the outer ring diameter Re of the annular zone in the annular illumination.
The ring condition control mechanism 255 for controlling the ratio r of the inner ring diameter Rd to the inner ring diameter Rd will be described. Ring condition control mechanism 25
Reference numeral 5 denotes a plurality of annular filters 25a to 25a having different r or different transmittances of the light shielding pattern 251 as shown in FIG.
5d is prepared, and is configured to be automatically switched to the optical path and mounted. That is, the input means 5 such as a keyboard, a recording medium, a network, etc.
When information such as the type of the detection target 3 is input and stored using the information processing device 1, the overall control unit 50 determines what ring filter based on the input information such as the type of the detection target 3. Is determined, and the determined selection data is provided to the orbicular zone condition control mechanism 255, whereby the orbicular zone filter suitable for the detection target is selected. In addition, as the annular filter 25, the central pattern 2
Although the case where the light-shielding pattern 51 is formed has been described, the central pattern 251 is configured to transmit a small amount of light, and the pseudo-ring illumination light (when the intensity of the pseudo-zonal illumination light weakens when the portion 251 passes slightly). Illumination light).

【0023】次に、光検出素子アレイ44により個別に
検出された強度信号Ik(hz)(k=1〜n)を基
に、各スポット位置(測定点)kでの被検出対象物3の
表面高さを信号処理回路5において算出する方法につい
て説明する。即ち、光検出素子アレイ44により個別に
検出された強度信号Ik(hz)は、信号処理回路5に
送られ、A/D変換されて各アレイの番地kの強度信号
Ik(hz)がメモリ(図示せず)に記録される。ここ
で、hzは、全体制御部50がレンズ駆動機構272を
制御する信号、即ちスポットアレイの光軸(測定点k)
上の最小絞り込み位置情報(測定点kにおける対物レン
ズ27と物体3との間のZ方向の相対位置hz)であ
り、全体制御部50からレンズ駆動機構272に与えた
最小絞り込み位置情報である。即ち、全体制御部50
は、レンズ駆動機構272に駆動情報hzを送信すると
共に信号処理回路5にも送信し、この情報に基づき対物
レンズ27を光軸方向にhz微動しながら信号処理回路
5は、光検出素子アレイ44によりk(k=1〜n)点
における強度信号Ik(hz)を採取することを繰り返
してメモリに記憶し、所望の範囲の駆動を終了したら、
得られている情報Ik(hz)から各スポット位置kで
の表面の高さを以下の方法により求める。なお、上記実
施例の説明では、レンズ駆動機構272により対物レン
ズ27を光軸方向にhz微動(微移動)させたが、被検
出対象物3を搭載するステージにZステージを設けてこ
のZステージを対物レンズ27の光軸方向にhz微動さ
せて被検出対象物3の物体面をhz微動させてもよい。
しかし、対物レンズ27の方がZステージや検出系全体
より軽量であるため、対物レンズ27を光軸方向に微移
動させた方が高速に駆動でき、高速検出を実現すること
ができる。
Next, based on the intensity signals Ik (hz) (k = 1 to n) individually detected by the photodetector array 44, the detection target 3 at each spot position (measurement point) k is determined. A method for calculating the surface height in the signal processing circuit 5 will be described. That is, the intensity signals Ik (hz) individually detected by the photodetector array 44 are sent to the signal processing circuit 5, where they are A / D converted, and the intensity signals Ik (hz) at the addresses k of the respective arrays are stored in the memory ( (Not shown). Here, hz is a signal by which the overall control unit 50 controls the lens driving mechanism 272, that is, the optical axis (measurement point k) of the spot array.
The above is the minimum aperture position information (the relative position hz in the Z direction between the objective lens 27 and the object 3 at the measurement point k), and is the minimum aperture position information given to the lens driving mechanism 272 from the overall control unit 50. That is, the overall control unit 50
Transmits the driving information hz to the lens driving mechanism 272 and also to the signal processing circuit 5, and based on this information, the signal processing circuit 5 moves the objective lens 27 in the optical axis direction by hz finely, and the light detection element array 44. The sampling of the intensity signal Ik (hz) at the points k (k = 1 to n) is repeatedly stored in the memory, and when the driving in the desired range is completed,
From the obtained information Ik (hz), the surface height at each spot position k is obtained by the following method. In the description of the above embodiment, the objective lens 27 is finely moved (finely moved) in the optical axis direction by the lens driving mechanism 272. However, a Z stage is provided on the stage on which the detection target 3 is mounted, and the Z stage is provided. May be finely moved hz in the optical axis direction of the objective lens 27 to finely move the object surface of the detection target 3 in the hz direction.
However, since the objective lens 27 is lighter in weight than the Z stage and the entire detection system, fine movement of the objective lens 27 in the optical axis direction can drive at a higher speed and realize high-speed detection.

【0024】次に、信号処理回路5においてk(k=1
〜n)点における強度信号Ik(hz)被検出対象物3
の物体面の立体形状を高精度に求める実施例について説
明する。即ち、信号処理回路5は、各スポット位置kで
の高さのそれぞれを、この各スポット位置で得られた情
報Ik(hz)から独立に求められるのでk=n点にお
ける実施例を図5に示している。図5の横軸はn点にお
ける対物レンズと物体との相対位置hzであり、縦軸は
検出強度In(hz)である。光検出素子アレイ44か
ら得られるデータIn(hz)は離散的であるため、信
号処理回路5は各スポット位置k=nにおけるピーク値
で示される真の表面高さhrを内挿により求める。各ス
ポット位置k=nに対して輪帯照明されるため、図3に
示す如く、得られる信号が大きい所ほど真の表面(フォ
ーカス位置)に近い。また、In(hz)があるレベル
IT以上ある中で、hzが大きい所ほど、即ち表面が高
いほど真の表面である。この様な判断に基づき最上面の
高さを求めることができる。 即ち、被検出対象物3も
しくはスポット照射光を照射光の光軸方向zに相対的に
動かすと共に、この動きhzに応じてn点からの反射光
を共焦点検出して検出強度信号In(hz)を得ること
によってピーク位置を示すデータ(例えばhM)に基い
て立体形状を検出することができる。尚、上記のような
判断を下すことにより、検出したい面の候補を絞ってい
くことが可能である。従って、用途によっては最上面だ
けではなく、透明な層の下の面を求めることも可能であ
る。
Next, in the signal processing circuit 5, k (k = 1)
To n) intensity signal Ik (hz) at point 3
An embodiment for obtaining the three-dimensional shape of the object plane with high accuracy will be described. That is, since the signal processing circuit 5 can obtain the height at each spot position k independently from the information Ik (hz) obtained at each spot position, the embodiment at k = n points is shown in FIG. Is shown. The horizontal axis in FIG. 5 is the relative position hz between the objective lens and the object at point n, and the vertical axis is the detection intensity In (hz). Since the data In (hz) obtained from the photodetector array 44 is discrete, the signal processing circuit 5 obtains the true surface height hr indicated by the peak value at each spot position k = n by interpolation. Since annular illumination is performed for each spot position k = n, as shown in FIG. 3, the larger the obtained signal, the closer to the true surface (focus position). In addition, in the case where In (hz) is equal to or higher than a certain level IT, the larger the hz, that is, the higher the surface, the more the true surface. The height of the uppermost surface can be determined based on such a determination. That is, the detection target object 3 or the spot irradiation light is relatively moved in the optical axis direction z of the irradiation light, and the reflected light from the point n is confocal detected according to the movement hz to detect the detection intensity signal In (hz ), The three-dimensional shape can be detected based on the data indicating the peak position (for example, hM). By making the above determination, it is possible to narrow down the candidates for the surface to be detected. Therefore, depending on the application, not only the top surface but also the surface below the transparent layer can be determined.

【0025】即ち、被検出対象物3において表面は透明
であるため、被検出対象物3に対して輪帯照明の微小ス
ポットを照射した際、この輪帯照明の微小スポットが図
1に示す被検出対象物3の最上面310や屈折率の異な
る複数の境界面320で反射することにより図5に示す
ようなA点、B点、C点においてピークとなる検出強度
信号In(hz)が得られ、検出したい面の候補である
ことが分かる。このうちA点が最上面であるからここが
検出位置データの候補(hM)であることが分かる。そ
こで、信号処理回路5は、A点の位置近傍でIn(h
z)の最大の値を与えるhMを基に、この1つ隣のhM
−とhM+に対するIn(hM−)とIn(hM+)及
びIn(hM)の3つのデータからn点における真の最
大を与えるhrを内挿法で求める。内挿の方法は2次式
近似等を用いる。即ち、被検出対象物3もしくはスポッ
ト照射光を照射光の光軸方向zに相対的に動かすと共
に、この動き(hMを基に、この1つ隣のhM−とhM
+)に応じて得られる複数の共焦点検出信号の強度(例
えばIn(hM−)とIn(hM+)及びIn(h
M))を用いて最大となる位置データ(hr)を内挿し
て求めることによって精度の高い立体形状(hr)を得
ることができる。
That is, since the surface of the detection target object 3 is transparent, when the detection target object 3 is irradiated with a minute spot of annular illumination, the minute spot of the annular illumination is reflected on the target object shown in FIG. By being reflected on the uppermost surface 310 of the detection target 3 and a plurality of boundary surfaces 320 having different refractive indices, a detection intensity signal In (hz) having peaks at points A, B, and C as shown in FIG. 5 is obtained. This indicates that the surface is a candidate to be detected. Since point A is the uppermost surface, it can be seen that this is a candidate for the detected position data (hM). Therefore, the signal processing circuit 5 determines that In (h
z), based on the hM that gives the maximum value of
From the three data of In (hM−) and In (hM +) and In (hM) for − and hM +, hr that gives the true maximum at n points is obtained by interpolation. The method of interpolation uses quadratic approximation or the like. That is, the detection target 3 or the spot irradiation light is relatively moved in the optical axis direction z of the irradiation light, and this movement (based on hM, hM− and hM−
+), The intensities of a plurality of confocal detection signals (for example, In (hM−), In (hM +), and In (h
M)) to obtain the maximum position data (hr) by interpolation, thereby obtaining a highly accurate three-dimensional shape (hr).

【0026】また、スポット照明光の径が最小となるフ
ォーカス位置を、被検出対象物3の表面310の上方か
ら下方になるように或いは下方から上方になるように変
化させ、このスポット照明光に対応する共焦点検出信号
の強度In(hz)が所望の閾値IT以上になるものの
中A点で示すように最も上方の高さ位置(hM)をもっ
て検出位置データ候補とすることにより、下地での反射
があっても間違わずに最上面310を正確に検出するこ
とができる。なお、31は、被検出対象物3の表面の透
明層を示し、32は、その下の透明層を示す。従って、
310は、被検出物体3の最上面(物体面)を示し、3
20は、その下の屈折率の異なる境界面を示す。
Further, the focus position where the diameter of the spot illumination light becomes minimum is changed from above to below the surface 310 of the detection target 3 or from above to below. By setting the uppermost height position (hM) as a detection position data candidate as indicated by point A among those having a corresponding confocal detection signal intensity In (hz) equal to or greater than a desired threshold value IT, Even if there is a reflection, the uppermost surface 310 can be accurately detected without mistake. Reference numeral 31 denotes a transparent layer on the surface of the detection target object 3, and reference numeral 32 denotes a transparent layer thereunder. Therefore,
Reference numeral 310 denotes the uppermost surface (object surface) of the detected object 3;
Reference numeral 20 denotes a boundary surface having a different refractive index thereunder.

【0027】このように信号処理回路5は、光検出素子
アレイ44から得られるスポットアレイの各点k=1〜
nについて上記の方法により最上面の位置(高さ)hr
を求め、全体制御部50からの指令で、被検出物体3と
検出系を相対的に一次元アレイの方向と交差する方向
(例えば直角の方向)に移動し(移動機構(図示せず)
としては、例えば被検出物体3を載置したステージであ
っても良いし、検出系を支持したステージでも良
い。)、同様にして光検出素子アレイ44から得られる
スポットアレイの各点k=1〜nについて高さを順次求
めていくことにより、被検出物体3の最上面の凹凸形
状、立体形状を計測することができる。特に、光検出素
子アレイ44からは、同時に複数点の検出強度信号Ik
(hz)が検出できるので、被検出物体3と検出系を相
対的に移動させる回数を少なくして、被検出物体3全体
に対する立体形状を測定することができ、検出速度の高
速化を実現することができる。
As described above, the signal processing circuit 5 operates at each point k = 1 to k of the spot array obtained from the photodetector array 44.
For n, the position (height) hr of the uppermost surface by the above method
And moves the detected object 3 and the detection system relatively in a direction (for example, a direction perpendicular to) that intersects with the direction of the one-dimensional array by a command from the overall control unit 50 (moving mechanism (not shown)).
For example, a stage on which the detected object 3 is mounted may be used, or a stage supporting a detection system may be used. In the same manner, the height of each point k = 1 to n of the spot array obtained from the photodetector array 44 is sequentially obtained to measure the unevenness and the three-dimensional shape of the uppermost surface of the detection target 3. be able to. In particular, from the photodetector element array 44, the detection intensity signals Ik
Since (hz) can be detected, the three-dimensional shape of the entire object to be detected 3 can be measured by reducing the number of times that the object to be detected 3 and the detection system are relatively moved, and the detection speed is increased. be able to.

【0028】即ち、輪帯照明光からなるスポット照明光
を複数1次元状に配列し、被検出対象物3もしくはスポ
ット照射光を照射光の光軸方向zに相対的に微動させつ
つ光検出素子アレイ44から得られるスポットアレイの
各点xについて最上面の位置(高さ)hz(x)を求
め、配列x方向と交差する方向(例えば直交するy方
向)に複数配列スポット照明光と被検出対象物3とを、
例えばYステージ(図示せず)を駆動することによって
相対的に移動させて位置変化させることにより、被検出
対象物の立体形状二次元分布hz(x,y)を求めるこ
とが可能となる。なお、レーザビームをビームエキスパ
ンダによって2次元的に拡げ、2次元的に配列されたレ
ンズアレイ21を通すことにより、ピンホール210か
らは2次元的に配列されたビームスポットアレイを出力
し、ピンホールアレイ43および光検出素子アレイ44
を2次元的配列することによって、一度に、被検出物体
3の最上面の2次元的な凹凸形状、立体形状を計測する
ことができることになる。
That is, a plurality of spot illumination lights composed of annular illumination light are arranged in a one-dimensional manner, and the object 3 to be detected or the spot irradiation light is slightly moved in the optical axis direction z of the irradiation light while the light detection element is being moved. The position (height) hz (x) of the uppermost surface is determined for each point x of the spot array obtained from the array 44, and a plurality of arrayed spot illumination lights and detected objects are detected in a direction intersecting the array x direction (for example, the y direction orthogonal to the array). Object 3 and
For example, by driving a Y stage (not shown) to relatively move and change the position, the three-dimensional shape two-dimensional distribution hz (x, y) of the detection target can be obtained. The laser beam is two-dimensionally expanded by a beam expander and passed through a two-dimensionally arranged lens array 21 to output a two-dimensionally arranged beam spot array from a pinhole 210, and Hole array 43 and photodetector array 44
Are two-dimensionally arranged, it is possible to measure the two-dimensional uneven shape and the three-dimensional shape of the uppermost surface of the detected object 3 at one time.

【0029】次に、本発明に係る立体形状検出装置並び
に共焦点検出装置の第2の実施の形態について説明す
る。図6は、本発明に係る立体形状検出装置並びに共焦
点検出装置の第2の実施の形態を示す図である。上記第
1の実施形態で説明したように対物レンズ27は、倍率
が大きいため対物レンズの焦点位置から物体面が数μm
以上離れてしまうと、焦点位置が物体の上にあるか下に
あるか分からなくなってしまう。そこで、第1の実施の
形態で説明した光学系だけでは、大きな段差のある被検
出対象物3を測定したりする場合や、被検出対象物3を
測定し始めるときに焦点の物体表面に対する方向を見失
ってしまう。そこで、第2の実施の形態では、精度が数
μm程度の補助の高さ検出系6を上記検出系と一体に固
定して取り付けておく。図6に示す補助検出系6は、物
体面上にスポット光61を斜入射する斜め照射投影系6
1と、物体で反射したスポット光をポジションセンサ6
3上に結像させるレンズ62とを備えた光てこ方式の検
出系で構成される。
Next, a second embodiment of the three-dimensional shape detection device and the confocal detection device according to the present invention will be described. FIG. 6 is a diagram illustrating a second embodiment of the three-dimensional shape detection device and the confocal detection device according to the present invention. As described in the first embodiment, since the objective lens 27 has a large magnification, the object plane is several μm from the focal position of the objective lens.
If the distance is longer than the above, it is difficult to determine whether the focal position is above or below the object. Therefore, only the optical system described in the first embodiment measures the object 3 having a large step or the direction of the focal point with respect to the object surface when the measurement of the object 3 is started. I lose sight of it. Therefore, in the second embodiment, an auxiliary height detection system 6 having an accuracy of about several μm is fixedly attached to the detection system. The auxiliary detection system 6 shown in FIG. 6 is an oblique irradiation projection system 6 that obliquely enters the spot light 61 on the object plane.
1 and the spot light reflected by the object is used as the position sensor 6
An optical lever type detection system including a lens 62 for forming an image on the optical system 3.

【0030】この様に、補助検出系6を上記検出系と一
体に設けることにより、ポジションセンサ63の信号か
ら物体上のスポットの高さ、即ち物体面の高さが数μm
程度の精度で検出することができる。従って、補助検出
系6で検出された数μm程度の精度の物体面の高さ情報
を、全体制御部50に送ることによって、全体制御部5
0ではこの信号を元に対物レンズ27もしくは被検出物
体3を駆動することによって、被検出対象物3の検出物
体面(最上面)の位置を、対物レンズ27からの輪帯照
明の微小スポットの焦点位置にほぼ合わせることができ
る。即ち、全体制御部50は、補助検出系6で検出され
る対物レンズ27の焦点位置と検出物体面が一致する位
置から、レンズ駆動機構272またはZステージを制御
して例えばプラス(上)Δhだけオフセットさせた位置
に短時間に高さ方向に位置合わせし、次に、Δh〜0〜
―Δhと下に向けて対物レンズ27と被検出物体3の位
置を相対的に変化させながら上記第1の実施の形態で説
明した方法により計測して行く。この様に補助検出系6
を用いることにより高速で、間違いの無い検出が可能に
なる。
As described above, by providing the auxiliary detection system 6 integrally with the above-mentioned detection system, the height of the spot on the object, that is, the height of the object surface can be several μm from the signal of the position sensor 63.
It can be detected with a degree of accuracy. Therefore, by sending the height information of the object surface with an accuracy of about several μm detected by the auxiliary detection system 6 to the overall control unit 50,
In the case of 0, the objective lens 27 or the detected object 3 is driven based on this signal, and the position of the detected object surface (uppermost surface) of the detected object 3 is adjusted to the position of the minute spot of the annular illumination from the objective lens 27. It can be almost adjusted to the focal position. That is, the overall control unit 50 controls the lens drive mechanism 272 or the Z stage from the position where the focal position of the objective lens 27 detected by the auxiliary detection system 6 matches the detected object plane, for example, by plus (up) Δh It is positioned in the height direction in a short time at the offset position, and then Δh ~ 0
The measurement is performed by the method described in the first embodiment while the positions of the objective lens 27 and the detected object 3 are relatively changed toward -Δh and downward. Thus, the auxiliary detection system 6
, The detection can be performed at high speed without error.

【0031】即ち、被検出対象物3の立体形状二次元分
布hz(x,y)を求める際、y方向の相対的な位置変
化(移動)に伴う検出系と被検出対象物3との間のz方
向の相対変位を上記補助検出系6で検出し、上記のよう
に補正制御することにより2次元の広がりのあるサンプ
ル(被検出対象物)を広い領域に亘って立体形状を高精
度に検出することが可能となる。補助検出系6としては
上記の図6の実施例に限らず、図1に示す検出系の不感
帯となる領域においてほぼ同じ精度で広い検出領域を有
するものであればどのような補助検出系を用いても良
い。
That is, when obtaining the three-dimensional shape two-dimensional distribution hz (x, y) of the detection target 3, the distance between the detection system and the detection target 3 due to a relative position change (movement) in the y direction is determined. Is detected by the auxiliary detection system 6 and the correction control is performed as described above, so that a three-dimensional shape of a sample having a two-dimensional spread (object to be detected) can be precisely formed over a wide area. It becomes possible to detect. The auxiliary detection system 6 is not limited to the embodiment of FIG. 6 described above, and any auxiliary detection system may be used as long as it has a wide detection area with almost the same accuracy in the dead zone of the detection system shown in FIG. May be.

【0032】次に、本発明に係る立体形状検出装置並び
に共焦点検出装置の第3の実施の形態について説明す
る。以上説明した第1および第2の実施の形態は、本発
明を表面の高さ計測、或いは表面形状の計測に適用した
実施の形態であるが、更に一般的に共焦点検出系とし
て、焦点合わせに実施することも可能である。即ち、本
発明の輪帯照明による共焦点検出を行えば、焦点検出精
度が特に表面が透明で下地の反射率が大きな物体の検出
に有利である。この際輪帯照明によるスポットが1個で
も、或いは複数でも良い。例えば比較的平坦な物体を検
出する場合、輪帯照明のスポットは1点でよいし、検出
視野内で凹凸のある場合には複数の輪帯照明のスポット
を同時照射すれば、検出視野内の所望の位置に焦点を合
わせることができる。この様に物体表面のパターン検出
に本発明に係る輪帯照明共焦点検出系を用いる場合には
パターン検出光学系内に本検出系を実装した第3の実施
の形態にする必要がある。
Next, a third embodiment of the three-dimensional shape detecting device and the confocal detecting device according to the present invention will be described. The first and second embodiments described above are embodiments in which the present invention is applied to surface height measurement or surface shape measurement, but more generally, a confocal detection system is used for focusing. It is also possible to carry out. That is, if the confocal detection by the annular illumination according to the present invention is performed, the focus detection accuracy is particularly advantageous for detecting an object having a transparent surface and a large base reflectance. At this time, the number of spots by the annular illumination may be one or plural. For example, when a relatively flat object is detected, only one annular illumination spot may be used, or when there is unevenness in the detection field of view, a plurality of annular illumination spots may be simultaneously illuminated. The desired position can be focused. As described above, when the annular illumination confocal detection system according to the present invention is used for pattern detection on the surface of an object, the third embodiment in which the present detection system is mounted in the pattern detection optical system is required.

【0033】図7はこの実装を行った第3の実施の形態
を示す図である。図7と図1の同一番号は同一物或いは
同一機能を有する。即ち、1は輪帯照明共焦点検出用の
照明光源であり、単一波長λ0を有する。2は輪帯照明
光学系である。41’は共焦点検出系4の偏光ビームス
プリッタであり、27は対物レンズである。7はパター
ン検出光学系であり、71はその照明系、72は撮像素
子等の検出器である。73は偏光ビームスプリッタであ
り、照明光の中P偏光のみを通過させ、検出照明光に用
いられる。偏光ビームスプリッタ73を透過した光は、
結像レンズ(チューブレンズ)74を透過し、1/4波
長板75を通り円偏光となり、波長選択ビームスプリッ
タ8で反射され、対物レンズ27に入る。波長選択ビー
ムスプリッタ8は、波長λ0±Δλの狭い範囲の光のみ
を透過し、パターン検出系の白色照明光の殆どの波長を
反射する。従って殆ど白色光でパターン検出することが
できる。物体3で反射して戻ってきた白色光の光は、波
長選択ビームスプリッタ8で反射し、1/4波長板75
を通り、S偏光になり偏光ビームスプリッタ73で反射
し、撮像素子等の検出器72で検出される。従って、検
出器72によって被検出対象物3上に形成されたパター
ンや欠陥等についての白色光に基づく画像信号を検出す
ることができ、画像信号処理回路76において画像信号
に基づく上記パターンの欠陥検査等を行うことができ
る。
FIG. 7 is a diagram showing a third embodiment in which this mounting is performed. 7 and 1 have the same thing or the same function. That is, reference numeral 1 denotes an illumination light source for annular illumination confocal detection, which has a single wavelength λ 0 . Reference numeral 2 denotes an annular illumination optical system. 41 'is a polarization beam splitter of the confocal detection system 4, and 27 is an objective lens. 7 is a pattern detection optical system, 71 is its illumination system, and 72 is a detector such as an image sensor. Reference numeral 73 denotes a polarization beam splitter, which allows only P-polarized light in the illumination light to pass therethrough and is used as detection illumination light. The light transmitted through the polarization beam splitter 73 is
The light passes through the imaging lens (tube lens) 74, passes through the 通 り wavelength plate 75, becomes circularly polarized light, is reflected by the wavelength selection beam splitter 8, and enters the objective lens 27. The wavelength selection beam splitter 8 transmits only light in a narrow range of wavelength λ 0 ± Δλ, and reflects most of the wavelength of white illumination light of the pattern detection system. Therefore, the pattern can be detected with almost white light. The white light that is reflected back from the object 3 is reflected by the wavelength selection beam splitter 8 and is returned to the 波長 wavelength plate 75.
, And becomes S-polarized light, is reflected by the polarization beam splitter 73, and is detected by a detector 72 such as an image sensor. Therefore, the detector 72 can detect an image signal based on white light for a pattern, a defect, or the like formed on the detection target 3, and the image signal processing circuit 76 inspects the pattern for defects based on the image signal. Etc. can be performed.

【0034】輪帯照明検出系の光源1としては、532
nmの波長λ0で、図の紙面に対し平行なP偏光のレー
ザ光を出射する固体レーザで構成される。輪帯照明光学
系2は、図1で説明した第1の実施の形態のものと基本
的には同じであるが、本第3の実施の形態では、輪帯照
明の微小スポットが2次元的に配列している。この輪帯
照明の2次元スポットアレイは、偏光ビームスプリッタ
41を通過した後、レンズ24(42)を通り、1/4
波長板48を通過することにより円偏光に変換される。
この円偏光に変換された輪帯照明の2次元スポットアレ
イは、波長λ0(532nm)の光を90%以上の透過
率で透過する波長選択ビームスプリッタ8を透過し、対
物レンズ27を透過し、被検出対象物3の表面に照射さ
れる。被検出対象物3で反射した光は、対物レンズ2
7、および波長選択ビームスプリッタ8を透過し、1/
4波長板48で円偏光からS偏光に変換され、結像用の
レンズ24(42)を透過後、偏光ビームスプリッタ4
1’で反射されて2次元ピンホールアレイ43’に入射
し、2次元センサアレイ44’により2次元的に共焦点
検出される。輪帯照明共焦点検出系の焦点位置と、パタ
ーン検出系の焦点位置は予め一致するように調整されて
いるので、輪帯照明共焦点検出系で上述の方法で焦点合
わせすれば、パターン検出光学系においても合焦点検出
される。
As the light source 1 of the annular illumination detection system, 532
It is composed of a solid-state laser that emits P-polarized laser light with a wavelength λ 0 of nm and parallel to the plane of the drawing. The annular illumination optical system 2 is basically the same as that of the first embodiment described with reference to FIG. 1, but in the third embodiment, the minute spot of the annular illumination is two-dimensional. Are arranged. After passing through the polarizing beam splitter 41, the two-dimensional spot array of this annular illumination passes through the lens 24 (42) and
The light is converted into circularly polarized light by passing through the wave plate 48.
The two-dimensional spot array of the annular illumination converted into the circularly polarized light transmits through the wavelength selection beam splitter 8 that transmits light of wavelength λ 0 (532 nm) at a transmittance of 90% or more, and transmits through the objective lens 27. The surface of the detection target 3 is irradiated. The light reflected by the detection target 3 is reflected by the objective lens 2
7 and the wavelength selective beam splitter 8,
After being converted from circularly polarized light to S-polarized light by the four-wavelength plate 48 and transmitted through the imaging lens 24 (42), the polarization beam splitter 4
The light is reflected by 1 ′, enters the two-dimensional pinhole array 43 ′, and is two-dimensionally confocal detected by the two-dimensional sensor array 44 ′. Since the focal position of the annular illumination confocal detection system and the focal position of the pattern detection system are adjusted in advance so that they can be focused by the above-described method using the annular illumination confocal detection system, the pattern detection optical system can be used. The focal point is also detected in the system.

【0035】従って、輪帯照明共焦点検出系で被検出対
象物3の表面に形成された光に対して透明な膜(例えば
酸化膜等の絶縁膜)の表面に焦点を合わせ、パターン検
出光学系により光に対して透明な膜(例えば酸化膜の絶
縁膜)に形成されたスルーホール等のパターンや透明な
膜(例えば酸化膜の絶縁膜)上に形成された異物や傷等
の欠陥を白色光に基づく画像信号から検査することが可
能となる。特に、透明な膜に形成されたパターンや欠陥
等を検査するために白色照明を施したのは、透明な膜に
おいて生じる光干渉をなくすためである。
Accordingly, in the annular illumination confocal detection system, the light formed on the surface of the detection target 3 is focused on the surface of a film (for example, an insulating film such as an oxide film) which is transparent to the pattern detection optical system. A system such as a pattern such as a through hole formed in a film transparent to light (for example, an insulating film of an oxide film) and a defect such as a foreign substance or a scratch formed on a transparent film (for example, an insulating film of an oxide film). Inspection can be performed from an image signal based on white light. In particular, the reason why white illumination is performed to inspect a pattern, a defect, or the like formed in the transparent film is to eliminate light interference generated in the transparent film.

【0036】[0036]

【発明の効果】本発明によれば、共焦点検出の照射スポ
ット光に輪帯照明光を用いることにより、特に透明物体
の表面の位置(高さ)検出(立体形状検出)において、
表面の下にある反射面の影響を受けにくくして、正確に
検出することが可能となる効果を奏する。また、本発明
によれば、共焦点検出の照射スポット光に輪帯照明光を
用いることにより、液晶表示装置のスペーサに用いる高
さ数μmの透明部材の高さを正確に検出することができ
る効果を奏する。
According to the present invention, by using annular illumination light as the irradiation spot light for confocal detection, it is particularly possible to detect the position (height) of the surface of a transparent object (three-dimensional shape detection).
There is an effect that it is hard to be affected by the reflection surface below the surface, and it is possible to detect the position accurately. Further, according to the present invention, the height of the transparent member having a height of several μm used for the spacer of the liquid crystal display device can be accurately detected by using the annular illumination light as the irradiation spot light for the confocal detection. It works.

【0037】また、本発明によれば、共焦点検出のため
の輪帯照明の微小スポットをアレイ状にすることによっ
て、被検出対象物上の複数の点の立体形状を同時に測定
することができ、検出速度の向上を図ることができる効
果を奏する。また、本発明によれば、被検出対象物の表
面に形成された光に対して透明な膜に形成されたパター
ンや透明な膜上に形成された異物や傷等の欠陥を白色光
に基づく画像信号から高精度に検査することが可能とな
る効果を奏する。
Further, according to the present invention, the three-dimensional shape of a plurality of points on the object to be detected can be measured simultaneously by arranging minute spots of annular illumination for confocal detection in an array. This has the effect that the detection speed can be improved. Further, according to the present invention, a pattern formed on a film transparent to light formed on the surface of an object to be detected or a defect such as a foreign substance or a scratch formed on the transparent film is based on white light. There is an effect that inspection can be performed with high accuracy from an image signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る立体形状検出装置並びに共焦点検
出装置における第1の実施の形態を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a three-dimensional shape detection device and a confocal detection device according to the present invention.

【図2】本発明に係る輪帯照明を実現するフィルタの一
実施例を示す図である。
FIG. 2 is a diagram showing one embodiment of a filter for realizing annular illumination according to the present invention.

【図3】本発明の効果を説明するためのスポット強度分
布を示す図である。
FIG. 3 is a diagram showing a spot intensity distribution for explaining the effect of the present invention.

【図4】本発明に係る輪帯条件制御機構の一実施例を示
す図である。
FIG. 4 is a view showing an embodiment of a zone condition control mechanism according to the present invention.

【図5】測定点n点における対物レンズと物体の相対位
置hzと検出強度In(hz)との関係を示す図であ
る。
FIG. 5 is a diagram illustrating a relationship between a relative position hz between an objective lens and an object at a measurement point n and a detection intensity In (hz).

【図6】本発明に係る立体形状検出装置並びに共焦点検
出装置において補助検出系を備えた第2の実施の形態を
示す概略構成図である。
FIG. 6 is a schematic configuration diagram showing a second embodiment of the three-dimensional shape detection device and the confocal detection device according to the present invention, which includes an auxiliary detection system.

【図7】本発明に係る輪帯照明共焦点検出装置をパター
ン検出に適用した第3の実施の形態を示す概略構成図で
ある。
FIG. 7 is a schematic configuration diagram showing a third embodiment in which the annular illumination confocal detection device according to the present invention is applied to pattern detection.

【符号の説明】[Explanation of symbols]

1…光源、2…輪帯照明微小スポット照射光学系(輪帯
照明光学系)、201、202…シリンドリカルレン
ズ、21…レンズアレイ、210…ピンホール、22…
レンズ、24(42)…レンズ系、25…輪帯照明用フ
ィルタ、251…遮光パターン、260…輪帯照明スポ
ットアレイ、27…対物レンズ、271…瞳、3…被検
出対象物、31…表面の透明層、310…物体面(最上
面)、32…下層の透明層、320…境界面(反射
面)、4…共焦点検出系、41…ビームスプリッタ、4
1’…偏光ビームスプリッタ、42…レンズ、43…ピ
ンホールアレイ、43’…2次元ピンホールアレイ、4
30…ピンホール、44…光検出素子アレイ、44’…
2次元センサアレイ、5…信号処理回路、50…全体制
御部、6…補助光学系、7…パターン検出光学系、8…
波長選択ビームスプリッタ、71…パターン検出照明
系、72…検出器、73…偏光ビームスプリッタ、74
…レンズ、48、75…1/4波長板、76…画像信号
処理回路。
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Ring illumination micro spot irradiation optical system (ring illumination optical system), 201, 202 ... Cylindrical lens, 21 ... Lens array, 210 ... Pinhole, 22 ...
Lens, 24 (42): lens system, 25: annular illumination filter, 251: light-shielding pattern, 260: annular illumination spot array, 27: objective lens, 271: pupil, 3: object to be detected, 31: surface Transparent layer of 310, object surface (top surface), 32: transparent layer of lower layer, 320: boundary surface (reflection surface), 4: confocal detection system, 41: beam splitter, 4
1 ': polarizing beam splitter; 42: lens; 43: pinhole array; 43': two-dimensional pinhole array;
30 ... pinhole, 44 ... photodetector array, 44 '...
Two-dimensional sensor array, 5 ... signal processing circuit, 50 ... overall control unit, 6 ... auxiliary optical system, 7 ... pattern detection optical system, 8 ...
Wavelength selection beam splitter, 71: pattern detection illumination system, 72: detector, 73: polarization beam splitter, 74
... Lens, 48, 75 ... 1/4 wavelength plate, 76 ... Image signal processing circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野本 峰生 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 石森 英男 東京都渋谷区東三丁目16番3号 日立電子 エンジニアリング株式会社内 Fターム(参考) 2F065 AA24 AA49 AA54 BB22 DD04 DD06 EE00 FF09 FF10 FF42 FF67 GG04 GG22 HH01 HH04 HH08 HH12 HH13 JJ01 JJ02 JJ03 JJ05 JJ08 JJ09 JJ16 JJ25 JJ26 LL04 LL08 LL09 LL10 LL12 LL20 LL21 LL30 LL36 LL37 LL47 MM01 NN20 PP02 PP03 PP12 QQ17 QQ23 QQ28 UU07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mineo Nomoto 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside Hitachi, Ltd.Production Technology Research Institute (72) Inventor Hideo Ishimori 3--16, Higashi 3-chome, Shibuya-ku, Tokyo No. 3 F-term in Hitachi Electronics Engineering Co., Ltd. (reference) 2F065 AA24 AA49 AA54 BB22 DD04 DD06 EE00 FF09 FF10 FF42 FF67 GG04 GG22 HH01 HH04 HH08 HH12 HH13 JJ01 JJ02 JJ03 JJ05 JJ08 LL09 LL37 LL47 MM01 NN20 PP02 PP03 PP12 QQ17 QQ23 QQ28 UU07

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】被検出対象物上の検出箇所に、輪帯もしく
は疑似輪帯の照明光により形成された1個以上のスポッ
ト照明光を照射し、 前記検出箇所に照射されたスポット照明光の反射光を共
焦点検出することにより得られる信号の強度に基いて被
検出対象物の立体形状を検出することを特徴とする立体
形状検出方法。
1. A method according to claim 1, further comprising: irradiating a detection location on the detection target object with one or more spot illumination lights formed by illumination light of an annular zone or a pseudo annular zone; A three-dimensional shape detection method, comprising: detecting a three-dimensional shape of an object to be detected based on the intensity of a signal obtained by confocal detection of reflected light.
【請求項2】被検出対象物上の複数の検出箇所の各々
に、輪帯もしくは疑似輪帯の照明光により形成された複
数のスポット照明光の各々を照射し、 前記各検出箇所に照射された各スポット照明光の反射光
を共焦点検出することにより得られる信号の強度に基い
て被検出対象物の複数の検出箇所の立体形状を検出する
ことを特徴とする立体形状検出方法。
2. A method according to claim 1, further comprising: irradiating each of the plurality of detection locations on the detection target object with a plurality of spot illumination lights formed by illumination light of a ring or a pseudo-orbicular zone; A three-dimensional shape at a plurality of detection points of the object to be detected based on signal intensities obtained by performing confocal detection of reflected light of each spot illumination light.
【請求項3】前記輪帯の照明光において、輪帯の外輪径
に対する内輪径の比が0.1以上で0.9以下であるこ
とを特徴とする請求項1または2記載の立体形状検出方
法。
3. The three-dimensional shape detection according to claim 1, wherein the ratio of the inner ring diameter to the outer ring diameter of the annular zone is 0.1 or more and 0.9 or less in the illumination light of the annular zone. Method.
【請求項4】前記被検出対象物もしくは前記スポット照
明光を該スポット照明光の光軸方向に相対的に移動さ
せ、該動きに応じた前記反射光を共焦点検出することを
特徴とする請求項1または2記載の立体形状検出方法。
4. The apparatus according to claim 1, wherein the object to be detected or the spot illumination light is relatively moved in an optical axis direction of the spot illumination light, and the reflected light corresponding to the movement is subjected to confocal detection. Item 3. The method for detecting a three-dimensional shape according to Item 1 or 2.
【請求項5】前記動きに応じて得られる複数の共焦点検
出信号の強度を用いて最大となる位置データを内挿して
求めることにより立体形状を検出することを特徴とする
請求項4記載の立体形状検出方法。
5. A three-dimensional shape is detected by interpolating and obtaining maximum position data using the intensities of a plurality of confocal detection signals obtained according to the movement. 3D shape detection method.
【請求項6】前記動きとして前記スポット照明光の径が
最小となるフォーカス位置を前記被検出対象物の表面の
上下方向に変化させ、該スポット照明光に対応する共焦
点検出信号の強度が所望の閾値以上になるものの中か
ら、最も上方の位置データを被検出対象物の表面の立体
形状候補とすることを特徴とする請求項4記載の立体形
状検出方法。
6. A focus position where the diameter of the spot illumination light is minimized in the vertical direction of the surface of the detection target object as the movement, and the intensity of a confocal detection signal corresponding to the spot illumination light is set to a desired value. 5. The three-dimensional shape detection method according to claim 4, wherein the position data at the top of the three or more threshold values is set as a three-dimensional shape candidate of the surface of the detection target.
【請求項7】前記被検出対象物もしくは前記スポット照
射光を照射光軸とほぼ直角な方向に移動させ、被検出対
象物から広い範囲の立体形状を検出することを特徴とす
る請求項1または2記載の立体形状検出方法。
7. The object to be detected or the spot irradiation light is moved in a direction substantially perpendicular to an irradiation optical axis, and a wide range of three-dimensional shapes is detected from the object to be detected. 3. The method for detecting a three-dimensional shape according to 2.
【請求項8】前記スポット照明光の複数を少なくとも1
次元的に配列して形成し、該複数配列スポット照明光と
前記被検出対象物とを前記スポット照明光の配列方向に
交差する方向に相対的に位置変化させて被検出対象物の
立体形状の2次元分布を求めることを特徴とする請求項
1または2記載の立体形状検出方法。
8. A method according to claim 1, wherein the plurality of spot illumination lights are at least one.
The three-dimensional shape of the detection target object is formed by dimensionally arranging the plurality of spot illumination lights and the detection target object relative to each other in a direction intersecting the arrangement direction of the spot illumination light. The three-dimensional shape detection method according to claim 1, wherein a two-dimensional distribution is obtained.
【請求項9】被検出対象物上の検出箇所に、輪帯もしく
は疑似輪帯の照明光により形成された1個以上のスポッ
ト照明光を対物レンズを通して照射する輪帯照明微小ス
ポット照射光学系と、 該輪帯照明微小スポット照射光学系により前記検出箇所
に照射されたスポット照明光の反射光を前記対物レンズ
を通して共焦点検出する光電変換手段を有する共焦点検
出光学系と、 該共焦点検出光学系の光電変換手段によって得られた信
号を処理する信号処理回路とを備えたことを特徴とする
共焦点検出装置。
9. An orbicular illuminating minute spot irradiating optical system for irradiating, through an objective lens, one or more spot illuminating lights formed by illuminating light of an orbicular zone or a pseudo-orbicular zone to a detection point on an object to be detected. A confocal detection optical system having photoelectric conversion means for performing confocal detection of reflected light of spot illumination light applied to the detection location by the orbicular zone illumination minute spot irradiation optical system through the objective lens; A signal processing circuit for processing a signal obtained by the photoelectric conversion means of the system.
【請求項10】被検出対象物上の複数の検出箇所の各々
に、輪帯もしくは疑似輪帯の照明光により形成された複
数のスポット照明光の各々を対物レンズを通して照射す
る輪帯照明微小スポット照射光学系と、 該輪帯照明微小スポット照射光学系により前記各検出箇
所に照射された各スポット照明光の反射光を前記対物レ
ンズを通して共焦点検出する複数の光電変換手段を有す
る共焦点検出光学系と、 該共焦点検出光学系の複数の光電変換手段の各々によっ
て得られた信号を処理する信号処理回路とを備えたこと
を特徴とする共焦点検出装置。
10. An annular illumination minute spot for irradiating each of a plurality of spots formed by annular or pseudo annular illumination light through an objective lens to each of a plurality of detection locations on an object to be detected. A confocal detection optical system comprising: an irradiation optical system; and a plurality of photoelectric conversion means for performing confocal detection of reflected light of each spot illumination light applied to each of the detection points by the annular illumination minute spot irradiation optical system through the objective lens. A confocal detection device, comprising: a system; and a signal processing circuit that processes signals obtained by each of the plurality of photoelectric conversion units of the confocal detection optical system.
【請求項11】前記輪帯照明微小スポット照射光学系に
おいて、輪帯の外輪径に対する内輪径の比を0.1以上
で0.9以下で構成したことを特徴とする請求項9また
は10記載の共焦点検出装置。
11. The optical system according to claim 9, wherein a ratio of an inner ring diameter to an outer ring diameter of the orbicular zone is 0.1 or more and 0.9 or less in the orbicular zone illumination minute spot irradiating optical system. Confocal detection device.
【請求項12】被検出対象物上の検出箇所に、輪帯もし
くは疑似輪帯の照明光により形成された1個以上のスポ
ット照明光を対物レンズを通して照射する輪帯照明微小
スポット照射光学系と、 該輪帯照明微小スポット照射光学系により前記検出箇所
に照射されたスポット照明光の反射光を前記対物レンズ
を通して共焦点検出する光電変換手段を有する共焦点検
出光学系と、 該共焦点検出光学系の光電変換手段によって得られた信
号の強度に基いて被検出対象物上の検出箇所における立
体形状を検出する信号処理回路とを備えたことを特徴と
する立体形状検出装置。
12. An optical system for illuminating minute spots, which irradiates one or more spot illuminating lights formed by illuminating light of an annular zone or a quasi-annular zone through an objective lens onto a detection point on an object to be detected. A confocal detection optical system having photoelectric conversion means for performing confocal detection of reflected light of spot illumination light applied to the detection location by the orbicular zone illumination minute spot irradiation optical system through the objective lens; A signal processing circuit for detecting a three-dimensional shape at a detection point on the detection target based on the intensity of a signal obtained by a photoelectric conversion means of the system.
【請求項13】被検出対象物上の複数の検出箇所の各々
に、輪帯もしくは疑似輪帯の照明光により形成された複
数のスポット照明光の各々を対物レンズを通して照射す
る輪帯照明微小スポット照射光学系と、 該輪帯照明微小スポット照射光学系により前記各検出箇
所に照射された各スポット照明光の反射光を前記対物レ
ンズを通して共焦点検出する複数の光電変換手段を有す
る共焦点検出光学系と、 該共焦点検出光学系の複数の光電変換手段の各々によっ
て得られた信号の強度に基いて被検出対象物上の複数の
検出箇所の各々における立体形状を検出する信号処理回
路とを備えたことを特徴とする立体形状検出装置。
13. A zonal illumination minute spot for irradiating each of a plurality of spots formed by illuminating light of an annular zone or a quasi-annular zone through an objective lens to each of a plurality of detection locations on an object to be detected. A confocal detection optical system comprising: an irradiation optical system; and a plurality of photoelectric conversion means for performing confocal detection of reflected light of each spot illumination light applied to each of the detection points by the annular illumination minute spot irradiation optical system through the objective lens. A signal processing circuit for detecting a three-dimensional shape at each of a plurality of detection points on the detection target object based on signal intensities obtained by each of the plurality of photoelectric conversion units of the confocal detection optical system. A three-dimensional shape detection device, comprising:
【請求項14】更に、前記被検出対象物もしくは前記ス
ポット照明光を該スポット照明光の光軸方向に相対的に
移動させ、この移動量に応じた複数の共焦点検出信号を
前記共焦点検出光学系の光電変換手段から検出させる移
動制御手段を備えたことを特徴とする請求項12または
13記載の立体形状検出装置。
14. The method according to claim 1, further comprising: moving the object to be detected or the spot illumination light relatively in an optical axis direction of the spot illumination light; 14. The three-dimensional shape detection device according to claim 12, further comprising a movement control unit that detects the light from the photoelectric conversion unit of the optical system.
【請求項15】前記信号処理回路において、前記共焦点
検出光学系から移動量に応じて得られる複数の共焦点検
出信号の強度を用いて最大となる位置データを内挿して
求めることにより立体形状を検出するように構成したこ
とを特徴とする請求項14記載の立体形状検出装置。
15. The three-dimensional shape by interpolating and obtaining the maximum position data using the intensities of a plurality of confocal detection signals obtained from the confocal detection optical system in accordance with the amount of movement in the signal processing circuit. The three-dimensional shape detection device according to claim 14, wherein the three-dimensional shape detection device is configured to detect the three-dimensional shape.
【請求項16】更に、前記スポット照明光の径が最小と
なるフォーカス位置を前記被検出対象物の表面の上下方
向に変化させるように前記被検出対象物もしくは前記ス
ポット照明光を該スポット照明光の光軸方向に相対的に
移動させ、この移動量に応じた複数の共焦点検出信号を
前記共焦点検出光学系の光電変換手段から検出させる移
動制御手段を備え、前記信号処理回路において、共焦点
検出信号の強度が所望の閾値以上になるものの中から所
望の検出面の高さの候補を求めるように構成したことを
特徴とする請求項12または13記載の立体形状検出装
置。
16. The object to be detected or the spot illumination light is changed so that the focus position where the diameter of the spot illumination light becomes minimum is changed in the vertical direction of the surface of the object to be detected. Moving control means for relatively moving in the optical axis direction, and detecting a plurality of confocal detection signals corresponding to the amount of movement from the photoelectric conversion means of the confocal detection optical system; 14. The three-dimensional shape detection device according to claim 12, wherein a candidate for a height of a desired detection surface is obtained from among those whose intensity of a focus detection signal is equal to or more than a desired threshold.
【請求項17】更に、前記被検出対象物もしくは前記ス
ポット照射光を照射光軸とほぼ直角な方向に移動させる
移動手段を備えたことを特徴とする請求項12または1
3記載の立体形状検出装置。
17. A moving means for moving said object to be detected or said spot irradiation light in a direction substantially perpendicular to an irradiation optical axis.
3. The three-dimensional shape detection device according to 3.
【請求項18】前記輪帯照明微小スポット照射光学系
を、スポット照明光の複数を少なくとも1次元的に配列
して構成することを特徴とする請求項12または13記
載の立体形状検出装置。
18. The three-dimensional shape detecting device according to claim 12, wherein said annular illumination minute spot irradiating optical system is configured by arranging a plurality of spot illumination lights at least one-dimensionally.
【請求項19】更に、前記共焦点検出光学系と被検出対
象物との間の光軸方向の相対変位を検出する補助検出手
段と、該補助検出手段によって検出された相対変位に基
いて前記被検出対象物もしくは前記スポット照明光を該
スポット照明光の光軸方向に相対的に移動させるように
制御する移動制御手段を備えたことを特徴とする請求項
12または13記載の立体形状検出装置。
19. An auxiliary detecting means for detecting a relative displacement in the optical axis direction between the confocal detection optical system and the object to be detected, and the detecting means detects the relative displacement based on the relative displacement detected by the auxiliary detecting means. 14. The three-dimensional shape detection device according to claim 12, further comprising a movement control unit that controls the object to be detected or the spot illumination light to relatively move in the optical axis direction of the spot illumination light. .
JP23660599A 1999-08-24 1999-08-24 Three-dimensional shape detection method and apparatus, and confocal detection apparatus Expired - Fee Related JP3611755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23660599A JP3611755B2 (en) 1999-08-24 1999-08-24 Three-dimensional shape detection method and apparatus, and confocal detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23660599A JP3611755B2 (en) 1999-08-24 1999-08-24 Three-dimensional shape detection method and apparatus, and confocal detection apparatus

Publications (2)

Publication Number Publication Date
JP2001059712A true JP2001059712A (en) 2001-03-06
JP3611755B2 JP3611755B2 (en) 2005-01-19

Family

ID=17003125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23660599A Expired - Fee Related JP3611755B2 (en) 1999-08-24 1999-08-24 Three-dimensional shape detection method and apparatus, and confocal detection apparatus

Country Status (1)

Country Link
JP (1) JP3611755B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153622A (en) * 2004-11-29 2006-06-15 Opcell Co Ltd Autofocus device
JP2006275740A (en) * 2005-03-29 2006-10-12 Univ Of Electro-Communications Creating apparatus and method, measuring apparatus and method, and program
JP2006275739A (en) * 2005-03-29 2006-10-12 Univ Of Electro-Communications Measuring apparatus, method, and program
JP2007085809A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Height measuring instrument and height measuring method for minute projection
JP2008026065A (en) * 2006-07-19 2008-02-07 Lasertec Corp Shape measuring apparatus and confocal microscope
JP2008261829A (en) * 2007-04-12 2008-10-30 V Technology Co Ltd Surface measuring device
JP2009063446A (en) * 2007-09-06 2009-03-26 Disco Abrasive Syst Ltd Device for detecting height position of workpiece held on chuck table
JP2009258022A (en) * 2008-04-18 2009-11-05 Sony Corp Displacement detecting device
KR100992029B1 (en) * 2006-12-11 2010-11-04 나노스코프시스템즈 (주) A 3-Dimensional Shape Measuring System
WO2014007543A1 (en) * 2012-07-06 2014-01-09 주식회사 미르기술 Multifunctional light-emitting diode inspection apparatus comprising confocal sensor
KR101742389B1 (en) 2015-10-30 2017-06-01 한국과학기술원 Micorscopy device
DE102008046386B4 (en) 2007-09-11 2023-09-07 Disco Corp. Height position detector for a workpiece held on a clamping table

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4060494B2 (en) * 1999-08-30 2008-03-12 アンリツ株式会社 Three-dimensional surface shape measuring device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153622A (en) * 2004-11-29 2006-06-15 Opcell Co Ltd Autofocus device
JP4701388B2 (en) * 2005-03-29 2011-06-15 国立大学法人電気通信大学 Generating apparatus and method, measuring apparatus and method, and program
JP2006275740A (en) * 2005-03-29 2006-10-12 Univ Of Electro-Communications Creating apparatus and method, measuring apparatus and method, and program
JP2006275739A (en) * 2005-03-29 2006-10-12 Univ Of Electro-Communications Measuring apparatus, method, and program
JP4701387B2 (en) * 2005-03-29 2011-06-15 国立大学法人電気通信大学 Measuring apparatus and method, and program
JP2007085809A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Height measuring instrument and height measuring method for minute projection
JP2008026065A (en) * 2006-07-19 2008-02-07 Lasertec Corp Shape measuring apparatus and confocal microscope
KR100992029B1 (en) * 2006-12-11 2010-11-04 나노스코프시스템즈 (주) A 3-Dimensional Shape Measuring System
JP2008261829A (en) * 2007-04-12 2008-10-30 V Technology Co Ltd Surface measuring device
JP2009063446A (en) * 2007-09-06 2009-03-26 Disco Abrasive Syst Ltd Device for detecting height position of workpiece held on chuck table
DE102008045716B4 (en) 2007-09-06 2023-10-26 Disco Corp. Height position detector for a workpiece held on a clamping table
DE102008046386B4 (en) 2007-09-11 2023-09-07 Disco Corp. Height position detector for a workpiece held on a clamping table
JP2009258022A (en) * 2008-04-18 2009-11-05 Sony Corp Displacement detecting device
WO2014007543A1 (en) * 2012-07-06 2014-01-09 주식회사 미르기술 Multifunctional light-emitting diode inspection apparatus comprising confocal sensor
KR101742389B1 (en) 2015-10-30 2017-06-01 한국과학기술원 Micorscopy device

Also Published As

Publication number Publication date
JP3611755B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JP6377218B2 (en) Measuring system and measuring method
US9989746B2 (en) Light microscope and microscopy method
KR101982363B1 (en) Illumination control
KR102013083B1 (en) Apparatus for euv imaging and methods of using same
TWI464362B (en) Apparatus for measuring a height and obtaining a focused image of and object and method thereof
JP2018163175A (en) Inspection beam shaping for improved detection sensitivity
CN111044260B (en) Microscope objective distortion testing device and testing method
CN104515469A (en) Light microscope and microscopy method for examining a microscopic specimen
JP2003028799A (en) Biochip reader
JP4920918B2 (en) Phase filter, optical device, and raster microscope
JP2001059712A (en) Method and apparatus for detecting stereoscopic shape as well as confocal detector
JP2009300486A (en) Optical equipment and optical apparatus
JPH09218017A (en) Method and equipment for measuring thickness of film
US20190086258A1 (en) Trasparent Measuring Probe for Beam Scanning
JP2012194085A (en) Edge detection apparatus
JP2001281101A (en) Device and method for determining refracting power by spatial resolution
US11802761B2 (en) Perforated disk for selecting light for an optical imaging
JPH03189545A (en) Defect inspecting device
JP2000509825A (en) Optical scanning device
JP2008261829A (en) Surface measuring device
JPH0763508A (en) Laser microscope
US20240219699A1 (en) High-performance euv microscope device with free-form illumination system structure
US20240045338A1 (en) High-performance euv microscope device with free-form illumination system structure having elliptical mirror
JP2003524194A (en) Apparatus for optically scanning an object
JP3155569B2 (en) Dispersion distribution measurement method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees