JP6539157B2 - 固体撮像装置および撮像システム - Google Patents

固体撮像装置および撮像システム Download PDF

Info

Publication number
JP6539157B2
JP6539157B2 JP2015171759A JP2015171759A JP6539157B2 JP 6539157 B2 JP6539157 B2 JP 6539157B2 JP 2015171759 A JP2015171759 A JP 2015171759A JP 2015171759 A JP2015171759 A JP 2015171759A JP 6539157 B2 JP6539157 B2 JP 6539157B2
Authority
JP
Japan
Prior art keywords
signal
correction
circuit
output
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015171759A
Other languages
English (en)
Other versions
JP2017050669A5 (ja
JP2017050669A (ja
Inventor
善一 山崎
善一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015171759A priority Critical patent/JP6539157B2/ja
Priority to US15/238,440 priority patent/US9762841B2/en
Publication of JP2017050669A publication Critical patent/JP2017050669A/ja
Publication of JP2017050669A5 publication Critical patent/JP2017050669A5/ja
Application granted granted Critical
Publication of JP6539157B2 publication Critical patent/JP6539157B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、固体撮像装置および撮像システムに関する。
近年、画像の高画質化の要求に伴い、出力信号のオフセット電圧を補正する装置が案出されている。例えば、特開平11−027112号公報に記載の画像読取装置は、マルチチップのリニアセンサを備え、各チップはオフセット電圧の補正回路を備えている。選択されたチップの補正回路は基準電圧を出力し、選択されていないチップの補正回路は基準電圧に基づきオフセット電圧を補正する。これにより、各チップの出力信号におけるオフセット電圧差の低減が図られている。
特開平11−027112号公報
上述の装置においては、選択されていないチップの補正回路にオフセット電圧が存在する場合には、オフセット電圧が補正されずに残存し、画像の劣化の要因となりうる。また、チップ外部の信号処理回路において、各チップからの出力信号と基準電圧との差分演算を行う場合、オフセット電圧に起因して信号処理回路においてダイナミックレンジが制限されてしまうことがある。例えば、チップに光が照射されていない際の出力信号と基準電圧との間に電圧差がある場合、信号処理回路の入力電圧範囲を最大限に利用できないことがある。
本発明の一実施形態としての固体撮像装置は、光電変換素子を備える画素が行列状に配置された画素部と、信号線と、前記画素がリセットされた状態に応じた第1の信号、および前記光電変換素子での光電変換によって生じた電荷に基づく第2の信号を前記信号線に出力する読み出し回路と、増幅器およびクランプ容量を備え、前記クランプ容量の一端が前記信号線に接続され、他端が前記増幅器の入力端子に接続される信号出力回路と、前記増幅器の出力信号と基準信号との差分に基づく補正信号を出力する補正回路と、前記補正信号を保持し、かつ、前記信号線に前記第1の信号が出力される際に、保持された前記補正信号を前記増幅器の前記入力端子に印加するように構成された保持回路とを有する。
本発明の他の実施形態としての固体撮像装置は、光電変換素子を備える画素が行列状に配置された画素部と、複数の信号線と、前記画素からの信号を前記複数の信号線に出力する読み出し回路と、前記複数の信号線の対応する1つに接続され、前記画素からの信号を増幅する増幅器をそれぞれが有する複数の信号出力回路と、それぞれが前記複数の信号出力回路の1つの前記増幅器の出力信号と基準信号との差分に基づく複数の補正信号を生成するように、前記複数の信号出力回路に対して共通に設けられた補正回路と、前記複数の信号出力回路に対応して設けられ、それぞれが、前記補正信号を保持し、かつ、保持された前記補正信号を対応する前記増幅器の入力端子に印加するように構成された複数の保持回路とを有する。
固体撮像装置から画素信号を出力する際に、画像信号の劣化要因となりうる増幅器のオフセット成分を補正し、固体撮像装置からの画素信号を受ける画像信号処理部のダイナミックレンジを有効に利用するとともに、画像処理部の処理負担を軽減することができる。
本発明の第1実施形態に係る固体撮像装置のブロック図である。 本発明の第1実施形態に係る固体撮像装置のタイミングチャートである。 本発明の第1実施形態に係る固体撮像装置の画素部および補正処理を説明するための図である。 本発明の第2実施形態に係る固体撮像装置の画素部および補正処理を説明するための図である。 本発明の第3施形態に係る保持回路のブロック図である。 本発明の第1実施形態に係る画素回路の一例を示す図である。 本発明の第4実施形態に係る出力回路のブロック図である。 本発明の第4実施形態に係る固体撮像装置のタイミングチャートである。 本発明の第5実施形態に係る固体撮像装置のタイミングチャートである。 本発明の第5実施形態に係る固体撮像装置のタイミングチャートの他の例である。 本発明の第6実施形態に係る出力回路のブロック図である。 本発明の第6実施形態に係る固体撮像装置のタイミングチャートである。 本発明の第7実施形態に係る出力回路のブロック図である。 本発明の第8実施形態に係る撮像システムのブロック図である。
次に、本発明の実施形態について図面を参照して詳細に説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る固体撮像装置のブロック図である。固体撮像装置は、画素部1、垂直走査回路2、読み出し回路3、水平走査回路4、出力回路5、制御回路6を備えるCMOSイメージセンサである。画素部1は、行列状に配置された複数の有効画素1aと、有効画素1aの周辺に配列された複数の遮光画素1bとを備える。有効画素1a、遮光画素1bは、例えば図6に示されたよう、光電変換素子PD、転送トランジスタM1、リセットトランジスタM2、増幅トランジスタM3、選択トランジスタM4、浮遊拡散部(フローティング・ディフュージョン)FDを備える。光電変換素子PDは、例えばフォトダイオードから構成され、照射された光に応じた電荷を発生させる。転送トランジスタM1は光電変換素子PDに発生した電荷を浮遊拡散部FDに転送する。リセットトランジスタM2は浮遊拡散部FDの電位を所定の電圧(電源電圧)にリセットする。転送トランジスタM1とリセットトランジスタM2を同時にオンさせることにより、光電変換素子PDの電荷がリセットされる。増幅トランジスタM3は、浮遊拡散部FDの電位に応じてソースの電位が変わるソースフォロアとして動作する。選択トランジスタM4は増幅トランジスタM3のソースを信号線1cに接続する。読み出すべき行の選択トランジスタM4をオンさせることで、当該行の光電変換素子PDの電荷に応じた電圧が信号線1cに出力される。図示されていないが、信号線1cには電流回路が接続されている。トランジスタM1〜M4はNチャネルトランジスタに限定されることなく、PチャネルMOSトランジスタであっても良い。また、複数の光電変換素子PDが1つの増幅トランジスタM3を共有しても良い。
遮光画素1bには遮光膜が形成され、光電変換素子PDへの入射光が遮られる。また、有効画素1aの光電変換素子PD以外の回路部分においても遮光膜が形成され得る。有効画素1aの光電変換素子PDには、分光感度特性を制御するためのカラーフィルタ、集光のためのマイクロレンズが設けられている。また、各光電変換部間には混色を防ぐための遮光膜が形成され得る。さらに、画素部1には、有効画素1a、遮光画素1bの他に、光電変換部を有さないダミー画素などのように画像を出力しない画素が含まれ得る。
図1に戻り、垂直走査回路2は制御回路6からの信号を受けて、画素部1の読取走査を行う。すなわち、垂直走査回路2は画素1a、1bのトランジスタM1〜M4のゲートに印加される制御信号を駆動し、画素1a、1bを行毎に読み出す。読み出された画素信号は信号線1cを介して読み出し回路3に入力される。読み出し回路3は信号線1c毎の列増幅回路を備え、信号線1cを介して入力された画素信号を増幅し、信号線h0に出力する。水平走査回路4は、列増幅回路に接続されたスイッチと、該スイッチをオンまたはオフに制御するための制御信号を供給する。水平走査回路4がスイッチを順次オンにすることにより、選択された行の画素信号が信号線h0を介して出力回路5に出力される。
出力回路5は、信号出力回路10、補正回路Afb、保持回路30、増幅器A2、スイッチSW1、SW2を備える。信号出力回路10は増幅器A1、クランプ容量C1を備え、クランプ容量の一端は信号線h0に接続され、他端は増幅器A1の入力端子に接続されている。すなわち、信号線h0はクランプ容量C1を介して増幅器A1の入力端子に接続され、増幅器A1の出力端子OUTSから信号が出力される。増幅器A2の入力端子には基準信号VREFが入力されており、出力端子OUTNからは基準信号VREFに基づく信号が出力される。基準信号VREFは光電変換素子からの信号に依存しない固定電圧である。増幅器A1、A2は信号を低インピーダンスで出力するバッファアンプを備えることが好ましいが、電圧増幅回路を備えても良い。第2の増幅器としての増幅器A2は増幅器A1と同様に構成され、オフセット電圧、増幅率などの電気的特性は互いにほぼ同一であることが望ましい。出力端子OUTS、OUTNは図示されていないアナログ・フロント・エンドの差動増幅器に接続される。
補正回路Afbは差動入力対を備え、一方の入力端子はスイッチSW1を介して出力端子OUTSに接続され、他方の入力端子はスイッチSW2を介して出力端子OUTNに接続されている。補正回路Afbは出力信号と基準信号との差分を増幅し、補正信号を生成する。
保持回路30は、スイッチSW3、保持容量C3、増幅器A3を備える。補正回路Afbの出力端子はスイッチSW3を介して保持容量C3に接続されている。すなわち、スイッチSW3の一端は補正回路Afbの出力端子に接続され、スイッチSW3の他端は保持容量C3の一端に接続されている。保持容量C3の他端は基準電位であるグランド端子に接続されている。スイッチSW3がオンとなることにより、保持容量C3は補正回路Afbから出力された補正信号を保持可能となる。保持容量C3の一端はシングル入力型の増幅器A3の入力端子に接続され、増幅器A3の出力端子はスイッチSW4の一端に接続されている。スイッチSW4の他端は増幅器A1の入力端子に接続されている。スイッチSW4がオンとなることにより、補正信号が増幅器A1の入力端子に印加される。
増幅器A1、補正回路Afb、保持回路30は負帰還回路(フィードバックループ)の一部を構成している。スイッチSW1〜SW4がすべてオンとなることによりフィードバックループはクローズの状態となり、スイッチSW1〜SW4のいずれかがオフとなることによりフィードバックループはオープンの状態となる。増幅器A1、A3、補正回路Afbのそれぞれの増幅率を変更することにより、負帰還回路の安定性、応答速度を調整することができる。スイッチSW1、SW2、SW3、SW4は例えば制御回路6によって駆動され得る。信号出力回路10のオフセット電圧を補正するためには、補正回路Afbのオフセット電圧はできるだけ小さいことが望ましい。ここで、補正回路Afbのオフセット電圧は微小なΔvであるものとする。
図2は、本実施形態に係る固体撮像装置のタイミングチャートであって、画素信号を順次読み出すタイミングチャートを示している。ここで、1フレームの所定行の最終列の画素信号が読み出されてから次の行の先頭列の画素信号が読み出されるまでの期間を水平ブランキング期間Hblkとする。画素信号を順次読み出す期間を水平走査期間Hscanとする。出力回路5は、水平ブランキング期間Hblkにおいて補正信号を出力することによって、増幅器A1の出力信号のレベルを補正し、増幅器A1と増幅器A2とのオフセット電圧を低減する(第1の補正)。保持回路30は第1の補正時における補正信号を保持容量C3に保持する。その後、水平走査期間Hscanにおいて、出力回路5は、保持された補正信号を用いて出力信号のレベルを補正し、画素1a、1bのリセット状態に応じたN信号(第1の信号)と光電変換で生じた電荷に基づくS信号(第2の信号)とを、出力端子OUTSから順次出力する(第2の補正)。画素1a、1bのリセット状態は、リセットトランジスタM2をオンし、浮遊拡散部FDの電位をリセットすることにより得られる。
以下、図2のタイミングチャートを詳述する。時刻t0において水平ブランキング期間Hblkが開始し、このとき、スイッチSW1〜SW4はオフとなっている。時刻t1において、スイッチSW4がオンとなり、保持容量C3の初期電圧が増幅器A1の入力端子に印加される。このとき、出力端子OUTS、OUTNの間には、保持容量C3の初期電圧と増幅器A1と増幅器A2のオフセット電圧とによって規定される電圧差が生じている。次に、時刻t2において、スイッチSW1、SW2、SW3がオンとなり、増幅器A1の出力端子OUTSから、補正回路Afb、保持回路30を介して増幅器A1の入力端子に至るフィードバックループが形成される。補正回路Afbに出力端子OUTSと出力端子OUTNのそれぞれの電圧が入力され、補正回路Afbは両者の差分電圧に基づく補正信号を保持回路30に出力する。保持回路30は補正信号を保持容量C3に保持するとともに、増幅器A3を介して増幅器A1の入力端子、すなわちクランプ容量の他端に出力する。出力端子OUTS、OUTNの間のオフセット電圧に基づく補正信号を増幅器A1に負帰還入力することにより、オフセット電圧を低減することができる。増幅器A1、A2の各々のオフセット電圧も含めて補正することができる。
時刻t3において、スイッチSW1、SW2、SW3がオフとなり、フィードバックループがオープンの状態となる。このとき、保持容量C3には補正信号の電圧が保持され続ける。時刻t4において、スイッチSW4がオフとなり、クランプ容量の他端に補正信号が出力されなくなる。
時刻t5において、水平ブランキング期間Hblkから水平走査期間Hscanへと移行する。画素1aにおいて、転送トランジスタM1、リセットトランジスタM2がオンとなり、光電変換素子PD、浮遊拡散部FDの電位が電源電圧VDDにリセットされる。選択トランジスタM4がオンとなり、リセット時の浮遊拡散部FDの電位に基づくN信号が信号線1cに出力され、読み出し回路3によって増幅された後、信号線h0に出力される。時刻t6において、信号線h0からN信号が出力されるタイミングに同期して、スイッチSW4がオンとなる。保持回路30は水平ブランキング期間Hblkにおいて保持した補正信号を増幅器A1の入力端子に出力し、N信号の電圧を補正信号の電圧にクランプする。これにより、N信号の出力時において、出力端子OUTSと出力端子OUTNとの間の差分電圧を無くし、若しくは低減することができる。
次に、リセットトランジスタM2がオフとなり、転送トランジスタM1がオンとなることで、光電変換素子PDから光電変換による電荷が浮遊拡散部FDに転送される。選択トランジスタM4がオンとなり、光電変換時の電荷に基づくS信号が信号線1cを介して読み出し回路3に入力され、信号線h0へと出力される。時刻t7において、スイッチSW4がオフとなり、増幅器A1の入力端子は保持回路30から電気的に切り離される。S信号がクランプ容量C1を介して増幅器A1の入力端子に入力されると、入力端子の電圧はS信号とN信号との電圧差だけ変化する。すなわち、S信号からN信号を差し引いた(S−N)信号が増幅器A1の入力端子に入力される。これにより、画素部1、読み出し回路3を構成する素子の特性ばらつきに起因するノイズ成分をS信号から除去することができる。すなわち、固定パターンノイズの無い画素信号を出力端子OUTS、OUTNから出力することができる。
また、N信号入力時(時刻t6〜t7)において、増幅器A1の入力端子は補正信号の電圧にクランプされている。このため、S信号入力時(時刻t7〜t8)において、増幅器A1の入力端子は補正信号の電圧を基準としてS信号およびN信号の電圧差だけ変化し、オフセット電圧が除去された(S−N)信号が増幅器A1から出力される。
時刻t8において、信号線h0からN信号が出力され、スイッチSW4がオンとなる。保持回路30は増幅器A1の入力端子に補正信号を印加し、N信号におけるオフセット電圧が除去される。時刻t9において、スイッチSW4がオフとなり、増幅器A1の入力端子にS信号が入力されると、信号出力回路10は(S−N)信号におけるオフセット成分が除去された画素信号を出力する。以下、水平走査期間Hscanが終了するまで、同様の処理を繰り返し実行する。
本実施形態によれば、画素信号におけるオフセット電圧を除去し、N信号のオフセット電圧を微小な電圧Δvに低減することができる。出力回路5の外部の画像信号処理部の入力回路が差動増幅器により構成されている場合、画像信号処理部の入力電圧範囲を最大限利用することができ、画素信号のダイナミックレンジを大きくすることが可能となる。
ここで、増幅器A1のオフセット電圧をVoffs、増幅器A2のオフセット電圧をVoffn、補正回路Afbのオフセット電圧をΔvとする。オフセット補正を行わない場合、基準信号VREFの出力時における出力端子OUTS、OUTNのそれぞれの電圧、および差分電圧は以下のようになる。
OUTS=VREF+Voffs
OUTN=VREF+Voffn
OUTS−OUTN=Voffs−Voffn
本実施形態においては、基準信号VREFの出力時における出力端子OUTS、OUTNのそれぞれの電圧、および差分電圧は以下のようになる。
OUTS=VREF+Voffn+Δv
OUTN=VREF+Voffn
OUTS−OUTN=Δv
上述の式において、オフセット補正を行わない場合における差分電圧はVoffs−Voffnとなり、オフセット補正を行った場合における差分電圧は微小なΔvとなることが確認できる。一般的には、高速アンプのオフセット電圧は大きいため、差動出力のオフセットは、|Voffs−Voffn|>>Δvとなる。従って、例えば設計仕様上、出力回路5においてオフセット電圧の大きな増幅器A1、A2を使用する必要がある場合、本実施形態の効果は特に顕著となる。
図3は、本実施形態に係る固体撮像装置の画素部および補正処理を説明するための図である。図3(a)において、画素部1はm行n列の画素から構成され、複数の有効画素からなる有効画素領域と複数の遮光画素からなる遮光画素領域とを備える。画素部1の第1行から第m行に向かって行走査が行われ、第1列から第n列に向かって列走査がなされるものとする。第1行から第i行までをA行、第(i+1)行から第m行までをB行とする。A行は遮光画素1bのみから構成された遮光画素行であり、B行は第1列から第j列までの遮光画素と、第(j+1)列から第n列までの有効画素とから構成される。
図3(b)に示されたように、A行の読み出し走査の後、B行の読み出し走査が行われる。出力回路5は、A行のブランキング期間Hblkにおいてオフセット補正を行い、水平走査期間Hscanにおいて遮光画素からの信号を出力する。続いて、出力回路5は、B行のブランキング期間Hblkにおいてオフセット補正を行ない、水平走査期間Hscanにおいて列走査された遮光画素および有効画域からの信号を順に出力する。水平ブランキング期間Hblk毎に保持容量C3に補正信号が保持されるため、水平走査期間Hscanにおいて補正信号が変動するのを最小限に抑えることができる。従って、保持容量C3の電圧値がリーク等により変動する可能性がある場合においても、行方向のシェーディングを抑え、安定した画像信号を得ることができる。
図3(c)に示されたように、オフセット補正をA行の水平ブランキング期間Hblkにおいてのみ行っても良い。A行のブランキング期間Hblkにおいて、出力回路5はオフセット補正を行った後、水平走査期間Hscanにおいて列走査された遮光画素からの信号を出力する。B行においては、出力回路5はオフセット補正を行わずに、遮光画素および有効画素からの信号を順に出力する。有効画素領域の読み出し期間において補正信号は一定に保持されるため、有効画素領域において横縞状のノイズの無い安定した画像信号を得ることができる。
以上述べたように、本実施形態においては、固体撮像装置から画素信号と基準信号VREFとを出力する際に、画素信号と基準信号VREFとのオフセット電圧を無くし、若しくは低減することができる。これにより、後段の信号処理回路における差動増幅器の入力電圧範囲を最大限に利用することができる。また、信号処理回路においてオフセット補正を行う必要が無くなり、信号処理回路における処理負担を軽減することができる。さらに、本実施形態によれば、クランプ容量の電圧をN信号に基づく電圧にクランプすることにより、相関二重サンプリング(CDS:correlated double sampling)処理を行うことができ、ノイズ成分を除去した画素信号を得ることができる。
(第2実施形態)
図4は、第2実施形態に係る固体撮像装置の画素部および補正処理を説明するための図である。本実施形態に画素部1は、有効画素領域に隣接した無効画素領域を備え、出力回路5は無効画素領域のいずれか1つの無効画素からの画素信号に基づきオフセット補正を行う。以下、第1実施形態と異なる構成を中心に説明する。
図4(a)において、画素部1はm行n列の画素から構成され、第1行から第i行までのA行、第(i+1)行から第m行までのB行を含む。A行は第1列から第k列までの遮光画素領域と、第(k+1)列から第n列までの無効画素領域とを含む。B行は第1列から第j列までの遮光画素領域と、第(j+1)列から第k列までの有効画素領域と、第(k+1)列から第n列までの無効画素領域とを含む。無効画素領域は光電変換素子を有しないNULL画素を含み得る。
図4(b)に示されたように、A行のブランキング期間Hblkにおいて、読み出し回路3は無効画素領域からいずれか1つの無効画素の画素信号を読み出し、保持回路30は読み出された画素信号に基づく補正信号を信号出力回路10に出力する。これにより、クランプ容量C1の電圧は補正信号の電圧に固定される。この電圧は、ブランキング期間Hblkの終了後に読み出されるN信号に基づく補正信号の電圧にほぼ等しい。このため、水平走査期間Hscanの画素信号読み出し開始時において、電圧が静定するまでの時間を短縮することができる。なお、オフセット補正を行っている際に信号線h0の電圧が変動しないように、クランプ容量C1の読み出し回路3の側の端子、すなわち信号線h0は低インピーダンス状態であることが望ましい。A行の水平走査期間Hscanにおいては、出力回路5は遮光画素および無効画素からの信号を順に出力する。図示されていないが、B行のブランキング期間Hblkにおいても出力回路5は無効画素領域のいずれか1つの画素信号に基づきオフセット補正を行う。B行の水平走査期間Hscanにおいて、出力回路5は有効画素および無効画素の信号を順に出力する。本実施形態においても第1実施形態と同様の効果を奏することができる。
(第3実施形態)
上述の第1、第2実施形態においては補正信号はアナログ信号であるが、補正信号をデジタル信号に変換しても良い。図5は第3実施形態に係る保持回路30aのブロック図である。以下、第1実施形態と異なる構成を中心に説明する。保持回路30aはA/D変換器301a、D/A変換器302aを備える。A/D変換器301aは補正回路Afbからの補正信号をデジタル信号に変換し、保持する。D/A変換器302aは保持されたデジタル信号をアナログ信号に変換し、オフセット補正のための補正信号として出力する。
なお、出力回路5が複数の信号出力回路10を備える場合には、A/D変換器301aからのデジタル信号を保持するためのメモリとD/A変換器302aとを信号出力回路10毎に設け、各信号出力回路10におけるオフセット補正を行ってもよい。図1において、読み出し回路3から1本の信号線h0に画素信号が出力されるが、複数本の信号線h0を水平走査期間Hscanに順次選択し、増幅器A1から出力してもよい。例えば、2本の信号線h0のいずれかを選択し、クランプ容量C1に出力する選択スイッチを設けても良い。本実施形態においては、補正信号をデジタル信号として保持することにより、保持容量のリーク等に起因する補正信号の変動を回避することができる。
(第4実施形態)
図7は、本発明の第4実施形態に係る出力回路5のブロック図である。本実施形態に係る出力回路5は、複数の信号出力回路10、11に共通の補正回路Afbを備えている。また、第1実施形態と異なり、信号出力回路10、11はクランプ容量を有しない。以下、第1実施形態と異なる構成を中心に説明する。
出力回路5は、信号出力回路10、11、補正回路Afb、保持回路30、31、増幅器A20、A21、スイッチSW10、SW11、SW20、SW21を備えている。信号出力回路10は、増幅器A10、抵抗R10、R20、R30、R40を備え、非反転増幅回路を構成している。信号出力回路10には信号線h0から信号が入力され、信号出力回路11には信号線h1から信号が入力される。本実施形態においては、信号線h0、h1からは相関二重サンプリング処理された画素信号が出力されるものとする。
信号線h0は抵抗R10を介して増幅器A10の非反転入力端子に接続され、非反転入力端子はさらに抵抗R20を介して保持回路30に接続されている。増幅器A10の出力端子と反転入力端子とは帰還抵抗R40を介して接続され、反転入力端子にはさらに抵抗R30を介して基準信号Vrが印加されている。増幅器A10は信号線h0における画素信号を増幅し、出力端子OUTS0から出力する。出力端子OUTN0には増幅器A20から基準信号VREFに基づく信号が出力され、出力端子OUTS0、OUTN0は差動出力端子を構成する。
同様に、信号出力回路11は、増幅器A11、抵抗R11、R21、R31、R41を備え、非反転増幅回路を構成している。抵抗R11、R21、R31、R41はR10、R20、R30、R40とそれぞれ同一の抵抗値を有することが望ましい。増幅器A11は信号線h1からの信号を増幅し、出力端子OUTS1から出力する。出力端子OUTN1には増幅器A21から基準信号VREFが出力され、出力端子OUTS1、OUTN1は差動出力端子を構成する。
補正回路Afbは差動入力対を備え、一方の入力端子はスイッチSW10、SW11を介して増幅器A10、A11の出力端子OUTS0、OUTS1にそれぞれ接続されている。また、補正回路Afbの他方の入力端子はスイッチSW20、SW21を介して増幅器A20、A21の出力端子OUTN0、OUTN1にそれぞれ接続されている。すなわち、補正回路Afbには出力端子OUTS0、OUTN0の差電圧、または出力端子OUTS1、OUTN1の差電圧が選択的に入力され得る。補正回路Afbの出力端子は保持回路30、31に接続されている。
保持回路30はスイッチSW30、保持容量C30、増幅器A30を備え、保持回路31はスイッチSW31、保持容量31、増幅器A31を備える。SW30、31が選択的にオンとなることにより、補正回路Afbからの補正信号が保持容量C30、C31のいずれかに保持される。保持回路30の増幅器A30の出力端子は抵抗R20を介して増幅器A10の非反転入力端子に接続されている。同様に、保持回路31の増幅器A31の出力端子は抵抗R21を介して増幅器A11の非反転入力端子に接続されている。このようにして、共通の補正回路Afbからの補正信号を信号出力回路10、11のそれぞれにフィードバックすることにより、オフセット補正が出力チャネル毎にばらつくのを回避することができる。
図8は、本実施形態に係る固体撮像装置のタイミングチャートであって、画素信号を順次読み出すタイミングチャートを示している。水平ブランキング期間Hblkにおいて、出力回路5は増幅器A10と増幅器A20とのオフセット電圧、増幅器A11と増幅器A21とのオフセット電圧のそれぞれの補正を行う(第1の補正)。水平走査期間Hscanにおいて、出力回路5は保持された補正信号を用いて、画素信号を出力端子OUTS0、OUTS1から順次出力する(第2の補正)。第1実施形態においては、信号線h0からN信号、S信号を順次読出したが、本実施形態では、N信号、S信号を相関二重サンプリング処理した画素信号を信号線h0、h1から読み出している。
以下、図8のタイミングチャートを詳述する。時刻t0において水平ブランキング期間Hblkが開始し、このとき、スイッチSW10、SW20、SW30、SW11、SW21、SW31はオフとなっている。時刻t1において、スイッチSW10、SW20、SW30がオンとなり、増幅器A10の出力端子OUTSOから、補正回路Afb、保持回路30を介して増幅器A10の非反転入力端子に至るフィードバックループがクローズの状態になる。すなわち、補正回路Afbは出力端子OUTS0、OUTN0の差分電圧を増幅し、補正信号を出力する。補正信号はスイッチSW30を介して保持容量C30に保持されるとともに、増幅器A30から抵抗R20を介して増幅器A10の非反転入力端子に印加される。保持回路30は補正信号を抵抗R20を介して増幅器A10の非反転入力端子にフィードバックし、増幅器A10の出力信号のレベルを補正する。出力端子OUTS0における電圧は基準信号VREFと一致し、出力端子OUTS0、OUTN0の間のオフセット電圧を無くし、若しくは低減することができる。時刻t2において、スイッチSW10、SW20、SW30がオフとなり、フィードバックループはオープンの状態になる。すなわち、補正回路Afbの入出力端子は増幅器A10、保持回路30から電気的に切り離される。スイッチSW30がオフとなった後においても、保持容量C30には補正信号の電圧が保持されており、増幅器A10の非反転入力端子に補正信号が印加され続ける。
ここで、抵抗R20、R40の抵抗値をRfとし、抵抗R10、R30の抵抗値をRsとする。また、信号線h0の電圧をVh0とし、増幅器A30からの補正信号の電圧をVfb0とする。このとき、出力端子OUTS0の電圧VOUTS0は次式で表される。
VOUTS0=(Vh0−Vr)×Rf/Rs+Vfb0
保持回路30は補正信号を信号出力回路10に出力することにより、出力端子OUTS0のオフセット電圧を補正するとともに、増幅器A10、A20のオフセット電圧も同時に補正することができる。
時刻t3において、スイッチSW11〜SW31がオンとなり、増幅器A11の出力端子OUTS1から、補正回路Afb、保持回路31を介して増幅器A11の非反転入力端子に至るフィードバックループがクローズの状態になる。保持回路31は出力端子OUTS1、OUTN1の差分電圧に基づく補正信号を増幅器A11にフィードバックし、出力信号のレベルを補正する。このとき、増幅器A11、A21のオフセット電圧も同時に補正することができる。時刻t4において、スイッチSW11、SW21、SW31がオフとなり、フィードバックループがオープンの状態となり、オフセット補正が完了する。保持容量C30、C31には補正信号の電圧が保持されており、補正信号は増幅器A10、A11に印加され続ける。
時刻t5において、水平ブランキング期間Hblkから水平走査期間Hscanへと移行する。読み出し回路3は光電変換素子PDのリセット時の電荷に基づくN信号を読み出し、保持する。次に、読み出し回路3は光電変換時の電荷に基づくS信号を読み出す。時刻t6〜t7において、読み出し回路3はS信号、N信号の相関二重サンプリング処理を行い、S信号からN信号を除去した画素信号を信号線h0、h1にそれぞれ出力する。信号出力回路10、11は画素信号を増幅し、出力端子OUTS0、OUTS1から出力する。
本実施形態において、2系統の信号出力回路10、11が設けられているため、2つの異なる画素信号を同時に出力し、読み出しを高速化することができる。出力端子OUTS0、OUTN0の間のオフセット電圧と、出力端子OUTS1、OUTN1の間のオフセット電圧とを、補正回路Afbの微小なオフセット電圧Δvにまで低減することができる。本実施形態においては、複数の信号出力回路10、11において共通の補正回路Afbを用いてオフセット補正を行うことにより、複数の信号出力回路10、11のオフセット電圧を同一のオフセット電圧Δvに均一化することができる。すなわち、複数チャネルの出力系統においてオフセット補正のばらつきを無くすことができる。出力端子OUTS0、OUTN0からの信号、出力端子OUTS1、OUTN1からの信号をマルチプレクスし、同一のAD変換器で受けるシステムにおいて、本実施形態はより好適である。
信号出力回路10、11の回路ゲインは抵抗R10〜R40、抵抗R11〜R41により定まり、増幅率を任意の値に設定し得る。なお、増幅器A10、A11の非反転入力端子の電圧は抵抗R10、R20の比、抵抗R11、R21の比によってそれぞれ定まるため、抵抗R10、R11に接続された読み出し回路3の出力インピーダンスは信号出力回路10、11の回路ゲインに影響し得る。このため、読み出し回路3に列毎のバッファ回路もしくはゲインアンプを設け、信号線h0、h1を低インピーダンスにて駆動することが好ましい。
(第5実施形態)
上述した第4実施形態に係る図7には2個の信号出力回路10、11が示されているが、信号出力回路の個数は限定されない。本実施形態に係る固体撮像装置は、8チャネルの出力系統を備え、第1〜第8の信号出力回路、第1〜第8の保持回路、共通の補正回路Afbを備え得る。ここで、第1〜第8の保持回路は第1〜第8のスイッチを備えるものとする。補正回路Afbは、選択された一対の信号出力回路および保持回路において出力信号のレベルを補正する。
図9は、本実施形態に係る固体撮像装置のタイミングチャートである。本実施形態においては、第1回目の水平ブランキング期間Hblkにおいて4チャネルの出力系統のオフセット補正を行い、第2回目の水平ブランキング期間Hblkにおいて残りの4チャネルの出力系統のオフセット補正を行う。第1回目の水平ブランキング期間Hblkにおいて、第1の保持回路の第1のスイッチがオンとなり、補正回路Afbから第1の保持回路に補正信号が出力される。第1の保持回路は補正信号を第1の信号出力回路に出力し、出力端子OUTS0、OUTN0のオフセット補正を行う。第1のスイッチがオフとなった後、第2のスイッチがオンとなり、第2の保持回路は補正信号を第2の信号出力回路に出力し、出力端子OUTS1、OUTN1端子のオフセット補正を行う。以下同様に、第3、第4のスイッチがオンとなり、第3、第4の保持回路は第3、第4の信号出力回路のオフセット補正を行う。水平走査期間Hscanにおいても、第1〜第4の保持回路は保持された補正信号を第1〜第4の信号出力回路に出力し続ける。
第2回目の水平ブランキング期間Hblkにおいて、第5〜第8のスイッチが順にオンとなり、第5〜第8の保持回路は第5〜第8の信号出力回路のオフセット補正を行う。さらに、第3回目の水平ブランキング期間Hblkにおいて、第1〜第4のスイッチが順にオンになり、第1〜第4の保持回路は第1〜第4の信号出力回路のオフセット補正を行う。以下、同様に、4個の信号出力回路のオフセット補正が2回の水平ブランキング期間Hblk毎に行われる。図9においては、後述する図10のタイミングチャートと比較して、オフセット補正の頻度を高くすることができる。このため、保持容量の電圧がリーク等で変動する可能性がある場合でも、行方向のシェーディングの無い安定した画像信号を得ることができる。
図10は、本実施形態に係る固体撮像装置のタイミングチャートの他の例を示している。この例においては、1回の水平ブランキング期間Hblk毎に2チャネルの出力系統のオフセット補正が行われ、4回の水平ブランキング期間Hblkによって合計8チャネルの出力系統のオフセット補正が行われる。すなわち、第1回目の水平ブランキング期間Hblkにおいて、第1、第2の保持回路は第1、第2の信号出力回路のオフセット補正を行ない、第2回目の水平ブランキング期間Hblkにおいて第3、第4の保持回路は第3、第4の信号出力回路のオフセット補正を行う。以下同様に、水平ブランキング期間Hblk毎に2チャネルの出力系統のオフセット補正を行ない、4回の水平ブランキング期間Hblkで8チャネルの出力系統のオフセット補正を完了する。図10においては、図9のタイミングチャートと比較して、1回の水平ブランキング期間でオフセット補正を行う出力系統のチャネル数が少ないため、1個の信号出力回路のオフセット補正時間を長くすることができる。このため、消費電力を抑制しながら安定した画像信号を得ることが可能となる。本実施形態においては、図9、図10のタイミングチャートに限定されることなく、信号出力回路のオフセット補正の頻度および時間は、フレームレート、消費電力、撮影条件に応じて適宜変更することができる。すなわち、N対(Nは自然数)の信号出力回路および保持回路を設け、1回の水平ブランキング期間HblkにN/M対(MはNの公約数)の信号出力回路および保持回路においてオフセット補正を行っても良い。この場合、M回の水平ブランキング期間Hblkによって合計N対の信号出力回路および保持回路においてオフセット補正を完了する。Mの値は撮影条件等に従い制御回路6によって適宜変更可能である。
本実施形態に係る固体撮像装置は、複数対の信号出力回路および保持回路が一つの補正回路Afbを共有している。画素信号読み出しの高速化を図るために固体撮像装置が複数の出力系統を有する場合においても、複数の信号出力回路のオフセット電圧を無くし、若しくは低減することができる。また、仮にオフセット電圧が残渣として生じたとしても、複数の信号出力回路のそれぞれのオフセット電圧を補正回路の微小な電圧Δvに低減することができる。このため、チャネル毎のオフセット補正のばらつきを無くすことができる。また、後段の画像信号処理部の処理負担を軽減するとともに、ダイナミックレンジを有効に利用することができる。
(第6実施形態)
図11は、本発明の第6実施形態に係る出力回路5のブロック図である。本実施形態に係る出力回路5は、複数対の信号出力回路および保持回路を備える点において第1実施形態と異なっている。以下、第1実施形態と異なる構成を中心に説明する。
信号出力回路11は、信号出力回路10と同様に構成され、クランプ容量C11、増幅器A11を備える。保持回路31は保持回路30と同様に構成され、保持容量C31、増幅器A31、スイッチSW31、SW41を備える。増幅器A11からの信号は出力端子OUTS1に出力され、基準信号VREFは増幅器A21によって増幅され、出力端子OUTN1に出力される。補正回路Afbには出力端子OUTS0、OUTN0の差電圧、出力端子OUTS1、OUTN1の差電圧が選択的に入力され得る。補正回路Afbからの補正信号は保持回路30、31に出力される。保持回路30、31は増幅器A10、A11の入力端子に補正信号をそれぞれ印加し、増幅器A10、A11の出力信号のレベルを補正する。本実施形態においては、信号線h0、h1はクランプ容量C10、C11を介して増幅器A10、A11に接続されており、出力回路5においてS信号、N信号との差分処理を行いながら、オフセット補正を行うことができる。
図12は、本実施形態に係る固体撮像装置のタイミングチャートである。本実施形態においては、出力回路5は、水平ブランキング期間Hblkに増幅器A10、A20のオフセット補正と、増幅器A11、A21とのオフセット補正(第1の補正)とを行い、それぞれの補正信号を保持回路30、31に保持する。その後、出力回路5は、水平走査期間Hscanに、保持回路30、31に保持された補正信号を用いてN信号、S信号を出力端子OUTS0、OUTS1から順次出力する(第2の補正)。
以下、図12のタイミングチャートを詳述する。時刻t0〜t4における動作は第1実施形態と同様である。すなわち、保持回路30は出力端子OUTS0、OUTN0の間のオフセット電圧に基づく補正信号を増幅器A10にフィードバックすることにより、オフセット補正を行う。その後、時刻t5においてスイッチSW41がオンとなり、時刻t6においてスイッチSW11、21、31がオンとなる。補正回路Afbに出力端子OUTS1、OUTN1の差分電圧が入力され、補正回路Afbは差分電圧に基づく補正信号を保持回路31に出力する。保持回路31は補正信号を増幅器A31から増幅器A11の入力端子に印加する。出力端子OUTS1、OUTN1の差分電圧に基づく補正信号を増幅器A11にフィードバックすることで、増幅器A11、A21の各々のオフセット電圧を含めて補正することができる。その後、時刻t7においてスイッチSW11、SW2、SW31がオフとなり、フィードバックループがオープンの状態となる。続いて、時刻t8においてスイッチSW41がオフとなる。このとき、保持容量C30、C31は補正信号としての電圧を保持する。
時刻t9において水平走査期間Hscanが始まり、光電変換素子PDのリセット時の電荷に基づく信号が信号線h0、h1に出力される。時刻t10〜t11において、スイッチSW40、41がオンとなり、保持回路30、31は水平ブランキング期間Hblkにおいて保持した補正信号を増幅器A10、A11の入力端子に印加し、N信号の電圧を補正信号の電圧にクランプする。
次に、読み出し回路3は光電変換時の電荷に基づくS信号を読み出し、信号線h0、h1に出力する。時刻t11において、スイッチSW40、SW41がオフとなり、増幅器A10、A11の入力端子は保持回路30、31から電気的に切り離される。S信号がクランプ容量C10、C11を介して増幅器A10、A11の入力端子に入力されると、入力端子の電圧はS信号とN信号との電圧差だけ変化する。すなわち、S信号からN信号を差し引いた(S−N)信号が増幅器A10、A11の入力端子に入力される。これにより、画素部1、読み出し回路3を構成する素子の特性ばらつきに起因するノイズ成分をS信号から除去することができ、固定パターンノイズの無い画素信号を出力端子OUTS、OUTNから差動出力することができる。
本実施形態においても、第2実施形態と同様に、画素信号読み出しの高速化を図りながら、ノイズ成分を除去するとともに、出力回路のオフセット電圧を補正することができる。ここで、本実施形態においては、信号処理回路における差動増幅器へ信号を出力することを想定して、増幅器A20、A21から出力端子OUTN0、OUTN1に基準信号VREFに基づく電圧を出力している。しかしながら、増幅器A20、A21を用いずに、基準信号VREFを出力端子OUTN0、OUTN1に直接出力しても良い。出力端子OUTS0、OUTS1のみに増幅器A10、A11を設けることによっても、増幅器A10、A11のオフセット電圧を補正することができ、信号処理回路の入力電圧範囲を有効に利用できる。さらに、複数の信号出力回路において共通の増幅器を設け、この増幅器からそれぞれの出力端子OUTN0、OUTN1に基準信号を出力してもよい。本実施形態においては、複数の出力系統におけるオフセット補正のばらつきを無くすことができることは上述したとおりである。また、図4に示した無効画素領域のいずれか1つの無効画素からの信号を用いて、複数の信号出力回路のオフセット補正を行ってもよい。さらに、信号出力回路と同数の列の無効画素を設けて、信号出力回路に対応する無効画素からの信号に基づいてオフセット補正を行ってもよい。
本実施形態おいても、上述の実施形態と同様に、固体撮像装置からの画素信号を増幅器から出力する際に、画像信号の劣化要因となりうる増幅器のオフセット電圧を補正することができる。これにより、固体撮像装置からの出力を受ける画像信号処理部の処理負担を軽減することが可能となる。
(第7実施形態)
図13は、本実施形態に係る出力回路5のブロック図である。以下、第6実施形態と異なる構成を中心に説明する。出力回路5はさらに増幅器A00、A01を備えている。増幅器A00の一方の入力端子には信号線hs0が接続され、他方の入力端子には信号線hn0が接続されている。増幅器A00の出力端子はクランプ容量C10を介して増幅器A10の入力端子に接続されている。従って、信号線h0には、信号線hs0、hn0の電圧差に基づく信号が出力される。また、増幅器A01の一方の入力端子には信号線hs1が接続され、他方の入力端子には信号線hn1が接続されている。増幅器A01の出力端子はクランプ容量C11を介して増幅器A11の入力端子に接続されている。基準信号VREFは増幅器を介することなく出力端子OUTNから出力され、出力端子OUTNは出力端子OUTS0、OUTS1に共通の基準信号VREFを出力する。また、出力端子OUTNの基準信号VREFは補正回路Afbに入力され、基準信号VREFに基づく2つの補正信号が補正回路Afbから出力される。
本実施形態においては、第6実施形態と比較して以下のように様々な効果を奏することができる。第6実施形態においては信号線h0、h1にN信号、S信号が順次出力されるが、本実施形態においてはN信号はhn0、hn1に出力され、S信号はhs0、hs1に同時に出力される。それぞれの増幅器A00、A01はN信号、S信号の差分電圧を出力することにより、ノイズ成分が除去された画素信号を得ることができる。また、N信号、S信号を同時に出力するため、信号線の駆動周波数を遅くすることができる。クランプ容量C10、C11によるクランプ動作を1画素単位ではなく、複数画素単位で実施することができる。さらに、クランプ容量C10、C11によって増幅器A00、A01のオフセット電圧を除去することができる。なお、OB(オプティカルブラック)画素の信号を用いてクランプ動作を行っても良い。
読み出し回路3においては、バッファもしくはゲインアンプによって信号線を直接駆動することなく、高画質の画素信号を得ることができる。また、本実施形態においても第6実施形態と同様に出力端子OUTN、OUTS0のオフセット電圧、出力端子OUTN、OUTS1のオフセット電圧を共通の補正回路Afbからの補正信号を用いて補正することができる。このため、異なる出力系統におけるオフセット補正のばらつきを低減することができる。
(第8実施形態)
上記の各実施例で述べた撮像装置は、種々の撮像システムに適用可能である。撮像システムの一例としては、デジタルスチルカメラ、デジタルカムコーダー、監視カメラなどがあげられる。図14に、撮像システムの一例としてデジタルスチルカメラに、上述した実施形態のいずれかの撮像装置を適用した撮像システムの図を示す。
図14に例示した撮像システムは、撮像装置301、レンズ302の保護のためのバリア303、被写体の光学像を撮像装置301に結像させるレンズ302、およびレンズ302を通過する光量を可変にするための絞り304を有する。レンズ302、絞り304は撮像装置301に光を集光する光学系である。撮像装置301は、上述した実施形態のいずれかの撮像装置である。また、図14に例示した撮像システムは、撮像装置301より出力される出力信号の処理を行う出力信号処理部305を有する。出力信号処理部305は、撮像装置301が出力する信号に基づいて画像を生成する。具体的には、出力信号処理部305は、必要に応じて、各種の補正および圧縮を行って、画像データを出力する。また、出力信号処理部305は、撮像装置301が出力する信号を用いて、焦点検出を行う。
撮像システムは、さらに、画像データを一時的に記憶するためのバッファメモリ部306、外部コンピュータ等と通信するための外部インターフェース部(外部I/F部)308を有する。さらに、撮像システムは、撮像データの記録または読み出しを行うための半導体メモリ等の記録媒体309、記録媒体309に記録または読み出しを行うための記録媒体制御インターフェース部(記録媒体制御I/F部)307を有する。なお、記録媒体309は、撮像システムに内蔵されていてもよく、着脱可能であってもよい。
さらに、撮像システムは、各種演算とデジタルスチルカメラ全体を制御する全体制御・演算部310、撮像装置301と出力信号処理部305に各種タイミング信号を出力するタイミング発生部311を有する。ここで、タイミング信号などは、外部から入力されてもよく、撮像システムは少なくとも撮像装置301と、撮像装置301から出力された出力信号を処理する出力信号処理部305とを有すればよい。
以上のように、本実施形態の撮像システムは、撮像装置301を適用して撮像動作を行うことが可能である。
(他の実施形態)
上述の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。例えば、増幅器は同様の機能を奏する限り、シングル入力型、差動入力型を問わない。
1 画素部
3 読み出し回路
5 出力回路
10、11 信号出力回路
30、31 保持回路
Afb 補正回路
A1、A10、A11 増幅器
C30、C31 保持容量

Claims (20)

  1. 光電変換素子を備える画素が行列状に配置された画素部と、
    信号線と、
    前記画素がリセットされた状態に応じた第1の信号、および、前記光電変換素子での光電変換によって生じた電荷に基づく第2の信号を前記信号線に出力する読み出し回路と、
    増幅器およびクランプ容量を備え、前記クランプ容量の一端が前記信号線に接続され、他端が前記増幅器の入力端子に接続される信号出力回路と、
    前記増幅器の出力信号と基準信号との差分に基づく補正信号を生成する補正回路と、
    前記補正信号を保持し、かつ、前記信号線に前記第1の信号が出力される際に、保持された前記補正信号を前記増幅器の前記入力端子に印加するように構成された保持回路と、
    を有することを特徴とする固体撮像装置。
  2. 光電変換素子を備える画素が行列状に配置された画素部と、
    複数の信号線と、
    前記画素からの信号を前記複数の信号線に出力する読み出し回路と、
    前記複数の信号線の対応する1つに接続され、前記画素からの信号を増幅する増幅器をそれぞれが有する複数の信号出力回路と、
    それぞれが前記複数の信号出力回路の1つの前記増幅器の出力信号と基準信号との差分に基づく複数の補正信号を生成するように、前記複数の信号出力回路に対して共通に設けられた補正回路と、
    前記複数の信号出力回路に対応して設けられ、それぞれが、前記補正信号を保持し、かつ、保持された前記補正信号を対応する前記増幅器の入力端子に印加するように構成された複数の保持回路と、
    を有することを特徴とする固体撮像装置。
  3. 複数対の前記信号出力回路および前記保持回路を備え、
    前記補正回路は、前記複数対のうちの選択された一対の前記信号出力回路および前記保持回路において、前記補正信号を前記増幅器の前記入力端子に印加することを特徴とする
    請求項1に記載の固体撮像装置。
  4. 前記基準信号を出力する第2の増幅器を備えることを特徴とする請求項1乃至3のいずれか1項に記載の固体撮像装置。
  5. 前記信号出力回路に接続された出力端子を備えることを特徴とする請求項1乃至4のいずれか1項に記載の固体撮像装置。
  6. 前記基準信号は前記光電変換素子からの信号に依存しない固定電圧であることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像装置。
  7. 前記第2の増幅器は複数の前記信号出力回路において共有されることを特徴とする
    請求項4に記載の固体撮像装置。
  8. 前記信号出力回路、前記補正回路、前記保持回路はフィードバックループの一部を構成し、
    前記保持回路は、前記フィードバックループをクローズの状態にしながら前記補正信号に基づいて前記出力信号のレベルを補正する第1の補正と、前記フィードバックループをオープンの状態にしながら、前記第1の補正時に保持した前記補正信号に基づいて前記出力信号のレベルを補正する第2の補正とを行うことを特徴とする請求項1乃至7のいずれか1項に記載の固体撮像装置。
  9. 前記保持回路は、水平ブランキング期間において前記第1の補正を行い、水平走査期間において前記第2の補正を行うことを特徴とする請求項8に記載の固体撮像装置。
  10. 前記画素部は遮光画素行を含み、
    前記保持回路は、前記遮光画素行の水平ブランキング期間において前記第1の補正を行うことを特徴とする請求項9に記載の固体撮像装置。
  11. 前記画素部は無効画素領域を含み、
    前記保持回路は、水平ブランキング期間において、前記無効画素領域のいずれか一つの無効画素からの信号に基づいて前記第1の補正を行うことを特徴とする請求項9に記載の固体撮像装置。
  12. 前記無効画素領域は、前記信号出力回路と少なくとも同数の列の前記無効画素を含み、
    前記保持回路は、前記信号出力回路に対応する前記無効画素からの信号に基づき前記第1の補正を行うことを特徴とする請求項11に記載の固体撮像装置。
  13. N対(Nは自然数)の前記信号出力回路および前記保持回路を有し、
    1回の水平ブランキング期間にN/M対(MはNの公約数)の前記信号出力回路および前記保持回路において前記第1の補正を行い、M回の水平ブランキング期間によってN対の前記信号出力回路および前記保持回路において前記第1の補正を行うことを特徴とする、請求項8乃至12のいずれか1項に記載の固体撮像装置。
  14. 前記Mの値を変更可能な制御回路を有することを特徴とする、請求項13に記載の固体撮像装置。
  15. 前記保持回路は前記補正信号を保持する保持容量を備えることを特徴とする、請求項1乃至14のいずれか1項に記載の固体撮像装置。
  16. 前記保持回路はシングル入力型の増幅器を備えることを特徴とする、請求項1乃至15のいずれか1項に記載の固体撮像装置。
  17. 前記保持回路は、前記補正信号をデジタル信号に変換するA/D変換器と、前記デジタル信号を保持するメモリと、前記保持された前記デジタル信号をアナログ信号の補正信号として前記信号出力回路に出力するD/A変換器とを有することを特徴とする、請求項1乃至14のいずれか1項に記載の固体撮像装置。
  18. 請求項1乃至17のいずれか1項に記載の固体撮像装置と、前記固体撮像装置が出力する信号を処理する信号処理部と、
    を有することを特徴とする撮像システム。
  19. 信号線と、
    基準を示す第1の信号、および、光電変換によって生じた電荷に基づく第2の信号を前記信号線に出力する読み出し回路と、
    増幅器およびクランプ容量を備え、前記クランプ容量の一端が前記信号線に接続され、他端が前記増幅器の入力端子に接続される信号出力回路と、
    前記増幅器の出力信号と基準信号との差分に基づく補正信号を生成する補正回路と、
    前記補正信号を保持し、かつ、前記信号線に前記第1の信号が出力される際に、保持された前記補正信号を前記増幅器の前記入力端子に印加するように構成された保持回路と、
    を有することを特徴とする信号出力装置。
  20. 複数の信号線と、
    前記複数の信号線の対応する1つに接続され、光電変換によって生じた電荷に基づく信号を増幅する増幅器をそれぞれが有する複数の信号出力回路と、
    それぞれが前記複数の信号出力回路の1つの前記増幅器の出力信号と基準信号との差分に基づく複数の補正信号を生成するように、前記複数の信号出力回路に対して共通に設けられた補正回路と、
    前記複数の信号出力回路に対応して設けられ、それぞれが、前記補正信号を保持し、かつ、保持された前記補正信号を対応する前記増幅器の入力端子に印加するように構成された複数の保持回路と、
    を有することを特徴とする信号出力装置。
JP2015171759A 2015-09-01 2015-09-01 固体撮像装置および撮像システム Active JP6539157B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015171759A JP6539157B2 (ja) 2015-09-01 2015-09-01 固体撮像装置および撮像システム
US15/238,440 US9762841B2 (en) 2015-09-01 2016-08-16 Solid state imaging device and imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171759A JP6539157B2 (ja) 2015-09-01 2015-09-01 固体撮像装置および撮像システム

Publications (3)

Publication Number Publication Date
JP2017050669A JP2017050669A (ja) 2017-03-09
JP2017050669A5 JP2017050669A5 (ja) 2018-08-09
JP6539157B2 true JP6539157B2 (ja) 2019-07-03

Family

ID=58096377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171759A Active JP6539157B2 (ja) 2015-09-01 2015-09-01 固体撮像装置および撮像システム

Country Status (2)

Country Link
US (1) US9762841B2 (ja)
JP (1) JP6539157B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185839A1 (ja) * 2015-05-20 2016-11-24 ソニー株式会社 固体撮像装置および固体撮像装置の駆動方法
JP6856983B2 (ja) 2016-06-30 2021-04-14 キヤノン株式会社 光電変換装置及びカメラ
JP6677594B2 (ja) 2016-06-30 2020-04-08 キヤノン株式会社 光電変換装置
CN106982337B (zh) * 2017-04-27 2019-07-23 京东方科技集团股份有限公司 一种cmos图像传感器及其像素电路、驱动方法
JP6946046B2 (ja) 2017-04-28 2021-10-06 キヤノン株式会社 光電変換装置及びその駆動方法
US10834354B2 (en) 2018-06-25 2020-11-10 Canon Kabushiki Kaisha Imaging device, imaging system, movable object, and signal processing device
WO2022249781A1 (ja) * 2021-05-27 2022-12-01 ヌヴォトンテクノロジージャパン株式会社 固体撮像装置、撮像装置および測距撮像装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002287A (en) 1997-05-08 1999-12-14 Canon Kabushiki Kaisha Signal outputting apparatus
JP3288293B2 (ja) 1997-05-08 2002-06-04 キヤノン株式会社 信号出力装置
JP4227274B2 (ja) * 2000-02-29 2009-02-18 キヤノン株式会社 固体撮像装置
JP2003259223A (ja) * 2002-02-26 2003-09-12 Canon Inc 撮像システム
JP2005217771A (ja) * 2004-01-29 2005-08-11 Canon Inc 撮像装置
JP2005347793A (ja) * 2004-05-31 2005-12-15 Matsushita Electric Ind Co Ltd 撮像装置
JP2006303601A (ja) * 2005-04-15 2006-11-02 Sony Corp 相関二重サンプリング回路およびこれを用いた固体撮像装置
JP2015095874A (ja) * 2013-11-14 2015-05-18 キヤノン株式会社 固体撮像装置、撮像システム及び固体撮像装置の駆動方法
JP6355457B2 (ja) 2014-07-03 2018-07-11 キヤノン株式会社 撮像装置及びその駆動方法
JP6425448B2 (ja) * 2014-07-31 2018-11-21 キヤノン株式会社 光電変換装置、および、撮像システム
US9979916B2 (en) * 2014-11-21 2018-05-22 Canon Kabushiki Kaisha Imaging apparatus and imaging system
JP2017098809A (ja) * 2015-11-26 2017-06-01 キヤノン株式会社 光電変換装置、および、撮像システム

Also Published As

Publication number Publication date
JP2017050669A (ja) 2017-03-09
US20170064225A1 (en) 2017-03-02
US9762841B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
JP6539157B2 (ja) 固体撮像装置および撮像システム
US10419702B2 (en) Imaging apparatus, imaging system, and method of driving an imaging system
TWI771962B (zh) 光偵測裝置
US8400546B2 (en) Image capturing device, image capturing system, and method of driving image capturing device
KR101711702B1 (ko) 촬상 장치, 촬상 시스템, 및 촬상 장치의 구동 방법
US9979913B2 (en) Driving method of imaging device and driving method of imaging system
US8134623B2 (en) Analog-to-digital conversion in image sensors using a differential comparison
US8553120B2 (en) Solid state image pickup apparatus
US8841595B2 (en) Image sensor with sample and hold circuitry for addressing time variant noise
US20100128151A1 (en) Image pickup apparatus
JP2016201649A (ja) 撮像装置、撮像システム、および撮像装置の駆動方法
JP7116599B2 (ja) 撮像装置、半導体装置及びカメラ
JP6650779B2 (ja) 撮像装置、撮像システム、撮像装置の駆動方法
EP1725019A2 (en) On chip real time FPN correction without imager size memory
WO2010116904A1 (ja) 固体撮像装置
US8547446B2 (en) Fully-differential amplifier, photoelectric conversion apparatus including fully-differential amplifier, and image-pickup system
US9426391B2 (en) Solid-state imaging apparatus, method of controlling the same, and imaging system

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R151 Written notification of patent or utility model registration

Ref document number: 6539157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151