JP6490042B2 - 非線形光学結晶中の結晶位置寿命の測定 - Google Patents

非線形光学結晶中の結晶位置寿命の測定 Download PDF

Info

Publication number
JP6490042B2
JP6490042B2 JP2016234729A JP2016234729A JP6490042B2 JP 6490042 B2 JP6490042 B2 JP 6490042B2 JP 2016234729 A JP2016234729 A JP 2016234729A JP 2016234729 A JP2016234729 A JP 2016234729A JP 6490042 B2 JP6490042 B2 JP 6490042B2
Authority
JP
Japan
Prior art keywords
wavelength
optical crystal
light
auxiliary
wavelength light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016234729A
Other languages
English (en)
Other versions
JP2017040947A (ja
Inventor
ジェイ ジョセフ アームストロング
ジェイ ジョセフ アームストロング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Corp filed Critical KLA Corp
Publication of JP2017040947A publication Critical patent/JP2017040947A/ja
Application granted granted Critical
Publication of JP6490042B2 publication Critical patent/JP6490042B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3525Optical damage

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本出願は、以下の出願(単数または複数)(「関連出願」)(例えば、関連出願(単数または複数)の仮特許出願、全ての親出願、その先代の出願、さらにその先代の出願等の出願について、仮特許出願以外のものについて利用可能な最先の優先日を主張するかまたは35USC§119(e)下の恩恵を主張するもの)からの利用可能かつ有効な出願日(単数または複数)のうち最先のものに関連し、またそのような最先のものからの恩恵を主張する。
関連出願
USPTO法定外要件の目的のため、本出願は、米国仮特許出願(名称:「MEASURING CRYSTAL SITE LIFETIME IN FREQUENCY CONVERTED LASER」、発明者:Joseph Armstrong、出願日:2010年11月9日、出願シリアル番号61/411,851)の通常の(仮出願でない)特許出願を構成する。
本発明は、主に、半導体ウェーハまたはフォトマスク検査システムの照明器内における実行に適した周波数変換光源に関し、より詳細には、周波数変換結晶位置劣化を監視するシステムに関する。
半導体デバイスおよびコンポーネントの寸法が継続的に縮小するに伴い、高スループットと向上した分解能とを示す半導体ウェーハおよびフォトマスク検査システムの需要が増加し続けている。半導体およびフォトマスク検査システムにおいてより高レベルの分解能を達成する方法を挙げると、より短波長の光を放出することが可能な照明光源の利用がある。
波長が400nm以下である光をウェーハまたはレチクルに照射した場合、ある実行的な利点が得られ得る。高品質のウェーハおよびフォトマスク検査システムのために適切なレーザを提供することは、特に困難が伴う。深紫外線(DUV)光エネルギーを生成することが可能な従来のレーザは典型的には大型であり、高価であり、また寿命が比較的短くかつ平均出力が低いという問題がある。適切なスループットおよび欠陥信号対ノイズ比(SNR)を得るためには、ウェーハおよびフォトマスク検査システムにおいて、高平均出力、低ピーク出力および比較的短尺のレーザ照明光源が必要になることが多い。
従来、適切なDUV出力を得るための主な方法においては、長波長光からより短波長の光への変換が行われる(本明細書中「周波数変換」と呼ぶ)。当該分野において、より長波長の光からより短波長への周波数変換は、1つ以上の非線形光学結晶の利用によって達成されることが多いことが周知である。本文脈において、周波数変換において、所与の非線形光学結晶内における非線形応答を生成するためには、高ピーク出力光が必要になる。このプロセスの効率を高くするためには、高平均出力、短光パルスを有するようにより長い波長の光を生成すればよく、この光を光学結晶中に集束させればよい。もともとの「より長波長の」光は、一般的に「基本光」と呼ばれる。
400nmを下回る波長(特に300nmを下回る波長)における光生成は、困難である。半導体検査システム内において実行される光源においては、比較的高出力であり、長寿命であり、安定した性能であることが必要になる。高度な検査技術のためのこれらの要求を満たす光源は、従来技術においては存在しない。現在のDUV周波数変換レーザの寿命、出力および安定性は、実行された周波数変換結晶および周波数変換スキームによって限定されることが多い。このような限定は、非線形変換結晶がDUV波長(例を非限定的に挙げると、355、266、213、および193nm)に露出された場合に特に当てはまる。
多くの検査用途において、周波数変換レーザ出力または波面を経時的に安定させる必要がある。照明への露出に起因して非線形光学結晶が劣化した場合、出力および波面安定性を経時的に維持することが困難になる。周波数変換結晶の寿命を延ばすために、現在の位置の劣化が受容可能な制限を超える前に衝突レーザビームを結晶の未利用部分上に集束させるために、所与の結晶をシフトさせることが一般的である。別の局面において、波面または出力劣化の開始を回避するために、光学結晶が一定速度で連続的にシフトされ得る。
しかし、周波数変換結晶位置の寿命は、結晶位置によって大幅に異なる場合がある。結晶位置寿命の変動に対処するための現在の方法を挙げると、予測される最短の寿命に一定の安全マージンを含めた数値に基づいて、結晶位置寿命を選択する方法がある。この方法の場合、所与の光学結晶の寿命が大幅に制限される場合がある。加えて、この方法の場合、推定が不正確になる場合がある。なぜならば、1つ以上の結晶位置が予測よりも早い速度で劣化する場合があるからである。その場合、この種のレーザを光源として用いた高精度装置の性能に悪影響が出る場合がある。
米国特許第7,539,222号明細書
そのため、結晶位置寿命を監視する能力を備えた周波数変換システムを提供する方法および/またはシステムを提供することが望まれている。
結晶位置寿命監視を用いたレーザ周波数変換に適した装置が開示される。一局面において、装置は、以下を非限定的に含み得る。基本波長レーザ光を生成するように構成された基本レーザ光源と、上記基本レーザ光源からの基本レーザ光を受けるように構成された少なくとも1つの光学結晶であって、上記少なくとも1つの光学結晶は、上記受けた基本レーザ光のうち少なくとも一部を別の波長光へ周波数変換することにより、別の波長光を生成するように構成される、少なくとも1つの光学結晶と、上記光学結晶によって散乱された基本波長レーザ光または上記光学結晶によって散乱された別の波長光のうち少なくとも1つを検出するように構成された検出器。
別の局面において、結晶位置寿命監視を用いたレーザ周波数変換のための装置が開示される。上記装置は、以下を非限定的に含み得る。基本波長レーザ光を生成するように構成された基本レーザ光源と、上記基本レーザ光源からの基本レーザ光を受けるように構成された少なくとも1つの光学結晶であって、上記少なくとも1つの光学結晶は、上記受けた基本レーザ光のうち少なくとも一部を別の波長光へと周波数変換することにより、別の波長光を生成するように構成される、少なくとも1つの光学結晶と、補助波長光を生成するように構成された補助光源であって、上記補助波長光の波長は、上記基本波長レーザ光の波長および上記別の波長光の波長と異なり、上記基本レーザ光源および上記補助光源は、少なくとも基本レーザ光の一部が補助光のうち少なくとも一部と共に上記光学結晶の1つ以上の表面を通じて実質的に共伝搬するように、配置される、補助光源と、上記光学結晶によって散乱された基本波長レーザ光、上記光学結晶によって散乱された別の波長光、または上記光学結晶によって散乱された補助光のうち少なくとも1つを検出するように構成された検出器。
別の局面において、結晶位置寿命監視を用いたレーザ周波数変換シフトのための装置が開示される。上記装置は、以下を非限定的に含み得る。基本波長レーザ光を生成するように構成された基本レーザ光源と、上記基本レーザ光源からの基本レーザ光を受けるように構成された少なくとも1つの光学結晶であって、上記少なくとも1つの光学結晶は、上記受信された基本レーザ光のうち少なくとも一部を別の波長光へ周波数変換することにより、別の波長光を生成するように構成される、少なくとも1つの光学結晶と、補助波長光を生成するように構成された補助光源であって、上記補助波長光の波長は、上記基本波長レーザ光の波長および上記別の波長光の波長と異なり、上記基本レーザ光源および上記補助光源は、少なくとも基本レーザ光の一部が補助光のうち少なくとも一部と共に上記光学結晶の第1の表面を通じて実質的に共伝搬するように、配置される、補助光源と、上記補助波長光の1つ以上の特性を測定するように構成されたビーム特性付けシステムと、上記光学結晶から補助波長光を上記ビーム特性付けシステムへと送信するように構成された波長分離要素。
上記の一般的な記載と、以下の詳細な記載とはどちらともあくまでも例示および説明であり、特許請求の範囲に記載のような本発明を必ずしも限定しないことが理解されるべきである。添付の図面は、本明細書中に採用され、かつ本明細書を部分的に構成し、本発明の実施形態を例示し、上記一般的記載と共に、本発明の原理の説明するために用いられる。
本開示の多数の利点は、添付の図面を参照すれば、当業者によってより深く理解され得る。
本発明の実施形態による、結晶位置寿命監視を用いたレーザ周波数変換のための装置のブロック図を示す。 欠陥に起因して発生した補助光散乱の測定を示す。上記測定は、本発明の実施形態による結晶位置寿命監視を用いたレーザ周波数変換のための装置を用いて得られる。 本発明の別の実施形態による、結晶位置寿命監視を用いたレーザ周波数変換のための装置のブロック図を示す。 本発明の別の実施形態による、結晶位置寿命監視を用いたレーザ周波数変換のための装置のブロック図を示す。
以下、開示の内容を詳細に参照する。上記内容は、添付図面中に図示される。
主に図1〜図4を参照して、本発明による、非線形光学結晶中の結晶位置監視のためのシステムについて説明する。
本開示は、非線形光学結晶中の性能の監視と、上記非線形光学結晶の破損状態の予測とを行うことが可能なシステムに関する。上記システムは、破損状態が切迫していると予測された場合、新規結晶位置が衝突基本光に露出されるように、光学結晶を平行移動させるように、さらに構成される。
本明細書中、計測システムの実行において、典型的な集束レーザビーム直径は0.1〜0.2mmのオーダーであることが認識される。さらに、典型的な光学結晶断面は、5mm×5mmのオーダーであり得る。光学結晶断面およびレーザビーム直径を組み合わせることにより、典型的な設定において、約100〜500個の結晶位置が得られる。さらに、結晶位置寿命は、数百時間〜1時間未満であり得る。当業者であれば、結晶位置の変動は、多数の要素(例を非限定的に挙げると、用いられる結晶の種類、用いられる光の波長、および上記結晶内のレーザ光によって得られる出力密度)に依存し得ることを認識する。結晶位置破損を予測する能力が得られることにより、所与の光学結晶の各結晶位置の寿命を延ばすことが可能になり、その結果、動作コストの低減と、エンドレーザにおけるメンテナンス期間の短縮と、レーザ信頼性の増加とが得られる。
図1は、本発明の実施形態による、非線形光学結晶中の結晶位置監視のためのシステム100を示す。一局面において、システム100は、以下を非限定的に含み得る。基本波長のレーザ光104を生成するように構成された基本レーザ光源102と、基本光と異なる波長を有する補助光112を生成するように構成された補助光源110と、基本レーザ光104および補助レーザ112を受けるように構成された光学結晶116と、光学結晶116によって散乱された光(例えば、基本波長レーザ光、別の波長光または補助光)を検出するように構成された検出器126とを含む。さらなる局面において、光学結晶116は、光学結晶116によって受けた基本光を別の波長光117(すなわち、基本レーザ光と異なる波長の光)の一部に対して周波数変換を行うように構成される。
別の局面において、基本光源102、補助光源110、光学結晶116およびシステム100の多様な光学要素は、補助光112および基本光104のうち少なくとも一部が光学結晶116の入射表面を通じて共伝搬するように、構成され得る。このようにして、基本光源102は、基本光源102からの基本レーザ光104を光学結晶116の周波数変換結晶位置上へと方向付けるように、構成される。一方、補助光源110は、補助光源110からの補助光112を上記と同じ周波数変換結晶位置(または上記位置のうち少なくとも一部)上へと方向付けるように、構成される。
本明細書中、共伝搬している基本光104および補助光112の一部と、生成された別の光117とが、図1に示すように光学結晶116の体積を通じて伝搬し、光学結晶116から出て行くことが認識される。しかし、結晶位置劣化に起因して光学結晶116内に欠陥が発生した場合、基本104、補助112および/または別の117光ビームの反射部から光が散乱し得ることが本明細書中さらに認識される。この散乱光118のうち一部を検出器126を介して測定することにより、光学結晶116中の結晶位置劣化レベルの特性付けが可能となる。所与の周波数変換結晶位置中の劣化レベルの特性付けを行うことにより、周波数変換結晶位置破損の予測をより高精度に行うことが可能になる。
本明細書中、多くの設定において、基本光104および別の光117と関連付けられた散乱は、適切な信号対ノイズ比を達成できないような大きな大きさにされることが企図される。基本光104および別の光117と異なる波長を有する補助光112を放出することが可能な補助光源110を実行することにより、1つ以上の劣化部位の特性付けを補助波長光112を用いて行うことが可能となる。このようにして、本明細書中に以下にさらに詳述するようにフィルタリングプロセスを実行した後に検出を行って基本波長光104および別の波長光117を検出経路からフィルタリングすることによって補助波長光112のみを検出するように、システム100を構成することができる。
一般的に、基本レーザ光源102は、当該分野において公知の任意のレーザ光源を含み得る。基本レーザ光源102の特定の波長を選択する場合、多様な要素(例を非限定的に挙げると、光学結晶116の非線形応答によって生成された別の波長光の所望の出力波長)に基づいて選択すればよい。さらに、システム100の光学結晶116は、当該分野において公知の任意の非線形光学結晶を含み得る。同様に、特定の種類の非線形光学結晶を選択する場合、多様な要素(例を非限定的に挙げると、光学結晶116の非線形応答によって発生した別の波長光の所望の出力波長)に基づいて選択すればよい。この点において、基本レーザ光源102および光学結晶116は関連付けて選択される。すなわち、特定の1式の基本レーザ光源と、受信側の非線形光学結晶とを選択する際、この一対によって所望の別の波長光が得られるように選択を行う。このようにして特定に選択された基本光源102、光学結晶116または生成された別の波長光117は限定されず、上記のうちいずれの選択も、本発明の範囲内であることが認識されるべきである。
加えて、上記特定に選択された補助光源110は、限定的に解釈されるべきではない。一般的に、本明細書中に以下により詳細に記載するように、補助光源110を選択する際、放出された補助光112の波長が基本波長光104および別の波長光117の波長と異なるように選択を行い、これにより、向上した分析が可能となる。本明細書中、補助光源110は、当該分野において公知の任意の光源を含み得ることが認識される。例えば、補助光源110は、狭帯域照明を発光することが可能な任意の光源を含み得る。本明細書中、狭帯域照明は、広帯域源および1つ以上のフィルタリングデバイスを用いて達成され得る点に留意されたい。別の例として、補助光源110は、1つ以上のレーザ光源を含み得る(例えば、単一のレーザまたはレーザアレイ)。さらに別の例として、補助光源110は、1つ以上の発光ダイオード(LED)を含み得る(例えば、単一のLEDまたはLEDアレイ)。
本発明の別の局面において、システム100は、第1の集束要素106と、第2の集束要素114と、ビームスプリッター(例えば、ダイクロイックミラー108)とを非限定的に含み得る。上記ビームスプリッターは、基本光源102および補助光源106からの光を結晶経路109を介して光学結晶116へと方向付けるように構成される。このようにして、第1の集束要素106は、基本光源102からの基本光104を光学結晶116の周波数変換結晶位置上へと集束させることができる。第2の集束要素114は、補助光源110からの補助光112を上記と同一の周波数変換結晶位置上へと集束させる。
一実施形態において、上記ビームスプリッターは、ダイクロイックミラー108を含み得る。この点について、ダイクロイックミラー108を用いて、基本光源102からの照明104を光学結晶116に向かって反射させつつ、補助光源110からの照明112を光学結晶116へと伝送することができる。本明細書中、この構成は限定的なものではなく、ひとえに例示として解釈されるべきである点に留意されたい。例えば、システム100の構成を、補助光源110からの照明を光学結晶116に向かって反射させつつ、ダイクロイックミラーを用いて基本光源102から光学結晶116へと伝送させるような構成にしてもよい。当業者であれば、特定の構成は、多様な要素(例を非限定的に挙げると、選択された基本レーザ源102および補助光源110からの照明の偏光および波長)によって異なり得ることを認識する。
一般的に、当該分野において公知の任意の適切なビームスプリッターを、本発明の文脈内において用いることができる。記載を明確にする目的のため、本開示の残りの部分全体において、ダイクロイックミラー108に基づいたビームスプリッターの文脈において、本発明について説明する。しかし、この記載は制限的なものではなく、他にも多数のビーム分割技術を本発明の範囲内において用いることが可能であることが認識されるべきである。
本発明の別の局面において、第1の集束要素106は、第1の光経路105に沿って配置される。第1の集束要素106は、基本レーザ光源102から放射された光104を光学結晶116中へと集束させるように、構成される。この点について、第1の集束要素106は、基本光源102とダイクロイックミラー108との間において、第1の光経路に沿って配置される。別の実施形態において、図示していないものの、第1の集束要素106は、ビームスプリッター108と光学結晶116との間において、結晶経路109に沿って配置される。本明細書中、第1の集束要素106の位置に関連して上述した配置構成は制限されず、ひとえに例示として解釈されるべきである点に留意されたい。さらなる実施形態において、集束要素106は、基本レーザ光源102から放出された基本レーザ光104を集束させるための当該分野において公知の光学デバイスを含み得る。例えば、第1の集束要素106の例を非限定的に挙げると、レンズ、鏡、または回折要素がある。
本明細書中、基本レーザ光104の集束は、システム100の要求ではないことが企図される。この点において、基本レーザ光104の集束が必要かは、例えば、光学結晶116内の必要なビームサイズによって決定され得る。
別の実施形態において、第2の集束要素114は、第2の光経路107に沿って配置される。第2の集束要素114は、補助光源110から放出された光112を光学結晶116中に集束させるように、構成される。この点について、第2の集束要素114は、補助光源110と、ダイクロイックミラー108との間において、第2の光経路107に沿って配置される。別の実施形態において、図1に示していないものの、第2の集束要素114は、ダイクロイックミラー108と、光学結晶116との間において、結晶経路109に沿って配置される。本明細書中、第2の集束要素114の位置に関連して上述した配置構成は制限されず、ひとえに例示として解釈されるべきである点に留意されたい。
さらなる実施形態において、第2の集束要素114は、補助光源110から放出された補助光112を集束させるのに適した、当該分野において公知の任意の光学デバイスを含み得る。例えば、上記第2の集束要素114の例を非限定的に挙げると、レンズ、鏡、または回折要素がある。
本明細書中、補助光112の集束は、システム100の要求ではないことが企図される。上記補助光112が必要かは、例えば、光学結晶116内の必要なビームサイズによって決定され得る。一般的には、基本光ビーム104とほぼ同じサイズの補助光ビーム112を生成することが望ましい。サイズが同じであるかまたは少なくとも類似している基本光ビームおよび補助光ビームを用いることにより、システム100が光学結晶116の所与の周波数変換結晶位置において基本レーザビーム104と補助光ビーム112との間の大幅な重複を達成することが可能になる。基本レーザビーム104と補助光ビーム112との間の重複により、結晶の欠陥と関連する適切な信号の生成が支援され得る。このようにして、基本光ビーム104と共に存在する補助光ビーム112により、上記システムが(基本光への露出に起因する散乱補助光の測定を通じて)結晶位置劣化による影響をより高精度に測定することが可能になる。
図1に示す構成は第2の高調波発生に適しているものの、本明細書中、他の種類の周波数変換または周波数混合をプロセスを本発明の範囲内において実行することが可能であることが認識される。
本発明の別の局面において、検出器126は、光学結晶116からの散乱光118を収集するように構成される。本明細書中に既述したように、基本レーザビーム104、補助光ビーム112および生成された別の光117の反射部は、図1に示すように共に光学結晶116から退出し得る。しかし、光学結晶116内の欠陥は、基本光ビーム104、補助112光ビームおよび/または別の117光ビームの反射部からの光を散乱させ得る。これらの欠陥は、基本レーザ光104への露出の結果、周波数変換結晶位置の劣化に起因して発生し得る。上記発生した欠陥から散乱した後、基本光ビーム104、補助光ビーム112および/または別の117光ビームの部分は、結晶経路109に対して一定角度で配置された方向に沿って方向転換され得る。このようにして、基本光104、補助光112および/または別の光117は、散乱ビーム118を形成し得る。散乱ビーム118は、基本光、補助光および/または別の光の何らかの組み合わせを含み得る。
検出器は、当該分野において公知の任意の検出器を含み得る。例えば、検出器126の例を非限定的に挙げると、フォトダイオード(例えば、シリコンフォトダイオード)、光電子増倍管(PMT)、または電荷結合素子(CCD)がある。一般的に、特定の使用検出器の感度を、検出対象となる例レベル照明に対して高感度にするべきである。例えば、検出器126は、選択された補助光源110から放出された低レベル光に対して高感度に設定された検出器を含み得る。
さらなる実施形態において、システム100は、1つ以上の組の集光部120を含み得る。本発明の集光部120は、当該分野において公知の任意の集光部を含み得る。例えば、集光部120の例を非限定的に挙げると、1つ以上のレンズまたは1つ以上の鏡がある。図1に示すように、集光部120は、光学結晶116から散乱した光118(例えば、劣化した周波数変換結晶位置を介して散乱したもの)を集光し、散乱光118を検出器126へと方向付けるように配置され得る。
別の実施形態において、システム100は、アパチャ122を含み得る。本明細書中、アパチャ122は、当該分野において公知の任意のアパチャを含み得ることが認識される。アパチャ122は、集光部120からの光がアパチャ122を通過するように、配置され得る。この点について、集光部120は、図1に示すように検出器126において開口部としてのアパチャ122を用いて、(散乱した基本レーザ光、散乱した別の光、および散乱した補助光からなる)散乱光118を有効に撮像する。本明細書中、この配置構成は、システム100の他の位置から発生した迷光の量を大幅に軽減することが認識される。
さらなる実施形態において、システム100は、アパチャ122と検出器126との間に配置されたフィルタ124を含み得る。本明細書中、フィルタ124は、当該分野において公知の任意の光学フィルタを含み得ることが認識される。例えば、フィルタ124の例を非限定的に挙げると、干渉フィルタまたは吸収フィルタがある。さらに、フィルタ124は、補助光源110の波長を除く全ての波長をフィルタリング除去するように構成され得る。この点において、フィルタ124は、散乱基本光と、光学結晶116によって生成された別の光との伝送を限定するように機能し得る。本明細書中、多くの場合において、基本光104および別の光117と関連する散乱は、適切な信号対ノイズ比が達成できないくらいにシステム内において充分に大きくすることができる点に留意されたい。基本光104および別の光117と異なる波長を有する補助光112を放出するように構成された補助光源110を実行することにより、補助光112のみが検出器126に到達するように散乱光118のフィルタリングを行うことが可能となる。
本明細書中、上述した集光部120、アパチャ122およびフィルタ124は同時に実行することが可能であるため、散乱光118の集光およびフィルタリングを効率的に行うことが可能となることが認識される。
本発明の別の局面において、システム100は、コンピュータシステムを含み得る。このコンピュータシステムは、検出器126に通信可能に接続され、検出器126から検出結果を受信するように構成される。例えば、検出器126は、1つ以上の信号(例えば、無線または有線デジタル化信号)を送信し得る。これらの信号は、検出器126の1つ以上の検出結果をコンピュータシステム(図示せず)に示す。
検出器126から検出結果から受信した後、コンピュータシステムは、事前プログラムされたアルゴリズムを実行し得る。上記事前プログラムされたアルゴリズムは、所与の結晶位置の周波数変換結晶位置劣化レベルを決定するように構成される。例えば、上記アルゴリズムは、検出器126によって測定された取得散乱光118の強度と、標準化された基準データとを比較するように構成され得る。上記基準データは、散乱強度118と、所与の劣化レベルとを相関付けるのに適している。上記コンピュータアルゴリズムは、所与の結晶位置が破損状態となるまでに残っている時間の長さについての通知を提供するようにさらに構成され得る。この通知は、ユーザ表示インターフェースを介して、システム100のサブシステムまたはユーザへと提供され得る。
別の実施形態において、上記コンピュータシステムは、平行移動制御システム(図示せず)に対する制御命令を送信し得る。この点について、所与の結晶位置の切迫破損を特定した後、上記コンピュータシステムは、平行移動コマンドと通信可能に接続された平行移動制御システムへと送信し得る。上記コマンド信号に応答して、上記平行移動制御システムは、光学結晶116を選択された量だけ平行移動させることで、基本レーザビーム104および補助光ビーム112を未劣化の光学結晶116の一部上に衝突させる。
本明細書中、上記平行移動制御システムは、多軸平行移動段を含み得ることが認識される。任意の公知の多軸平行移動段は、本発明における実行に適している点に留意されたい。例えば、上記多軸平行移動段の例を非限定的に挙げると、電動式多軸平行移動段または圧電型駆動平行移動段がある。さらに、光学結晶116は、当該分野において公知の任意の様態で平行移動制御システムの多軸段へと機械的に接続され得る。
上記コンピュータシステムの例を非限定的に挙げると、パーソナルコンピュータシステム、メインフレームコンピュータシステム、ワークステーション、画像コンピュータ、平行プロセッサ、または当該分野において公知の他の任意のデバイスがある。一般的には、「コンピュータシステム」という用語は、記憶媒体から命令を実行する1つ以上のプロセッサを有する任意のデバイスを包含するように広範に定義され得る。
本明細書中に記載の方法などの方法を実行するプログラム命令は、キャリア媒体を介して送信してもよいし、あるいはキャリア媒体上に保存してもよい。上記キャリア媒体は、伝送媒体(例えば、ワイヤ、ケーブル、または無線伝送リンク)であり得る。上記キャリア媒体は、記憶媒体も含み得る(例えば、リードオンリーメモリ、ランダムアクセスメモリ、磁気ディスクまたは光学ディスク、または磁気テープ)。
図2は、1組の散乱測定結果を示す。上記結果は、損傷の開始、波面劣化の開始および出力劣化の開始を示す。本明細書中、周波数変換結晶が劣化した場合、結晶が別の光を生成する能力に影響が出ることが認識される。結晶内の結晶位置が劣化した場合、光学結晶の変換能力において主に2つの様態で影響が出る。多くの場合において、熱効果およびフォトリフレクションに起因して、所与の光学結晶から発生した光波面が変化する。結晶から発生した光波面への悪影響は、顕著な出力劣化が観察される前に発生し得る点にさらに留意されたい。露出時間が長くなるほど、放出光の出力も劣化し得る。しかし、上記散乱光信号は、結晶損傷に対してより高感度であり得ることが認識される。図2は、実行された検出システム(例えば、本開示のシステム100、システム300、またはシステム400)によって検出された散乱光のレベルを時間の関数として示す。先ず(短時間において)、検出された極めて低レベルの散乱背景光がある。時間経過と共に、上記散乱光信号は、ノイズ閾値を超えて増加し、微小損傷204の開始が観察される。本明細書中、微小損傷の開始は、生成された別の光の出力または波面に大きな影響を与えない点に留意されたい。なぜならば、上記結晶内の衝突基本光ビーム直径は、上記微小損傷よりも大幅に大きいからである。さらに時間が経過すると、波面劣化206の閾値が到達するまで、上記散乱が増加する。ここで、衝突システムに対する波面劣化の重要性の関数としてこの閾値を選択することが必要である点に留意されたい。本明細書中、多くの設定において、波面は重要ではなく、出力が主な問題となる点が認識される。これらの設定において、波面劣化が重要ではない場合、出力劣化208の開始が観察されるまで、光学の結晶位置の重要性は典型的にはより長期間にわたって続く。
図3は、非線形光学結晶内における結晶位置監視のためのによる、非線形光学結晶内における結晶位置監視のためのシステム300を示す。システム300の例を非限定的に挙げると、基本波長のレーザ光304を生成するように構成された基本レーザ光源302と、基本レーザ光304を受信するように構成された光学結晶310、光学結晶310によって散乱された光を検出するように構成された検出器322(例えば、基本波長レーザ光または別の波長光)がある。さらに、システム300は、基本レーザ源302からの照明を光学結晶116へと方向付けおよび集光するように構成された集束要素306およびダイクロイックミラー308を含み得る。本明細書中、システム300のダイクロイックミラー308は、システム300の要求ではないことが認識されるべきである。加えて、システム300は、集光部316と、アパチャ318と、フィルタ320とを含み得る。フィルタ320は、散乱光314が検出器322に衝突する前に、散乱光314の一部の集光およびフィルタリングを行うように構成される。
本明細書中、図3の基本レーザ光源302、光学結晶、検出器322、集束要素306、ダイクロイックミラー308、集光部316、アパチャ318およびフィルタ320は、本明細書中図1において上述した同様の構成要素コンポーネントに類似することが認識される。よって、システム100についての記載は、他に明記無き限り、システム300にも当てはまるものとして解釈されるべきである。
本明細書中、システム300においては、システム100中に示す補助光源が存在しない点に留意されたい。この点において、所与の周波数変換結晶位置欠陥から散乱した散乱光314は、基本光源302から提供された光と、光学結晶310の基本光304に対する非線形応答に起因して発生した別の光317との波長に限定される。
一局面において、検出器322は、散乱した基本光または散乱した別の光のいずれかを検出するように構成され得る。さらなる実施形態において、フィルタ320は、選択された対象波長のみを通過させるように構成され得、上記対象波長は、基本レーザ光104の波長または別の光317の波長のいずれからなる。
検出対象となる波長(またはフィルタ320を用いてフィルタリング除去すべき波長)の特定の選択は、いくつかの要素に依存し得る。1つの点において、波長の選択は、システム内において達成され得る信号対ノイズレベルに依存し得る。ここで、一般的には短波長光がより容易に欠陥により散乱することが認識される。そのため、1つの点において、より短波長の光を選択することが望ましい。しかし、これとは対照的に、利用可能なより短波長の光の強度は望ましい強度ではない場合があり、あるいは、迷光源に起因して、より短波長の光を選択することが困難になる場合もある(例えば、迷光源がより短波長の光と同じ波長であるため、迷光のフィルタリング除去が不可能になる場合)。そのため、基本光散乱または別の光散乱を検出するかについての特定の決定は、いくつかの変数に依存し得、最適な選択は、最適な信号対ノイズ比が得られる散乱光である。
図4は、本発明の別の実施形態による、非線形光学結晶中の結晶位置監視のためのシステム400を示す。システム400は、以下を非限定的に含み得る。基本波長のレーザ光404を生成するように構成された基本レーザ光源402と、基本光404と異なる波長を有する補助波長光412を提供するように構成された補助光源410と、基本レーザ光404および補助波長光412を受けるように構成された光学結晶416とを含む。さらに、システム400は、基本レーザ源402および補助光源410からの照明を光学結晶116へと方向付けおよび集束させるように構成された、第1の集束要素406、第2の集束要素414およびダイクロイックミラー408を含み得る。
本明細書中、基本レーザ光源402、補助光源410、光学結晶416、集束要素406および414ならびにダイクロイックミラー408は、本明細書中に上述した図1の類似のコンポーネントと類似することが認識される。よって、システム100の記載は、他に明記無き限り、システム400にも当てはまるものとして解釈されるべきである。
一実施形態において、システム400は、波長分離要素420を含み得る。波長分離要素420は、補助波長光412をシステム400の測定アームへと方向付けるように構成される。このようにして、波長分離デバイス420は、光学結晶416からの発生の後、基本レーザ光404および別の光417を伝送するように構成され得る。逆に言えば、波長分離デバイス420は、補助波長光412を反射するように構成され得る。この点について、波長分離デバイス420は、補助光417をシステム400の測定アームへと反射させつつ、基本レーザ光404および別の光417を通過させるように配置され得る。
[分離器の種類]波長分離要素420は、基本光および別の光からの補助波長の照明を分離するのに適した、当該分野において公知の任意の波長分離デバイスを含み得る。例えば、波長分離要素420の例を非限定的に挙げると、ダイクロイックミラー、プリズム、回折要素などがある。
[ビーム特性付けシステム]本発明の別の局面において、システム400は、ビーム特性付けシステム432を含み得る。ビーム特性付けシステム432は、補助波長光412のビームの1つ以上の特性を測定するように構成される。この点について、波長分離器420を用いて光学結晶416から発生した光ビームから補助波長光を分離して、補助波長光412をビーム特性付けシステム432に向かって方向付けることができる。
さらに、ビーム特性付けシステム432は、補助波長光412の波面または補助波長光412の1つ以上のビームプロファイルパラメータ(例えば、M2要素、直径、発散など)を測定するように構成され得る。
一実施形態において、ビーム特性付けシステム432は、1つ以上の波面感知デバイスを含み得る。本明細書中、上記波面感知デバイスは、当該分野において公知の任意の波面測定デバイスを含み得る点に留意されたい。例えば、上記波面測定デバイスとして、波面センサーがあり得る。当業者であれば、波面センサーは、電子的光検出デバイス(例えば、CCD)の感知要素のアレイと共に配列されたレンズのアレイまたはアパチャのアレイを含み得ることを認識する。例えば、上記波面測定デバイスは、ハルトマンシャック波面センサーを含み得る。別の実施形態において、上記波面測定デバイスは、干渉計を含み得る。本明細書中、波面感知に適した任意の干渉システムが、本発明の実行において適している点において留意されたい。例えば、上記波面測定デバイスは、共通路干渉計、(ハルトマンシャック波面センサーに基づいた)シャーリング干渉計、フィゾー干渉計またはマイケルソン干渉計を含み得る。
別の実施形態において、上記ビーム特性付けシステムは、ビームプロファイル測定システムを含み得る。一般的に、当該分野において公知の任意のビームプロファイル測定システムが、本発明における実行に適している。いくつかの実施形態において、上記ビームプロファイル測定システムは、ビーム伝搬要素(すなわち、M2要素)、ビーム直径、ビーム発散などのうち少なくとも1つを測定するように構成され得る。
さらなる実施形態において、上記ビームプロファイル測定システムの例を非限定的に挙げると、補助波長光のビーム412を横方向に走査することにより、補助光412のビームプロファイルを測定する手段がある。例えば、上記ビームプロファイル測定システムは、補助波長光のビームを横方向に走査するように構成されたナイフエッジを含み得る。別の例として、上記ビームプロファイル測定システムは、補助波長光のビームを横方向に走査するように構成されたアパチャを含み得る。さらなる例において、上記ビームプロファイル測定システムは、補助波長のビームを横方向に走査するように構成されたスリットを含み得る。
さらなる実施形態において、上記ビームプロファイル測定システムは、補助波長の1つ以上のビーム特性を決定するための焦点を通じた2つ以上の位置において、補助波長光のビームプロファイルを測定するようにさらに構成される。例えば、上記ビームプロファイル測定システムは、補助波長光412の焦点、非点収差、または傾斜のうち少なくとも1つを決定するための焦点を通じた2つ以上の位置において、補助波長光のビームプロファイルを測定し得る。
当業者であれば、単一のビーム特性付けシステム432は、補助波長ビームの波面および1つ以上のビームプロファイルパラメータ双方を同時に決定するように構成され得ることを認識する。例えば、ハルトマンシャック波面センサーは、測定されたビームの波面および多様なビームプロファイルパラメータ(例えば、M2要素)を同時に決定することができる。
別の実施形態において、システム400は、反射鏡422を含み得る。反射鏡422は、波長分離器デバイス420から送られた光をセンサー432へとリダイレクトするように、構成され得る。本明細書中、反射鏡422は、システム400の基本要求ではなく、図4中に記載され、ひとえに例示的なものであることが認識される。
[望遠鏡]別の実施形態において、システム400は、拡大望遠鏡424を含み得る。拡大望遠鏡424は、補助波長光412のうち少なくとも一部をビーム特性付けシステム432上へと投射するように構成される。拡大望遠鏡424は、光学集束要素426および428を含み得る。本明細書中、望遠鏡424の集束要素426および428は、当該分野において公知の任意の焦点調整装置を含み得ることが認識される。例えば、集束要素426および428それぞれの例を非限定的に挙げると、レンズまたは鏡がある。
[フィルタ430]さらなる実施形態において、システム400は、フィルタ430を含み得る。フィルタ430は、補助波長光412以外の光をフィルタリング除去するように構成される。このようにして、フィルタ430は、ビーム特性付けシステム432上に衝突する非補助波長光の量を最小化するように機能し得る。本明細書中、フィルタ430は、他の波長光をフィルタリング除去しつつ、補助波長光412を通過させる、当該分野において公知の任意のフィルタを含み得ることが認識される。
別の局面において、システム400は、コンピュータシステムを含み得る。上記コンピュータシステムは、ビーム特性付けシステム432に通信可能に接続され、ビーム特性付けシステム432からの結果を受信するように構成される。例えば、ビーム特性付けシステム432は、ビーム特性付けシステム432の1つ以上の結果を示す1つ以上の信号(例えば、無線または有線デジタル化信号)をコンピュータシステム(図示せず)へと送信し得る。
ビーム特性付けシステム432からの結果を受信した後、上記コンピュータシステムは、事前プログラムされたアルゴリズムを実行し得る。上記事前プログラムされたアルゴリズムは、所与の結晶位置の周波数変換結晶位置劣化のレベルを決定するように構成される。例えば、上記アルゴリズムは、ビーム特性付けシステム432によって測定された取得波面情報および/またはビームプロファイルパラメータと、測定された照明および所与の劣化レベルの相関付けに適した標準化基準データとを比較するように、構成され得る。上記コンピュータアルゴリズムは、所与の結晶位置が破損状態となるまでに残っている時間を示す通知を提供するように、さらに構成され得る。この通知は、ユーザ表示インターフェースを介して、システム400のサブシステムまたはユーザへと提供され得る。
別の実施形態において、上記コンピュータシステムは、制御命令を平行移動制御システム(図示せず)へと送信し得る。この点について、所与の結晶位置の切迫破損を特定した後、上記コンピュータシステムは、通信可能に接続された平行移動制御システムへと平行移動コマンドを送信し得る。上記コマンド信号に応答して、上記平行移動制御システムは、光学結晶416を選択された量だけ平行移動させ得、これにより、基本レーザビーム404および補助光ビーム412が未劣化の光学結晶416の一部に衝突しなくなる。
本明細書中、上記平行移動制御システムは、多軸平行移動段を含み得ることが認識される。任意の公知の多軸平行移動段は、本発明における実行に適している点に留意されるべきである。例えば、上記多軸平行移動段の例を非限定的に挙げると、電動式多軸平行移動段または圧電型駆動平行移動段がある。さらに、光学結晶416は、上記平行移動制御システムの多軸段へと機械的に当該分野において公知の任意の様態で接続され得る。
本明細書中に記載されるシステムおよび方法は全て、上記方法実施形態の1つ以上のステップの結果を記憶媒体中に保存することを含み得る。上記結果は、本明細書中に記載の結果のうち任意の結果を含み得、当該分野において公知の任意の様態で保存され得る。上記記憶媒体は、本明細書中に記載の任意の記憶媒体または当該分野において公知の他の任意の適切な記憶媒体を含み得る。上記結果の保存後、上記結果は、上記記憶媒体中においてアクセスされ得、本明細書中に記載の方法またはシステムの実施形態のうちいずれかによって用いられ得、ユーザへの表示に合わせてフォーマットされ得、別のソフトウェアモジュール、方法またはシステムなどによって用いられ得る。さらに、上記結果は、「永久的に」、「半永久的に」、「一時的に」または一定期間にわたって保存され得る。例えば、上記記憶媒体は、ランダムアクセスメモリ(RAM)であり得、上記結果は必ずしも上記記憶媒体中に永久的に保存しなくてもよい。
当業者であれば、本明細書中に記載のプロセスおよび/またはシステムおよび/または他の技術を実行することが可能な多様な伝達手段があり(例えば、ハードウェア、ソフトウェアおよび/またはファームウェア)、また、好適な伝達手段は、プロセスおよび/またはシステムおよび/または他の技術が用いられる文脈によって異なることを理解する。例えば、作成者が速度および精度を何よりも重視すると決定した場合、上記作成者は、主にハードウェアおよび/またはファームウェア伝達手段を選択し得る。あるいは、柔軟性が重視される場合、上記作成者は、主にソフトウェア実行を選択し得る。あるいは、さらに代替的に、上記作成者は、ハードウェア、ソフトウェアおよび/またはファームウェアの何らかの組み合わせを選択し得る。よって、プロセスおよび/またはデバイスおよび/または本明細書中に記載の他の技術に影響を与え得る伝達手段はいくつか存在し得、これらのうちいずれも、その他のものよりも固有に優れておらず、任意の利用伝達手段は、上記伝達手段が利用される文脈と、上記作成者の特定の問題(例えば、速度、柔軟性、または予測可能性)とに基づいて選択される。上記のような文脈および問題は、いずれも変動し得る。当業者であれば、実行様態の光学的局面において、光学的に配置されたハードウェア、ソフトウェアおよび/またはファームウェアが典型的に用いられる。
当業者であれば、当該分野において、デバイスおよび/またはプロセスを本明細書中に記載の様態で記述することが一般的であり、その後技術的慣例を用いて、このように記述されたデバイスおよび/またはプロセスを統合してデータ処理システムを得ることを認識する。すなわち、合理的な量の実験を通じて、本明細書中に記載のデバイスおよび/またはプロセスのうち少なくとも一部を統合して、データ処理システムを得ることができる。当業者であれば、典型的なデータ処理システムは、一般的に以下のうち1つ以上を含む:システムユニットハウジング、ビデオ表示デバイス、メモリ(例えば、揮発性および非揮発性メモリ)、プロセッサ(例えば、マイクロプロセッサおよびデジタル信号プロセッサ)、演算エンティティ(例えば、オペレーティングシステム)、ドライバー、グラフィカルユーザインターフェース、およびアプリケーションプログラム、1つ以上の双方向デバイス(例えば、タッチパッドまたは画面)、および/または制御システム(例えば、フィードバックループ)および制御モータ(例えば、位置および/または速度を感知するフィードバック)、コンポーネントおよび/または数量の移動および/または調節のための制御モータ)ことを認識する。典型的なデータ処理システムが、任意の適切な市販のコンポーネント(例えば、データコンピューティング/通信および/またはネットワークコンピューティング/通信システムにおいて典型的に見受けられるようなもの)を用いて実行され得る。
本明細書中に記載の内容において、他の異なるコンポーネント内に設けられたまたは異なる他のコンポーネントと接続された異なるコンポーネントが例示されることがある。このような記載のアーキテクチャはひとえに例示であり、実際に、同一機能を達成する他の多数のアーキテクチャを実行することが可能であることが理解される。概念的な意味において、同一機能を達成するためのコンポーネントの配置構成は、所望の機能が達成されるように、有効に「関連付けられる」。よって、特定の機能を達成するように組み合わされた本明細書中の任意の2つのコンポーネントは、アーキテクチャまたは中間コンポーネントに関係無く、所望の機能が達成されるように相互に「関連付けられた」ものとしてみなすことが可能である。同様に、このように関連付けられた任意の2つのコンポーネントは、所望の機能が達成されるように、相互に「接続された」かまたは「連結された」ものとしてみなすこともでき、このように関連付けることが可能な任意の2つのコンポーネントも、相互に「連結可能である」ものとしてみなすことができる。連結可能なものの特定の例を非限定的に挙げると、物理的に噛合可能なおよび/または物理的に相互作用するコンポーネントおよび/または無線的に相互作用可能なおよび/または無線的に相互作用可能なコンポーネントおよび/または論理的に相互作用可能なおよび/または論理的に相互作用可能な相互作用可能なコンポーネントである。
本明細書中に記載の本発明の特定の局面について図示および記載してきたが、当業者にとって、本明細書中の教示を鑑みれば、本明細書中に記載の内容およびそのより広い局面から逸脱することなく変更および改変が可能であり、よって、添付の特許請求の範囲は、本明細書中に記載の内容の真なる意図および範囲内に収まるこのような変更および改変全てを包含することが明らかである。
本発明の特定の実施形態を例示してきたが、当業者であれば、上記開示の範囲および意図から逸脱することなく、多様な変更および本発明の実施形態を行うことが可能である。よって、本発明の範囲は、本明細書に添付された特許請求の範囲のみによって限定されるべきであることが明らかである。
本開示およびそれに付随する利点の多くは、上記の記載によって理解されることが考えられ、開示内容から逸脱することなくまたはその実質的利点全てを犠牲にすることなく、構成要素の形態、構成および配置において多様な変更が可能であることが明らかである。記載の形態はひとえに例示であり、以下の特許請求の範囲内に、このような変更が含まれる。
さらに、本発明は、添付の特許請求の範囲によって規定されることが理解される。

Claims (23)

  1. 結晶位置寿命監視を用いたレーザ周波数変換のための装置であって、
    基本波長レーザ光を生成するように構成された基本レーザ光源と、
    前記基本レーザ光源からの基本レーザ光を受けるように構成された少なくとも1つの光学結晶であって、前記少なくとも1つの光学結晶は、前記受けた基本レーザ光のうち少なくとも一部を別の波長光へと周波数変換することにより、別の波長光を生成するように構成される少なくとも1つの光学結晶と、
    補助波長光を生成するように構成された補助光源であって、前記補助波長光の波長は、前記基本波長レーザ光の波長および前記別の波長光の波長と異なり、前記基本レーザ光源および前記補助光源は、少なくとも基本レーザ光の一部が補助波長光のうち少なくとも一部と共に前記光学結晶の1つ以上の表面を通じて実質的に共伝搬するように配置される補助光源と、
    前記光学結晶によって散乱された補助波長光を検出するように構成された検出器と、
    前記光学結晶と前記検出器との間に配置された1つ以上のフィルタであって、前記1つ以上のフィルタは、前記少なくとも1つの光学結晶の周波数変換位置から散乱された前記基本レーザ光及び前記別の波長光をブロックし、前記1つ以上のフィルタは、前記光学結晶の周波数変換位置によって散乱された補助波長光を実質的に通過させるように構成される1つ以上のフィルタと、
    前記検出器へ通信可能に接続されたコンピュータシステムであって、前記検出器から1つ以上の検出結果を受信するステップと、前記受信した1つ以上の検出結果と、選択された1組の較正基準データとを比較するステップと、受信した前記補助波長光の1つ以上の検出結果と前記選択された1組の較正基準データとの比較に基づいて、少なくとも1つの光学結晶の周波数変換位置の破損状態になるまでの時間量を決定するステップと、を行うように構成されるコンピュータシステムと、
    を含む、装置。
  2. 前記コンピュータシステムへと通信可能に接続された多軸平行移動制御システムであって、前記多軸平行移動制御システムは、前記少なくとも1つの光学結晶の周波数変換位置が破損条件に差し迫ったことの決定に応答して、前記少なくとも1つの光学結晶を平行移動するように構成される多軸平行移動制御システム、
    をさらに含む、請求項1に記載の装置。
  3. 前記補助光源はレーザ光源を含む、請求項1に記載の装置。
  4. 前記光学結晶と前記検出器との間に配置された1つ以上の集光要素であって、前記1つ以上の集光要素は、前記光学結晶によって散乱された基本波長レーザ光、前記光学結晶によって散乱された別の波長光、または前記光学結晶によって散乱された補助波長光のうち少なくとも1つを収集するように構成される1つ以上の集光要素、
    をさらに含む、請求項1に記載の装置。
  5. 前記光学結晶と前記検出器との間に配置された1つ以上の中間集束要素であって、前記1つ以上の中間集束要素は、前記光学結晶によって散乱された基本波長レーザ光、前記光学結晶によって散乱された別の波長光、または前記光学結晶によって散乱された補助波長光のうち少なくとも1つを中間焦点へと集束させるように構成される1つ以上の中間集束要素、
    をさらに含む、請求項1に記載の装置。
  6. 前記中間焦点の位置に配置されたアパチャであって、前記アパチャは、前記検出器における光学濃度を制限するように構成されるアパチャ、
    をさらに含む、請求項5に記載の装置。
  7. 前記検出器は、さらに、前記光学結晶により散乱された前記基本レーザ光と、前記光学結晶により散乱された前記別の波長光の少なくとも1つを検出するように構成される、
    ことを特徴とする請求項1に記載の装置。
  8. 結晶位置寿命監視を用いたレーザ周波数変換のための装置であって、
    基本波長レーザ光を生成するように構成された基本レーザ光源と、
    前記基本レーザ光源からの基本レーザ光を受けるように構成された少なくとも1つの光学結晶であって、前記少なくとも1つの光学結晶は、前記受けた基本レーザ光のうち少なくとも一部を別の波長光へと周波数変換することにより、別の波長光を生成するように構成される少なくとも1つの光学結晶と、
    補助波長光を生成するように構成された補助光源であって、前記補助波長光の波長は、前記基本波長レーザ光の波長および前記別の波長光の波長と異なり、前記補助光源は、前記補助波長光を前記光学結晶の周波数変換位置に導くように構成され、前記光学結晶から散乱した前記補助波長光は前記光学結晶を通過し、前記散乱した補助波長光は、生成された補助波長光と実質的に同じ波長を有する、補助光源と、
    前記光学結晶によって散乱された補助波長光を検出するように構成された検出器と、
    前記光学結晶と前記検出器との間に配置された1つ以上のフィルタであって、前記1つ以上のフィルタは、前記少なくとも1つの光学結晶の周波数変換位置から散乱された前記基本レーザ光及び前記別の波長光をブロックし、前記1つ以上のフィルタは、前記光学結晶の周波数変換位置によって散乱された補助波長光を実質的に通過させるように構成される1つ以上のフィルタと、
    前記検出器へ通信可能に接続されたコンピュータシステムであって、前記検出器から1つ以上の検出結果を受信するステップと、前記受信した1つ以上の検出結果と、選択された1組の較正基準データとを比較するステップと、受信した前記補助波長光の1つ以上の検出結果と前記選択された1組の較正基準データとの比較に基づいて、少なくとも1つの光学結晶の周波数変換位置の破損状態になるまでの時間量を決定するステップと、を行うように構成されるコンピュータシステムと、
    を含む、装置。
  9. 前記光学結晶と前記検出器との間に配置された1つ以上の集光要素であって、前記1つ以上の集光要素は、前記光学結晶によって散乱された基本波長レーザ光、前記光学結晶によって散乱された別の波長光、及び、前記光学結晶によって散乱された前記補助波長光のうち少なくとも1つを収集するように構成される1つ以上の集光要素、
    をさらに含む、請求項8に記載の装置。
  10. 前記光学結晶と前記検出器との間に配置された1つ以上の中間集束要素であって、前記1つ以上の中間集束要素は、前記光学結晶によって散乱された基本波長レーザ光、前記光学結晶によって散乱された別の波長光、及び、前記光学結晶によって散乱された前記補助波長光のうち少なくとも1つを集束させるように構成される1つ以上の中間集束要素、
    をさらに含む、請求項8に記載の装置。
  11. 実質的に中間焦点の位置に配置されたアパチャであって、前記アパチャは、前記検出器における光学濃度を制限するように構成されるアパチャ、
    をさらに含む、請求項10に記載の装置。
  12. 結晶位置寿命監視を用いたレーザ周波数変換のための装置であって、
    基本波長レーザ光を生成するように構成された基本レーザ光源と、
    前記基本レーザ光源からの基本レーザ光を受けるように構成された少なくとも1つの光学結晶であって、前記少なくとも1つの光学結晶は、前記受けた基本レーザ光のうち少なくとも一部を別の波長光へと周波数変換することにより、別の波長光を生成するように構成される少なくとも1つの光学結晶と、
    補助波長光を生成するように構成された補助光源であって、前記補助波長光の波長は、前記基本波長レーザ光の波長および前記別の波長光の波長と異なり、前記基本レーザ光源および前記補助光源は、少なくとも基本レーザ光の一部が補助波長光のうち少なくとも一部と共に前記光学結晶の第1の表面を通じて実質的に共伝搬するように配置される補助光源と、
    前記補助波長光の1つ以上の特性を測定するように構成されたビーム特性付けシステムと、
    前記光学結晶と前記ビーム特性付けシステムとの間に配置された1つ以上のフィルタであって、前記1つ以上のフィルタは、前記少なくとも1つの光学結晶の周波数変換位置から散乱された前記基本レーザ光及び前記別の波長光をブロックし、前記1つ以上のフィルタは、前記光学結晶の周波数変換位置によって散乱された補助波長光を実質的に通過させるように構成される1つ以上のフィルタと、
    前記光学結晶から前記補助波長光を前記ビーム特性付けシステムへと送信するように構成された波長分離要素と、
    前記ビーム特性付けシステムへ通信可能に接続されたコンピュータシステムであって、前記ビーム特性付けシステムから1つ以上の測定結果を受信するステップと、前記受信した前記補助波長光の1つ以上の測定結果と、選択された1組の較正基準データとを比較するステップと、前記ビーム特性付けシステムから受信した1つ以上の測定結果と前記選択された1組の較正基準データとの比較に基づいて、少なくとも1つの光学結晶の周波数変換位置の破損状態になるまでの時間量を決定するステップと、を行うように構成されるコンピュータシステムと、
    前記コンピュータシステムへと通信可能に接続された多軸平行移動制御システムであって、前記多軸平行移動制御システムは、前記少なくとも1つの光学結晶の周波数変換位置が破損条件に差し迫ったことの決定に応答して、前記少なくとも1つの光学結晶を変換するように構成される多軸平行移動制御システムと、
    を含む、装置。
  13. 前記波長分離要素は、ダイクロイックミラー、プリズムまたは回折要素のうち少なくとも1つを含む、請求項12に記載の装置。
  14. 前記ビーム特性付けシステムは、
    前記補助波長の波面を感知するように構成された少なくとも1つの波面感知デバイス、
    を含む、請求項12に記載の装置。
  15. 前記少なくとも1つの波面感知デバイスは、少なくとも1つの波面センサーを含む、請求項14に記載の装置。
  16. 前記少なくとも1つの波面感知デバイスは、干渉計を含む、請求項14に記載の装置。
  17. 前記ビーム特性付けシステムは、
    前記補助波長光の1つ以上のビームプロファイルパラメータを測定するように構成されたビームプロファイル測定システム、
    を含む、請求項12に記載の装置。
  18. 前記1つ以上のビームプロファイルパラメータは、ビーム伝搬要素、ビーム直径またはビーム発散のうち少なくとも1つを含む、請求項17に記載の装置。
  19. 前記補助波長光の1つ以上のビームプロファイルパラメータを測定するように構成された前記ビームプロファイル測定システムは、
    前記補助波長光のビームを横方向に走査するように構成されたナイフエッジ、
    を含む、請求項17に記載の装置。
  20. 前記補助波長光の1つ以上のビームプロファイルパラメータを測定するように構成された前記ビームプロファイル測定システムは、
    前記補助波長光のビームを横方向に走査するように構成されたアパチャ、
    を含む、請求項17に記載の装置。
  21. 前記ビームプロファイル測定システムは、
    前記補助波長光のビームを横方向に走査するように構成されたスリット、
    を含む、請求項17に記載の装置。
  22. 前記ビームプロファイル測定システムは、前記光学結晶によって散乱された補助波長の1つ以上のビーム特性焦点を通じた2つ以上の位置において、前記補助波長光のビームプロファイルを測定するように構成される、請求項17に記載の装置。
  23. 前記1つ以上のビーム特性は、焦点、非点収差または傾斜のうち少なくとも1つを含む、請求項22に記載の装置。
JP2016234729A 2010-11-09 2016-12-02 非線形光学結晶中の結晶位置寿命の測定 Active JP6490042B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41185110P 2010-11-09 2010-11-09
US61/411,851 2010-11-09
US13/287,603 US8824514B2 (en) 2010-11-09 2011-11-02 Measuring crystal site lifetime in a non-linear optical crystal
US13/287,603 2011-11-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013537945A Division JP2014502367A (ja) 2010-11-09 2011-11-08 非線形光学結晶中の結晶位置寿命の測定

Publications (2)

Publication Number Publication Date
JP2017040947A JP2017040947A (ja) 2017-02-23
JP6490042B2 true JP6490042B2 (ja) 2019-03-27

Family

ID=46019592

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013537945A Pending JP2014502367A (ja) 2010-11-09 2011-11-08 非線形光学結晶中の結晶位置寿命の測定
JP2016234729A Active JP6490042B2 (ja) 2010-11-09 2016-12-02 非線形光学結晶中の結晶位置寿命の測定

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013537945A Pending JP2014502367A (ja) 2010-11-09 2011-11-08 非線形光学結晶中の結晶位置寿命の測定

Country Status (4)

Country Link
US (1) US8824514B2 (ja)
EP (1) EP2638566B1 (ja)
JP (2) JP2014502367A (ja)
WO (1) WO2012064791A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9535273B2 (en) * 2011-07-21 2017-01-03 Photon Dynamics, Inc. Apparatus for viewing through optical thin film color filters and their overlaps
US8873596B2 (en) 2011-07-22 2014-10-28 Kla-Tencor Corporation Laser with high quality, stable output beam, and long life high conversion efficiency non-linear crystal
US8976343B2 (en) 2012-06-21 2015-03-10 Kla-Tencor Corporation Laser crystal degradation compensation
US9042006B2 (en) 2012-09-11 2015-05-26 Kla-Tencor Corporation Solid state illumination source and inspection system
US8929406B2 (en) 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
CN205985173U (zh) * 2016-09-21 2017-02-22 东莞新能源科技有限公司 极耳结构和电池
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
KR102276004B1 (ko) * 2019-12-16 2021-07-13 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
US11237455B2 (en) 2020-06-12 2022-02-01 Kla Corporation Frequency conversion using stacked strontium tetraborate plates
DE102020124543A1 (de) * 2020-09-21 2022-03-24 Dausinger & Giesen Gmbh integrierte Optomechanik für Hochleistungsscheibenlaser
US11567391B1 (en) * 2021-11-24 2023-01-31 Kla Corporation Frequency conversion using interdigitated nonlinear crystal gratings
US11899338B2 (en) 2021-12-11 2024-02-13 Kla Corporation Deep ultraviolet laser using strontium tetraborate for frequency conversion

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603529A (ja) * 1983-06-21 1985-01-09 Nec Corp 光ビ−ム径の測定方法
JPS60170987A (ja) * 1984-02-16 1985-09-04 Mitsubishi Electric Corp レ−ザ用光センサ
JP2540430B2 (ja) * 1993-02-16 1996-10-02 理化学研究所 レ―ザ―ビ―ムの集光特性測定装置
JPH07113686A (ja) * 1993-10-20 1995-05-02 Matsushita Electric Ind Co Ltd 光ビームプロファイル測定装置
US6157444A (en) * 1997-11-28 2000-12-05 Hitachi, Ltd. Defect inspection apparatus for silicon wafer
US6101022A (en) * 1998-05-22 2000-08-08 Raytheon Company High beam quality optical parametric oscillator
JP2000252570A (ja) * 1999-02-26 2000-09-14 Shimadzu Corp 波長変換固体レーザ装置
JP2001343281A (ja) * 2000-05-31 2001-12-14 Konica Corp 光ビーム形状計測装置
JP4162876B2 (ja) * 2001-07-30 2008-10-08 松下電器産業株式会社 レーザ装置
US6859335B1 (en) * 2002-11-20 2005-02-22 Ming Lai Method of programmed displacement for prolong usage of optical elements under the irradiation of intensive laser beams
US7242700B2 (en) 2004-10-05 2007-07-10 Coherent, Inc. Stabilized frequency-converted laser system
JP2006222411A (ja) * 2005-01-17 2006-08-24 Fanuc Ltd レーザ発振器及びレーザ発振器の励起光源の寿命推定方法
JP4911558B2 (ja) * 2005-06-29 2012-04-04 株式会社小松製作所 狭帯域化レーザ装置
US7620077B2 (en) * 2005-07-08 2009-11-17 Lockheed Martin Corporation Apparatus and method for pumping and operating optical parametric oscillators using DFB fiber lasers
JP4532378B2 (ja) * 2005-09-28 2010-08-25 アドバンスド・マスク・インスペクション・テクノロジー株式会社 レーザ光源運用方法
WO2008153594A1 (en) * 2006-11-30 2008-12-18 Massachusetts Institute Of Technology Compact background-free balanced cross-correlators
JP2009145791A (ja) 2007-12-18 2009-07-02 Lasertec Corp 波長変換装置、検査装置及び波長変換方法
JP2009198403A (ja) * 2008-02-22 2009-09-03 Fujinon Corp スポット特性測定における被検光学系位置調整方法および装置
JP4729093B2 (ja) * 2008-11-27 2011-07-20 株式会社東芝 波長変換光源装置及び波長変換方法
JP2010219164A (ja) 2009-03-13 2010-09-30 Omron Corp 光学素子のダメージ検知方法

Also Published As

Publication number Publication date
EP2638566B1 (en) 2019-08-14
US8824514B2 (en) 2014-09-02
EP2638566A2 (en) 2013-09-18
EP2638566A4 (en) 2014-04-16
JP2017040947A (ja) 2017-02-23
US20120113995A1 (en) 2012-05-10
JP2014502367A (ja) 2014-01-30
WO2012064791A2 (en) 2012-05-18
WO2012064791A3 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP6490042B2 (ja) 非線形光学結晶中の結晶位置寿命の測定
JP6377218B2 (ja) 計測システムおよび計測方法
JP4797005B2 (ja) 表面検査方法及び表面検査装置
JP2020073935A (ja) 試料の欠陥検出及び光ルミネセンス測定のための系及び方法
US20190257768A1 (en) Determining Information for Defects on Wafers
KR20180028072A (ko) Euv 이미징을 위한 장치 및 이의 이용 방법
KR101620594B1 (ko) 다기능 분광장치
JP2008164399A (ja) 異常検査装置
JP2007093339A (ja) 検査装置
TWI632364B (zh) 用於表面檢測中之照明能量管理的系統及方法
US10648928B1 (en) Scattered radiation optical scanner
JP2016114532A (ja) 光熱変換分光分析装置
JP2010092984A (ja) 表面検査方法
KR102597965B1 (ko) 광산란 기반 광학 기기 및 도구를 위한 공기 산란 표준
US10641713B1 (en) Phase retardance optical scanner
US10823669B2 (en) Inspecting an object that includes a photo-sensitive polyimide layer
JP4271593B2 (ja) 表面傷検査装置
JP2007315990A (ja) 光学素子の検査方法、光学素子の検査装置
CN112539705A (zh) 一种发光装置及其聚焦方法、检测设备
JP2007311730A (ja) クロストーク測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6490042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250