JP6485097B2 - 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム - Google Patents

立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム Download PDF

Info

Publication number
JP6485097B2
JP6485097B2 JP2015030330A JP2015030330A JP6485097B2 JP 6485097 B2 JP6485097 B2 JP 6485097B2 JP 2015030330 A JP2015030330 A JP 2015030330A JP 2015030330 A JP2015030330 A JP 2015030330A JP 6485097 B2 JP6485097 B2 JP 6485097B2
Authority
JP
Japan
Prior art keywords
curing
dimensional object
liquid
voxel
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015030330A
Other languages
English (en)
Other versions
JP2016150553A (ja
Inventor
光平 宇都宮
光平 宇都宮
山▲崎▼ 郷志
郷志 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015030330A priority Critical patent/JP6485097B2/ja
Priority to US14/978,255 priority patent/US10220604B2/en
Publication of JP2016150553A publication Critical patent/JP2016150553A/ja
Application granted granted Critical
Publication of JP6485097B2 publication Critical patent/JP6485097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Description

本発明は、立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラムに関する。
近年、3Dプリンター等の立体物造形装置が多く提案されている。立体物造形装置は、インク等の液体を吐出して所定サイズのドットを形成し、複数のドットにより立体物を造形する(例えば、特許文献1)。
特開2000−280354号公報
ところで、立体物造形装置により造形される立体物は、所定サイズのドットの集合として造形されるため、立体物の表面において凹凸が視認され、ざらつき感が生じることがあった。
本発明は、上述した事情に鑑みてなされたものであり、凹凸が視認される可能性を低減してざらつき感を感じさせない立体物を造形可能な立体物造形装置を提供することを、解決課題の一つとする。
以上の課題を解決するために、本発明に係る立体物造形装置は、液体を吐出可能なヘッドユニットと、前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、を備え、硬化した前記液体を用いてブロックを形成し、複数の前記ブロックにより立体物を造形可能な立体物造形装置であって、前記硬化ユニットは、前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、を含む複数の硬化モードにより、前記液体の硬化が可能である、ことを特徴とする。
この発明によれば、第1基準量の液体により、第1サイズのブロック(以下「第1ブロック」と称する)と、第2サイズのブロック(以下「第2ブロック」と称する)と、いう異なるサイズのブロックを形成することができる。換言すれば、この発明によれば、液体を硬化する際の硬化の程度を変化させることで、ブロックのサイズを制御することができる。
このため、液体の硬化の程度によるブロックのサイズの調整を行うことができずに、例えば、液体の吐出量のみによりブロックのサイズを制御する場合と比較して、ブロックのサイズの細やかな調整が可能になる。これにより、立体物の表面の凹凸を目立たなくすることが可能となり、ざらつき感を抑えた滑らかな表面を有する立体物を造形することが可能となる。
なお、ブロックを形成するための液体は、ヘッドユニットの1度の吐出動作で吐出される液体であってもよいし、ヘッドユニットの複数回の吐出動作で複数回にわたり吐出される液体であってもよい。すなわち、ブロックは、ヘッドユニットの1度の吐出動作で吐出された液体を硬化させてドットを形成する場合、1個のドットから形成されるものであってもよいし、複数のドットから形成されるものであってもよい。この場合、各ドットは、ヘッドユニットから吐出された液体のみからなるものであってもよいし、ヘッドユニットから吐出された液体に加え、当該液体以外の物体、例えば、液体が吐出される位置に予め設けられた粉末等を含むものであってもよい。当該粉末は、液体が硬化することで、固められるものであればよい。
また、上述した立体物造形装置において、前記第2硬化モードにより硬化された液体を用いて形成されるブロックは、前記立体物の形状を指定するためのモデルを、前記第1サイズの仮想的な直方体であるボクセルを複数用いたボクセル集合体により近似した場合に、前記ボクセル集合体を構成する複数のボクセルのうち、ボクセルの有する6面の中で下面を含む2以上の面が前記ボクセル集合体の表面を構成する第1エッジボクセルの上面と隣り合うボクセルと、前記第1エッジボクセルの一部と、に形成される、ことを特徴とすることが好ましい。
この態様によれば、ボクセルよりも大きなサイズの第2ブロックを、第1エッジボクセルの上側に隣り合うボクセル(以下「隣接ボクセル」と称する)と、第1エッジボクセルの一部と、に設ける。また、第1エッジボクセルは、下面が立体物の表面を構成するボクセルであり、立体物の表面のうち下側を向いた箇所におけるエッジ部分に位置する。すなわち、この態様によれば、立体物の表面のエッジ部分に位置する第1エッジボクセルに、第1エッジボクセルよりも小さいサイズのブロックが設けられると看做すことができる。このため、第1エッジボクセルの全体にブロックを形成する場合と比較して、エッジ部分を目立たなくすることができ、立体物の表面の凹凸を小さくすることができる。この結果、当該凹凸が視認され、または、触覚により認識される可能性を低く抑えることができる。
また、上述した立体物造形装置において、前記ヘッドユニットは、前記ブロックを形成する場合に、前記第1基準量の液体、または、前記第1基準量よりも少ない第2基準量の液体を吐出可能であり、前記第2基準量の液体を用いて形成されるブロックは、前記立体物の形状を指定するためのモデルを、前記第1サイズの仮想的な直方体であるボクセルを複数用いたボクセル集合体により近似した場合に、前記ボクセル集合体を構成する複数のボクセルのうち、ボクセルの有する6面の中で上面を含む2以上の面が前記ボクセル集合体の表面を構成する第2エッジボクセルの一部に設けられる、ことを特徴とすることが好ましい。
この態様によれば、第1硬化モードにおいて第1サイズのブロックを形成するための液体量よりも少ない第2基準量の液体を用いて、第2エッジボクセルにブロックを形成する。第2エッジボクセルは、上面が立体物の表面を構成するボクセルであり、立体物の表面のうち上側を向いた箇所におけるエッジ部分に位置する。すなわち、この態様によれば、立体物の表面のエッジ部分に位置する第2エッジボクセルに、第2エッジボクセルよりも小さいサイズのブロックを設けることができる。このため、第2エッジボクセルの全体にブロックを形成する場合と比較して、エッジ部分を目立たなくすることができ、立体物の表面の凹凸を小さくすることができる。この結果、当該凹凸が視認され、または、触覚により認識される可能性を低く抑えることができる。
また、上述した立体物造形装置において、前記液体は、所定波長の光が照射されることで硬化し、前記硬化ユニットは、前記ヘッドユニットから吐出された液体に対して前記所定波長の光を照射可能であり、前記第1硬化モードにおいて、前記硬化ユニットが照射する光の強度は、前記第2硬化モードにおいて、前記硬化ユニットが照射する光の強度よりも強い、ことを特徴とすることが好ましい。
この態様によれば、光の強度により、液体の硬化の程度を制御することができる。すなわち、光の強度により、ブロックサイズの調整を行うことができる。このため、光の強度によるブロックサイズの調整が行えない場合と比較して、ブロックサイズの細やかな調整が可能となり、ざらつき感を抑えた滑らかな表面を有する立体物を造形することが可能となる。
なお、所定波長の光とは、液体を硬化させることができる光であればよい。例えば、液体が紫外線硬化樹脂である場合には、所定波長の光は紫外線である
また、上述した立体物造形装置において、前記液体は、加熱されることで硬化し、前記硬化ユニットは、前記ヘッドユニットから吐出された液体を加熱することが可能であり、前記第1硬化モードにおいて、前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量は、前記第2硬化モードにおいて、前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量よりも大きい、ことを特徴とすることが好ましい。
この態様によれば、液体に加える熱量により、液体の硬化の程度を制御することができる。すなわち、液体に加える熱量により、ブロックサイズの調整を行うことができる。このため、液体に加える熱量によるブロックサイズの調整が行えない場合と比較して、ブロックサイズの細やかな調整が可能となり、ざらつき感を抑えた滑らかな表面を有する立体物を造形することが可能となる。
また、上述した立体物造形装置について、前記第1硬化モードにおいて、前記硬化ユニットが前記ヘッドユニットから吐出された液体を硬化する時間は、前記第2硬化モードにおいて、前記硬化ユニットが前記ヘッドユニットから吐出された液体を硬化する時間よりも長い、ことを特徴とすることが好ましい。
この態様によれば、液体を硬化する時間により、液体の硬化の程度を制御することができる。すなわち、液体を硬化する時間により、ブロックサイズの調整を行うことができる。このため、液体を硬化する時間によるブロックサイズの調整が行えない場合と比較して、ブロックサイズの細やかな調整が可能となり、ざらつき感を抑えた滑らかな表面を有する立体物を造形することが可能となる。
また、本発明に係る立体物造形装置の制御方法は、液体を吐出可能なヘッドユニットと、前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、を備え、硬化した前記液体を用いてブロックを形成し、複数の前記ブロックにより立体物を造形可能な立体物造形装置の制御方法であって、前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、を含む複数の硬化モードのうち、何れかの硬化モードにより前記ヘッドユニットから吐出された液体を硬化させる、ことを特徴とする。
この発明によれば、液体を硬化する際の硬化の程度を変化させることで、ブロックのサイズを制御することができる。このため、液体の硬化の程度によるブロックのサイズの調整ができない場合と比較して、ブロックのサイズの細やかな調整が可能となり、ざらつき感を抑えた滑らかな表面を有する立体物を造形することが可能となる。
また、本発明に係る立体物造形装置の制御プログラムは、液体を吐出可能なヘッドユニットと、前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、コンピューターと、を備え、硬化した前記液体を用いてブロックを形成し、複数の前記ブロックにより立体物を造形可能な立体物造形装置の制御プログラムであって、前記コンピューターを、前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、を含む複数の硬化モードのうち、何れかの硬化モードにより前記ヘッドユニットから吐出された液体を硬化させるように前記硬化ユニットを制御する制御部として機能させる、ことを特徴とする。
この発明によれば、液体を硬化する際の硬化の程度を変化させることで、ブロックのサイズを制御することができる。このため、液体の硬化の程度によるブロックのサイズの調整ができない場合と比較して、ブロックのサイズの細やかな調整が可能となり、ざらつき感を抑えた滑らかな表面を有する立体物を造形することが可能となる。
本発明に係る立体物造形システム100の構成を示すブロック図である。 立体物造形システム100による立体物Objの造形を説明するための図である。 立体物造形装置1の概略的な断面図である。 記録ヘッド30の概略的な断面図である。 駆動信号Vinの供給時における吐出部Dの動作を説明するための説明図である。 記録ヘッド30におけるノズルNの配置例を示す平面図である。 駆動信号生成部31の構成を示すブロック図である。 選択信号Selの内容を示す説明図である。 駆動波形信号Comの波形を表すタイミングチャートである。 データ生成処理及び造形処理を示すフローチャートである。 立体物Objを説明するための説明図である。 形状補完処理を示すフローチャートである。 指定データ生成処理を示すフローチャートである。 立体物Objを説明するための説明図である。 対比例に係る立体物Objを説明するための説明図である。 ボクセルデータVDと指定データSDとの関係を説明するための説明図である。 変形例5に係るデータ生成処理及び造形処理を示すフローチャートである。 変形例5に係る立体物造形システム100による立体物Objの造形について説明するための説明図である。 変形例5に係る立体物Objを説明するための説明図である。
以下、本発明を実施するための形態について図面を参照して説明する。ただし、各図において、各部の寸法及び縮尺は、実際のものと適宜に異ならせてある。また、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。
<A.実施形態>
本実施形態では、立体物造形装置として、紫外線硬化型インク(「液体」の一例)を吐出して立体物Objを造形する、インクジェット式の立体物造形装置を例示して説明する。
<1.立体物造形システムの構成>
以下、図1乃至図9を参照しつつ、本実施形態に係る立体物造形装置1を具備する立体物造形システム100の構成について説明する。
図1は、立体物造形システム100の構成を示す機能ブロック図である。
図1に示すように、立体物造形システム100は、インクを吐出し、吐出したインクにより形成されるドットにより層状の造形体LY(「造形層」の一例)を形成し、造形体LYを積層することで立体物Objを造形する造形処理を実行する立体物造形装置1と、立体物造形装置1が造形する立体物Objを構成する複数の造形体LYの各々の形状及び色彩を指定する指定データSDを生成するデータ生成処理を実行するホストコンピューター9と、を備える。
<1.1.ホストコンピューターについて>
図1に示すように、ホストコンピューター9は、ホストコンピューター9の各部の動作を制御するCPU(図示省略)と、ディスプレイ等の表示部(図示省略)と、キーボードやマウス等の操作部91と、ホストコンピューター9の制御プログラム、立体物造形装置1のドライバープログラム、及び、CAD(computer aided design)ソフト等のアプリケーションプログラムを記憶する情報記憶部(図示省略)と、モデルデータDatを生成するモデルデータ生成部92と、モデルデータDatに基づいて指定データSDを生成するデータ生成処理を実行する指定データ生成部93と、を備える。
ここで、モデルデータDatとは、立体物造形装置1が造形すべき立体物Objを表すモデルの形状及び色彩を示すデータであり、立体物Objの形状及び色彩を指定するためのデータである。なお、以下において、立体物Objの色彩には、立体物Objに複数色が付される場合における当該複数色の付され方、すなわち、立体物Objに付される複数色により表される模様、文字、その他の画像も含むこととする。
モデルデータ生成部92は、ホストコンピューター9のCPUが情報記憶部に記憶されているアプリケーションプログラムを実行することにより実現される機能ブロックである。このモデルデータ生成部92は、例えばCADアプリケーションであり、立体物造形システム100の利用者が操作部91を操作して入力した情報等に基づいて、立体物Objの形状及び色彩を表すためのモデルを示すモデルデータDatを生成する。
本実施形態では、モデルデータDatが、立体物Objの外部形状を指定する場合を想定する。換言すれば、モデルデータDatが、立体物Objを中空の物体であると仮定した場合の当該中空の物体の形状、すなわち、立体物Objのモデルの輪郭である外面SFの形状を指定するデータである場合を想定する。例えば、立体物Objが球体である場合には、モデルデータDatは当該球体の輪郭である球面の形状を指定する。
但し、本発明はこのような態様に限定されるものではなく、モデルデータDatは、少なくとも立体物Objのモデルの外面SFの形状を特定可能な情報を含むものであればよい。例えば、モデルデータDatは、立体物Objのモデルの外面SFの形状及び立体物Objの色彩に加えて、立体物Objのモデルの外面SFより内側の形状や、立体物Objの材料等を指定するものであってもよい。
モデルデータDatとしては、例えば、AMF(Additive Manufacturing File Format)、または、STL(Standard Triangulated Language)等のデータ形式を例示することができる。
指定データ生成部93は、ホストコンピューター9のCPUが情報記憶部に記憶されている立体物造形装置1のドライバープログラムを実行することにより実現される機能ブロックである。指定データ生成部93は、モデルデータ生成部92が生成するモデルデータDatに基づいて、立体物造形装置1が形成する造形体LYの形状及び色彩を指定する指定データSDを生成するデータ生成処理を実行する。
なお、以下では、立体物Objが、Q個の造形体LYを積層させることで造形される場合を想定する(Qは、Q≧2を満たす自然数)。また、立体物造形装置1が造形体LYを形成する処理を積層処理と称する。すなわち、立体物造形装置1が立体物Objを造形する造形処理は、Q回の積層処理を含む。以下では、造形処理に含まれるQ回の積層処理のうちq回目の積層処理で形成される造形体LYを造形体LY[q]と称し、造形体LY[q]の形状及び色彩を指定する指定データSDを指定データSD[q]と称する(qは、1≦q≦Qを満たす自然数)。
図2は、モデルデータDatの指定する立体物Objのモデルの外面SFの形状と、指定データSDを用いて形成される造形体LYと、の関係を説明するための説明図である。
図2(A)及び(B)に示すように、指定データ生成部93は、層状の造形体LY[1]〜LY[Q]の形状及び色彩を指定する指定データSD[1]〜SD[Q]を生成するために、まず、モデルデータDatの示す三次元形状の外面SFを有するモデルを所定の厚さΔZ毎にスライスすることで、造形体LY[1]〜LY[Q]と1対1に対応する断面モデルデータLdat[1]〜Ldat[Q]を生成する。ここで、断面モデルデータLdatとは、モデルデータDatの示す三次元の形状のモデルをスライスして得られる断面体の形状及び色彩を示すデータである。但し、断面モデルデータLdatは、モデルデータDatの示す三次元の形状のモデルをスライスしたときの二次元の断面の形状及び色彩を含むデータであればよい。なお、図2(A)は、1回目の積層処理で形成される造形体LY[1]に対応する断面モデルデータLdat[1]を例示し、図2(B)は、2回目の積層処理で形成される造形体LY[2]に対応する断面モデルデータLdat[2]を例示している。
次に、指定データ生成部93は、断面モデルデータLdat[q]の示す形状及び色彩に基づいて、立体物造形装置1が形成すべきドットの配置を決定し、決定結果を指定データSDとして出力する。より具体的には、指定データ生成部93は、断面モデルデータLdatに基づいてボクセルデータVDを生成し、ボクセルデータVDに基づいて指定データSDを生成する。なお、以下では、ボクセルデータVDのうち、断面モデルデータLdat[q]に基づいて生成されるボクセルデータVDを、ボクセルデータVD[q]と称する。すなわち、指定データ生成部93は、断面モデルデータLdat[q]に基づいてボクセルデータVD[q]を生成し、ボクセルデータVD[q]に基づいて指定データSD[q]を生成する。
ここで、ボクセルデータVD[q]とは、断面モデルデータLdat[q]の示す立体物Objのモデルの断面体の形状及び色彩をボクセルVxの単位で格子状に細分化することで、断面モデルデータLdat[q]の示す立体物Objのモデルの断面体の形状及び色彩をボクセルVxの集合として近似して表すデータである。
また、指定データSD[q]とは、立体物Objを構成する造形体LY[q]を形成するためのドットの色及びサイズを指定するデータである。すなわち、指定データSDは、立体物Objを造形するために形成すべきドットの色及びサイズを指定するデータである。例えば、指定データSDは、ドットの色を、当該ドットを形成するインクの種類により指定すればよい。なお、インクの種類については後述する。
ボクセルVxとは、立体物造形装置1が吐出するインクを着弾させる目標位置を示す仮想的な直方体であって、所定の厚さΔZを有し所定体積を有する所定サイズの直方体である。本実施形態において、ボクセルVxの体積及びサイズは、立体物造形装置1が形成可能なドットのサイズに応じて定められる。以下では、q回目の積層処理において造形体LY[q]を形成するために設けられるドットの着弾位置を示すボクセルVxを、ボクセルVxqと称する場合がある。
また、以下では、立体物Objの構成要素であって、1個のボクセルVxに着弾するインクにより形成された構成要素をブロックBLと称する。詳細は後述するが、ブロックBLは、1または複数のドットにより構成される。換言すれば、ブロックBLとは、1個のボクセルVxに着弾したインクからなる1または複数のドットである。
本実施形態では、立体物造形装置1が、通常ブロックBLM、大型ブロックBLL、及び、小型ブロックBLSの3種類のブロックBLを形成可能な場合を想定する(図14参照)。
ここで、通常ブロックBLMとは、ボクセルVxと略同じサイズ(「第1サイズ」の一例)のブロックBLであり、小型ブロックBLSとは、ボクセルVxよりも小さいサイズのブロックBLであり、大型ブロックBLLとは、ボクセルVxよりも大きいサイズ(「第2サイズ」の一例)のブロックBLである。つまり、通常ブロックBLMは、所定の厚さΔZを有し、小型ブロックBLSは、所定の厚さΔZよりも薄く、大型ブロックBLLは、所定の厚さΔZよりも厚い。
なお、本明細書において「略同じ」や「略一様」等の表現は、完全に同一または一様である場合の他に、各種誤差を無視すれば同一または一様と看做すことができる場合も含む。
なお、通常ブロックBLM及び小型ブロックBLSは、立体物造形装置1から吐出されたインクが着弾するボクセルVxの内部に設けられる。これに対して、大型ブロックBLLは、立体物造形装置1から吐出されたインクが着弾するボクセルVxと、当該ボクセルVxの−Z方向(以下、「下側」と称する場合がある)に隣り合うボクセルVxの一部と、に形成される。
具体的には、通常ブロックBLMを一のボクセルVxに形成する場合、当該通常ブロックBLMは、一のボクセルVxに吐出されたインクにより、当該一のボクセルVxを満たすように形成される。また、小型ブロックBLSを一のボクセルVxに形成する場合、当該小型ブロックBLSは、一のボクセルVxに吐出されたインクにより、当該一のボクセルVxの一部に形成される。また、大型ブロックBLLを一のボクセルVxに形成する場合、当該大型ブロックBLLは、一のボクセルVxに吐出されたインクにより、当該一のボクセルVxと、一のボクセルVxの下側に隣り合う他のボクセルVxの一部と、に形成される。
このように、立体物造形システム100は、複数のブロックBLの集合として立体物Objを造形する。すなわち、立体物造形システム100は、モデルデータDatの示す立体物Objのモデルを格子状に細分化して複数のボクセルVxの集合体として表し、当該複数のボクセルVxの一部または全部のボクセルVxにブロックBLを形成することで、立体物Objを造形する。このため、微視的な観点では、立体物Objの形状と、モデルデータDatの示す立体物Objのモデルの形状とは、相違する。換言すれば、モデルデータDatの示す立体物Objのモデルの外面SFと、立体物造形装置1により実際に造形される立体物Objの表面の形状とは、相違する(後述する図15参照)。例えば、モデルデータDatの示すモデルの外面SFの形状が滑らかな曲面であっても、立体物造形装置1が造形する立体物Objの表面は凹凸な形状となる場合がある。
なお、以下では、ボクセルデータVDの示す複数のボクセルVxの集合体、換言すれば、モデルデータDatの示す立体物Objのモデルを格子状に細分化して当該モデルを近似的に表すための複数のボクセルVxの集合体を、「ボクセル集合体」と称する場合がある。
図2(C)及び(D)に示すように、立体物造形装置1は、指定データ生成部93から指定データSD[q]が供給されると、造形体LY[q]を形成する積層処理を実行する。図2(C)は、断面モデルデータLdat[1]から生成された指定データSD[1]に基づいて、造形台45(図3参照)上に第1番目の造形体LY[1]が形成された場合を例示し、図2(D)は、断面モデルデータLdat[2]から生成された指定データSD[2]に基づいて、造形体LY[1]上に第2番目の造形体LY[2]が形成された場合を例示している。
そして、立体物造形装置1は、指定データSD[1]〜SD[Q]に対応してされる造形体LY[1]〜LY[Q]を順番に積層させることで、図2(E)に示す立体物Objを造形する。
上述のとおり、本実施形態に係るモデルデータDatは、立体物Objのモデルの外面SFの形状(輪郭の形状)を指定する。このため、モデルデータDatの示す形状を有する立体物Objを忠実に造形した場合、立体物Objの形状は、厚みを有さない輪郭だけの中空形状となる。しかし、立体物Objを造形する場合には、立体物Objの強度等を考慮して、外面SFよりも内側の形状を決定することが好ましい。具体的には、立体物Objを造形する場合には、立体物Objの外面SFよりも内側の領域の一部または全部が中実構造であることが好ましい。
このため、本実施形態に係る指定データ生成部93は、図2に示すように、モデルデータDatの指定する形状が中空形状であるか否かに関わらず、外面SFよりも内側の領域の一部または全部が中実構造となるような断面モデルデータLdatを生成する。
以下では、データ生成処理のうち、モデルデータDatの示すモデルの形状の中空部分を補完して、当該中空部分の一部または全部が中実構造となる形状を示す断面モデルデータLdatを生成する処理を、形状補完処理と称する。なお、形状補完処理と、形状補完処理により生成される断面モデルデータLdatが指定する外面SFよりも内側の構造と、についての詳細は、後述する。
ところで、図2に示す例では、(q+1)回目の積層処理で形成される造形体LY[q+1]の下側に、q回目の積層処理で形成される造形体LY[q]が存在する。
すなわち、図2に示す例において、立体物Objは、傾斜が垂直よりも大きい角度に張り出した所謂オーバーハング形状の部分(以下、「オーバーハング部」と称する)を有していない。よって、図2に示す場合には、造形体LY[1]〜LY[Q]を順番に積層することで、モデルの指定する形状に対応する形状の立体物Objを造形することができる。
しかし、立体物Objがオーバーハング部を有する場合、造形体LY[1]〜LY[Q]を順番に積層して立体物Objを造形しようとしても、造形処理の実行中にオーバーハング部が自重により下側に撓むため、立体物Objを所望の形状に造形できない可能性が高い。
そこで、本実施形態では、立体物Objがオーバーハング部を有する場合、オーバーハング部の少なくとも一部の下側に、オーバーハング部を支持するための支持部を設ける。
具体的には、本実施形態では、断面モデルデータLdatが、支持部の形状を定めるデータを含むこととする。つまり、本実施形態において、造形体LY[q]には、立体物Objのうちq回目の積層処理で形成すべき部分と、支持部のうちq回目の積層処理で形成すべき部分と、の双方が含まれる。換言すれば、指定データSD[q]は、立体物Objのうち造形体LY[q]として形成される部分の形状及び色彩をブロックBLの集合として表したデータと、支持部のうち造形体LY[q]として形成される部分の形状をブロックBLの集合として表したデータと、を含む。
本実施形態に係る指定データ生成部93は、モデルデータDatに基づいて、造形体LY[q]の形成のために支持部を設ける必要があるか否かを判定する。そして、指定データ生成部93は、当該判定の結果が肯定である場合には、立体物Objの他に支持部が設けられるような断面モデルデータLdatを生成する。
なお、支持部は、立体物Objの造形後に容易に除去することのできる材料、例えば、水溶性のインク、または、立体物Objを造形するインクよりも低い融点のインク等で構成されることが好ましい。
<1.2.立体物造形装置について>
次に、図1に加え図3を参照しつつ、立体物造形装置1について説明する。図3は、立体物造形装置1の構造の概略を示す斜視図である。
図1及び図3に示すように、立体物造形装置1は、筐体40と、造形台45と、立体物造形装置1の各部の動作を制御する制御部6と、造形台45に向かってインクを吐出する吐出部Dを具備する記録ヘッド30が設けられたヘッドユニット3と、造形台45の上に吐出されたインクを硬化させる硬化ユニット61と、インクを貯蔵する6個のインクカートリッジ48と、ヘッドユニット3及びインクカートリッジ48を搭載するキャリッジ41と、筐体40に対するヘッドユニット3、造形台45、及び、硬化ユニット61の位置を変化させるための位置変化機構7と、立体物造形装置1の制御プログラムやその他の各種情報を記憶する記憶部60と、を備える。
なお、制御部6及び指定データ生成部93は、立体物造形システム100の各部の動作を制御するシステム制御部101として機能する。
硬化ユニット61は、造形台45の上に吐出されたインクを硬化させるための構成要素である。具体的には、硬化ユニット61は、紫外線硬化型インクに対して紫外線(「所定波長の光」の一例)を照射するための光源であり、例えば造形台45の上側(+Z方向)に設けられる。そして、硬化ユニット61は、立体物造形装置1が吐出したインクがボクセルVxに着弾した後に、当該着弾したインクに対して紫外線を照射してインクを硬化させることで、ドットを形成する。
本実施形態における硬化ユニット61は、通常硬化モード(「第1硬化モード」の一例)と、低速硬化モード(「第2硬化モード」の一例)と、を含む複数の硬化モードによるインクの硬化が可能である。硬化ユニット61は、制御部6から供給される制御信号Kに基づいて、ボクセルVxの単位で硬化モードを切替可能に動作することができる。
ここで、通常硬化モードとは、吐出部DからボクセルVxに吐出された第1基準量のインクを、ボクセルVxと略同じサイズのドットになるように硬化させる硬化モードである。また、低速硬化モードとは、吐出部DからボクセルVxに吐出された第1基準量のインクを、ボクセルVxよりも大きなサイズのドットになるように、通常硬化モードよりも緩やかに硬化させる硬化モードである。具体的には、硬化ユニット61は、低速硬化モードにおいてインクに照射する紫外線の強度(照度)を、通常硬化モードと比較して弱くすることにより、インクの硬化を緩やかにする。
但し、本発明はこのような態様に限定されるものではなく、硬化ユニット61は、低速硬化モードにおける紫外線の照射時間(硬化時間)を、通常硬化モードと比較して短くすることにより、インクの硬化を緩やかにしてもよい。
6個のインクカートリッジ48は、立体物Objを造形するための5種類の造形用インクと、支持部を形成するための支持用インクと、の合計6種類のインクと1対1に対応して設けられたものである。各インクカートリッジ48には、当該インクカートリッジ48に対応する種類のインクが貯蔵されている。
立体物Objを造形するための5種類の造形用インクには、有彩色の色材成分を有する有彩色インクと、無彩色の色材成分を有する無彩色インクと、有彩色インク及び無彩色インクと比較して単位重量または単位体積あたりの色材成分の含有量が少ないクリアー(CL)インクと、が含まれる。
本実施形態では、有彩色インクとして、シアン(CY)、マゼンタ(MG)、及び、イエロー(YL)の3種類のインクを採用する。
また、本実施形態では、無彩色インクとして、ホワイト(WT)のインクを採用する。本実施形態に係るホワイトインクとは、可視光の波長領域(概ね、400nm〜700nm)に属する波長を有する光がホワイトインクに照射された場合において、当該照射された光のうち、所定の割合以上の光を反射するインクである。本実施形態において、「所定の割合」とは、例えば、30%以上で且つ100%以下の任意の割合であればよく、好ましくは、50%以上の任意の割合、より好ましくは、80%以上の任意の割合である。
また、本実施形態において、クリアーインクは、有彩色インク及び無彩色インクと比較して、色材成分の含有量が少なく透明度の高いインクである。
以下では、5種類の造形用インクのうち、3種類の有彩色インク及び1種類の無彩色インクを、彩色インクと総称する場合がある。
なお、本実施形態では、各インクカートリッジ48はキャリッジ41に搭載されているが、キャリッジ41に搭載される代わりに、立体物造形装置1の別の場所に設けられるものであってもよい。
図1及び図3に示すように、位置変化機構7は、造形台45を上側(+Z方向)及び下側(−Z方向)に昇降させる造形台昇降機構79aを駆動するための昇降機構駆動モーター71を備える。以下、+Z方向(上側)及び−Z方向(下側)を「Z軸方向」と総称する場合がある
また、位置変化機構7は、キャリッジ41をガイド79bに沿って+Y方向及び−Y方向(以下、+Y方向及び−Y方向を「Y軸方向」と総称する場合がある)に移動させるためのキャリッジ駆動モーター72と、キャリッジ41をガイド79cに沿って+X方向及び−X方向(以下、+X方向及び−X方向を「X軸方向」と総称する場合がある)に移動させるためのキャリッジ駆動モーター73と、硬化ユニット61をガイド79dに沿ってX軸方向に移動させるための硬化ユニット駆動モーター74と、を備える。
また、位置変化機構7は、昇降機構駆動モーター71を駆動するためのモータードライバー75と、キャリッジ駆動モーター72を駆動するためのモータードライバー76と、キャリッジ駆動モーター73を駆動するためのモータードライバー77と、硬化ユニット駆動モーター74を駆動するためのモータードライバー78と、を備える。
記憶部60は、ホストコンピューター9から供給される指定データSDを格納する不揮発性半導体メモリーの一種であるEEPROM(Electrically Erasable Programmable Read-Only Memory)と、立体物Objを造形する造形処理等の各種処理を実行する際に必要なデータを一時的に格納し、あるいは造形処理等の各種処理が実行されるように立体物造形装置1の各部を制御するための制御プログラムを一時的に展開するRAM(Random Access Memory)と、制御プログラムを格納する不揮発性半導体メモリーの一種であるPROMと、を備える。
制御部6は、CPU(Central Processing Unit)やFPGA(field-programmable gate array)等を含んで構成され、当該CPU等が記憶部60に記憶されている制御プログラムに従って動作することで、立体物造形装置1の各部の動作を制御する。
制御部6は、ホストコンピューター9から指定データSDが供給された場合、ヘッドユニット3、位置変化機構7、及び、硬化ユニット61の動作を制御することにより、造形台45上にモデルデータDatに応じた立体物Objを造形する造形処理の実行を制御する。
具体的には、制御部6は、まず、ホストコンピューター9から供給される指定データSDを記憶部60に格納する。次に、制御部6は、指定データSD等の記憶部60に格納されている各種データに基づいて、ヘッドユニット3の動作を制御して吐出部Dを駆動させるための駆動波形信号Com及び波形指定信号SIを含む各種信号を生成し、これら生成した信号を出力する。また、制御部6は、指定データSD等の記憶部60に格納されている各種データに基づいて、硬化ユニット61の動作を制御するための制御信号Kを生成し、当該信号を出力する。また、制御部6は、指定データSD等の記憶部60に格納されている各種データに基づいて、モータードライバー75〜78の動作を制御するための各種信号を生成し、これら生成した信号を出力する。
なお、駆動波形信号Comはアナログの信号である。このため、制御部6は、図示省略したDA変換回路を含み、制御部6が備えるCPU等において生成されるデジタルの駆動波形信号を、アナログの駆動波形信号Comに変換したうえで、出力する。
このように、制御部6は、モータードライバー75、76、及び、77の制御を介して、造形台45に対するヘッドユニット3の相対位置を制御し、モータードライバー75、及び、78の制御を介して、造形台45に対する硬化ユニット61の相対位置を制御する。また、制御部6は、ヘッドユニット3の制御を介して、吐出部Dからのインクの吐出の有無、インクの吐出量、及び、インクの吐出タイミング等を制御する。また、制御部6は、硬化ユニット61の制御を介して、吐出部Dから吐出されたインクの硬化の程度を制御し、ひいては、吐出部Dから吐出されたインクにより形成されるドットのサイズを制御する。これにより、制御部6は、ドットサイズ及びドット配置を調整しつつ複数のドットを形成し、当該複数のドットの集合として造形体LYを形成する積層処理の実行を制御する。に、制御部6は、積層処理を繰り返し実行することで、既に形成された造形体LYの上に新たな造形体LYを積層させてゆき、モデルデータDatに対応する立体物Objを造形する造形処理の実行を制御する。
なお、以下では、ヘッドユニット3、位置変化機構7、及び、硬化ユニット61を、ヘッドユニット3等と称する場合がある。
図1に示すように、ヘッドユニット3は、M個の吐出部Dを具備する記録ヘッド30と、吐出部Dを駆動するための駆動信号Vinを生成する駆動信号生成部31と、を備える(Mは、1以上の自然数)。以下では、記録ヘッド30に設けられるM個の吐出部Dの各々を区別するために、順番に、1段、2段、…、M段と称することがある。また、以下では、記録ヘッド30に設けられるM個の吐出部Dのうちm段の吐出部Dを、吐出部D[m]と表現する場合がある(mは、1≦m≦Mを満たす自然数)。また、以下では、駆動信号生成部31が生成する駆動信号Vinのうち、吐出部D[m]を駆動するための駆動信号Vinを駆動信号Vin[m]と表現する場合がある。なお、駆動信号生成部31の詳細については、後述する。
<1.3.記録ヘッドについて>
次に、図4乃至図6を参照しつつ、記録ヘッド30と、記録ヘッド30に設けられる吐出部Dと、について説明する。
図4は、記録ヘッド30の、概略的な一部断面図の一例である。なお、この図では、図示の都合上、記録ヘッド30のうち、当該記録ヘッド30が有するM個の吐出部Dの中の1個の吐出部Dと、当該1個の吐出部Dにインク供給口360を介して連通するリザーバ350と、インクカートリッジ48からリザーバ350にインクを供給するためのインク取り入れ口370と、を示している。
図4に示すように、吐出部Dは、圧電素子300と、インクが充填されたキャビティ320と、キャビティ320に連通するノズルNと、振動板310と、を備える。吐出部Dは、圧電素子300が駆動信号Vinにより駆動されることにより、キャビティ320内のインクをノズルNから吐出させる。キャビティ320は、凹部を有するような所定の形状に成形されたキャビティプレート340と、ノズルNが形成されたノズルプレート330と、振動板310と、により区画される空間である。キャビティ320は、インク供給口360を介してリザーバ350と連通している。リザーバ350は、インク取り入れ口370を介して1個のインクカートリッジ48と連通している。
本実施形態では、圧電素子300として、例えば、図4に示すようなユニモルフ(モノモルフ)型を採用するが、バイモルフ型や積層型など、圧電素子300を変形させてインク等の液体を吐出させることができるものであれば良い。
圧電素子300は、下部電極301と、上部電極302と、下部電極301及び上部電極302の間に設けられた圧電体303と、を有する。そして、下部電極301の電位が所定の基準電位VSSに設定され、上部電極302に駆動信号Vinが供給されることで、下部電極301及び上部電極302の間に電圧が印加されると、当該印加された電圧に応じて圧電素子300が図において上下方向に撓み(変位し)、その結果、圧電素子300が振動する。
キャビティプレート340の上面開口部には、振動板310が設置され、振動板310には、下部電極301が接合されている。このため、圧電素子300が駆動信号Vinにより振動すると、振動板310も振動する。そして、振動板310の振動によりキャビティ320の容積(キャビティ320内の圧力)が変化し、キャビティ320内に充填されたインクがノズルNより吐出される。インクの吐出によりキャビティ320内のインクが減少した場合、リザーバ350からインクが供給される。また、リザーバ350へは、インクカートリッジ48からインク取り入れ口370を介してインクが供給される。
図5は、吐出部Dからのインクの吐出動作を説明するための説明図である。図5(a)に示す状態において、吐出部Dが備える圧電素子300に対して駆動信号生成部31から駆動信号Vinが供給されると、当該圧電素子300において、電極間に印加された電界に応じた歪が発生し、当該吐出部Dの振動板310は図において上方向へ撓む。これにより、図5(a)に示す初期状態と比較して、図5(b)に示すように、当該吐出部Dのキャビティ320の容積が拡大する。図5(b)に示す状態において、駆動信号Vinの示す電位を変化させると、振動板310は、その弾性復元力によって復元し、初期状態における振動板310の位置を越えて図において下方向に移動し、図5(c)に示すようにキャビティ320の容積が急激に収縮する。このときキャビティ320内に発生する圧縮圧力により、キャビティ320を満たすインクの一部が、このキャビティ320に連通しているノズルNからインク滴として吐出される。
図6は、+Z方向または−Z方向から立体物造形装置1を平面視した場合の、記録ヘッド30に設けられたM個のノズルNの配置の一例を説明するための説明図である。
図6に示すように、記録ヘッド30には、複数のノズルNからなるノズル列Ln-CYと、複数のノズルNからなるノズル列Ln-MGと、複数のノズルNからなるノズル列Ln-YLと、複数のノズルNからなるノズル列Ln-WTと、複数のノズルNからなるノズル列Ln-CLと、複数のノズルNからなるノズル列Ln-SPと、からなる6列のノズル列Lnが設けられている。
ここで、ノズル列Ln-CYに属するノズルNは、シアン(CY)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-MGに属するノズルNは、マゼンタ(MG)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-YLに属するノズルNは、イエロー(YL)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-WTに属するノズルNは、ホワイト(WT)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-CLに属するノズルNは、クリアー(CL)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-SPに属するノズルNは、支持用インクを吐出する吐出部Dに設けられたノズルNである。
なお、本実施形態では、図6に示すように、各ノズル列Lnを構成する複数のノズルNがX軸方向に一列に整列するように配置される場合を例示しているが、例えば、各ノズル列Lnを構成する複数のノズルNのうち一部のノズルN(例えば、偶数番目のノズルN)と、その他のノズルN(例えば、奇数番目のノズルN)とのY軸方向の位置が異なる、所謂千鳥状に配列されるものであってもよい。また、各ノズル列Lnにおいて、ノズルN間の間隔(ピッチ)は、印刷解像度(dpi:dot per inch)に応じて適宜設定され得る。
<1.4.駆動信号生成部について>
次に、図7乃至図9を参照しつつ、駆動信号生成部31の構成及び動作について説明する。
図7は、駆動信号生成部31の構成を示すブロック図である。
図7に示すように、駆動信号生成部31は、シフトレジスタSR、ラッチ回路LT、デコーダーDC、及び、トランスミッションゲートTGからなる組を、記録ヘッド30に設けられたM個の吐出部Dと1対1に対応するように、M個有する。以下では、駆動信号生成部31及び記録ヘッド30が備えるこれらM個の組を構成する各要素を、図において上から順番に、1段、2段、…、M段と称することがある。
駆動信号生成部31には、制御部6から、クロック信号CLK、波形指定信号SI、ラッチ信号LAT、チェンジ信号CH、及び、駆動波形信号Comが供給される。
波形指定信号SIは、指定データSDに基づいて定められるデジタルの信号であって、吐出部Dからのインクの吐出の有無及び吐出部Dが吐出すべきインク量を指定する信号である。波形指定信号SIは、波形指定信号SI[1]〜SI[M]を含む。このうち、波形指定信号SI[m]は、吐出部D[m]からのインクの吐出の有無、及び、吐出されるインク量を、上位ビットb1及び下位ビットb2の2ビットで規定する。具体的には、波形指定信号SI[m]は、吐出部D[m]に対して、第1基準量のインクの吐出、第1基準量よりも少ない第2基準量のインクの吐出、または、インクの非吐出の3種類の動作のうち、いずれか1つの動作を指定する。
ここで、第1基準量のインクとは、上述の通り、通常硬化モードにおいてインクを硬化させた場合に、ボクセルVxと略同じサイズのドットを形成することができる量のインクである。また、第2基準量のインクとは、本実施形態では、第1基準量の略半分の量のインクである。
なお、以下では、ボクセルVxと略同じサイズのドットを大ドットと称し、ボクセルVxの略半分のサイズのドットを小ドットと称する場合がある。
シフトレジスタSRのそれぞれは、波形指定信号SI(SI[1]〜SI[M])のうち、各段に対応する2ビットの波形指定信号SI[m]を、一旦保持する。詳細には、M個の吐出部D[1]〜D[M]に1対1に対応する、1段、2段、…、M段のM個のシフトレジスタSRが互いに縦続接続されるとともに、シリアルで供給された波形指定信号SIが、クロック信号CLKに従って順次後段に転送される。そして、M個のシフトレジスタSRの全てに波形指定信号SIが転送された場合に、M個のシフトレジスタSRのそれぞれが波形指定信号SIのうち自身に対応する2ビット分の波形指定信号SI[m]を保持する。
M個のラッチ回路LTのそれぞれは、ラッチ信号LATが立ち上がるタイミングで、M個のシフトレジスタSRのそれぞれに保持された各段に対応する2ビット分の波形指定信号SI[m]を一斉にラッチする。
ところで、立体物造形装置1が造形処理を実行する期間である動作期間は、複数の単位期間Tuから構成される。また、本実施形態では、各単位期間Tuは、2個の制御期間Ts(Ts1、Ts2)からなる。なお、本実施形態では、2個の制御期間Ts1、Ts2は、互いに等しい時間長を有することとする。詳細は後述するが、単位期間Tuは、ラッチ信号LATにより規定され、制御期間Tsは、ラッチ信号LAT及びチェンジ信号CHにより規定される。
制御部6は、駆動信号生成部31に対して、単位期間Tuが開始されるよりも前のタイミングで波形指定信号SIを供給する。そして、制御部6は、駆動信号生成部31の各ラッチ回路LTに対して、単位期間Tu毎に波形指定信号SI[m]がラッチされるように、ラッチ信号LATを供給する。
m段のデコーダーDCは、m段のラッチ回路LTによってラッチされた2ビット分の波形指定信号SI[m]をデコードし、制御期間Ts1及びTs2のそれぞれにおいて、ハイレベル(Hレベル)またはローレベル(Lレベル)のいずれかのレベルに設定された選択信号Sel[m]を出力する。
図8は、デコーダーDCが行うデコードの内容を説明するための説明図である。この図に示すように、m段のデコーダーDCは、波形指定信号SI[m]の示す内容が(b1、b2)=(1、1)であれば、制御期間Ts1及びTs2において選択信号Sel[m]をHレベルに設定し、波形指定信号SI[m]の示す内容が(b1、b2)=(1、0)であれば、制御期間Ts1において選択信号Sel[m]をHレベルに設定し、制御期間Ts2において選択信号Sel[m]をLレベルに設定し、波形指定信号SI[m]の示す内容が(b1、b2)=(0、0)であれば、制御期間Ts1及びTs2において選択信号Sel[m]をLレベルに設定する。
図7に示すように、M個のトランスミッションゲートTGは、M個の吐出部Dと1対1に対応するように設けられる。m段のトランスミッションゲートTGは、m段のデコーダーDCから出力される選択信号Sel[m]がHレベルのときにオンし、Lレベルのときにオフする。各トランスミッションゲートTGの一端には、駆動波形信号Comが供給される。m段のトランスミッションゲートTGの他端は、m段の出力端OTNに電気的に接続されている。
選択信号Sel[m]がHレベルとなり、m段のトランスミッションゲートTGがオンする場合、m段の出力端OTNから吐出部D[m]に対して、駆動波形信号Comが駆動信号Vin[m]として供給される。
なお、詳細は後述するが、本実施形態では、トランスミッションゲートTGがオンからオフに切り替わるタイミング(つまり、制御期間Tsの開始及び終了のタイミング)における駆動波形信号Comの電位を基準電位V0としている。このため、トランスミッションゲートTGがオフする場合、吐出部D[m]の圧電素子300が有する容量等により、出力端OTNの電位は基準電位V0に維持されることになる。以下では、説明の便宜上、トランスミッションゲートTGがオフする場合には、駆動信号Vin[m]の電位が基準電位V0に維持されることとして説明する。
以上において説明したように、制御部6は、各吐出部Dに対して単位期間Tu毎に駆動信号Vinが供給されるように、駆動信号生成部31を制御する。これにより、各吐出部Dは、単位期間Tu毎に、波形指定信号SIに基づいて定められる波形指定信号SIの示す値に応じた量のインクを吐出し、造形台45上にドットを形成することができる。
図9は、各単位期間Tuにおいて制御部6が駆動信号生成部31に供給する各種信号を説明するためのタイミングチャートである。
図9に例示するように、ラッチ信号LATは、パルス波形Pls-Lを含み、当該パルス波形Pls-Lにより単位期間Tuが規定される。また、チェンジ信号CHは、パルス波形Pls-Cを含み、当該パルス波形Pls-Cにより単位期間Tuが制御期間Ts1及びTs2に区分される。また、図示は省略するが、制御部6は、単位期間Tu毎に、波形指定信号SIを、クロック信号CLKに同期させて、駆動信号生成部31に対してシリアルで供給する。
また、図9に例示するように、駆動波形信号Comは、制御期間Ts1に配置された波形PL1と、制御期間Ts2に配置された波形PL2と、を含む。以下では、波形PL1及びPL2を波形PLと総称する場合がある。また、本実施形態において、駆動波形信号Comの電位は、各制御期間Tsの開始または終了のタイミングにおいて、基準電位V0に設定される。
駆動信号生成部31は、一の制御期間Tsにおいて、選択信号Sel[m]がHレベルである場合には、駆動波形信号Comのうち当該一の制御期間Tsに配置される波形PLを、駆動信号Vin[m]として吐出部D[m]に供給する。逆に、駆動信号生成部31は、一の制御期間Tsにおいて、選択信号Sel[m]がLレベルである場合には、基準電位V0に設定された駆動波形信号Comを、駆動信号Vin[m]として吐出部D[m]に供給する。
よって、駆動信号生成部31が、単位期間Tuにおいて、吐出部D[m]に供給する駆動信号Vin[m]は、波形指定信号SI[m]の示す値が(b1、b2)=(1、1)であれば、波形PL1及びPL2を有する信号となり、波形指定信号SI[m]の示す値が(b1、b2)=(1、0)であれば、波形PL1を有する信号となり、波形指定信号SI[m]の示す値が(b1、b2)=(0、0)であれば、基準電位V0に設定された信号となる。
1つの波形PLを有する駆動信号Vin[m]が供給されると、吐出部D[m]は、第2基準量のインクを吐出する。
このため、単位期間Tuにおいて、波形指定信号SI[m]の示す値が(b1、b2)=(1,0)であり、吐出部D[m]に供給される駆動信号Vin[m]が1つの波形PL(PL1)を有する場合、吐出部D[m]からは、当該1つの波形PLに基づいて第2基準量のインクが吐出される。よって、当該吐出されたインクが通常硬化モードにより硬化された場合、小ドットが形成される。
また、単位期間Tuにおいて、波形指定信号SI[m]の示す値が(b1、b2)=(1,1)であり、吐出部D[m]に供給される駆動信号Vin[m]が2つの波形PL(PL1、PL2)を有する場合、吐出部D[m]からは、当該2つの波形PLに基づいて第2基準量のインクが2度吐出され、当該2度にわたり吐出された第2基準量のインクが合体して第1基準量のインクとなる。よって、当該合体したインクが通常硬化モードにより硬化された場合、大ドットが形成される。
一方、単位期間Tuにおいて、波形指定信号SI[m]の示す値が(b1、b2)=(0,0)であり、吐出部D[m]に供給される駆動信号Vin[m]が波形PLを有さず基準電位V0に保たれる場合、吐出部D[m]からインクは吐出されず、当該ドットは形成されない(非記録となる)。
<2.データ生成処理及び造形処理>
次に、図10乃至図16を参照しつつ、立体物造形システム100が実行するデータ生成処理及び造形処理について説明する。
<2.1.データ生成処理及び造形処理の概要>
図10は、データ生成処理及び造形処理を実行する場合における立体物造形システム100の動作の一例を示すフローチャートである。
データ生成処理は、ホストコンピューター9の指定データ生成部93が実行する処理であり、モデルデータ生成部92が出力したモデルデータDatを、指定データ生成部93が取得したときに開始される。図10に示すステップS100、S110、及び、S120の処理が、データ生成処理に該当する。
図10に示すように、指定データ生成部93は、データ生成処理が開始されると、モデルデータ生成部92が出力したモデルデータDatに基づいて、断面モデルデータLdat[q](Ldat[1]〜Ldat[Q])を生成する(S100)。なお、上述のとおり、指定データ生成部93は、ステップS100において、モデルデータDatの示す形状の中空部分を補完して、モデルデータDatの示す立体物Objのモデルの外面SFよりも内側の領域の一部または全部が中実の形状となるような断面モデルデータLdatを生成する形状補完処理を実行する。形状補完処理の詳細については、後述する。
次に、指定データ生成部93は、断面モデルデータLdat[q]により示されるモデルの断面体の有する形状及び色彩を、ボクセルVxの集合として近似して表すデータであるボクセルデータVD[q]を生成する(S110)。
なお、本実施形態に係る指定データ生成部93は、ステップS110において、モデルデータDatの示すモデルをボクセル集合体として近似する際に、ボクセルVxのうちモデルデータDatの示すモデルの外面SFよりも内側部分の、当該ボクセルVxに占める体積の割合である充填率RFが、「RF≧α1」となるように、各ボクセルVxを定める。ここで、閾値α1は、「0%<α1<100%」を満たす実数であり、好ましくは、「0%<α1≦50%」を満たし、より好ましくは、「20%≦α1≦40%」を満たす。
なお、充填率RFが、「RF<100%」であるボクセルVxとは、モデルの外面SFの内側及び外側の双方を含むボクセルVxである。また、例えば、充填率RFが、「RF≦20%」であるボクセルVxとは、ボクセルVxの有する空間の80%が、モデルの外面SFの外側に突出したボクセルVxである。本実施形態では、各ボクセルVxの充填率RFが閾値α1以上(例えば、20%以上)となるように、ボクセル集合体を示すボクセルデータVDを生成する。このため、モデルの外面SFの外側に大きく突出したボクセルVxの形成を防止し、ボクセルデータVDの示すボクセル集合体を、モデルデータDatの示すモデルに近い形状となるように設けることができる。
次に、指定データ生成部93は、ボクセルデータVDとモデルデータDatとに基づいて、造形体LY[q]を形成するために立体物造形装置1が形成すべき複数のブロックBLの各々のサイズ(つまり、立体物造形装置1が形成すべき各ドットのサイズまたは配置)を決定し、決定結果に基づいて指定データSD[q]を生成する指定データ生成処理を実行する(S120)。なお、指定データ生成処理については、後述する。
このように、指定データ生成部93は、図10のステップS100〜S120に示すデータ生成処理を実行する。
立体物造形システム100は、データ生成処理を実行した後に、造形処理を実行する。
造形処理は、制御部6による制御の下で、立体物造形装置1が実行する処理であり、ホストコンピューター9が出力した指定データSDを、立体物造形装置1が取得して記憶部60に格納したときに開始される。図10に示すステップS130〜S180の処理が、造形処理に該当する。
図10に示すように、制御部6は、積層処理の実行回数を示す変数qに「1」を設定する(S130)。次に、制御部6は、指定データ生成部93が生成した指定データSD[q]を記憶部60から取得する(S140)。また、制御部6は、造形台45が造形体LY[q]を形成するための位置に移動するように、昇降機構駆動モーター71を制御する(S150)。
なお、造形体LY[q]を形成するための造形台45の位置とは、ヘッドユニット3から吐出されたインクが、指定データSD[q]の指定するドット形成位置(ボクセルVxq)に対して着弾可能な位置であれば、どのような位置であってもよい。例えば、制御部6は、ステップS150において、造形体LY[q]とヘッドユニット3とのZ軸方向の間隔が一定となるように、造形台45の位置を制御してもよい。この場合、制御部6は、例えばq回目の積層処理において造形体LY[q]を形成した後、(q+1)回目の積層処理による造形体LY[q+1]の形成が開始されるまでの間に、造形台45を所定の厚さΔZだけ−Z方向に移動させればよい。
次に、制御部6は、指定データSD[q]に応じた造形体LY[q]が形成されるように、ヘッドユニット3等の動作を制御する(S160)。図2からも明らかなように、造形体LY[1]は造形台45上に形成され、造形体LY[q+1]は造形体LY[q]の上側に形成される。
その後、制御部6は、変数qが「q≧Q」を充足するか否かを判定し(S170)、判定結果が肯定である場合には、立体物Objの造形が完了したと判定して造形処理を終了させ、一方、判定結果が否定である場合には、変数qに1を加算した上で、処理をステップS140に進める(S180)。
このように、立体物造形システム100のうち指定データ生成部93が、図10のステップS100〜S120に示すデータ生成処理を実行することで、モデルデータDatに基づいて指定データSD[1]〜SD[Q]を生成する。また、立体物造形システム100のうち立体物造形装置1が、制御部6の制御の下で、図10のステップS130〜S180に示す造形処理を実行することで、モデルデータDatの示すモデルの形状及び色彩を再現するような立体物Objを造形する。
なお、図10は、データ生成処理及び造形処理の流れの一例を示すものに過ぎない。例えば、図10では、データ生成処理が終了した後に、造形処理を開始するが、本発明はこのような態様に限定されるものではなく、データ生成処理が終了する前に造形処理を開始してもよい。例えば、データ生成処理において指定データSD[q]が生成された場合には、次の指定データSD[q+1]の生成を待つことなく、指定データSD[q]を取得した後に造形体LY[q]を形成する造形処理(つまり、q回目の積層処理)を実行してもよい。
<2.2.形状補完処理>
上述のとおり、ステップS100において、指定データ生成部93は、モデルデータDatの指定する立体物Objのモデルの中空部分の一部または全部を補完して、立体物Objのモデルの外面SFよりも内側の領域の一部または全部が中実構造となるような断面モデルデータLdatを生成する形状補完処理を実行する。
以下では、図11及び図12を参照しつつ、断面モデルデータLdatの示す立体物Objのモデルの外面SFよりも内側の構造と、外面SFよりも内側の構造を定める形状補完処理と、について説明する。
まず、図11を参照しつつ、断面モデルデータLdatの示す、立体物Objのモデルの外面SFよりも内側の構造について説明する。ここで、図11(A)は、断面モデルデータLdatの示す立体物Objのモデルの斜視図であり、図11(B)は、図11(A)に示す立体物Objもモデルを直線γ−Γを通りZ軸に平行な平面で切断したときの断面図である。なお、図11では、図示の都合上、図2及び図3とは異なる形状の、球体の立体物Objを造形する場合を想定する。
図11(B)に示すように、断面モデルデータLdatに基づいて造形される立体物Objは、立体物Objの表面から、立体物Objの内側にむけて順番に、彩色層L1、遮蔽層L2、及び、内部層L3の3層を備え、また、当該3層よりも内側に中空部HLを備える。
ここで、彩色層L1とは、造形用インクを含むインクにより形成される層であり、立体物Objの色彩を表現するための立体物Objの表面を含む層である。また、遮蔽層L2とは、例えば、ホワイトインクを用いて形成される層であり、立体物Objのうち彩色層L1よりも内側部分の色が、彩色層L1を透過して立体物Objの外部から視認されることを防止するための層である。すなわち、彩色層L1及び遮蔽層L2は、立体物Objが表示すべき色彩を正確に表現するために設けられる。以下では、立体物Objのうち、立体物Objが表示すべき色彩を正確に表現するために設けられる彩色層L1及び遮蔽層L2を、立体物Objの外部領域LOUTと称する場合がある。また、内部層L3とは、立体物Objの強度を確保するために設けられる層であり、例えばクリアーインクを用いて形成される。以下では、立体物Objのうち、外部領域LOUTよりも内側に設けられる内部層L3及び中空部HLを、立体物Objの内部領域LIN(または、「立体物Objの内部」)と称する場合がある。
本実施形態では、簡単のために、図11(B)に示すように、彩色層L1が略一様な厚さΔL1を有し、遮蔽層L2が略一様な厚さΔL2を有し、内部層L3が略一様な厚さΔL3を有するように、各層が設けられる場合を想定するが、各層の厚さは略一様でなくてもよい。
図12は、形状補完処理を実行する場合における指定データ生成部93の動作の一例を示すフローチャートである。
図12に示すように、指定データ生成部93は、まず、モデルデータDatの表す立体物Objのモデルにおいて、立体物Objのモデルの外面SFから立体物Objのモデルの内側に向かう厚さΔL1の領域を彩色層L1として定める(S200)。また、指定データ生成部93は、彩色層L1の内側の面から立体物Objのモデルの内側に向かう厚さΔL2の領域を遮蔽層L2として定める(S210)。また、指定データ生成部93は、遮蔽層L2の内側の面から立体物Objのモデルの内側に向かう厚さΔL3の領域を内部層L3として定める(S220)。また、指定データ生成部93は、内部層L3よりも立体物Objのモデルの内側の部分を中空部HLとして定める(S230)。
指定データ生成部93は、上述した形状補完処理を実行することにより、図11(B)に例示するような、彩色層L1、遮蔽層L2、及び、内部層L3を有する立体物Objを造形するための断面モデルデータLdatを生成する。
<2.3.指定データ生成処理>
指定データ生成部93は、ステップS120において、ボクセルデータVD及びモデルデータDatに基づいて各ボクセルVxに形成すべきブロックBLの種類を決定し、当該決定結果とボクセルデータVDとに基づいて指定データSDを生成する指定データ生成処理を実行する。以下、図13乃至図16を参照しつつ、指定データ生成処理について説明する。
図13は、指定データ生成処理を実行する場合における指定データ生成部93の動作の一例を示すフローチャートである。以下、図13を参照しつつ、指定データ生成処理の概要を説明する。
この図に示すように、指定データ生成部93は、まず、各ボクセルVxの充填率RFに基づいて、ボクセルデータVDの示すボクセル集合体を構成する複数のボクセルVxの中から、境界ボクセルVx-BDを選択する(S300)。
境界ボクセルVx-BDとは、充填率RFが、「α1≦RF≦α2」となるボクセルVxであって、ボクセルVxの表面を構成する6面のうち、上面(法線が+Z方向を向く面)、または、下面(法線が−Z方向を向く面)が、ボクセルデータVDの示すボクセル集合体の表面に該当するボクセルVxである。ここで、閾値α2は、「α1<α2<100%」を満たす実数であり、好ましくは、「α1<α2≦80%」を満たす実数である。例えば、α1を33%、α2を66%に設定してもよい。
指定データ生成部93は、ステップS300において選択した境界ボクセルVx-BDを、下面境界ボクセルVx-BDdまたは上面境界ボクセルVx-BDuのいずれかに分類する。
ここで、下面境界ボクセルVx-BDdとは、境界ボクセルVx-BDとして選択されたボクセルVxであって、ボクセルVxの下面が、ボクセル集合体の表面に該当するボクセルVxである(図14(A)参照)。上面境界ボクセルVx-BDuとは、境界ボクセルVx-BDとして選択されたボクセルVxであって、ボクセルVxの上面が、ボクセル集合体の表面に該当するボクセルVxである(図14(B)参照)。
次に、指定データ生成部93は、ステップS300において選択した境界ボクセルVx-BD(上面境界ボクセルVx-BDu、下面境界ボクセルVx-BDd)に基づいて、対象ボクセルVx-TGを特定したうえで、対象ボクセルVx-TGに対して形成すべきブロックBLの種類を決定する(S310)。
図14は、ステップS310において、指定データ生成部93が特定する対象ボクセルVx-TGと、指定データ生成部93が決定するブロックBLの種類と、について説明するための説明図である。なお、この図は、立体物ObjをZ軸方向に平行な平面で切断した場合の、切断面の一部を表している。
ステップS310において、指定データ生成部93は、図14(A)に示すように、下面境界ボクセルVx-BDdの上側に隣り合うボクセルVx(以下、「隣接ボクセルVx-NB」と称する)を、対象ボクセルVx-TGとして特定する。また、指定データ生成部93は、図14(B)に示すように、上面境界ボクセルVx-BDuを対象ボクセルVx-TGとして特定する。
ステップS310において、指定データ生成部93は、対象ボクセルVx-TGの特定後に、対象ボクセルVx-TGに対して形成すべきブロックBLの種類を決定する。具体的には、指定データ生成部93は、図14(A)に示すように、対象ボクセルVx-TGが隣接ボクセルVx-NBである場合には、当該対象ボクセルVx-TGと下面境界ボクセルVx-BDdとに対して、1個の大型ブロックBLLを形成することを決定する。また、指定データ生成部93は、図14(B)に示すように、対象ボクセルVx-TGが上面境界ボクセルVx-BDuである場合には、当該対象ボクセルVx-TGに小型ブロックBLSを形成することを決定する。また、指定データ生成部93は、対象ボクセルVx-TG及び境界ボクセルVx-BD以外のボクセルVxに対しては、通常ブロックBLMを形成することを決定する。
図15は、対比例に係る立体物造形装置において造形した立体物Objの切断面を示す図である。対比例に係る立体物造形装置は、対象ボクセルVx-TGに対して、小型ブロックBLSまたは大型ブロックBLLを形成する代わりに、通常ブロックBLMを形成する点で、本実施形態と相違している。すなわち、対比例に係る立体物造形装置は、ボクセルデータVDの示す形状と略同一の形状の立体物Objを造形する。
図15に示すように、対比例に係る立体物造形装置は、全てのボクセルVxに対して通常ブロックBLMを形成するため、例えば、図14に示す本実施形態と比較して、造形される立体物Objの表面の凹凸が大きくなる。
例えば、対比例では、図15(A)に示すように、立体物Objの表面に−Z方向から+X方向に向かう傾斜を設ける場合、立体物Objの表面に所定の厚さΔZに相当する段差が形成される。同様に、対比例では、図15(B)に示すように、立体物Objの表面に+Z方向から+X方向に向かう傾斜を設ける場合にも、立体物Objの表面に所定の厚さΔZに相当する段差が形成される。
これに対して、本実施形態では、図14に示すように、立体物Objの表面に傾斜を設ける場合に、立体物Objの表面に生じる段差を所定の厚さΔZの半分に抑えることができる。このため、本実施形態に係る立体物造形装置1は、対比例に係る立体物造形装置と比較して、立体物Objの表面において凹凸が視認される可能性を低減させ、ざらつき感の少ない滑らかな表面の立体物Objを形成することができる。
指定データ生成部93は、ステップS310に係る処理の終了後、ステップS310における決定結果と、ボクセルデータVDと、に基づいて、指定データSDを生成する(S320)。具体的には、指定データ生成部93は、ステップS320において、対象ボクセルVx-TGに対して、ステップS310において決定された種類のブロックBLが形成されるようなサイズのドットを指定する指定データSDを生成する。
図16は、指定データSDをボクセルデータVDと比較して説明するための説明図である。このうち、図16(A)は、対比例に係る立体物造形装置が造形する、ボクセルデータVDの示す立体物Objの一例である。また、図16(B)は、本実施形態に係る立体物造形装置1が造形する、指定データSDの示す立体物Objの一例である。
なお、図16は、図11(A)に対応する球体の形状の立体物Objを、直線γ−Γを通りZ軸に平行な平面で切断したときの切断面を示している。また、図16では、彩色層L1を構成するブロックBLに濃いハッチングを付す一方で、遮蔽層L2及び内部層L3を構成するブロックBLに薄いハッチングを付している。
上述の通り、対比例に係る立体物造形装置のように、ボクセルデータVDに基づいて立体物Objを造形する場合、立体物Objの表面は、図16(A)に示すように、複数の通常ブロックBLMのみによって構成される。
一方、本実施形態に係る立体物造形装置1のように、対象ボクセルVx-TGに対して小型ブロックBLSまたは大型ブロックBLLの形成を指定する指定データSDに基づいて立体物Objを造形する場合、立体物Objの表面は、図16(B)に示すように、複数の通常ブロックBLMの他に、複数の小型ブロックBLS、及び、複数の大型ブロックBLLによって構成される。つまり、本実施形態では、モデルデータDatの示すモデルの形状に適した種類のブロックBLにより、立体物Objの表面を造形することが可能となる。
なお、一のボクセルVxに対して通常ブロックBLMを形成する場合、立体物造形装置1の制御部6は、一のボクセルVxに対してインクを吐出する吐出部D[m]に供給する波形指定信号SI[m]の示す値を、(b1、b2)=(1、1)として、吐出部D[m]から第1基準量のインクが吐出されるように、吐出部D[m]を制御する。また、この場合、制御部6は、一のボクセルVxに吐出されたインクを通常硬化モードにより硬化することを指定する制御信号Kを、硬化ユニット61に供給する。これにより、立体物造形装置1は、一のボクセルVxに対して、ボクセルVxと略同じサイズの通常ブロックBLMを形成することができる。
また、上面境界ボクセルVx-BDuに対して小型ブロックBLSを形成する場合、制御部6は、上面境界ボクセルVx-BDuに対してインクを吐出する吐出部D[m]に供給する波形指定信号SI[m]の示す値を、(b1、b2)=(1、0)として、吐出部D[m]から第2基準量のインクが吐出されるように、吐出部D[m]を制御する。また、この場合、制御部6は、上面境界ボクセルVx-BDuに吐出されたインクを通常硬化モードにより硬化することを指定する制御信号Kを、硬化ユニット61に供給する。これにより、立体物造形装置1は、上面境界ボクセルVx-BDuに対して、ボクセルVxの略半分のサイズの小型ブロックBLSを形成することができる。
また、隣接ボクセルVx-NBと、当該隣接ボクセルVx-NBの下側に隣り合う下面境界ボクセルVx-BDdの一部と、に対して大型ブロックBLLを形成する場合、制御部6は、隣接ボクセルVx-NBに対してインクを吐出する吐出部D[m]に供給する波形指定信号SI[m]の示す値を、(b1、b2)=(1、1)として、吐出部D[m]から第1基準量のインクが吐出されるように、吐出部D[m]を制御する。また、この場合、制御部6は、隣接ボクセルVx-NBに吐出されたインクを低速硬化モードにより硬化することを指定する制御信号Kを、硬化ユニット61に供給する。これにより、立体物造形装置1は、隣接ボクセルVx-NBに対して吐出された第1基準量のインクを、当該隣接ボクセルVx-NBから下面境界ボクセルVx-BDdの上部まで垂れ下がるようにゆっくりと硬化させ、ボクセルVxよりも大きいのサイズの大型ブロックBLLを形成することができる。
ところで、図14や図16等に示すように、下面境界ボクセルVx-BDdの下側にはボクセルVxが存在しない。このため、隣接ボクセルVx-NBと下面境界ボクセルVx-BDdの一部とに大型ブロックBLLを形成する場合、隣接ボクセルVx-NBに対して吐出されたインクが、下面境界ボクセルVx-BDdの上側に留まらずに−Z方向に落下してしまう可能性がある。また、落下しない場合であっても、隣接ボクセルVx-NBに対して吐出されたインクが、下面境界ボクセルVx-BDdの例えば上半分に留まらずに、下面境界ボクセルVx-BDdの下半分にまで垂れ下がることで、大型ブロックBLLよりも大きいブロックが形成される可能性が存在する。
このような不都合を防ぐためには、例えば、下面境界ボクセルVx-BDdのうち、大型ブロックBLLが形成されない部分(例えば、下半分)に、支持部を形成すればよい。または、隣接ボクセルVx-NBに対してインクを吐出する際に、隣接ボクセルVx-NBと同一の造形体LYにおいて隣り合うボクセルVxに形成されたブロックBLに接触するようにインクを吐出させることで、表面張力によりインクが所望の位置よりも下側まで垂れ下がらないようにしてもよい。
<3.実施形態の結論>
以上において説明したように、本実施形態では、立体物Objの表面を、ボクセルVxと略同じサイズの通常ブロックBLM、ボクセルVxよりも小さい小型ブロックBLS、及び、ボクセルVxよりも大きい大型ブロックBLLの、互いにサイズの異なる3種類のブロックBLを用いて形成する。このため、モデルデータDatの示すモデルの形状に適した種類のブロックBLを用いて、立体物Objの表面を形成することができる。また、互いにサイズの異なる3種類のブロックBLを用いるため、立体物Objの表面において、凹凸が視認される可能性を低減し、ざらつき感の少ない滑らかな表面形状の立体物Objを造形することが可能となる。
<B.変形例>
以上の実施形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は、相互に矛盾しない範囲内で適宜に併合され得る。
なお、以下に例示する変形例において作用や機能が実施形態と同等である要素については、以上の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
<変形例1>
上述した実施形態において、小型ブロックBLSまたは大型ブロックBLLが形成される対象ボクセルVx-TGは、境界ボクセルVx-BDに基づいて特定されるが、本発明はこのような態様に限定されるものではなく、境界ボクセルVx-BDのうち、上面または下面のうち少なくとも一方の面と、4つの側面のうち少なくとも1つの側面と、を含む2以上の面がボクセル集合体の表面に該当する境界ボクセルVx-BDである、エッジボクセルVx-EGに基づいて、対象ボクセルVx-TGを定めてもよい。
エッジボクセルVx-EGは、下面エッジボクセルVx-EGd(「第1エッジボクセル」の一例)と、上面エッジボクセルVx-EGu(「第2エッジボクセル」の一例)と、に分類される。ここで、下面エッジボクセルVx-EGdとは、下面境界ボクセルVx-BDdのうち、下面と、4つの側面のうち少なくとも1つの側面とが、ボクセル集合体の表面に該当する下面境界ボクセルVx-BDdである。また、上面エッジボクセルVx-EGuとは、上面境界ボクセルVx-BDuのうち、上面と、4つの側面のうち少なくとも1つの側面とが、ボクセル集合体の表面に該当する上面境界ボクセルVx-BDuである。
本変形例に係る指定データ生成部93は、まず、境界ボクセルVx-BDを選択し、次に、境界ボクセルVx-BDの中から、下面エッジボクセルVx-EGdと、上面エッジボクセルVx-EGuとを特定する。そして、指定データ生成部93は、下面エッジボクセルVx-EGdの上側に隣り合う隣接ボクセルVx-NBを対象ボクセルVx-TGとして特定し、また、上面エッジボクセルVx-EGuを対象ボクセルVx-TGとして特定する。
さらに、指定データ生成部93は、上述した実施形態と同様に、対象ボクセルVx-TGが隣接ボクセルVx-NBである場合には、当該隣接ボクセルVx-NBと下面エッジボクセルVx-EGdの一部とに対して大型ブロックBLLを形成することを決定する。また、指定データ生成部93は、対象ボクセルVx-TGが上面エッジボクセルVx-EGuである場合には、当該上面エッジボクセルVx-EGuに対して小型ブロックBLSを形成することを決定する。
以上において説明したように、本変形例では、対比例のように各ボクセルVxに対して通常ブロックBLMを形成する場合と比較して、立体物Objの表面の凹凸のうち凸部分に該当するエッジボクセルVx-EGにおける、ブロックBLの占める体積(立体物Objの占める体積)を小さくすることができる。このため、立体物Objの表面の凹凸を目立たなくすることが可能となる。
<変形例2>
上述した実施形態及び変形例において、立体物造形装置1が造形する立体物Objは、図11(B)に例示するように、彩色層L1及び遮蔽層L2を具備する外部領域LOUTと、内部層L3及び中空部HLを具備する内部領域LINと、を備えるが、本発明はこのような態様に限定されるものではなく、立体物造形装置1は、少なくとも彩色層L1を具備する立体物Objを造形できればよい。
また、立体物Objは、彩色層L1の外側に、彩色層L1を覆うように、クリアーインクからなり所定の厚みを有するクリアー層が設けられていてもよい。
<変形例3>
上述した実施形態及び変形例において、立体物造形装置1が吐出可能なインクは、5種類の造形用インクと、1種類の支持用インクとからなる、合計6種類のインクであるが、本発明はこのような態様に限定されるものではなく、立体物造形装置1は、少なくとも、1種類の造形用インクを吐出可能なものであればよい。
<変形例4>
上述した実施形態及び変形例では、ステップS300に示す境界ボクセルVx-BDを選択する処理、及び、ステップS310に示す対象ボクセルVx-TGに形成すべきブロックBLの種類を決定する処理、ホストコンピューター9に設けられた指定データ生成部93で実行するが、本発明はこのような態様に限定されるものではなく、これらの処理を制御部6で実行してもよい。そして、ステップS300及びS310に示す処理を制御部6が実行する場合、指定データ生成部93が生成する指定データSDは、ボクセルデータVDが示す内容と同様の内容のドットの形成を指定するものであればよい。
すなわち、本変形例に係る制御部6は、指定データSDが、各ボクセルVxに対して通常ブロックBLMの形成を指定する場合であっても、ボクセルVxが対象ボクセルVx-TGに該当しする場合には、当該ボクセルVxに小型ブロックBLSまたは大型ブロックBLLが形成されるように、ヘッドユニット3等の動作を制御すればよい。また、この場合、ホストコンピューター9は、制御部6に対して、指定データSDとモデルデータDatとを供給するものであればよい。
<変形例5>
上述した実施形態及び変形例において、立体物造形装置1は、造形用インクを硬化させて形成された造形体LYを積層することで立体物Objを造形するが、本発明はこのような態様に限定されるものではなく、層状に敷き詰められた粉体を硬化性の造形用インクにより固めることで造形体LYを形成し、形成された造形体LYを積層することで立体物Objを造形するものであってもよい。
この場合、立体物造形装置1は、造形台45上に粉体を所定の厚さΔZで敷き詰めて粉体層PWを形成するための粉体層形成部(図示省略)と、立体物Objの形成後に、立体物Objを構成しない粉体(造形用インクにより固められた粉体以外の粉体)を廃棄するための粉体廃棄部(図示省略)と、を備えればよい。なお、以下では、造形体LY[q]を形成するための粉体層PWを、粉体層PW[q]と称する。
図17は、本変形例に係る造形処理を実行する場合の立体物造形システム100の動作の一例を示すフローチャートである。図17に示す本変形例に係る造形処理は、ステップS160の代わりにステップS161及びS162に示す処理を実行する点と、ステップS170における判定結果が肯定である場合にステップS190に示す処理を実行する点と、を除き、図10に示す実施形態に係る造形処理と同様である。
図17に示すように、本変形例に係る制御部6は、粉体層形成部が粉体層PW[q]を形成するように、立体物造形装置1の各部の動作を制御する(S161)。
また、本変形例に係る制御部6は、指定データSD[q]に基づいて、粉体層PW[q]にドットを形成して造形体LY[q]を形成するように、立体物造形装置1の各部の動作を制御する(S162)。具体的には、制御部6は、ステップS162において、まず、指定データSD[q]を用いて波形指定信号SIを生成し、生成した波形指定信号SIにより、粉体層PW[q]に対して造形用インクまたは支持用インクを吐出させるようにヘッドユニット3の動作を制御する。次に、制御部6は、粉体層PW[q]に対して吐出されたインクにより形成されたドットを硬化させることで、粉体層PW[q]のうちドットが形成された部分の粉体を固めるように、硬化ユニット61の動作を制御する。これにより、粉体層PW[q]の粉体がインクにより固められ、造形体LY[q]を形成することができる。
また、本変形例に係る制御部6は、立体物Objが造形された後、立体物Objを構成しない粉体を廃棄するように粉体廃棄部の動作を制御する(S190)。
図18は、本変形例に係るモデルデータDat及び断面モデルデータLdat[q]と、指定データSD[q]と、粉体層PW[q]と、造形体LY[q]と、の関係を説明するための説明図である。
このうち、図18(A)及び(B)は、図2(A)及び(B)と同様、断面モデルデータLdat[1]及びLdat[2]を例示している。本変形例においても、モデルデータDatの示す立体物Objのモデルをスライスすることで断面モデルデータLdat[q]を生成し、断面モデルデータLdat[q]から指定データSD[q]を生成し、そして、指定データSD[q]を用いて生成した波形指定信号SIに基づいて形成されたドットにより造形体LY[q]を形成する。以下、図18(C)乃至(F)を参照しつつ、本変形例に係る造形体LY[q]の形成について、造形体LY[1]及びLY[2]を例示して説明する。
図18(C)に示すように、制御部6は、造形体LY[1]の形成に先立ち、所定の厚さΔZの粉体層PW[1]を形成するように粉体層形成部の動作を制御する(上述したステップS161参照)。
次に、制御部6は、図18(D)に示すように、粉体層PW[1]内に造形体LY[1]が形成されるように、立体物造形装置1の各部の動作を制御する(上述したステップS162参照)。具体的には、制御部6は、まず、指定データSD[1]を用いて生成した波形指定信号SIに基づいてヘッドユニット3の動作を制御することで、粉体層PW[1]にインクを吐出させてドットを形成する。次に、制御部6は、粉体層PW[1]に形成したドットを硬化させるように、硬化ユニット61の動作を制御することで、ドットが形成されている部分の粉体を固め、造形体LY[1]を形成する。
その後、制御部6は、図18(E)に示すように、粉体層PW[1]及び造形体LY[1]の上に、所定の厚さΔZの粉体層PW[2]を形成するように粉体層形成部を制御する。さらに、制御部6は、図18(F)に示すように、造形体LY[2]が形成されるように、立体物造形装置1の各部の動作を制御する。
このように、制御部6は、指定データSD[q]を用いて生成した波形指定信号SIに基づいて、粉体層PW[q]内に造形体LY[q]を形成する積層処理の実行を制御し、当該造形体LY[q]を積層させていくことで、立体物Objを造形する。
図19は、本変形例において、対象ボクセルVx-TGに対して、通常ブロックBLM以外のブロックBL(小型ブロックBLS、大型ブロックBLL)を形成する場合について説明するための説明図である。
この図に示すように、本変形例に係る立体物造形装置は、上述した実施形態及び変形例と同様に、対象ボクセルVx-TGが、下面境界ボクセルVx-BDd(または下面エッジボクセルVx-EGd)の上側の隣接ボクセルVx-NBである場合には、当該対象ボクセルVx-TGに対して、第1基準量のインクを吐出し、当該吐出されたインクを低速硬化モードにより硬化させる。低速硬化モードによりインクを硬化させる場合、通常硬化モードの場合と比較して、粉体層PW上に吐出されたインクが硬化するまでに要する時間が長くなるため、粉体層PW上に吐出されたインクは粉体層PWの深くまで浸透する。このため、本変形例に係る立体物造形装置は、第1基準量のインクを、低速硬化モードにより硬化させることで、対象ボクセルVx-TGである隣接ボクセルVx-NBから、下面境界ボクセルVx-BDd(または下面エッジボクセルVx-EGd)の一部まで浸透させ、これにより、大型ブロックBLLを形成することができる。
なお、対象ボクセルVx-TGが、上面境界ボクセルVx-BDu(または上面エッジボクセルVx-EGu)である場合、対象ボクセルVx-TGの例えば下半分にドットを形成させる必要がある。このため、本変形例に係る立体物造形装置は、例えば、上面境界ボクセルVx-BDuまたは上面エッジボクセルVx-EGuに対して、第2基準量のインクを吐出させる場合に、例えば、他のボクセルVxに対する場合と比較して、インクを高速で吐出するようにすればよい。
<変形例6>
上述した実施形態及び変形例では、液体として、紫外線硬化型のインクを例示して説明したが、本発明はこのような態様に限定されるものではなく、液体は、硬化型インク等の、所定の作用により硬化する硬化性の液体であればよい。例えば、加熱することにより硬化する熱硬化性のインクであってもよいし、冷却することにより硬化する熱溶融性のインクであってもよい。
また、上述した実施形態において、硬化ユニット61は、紫外線を照射するための光源であったが、本発明はこのような態様に限定されるものではなく、硬化ユニット61は、硬化性の液体を硬化させることができ、且つ、通常硬化モード及び低速硬化モードを含む複数の硬化モードによる動作が可能で、硬化の程度を制御可能なものであればよい。
例えば、液体が熱硬化性のインクである場合、硬化ユニット61として、吐出部Dから吐出されたインクを加熱するための過熱器を採用することができる。この場合、例えば、硬化ユニット61は、低速硬化モードにおいてインクに加える熱量を、通常硬化モードと比較して小さくすることで、硬化の程度を弱めるものでもよい。また、例えば、硬化ユニット61は、低速硬化モードにおいてインクを過熱する過熱時間(硬化時間)を、通常硬化モードと比較して短くすることにより、硬化の程度を弱めるものでもよい。
また、上述した実施形態において、硬化ユニット61は、通常硬化モードによる硬化と低速硬化モードによる硬化とが可能であり、これによって、硬化の程度を2段階で切替可能であるが、本発明はこのような態様に限定されるものではなく、硬化の程度を3段階以上で細やかに切替可能であってもよい。例えば、硬化ユニット61は、通常硬化モード及び低速硬化モードに加え、当該2つの硬化モードよりも硬化の程度が強い高速硬化モードにより動作可能なものであってもよい。
硬化ユニット61による硬化の程度を細やかに切替可能である場合、吐出部Dが吐出するインク等の液体量を変更することなく、ボクセルVxに形成されるドットのサイズを細やかに制御することができる。このため、ざらつき感の少ない滑らかな表面の立体物Objを形成することができる。
なお、液体として、熱可塑性樹脂等からなる熱溶解性のインクを採用する場合、インクは、吐出部Dにおいて加熱された状態で吐出されることが好ましい。よって、この場合、吐出部Dは、キャビティ320に設けられた発熱体(図示省略)を発熱させることでキャビティ320内に気泡を生じさせてキャビティ320の内側の圧力を高め、これによりインクを吐出させる、所謂サーマル方式のインクの吐出を実行するものであってもよい。
<変形例7>
上述した実施形態及び変形例において、各吐出部Dから吐出可能な液体量は、第1基準量、または、第2基準量であるが、本発明はこのような態様に限定されるものではなく、各吐出部Dから吐出可能な液体量を3段階以上に制御可能であってもよい。例えば、立体物造形装置1は、一の硬化モードにより液体を硬化させる場合において、ボクセルVxの3分の1のサイズを満たす小ドット、ボクセルVxの3分の2のサイズを満たす中ドット、及び、ボクセルVxの全体を満たす大ドットの、3種類のサイズのドットを形成可能であってもよい。この場合、ボクセルVxに形成されるドットのサイズを細やかに制御することができるため、ざらつき感の少ない滑らかな表面の立体物Objを形成することができる。
<変形例8>
上述した実施形態及び変形例において、指定データ生成部93はホストコンピューター9に設けられるが、本発明はこのような態様に限定されるものではなく、指定データ生成部93は立体物造形装置1に設けられるものであってもよい。例えば、指定データ生成部93は、制御部6が制御プログラムに従って動作すること実現される機能ブロックとして実装されてもよい。つまり、指定データ生成部93は、制御部6に設けられるものであってもよい。
立体物造形装置1が指定データ生成部93を備える場合、立体物造形装置1は、立体物造形装置1の外部から供給されるモデルデータDatに基づいて指定データSDを生成し、さらに、生成した指定データSDを用いて生成した波形指定信号SIに基づいて立体物Objを造形することができる。
<変形例9>
上述した実施形態及び変形例において、立体物造形システム100はモデルデータ生成部92を備えるが、本発明はこのような態様に限定されるものではなく、立体物造形システム100がモデルデータ生成部92を含まずに構成されてもよい。つまり、立体物造形システム100は、立体物造形システム100の外部から供給されるモデルデータDatに基づいて、立体物Objを造形するものであればよい。
<変形例10>
上述した実施形態及び変形例において、駆動波形信号Comは、波形PL1及びPL2を有する信号であるが、本発明はこのような態様に限定されるものではなく、駆動波形信号Comは、少なくとも1種類のサイズのドットに対応する量のインクを吐出部Dから吐出させることが可能な波形を有する信号であれば、どのような信号であってもよい。また、例えば、駆動波形信号Comは、インクの種類に応じて異なる波形としてもよい。
また、上述した実施形態及び変形例において、波形指定信号SI[m]のビット数は2ビットであるが、本発明はこのような態様に限定されるものではなく、波形指定信号SI[m]のビット数は、吐出部Dから吐出されたインクにより形成されるドットのサイズの種類数に応じて、適宜定めればよい。
1…立体物造形装置、3…ヘッドユニット、6…制御部、7…位置変化機構、9…ホストコンピューター、30…記録ヘッド、31…駆動信号生成部、45…造形台、60…記憶部、61…硬化ユニット、92…モデルデータ生成部、93…指定データ生成部、100…立体物造形システム、101…システム制御部、D…吐出部、N…ノズル。

Claims (8)

  1. 液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、
    を備え、
    硬化した前記液体を用いてブロックを形成し、
    複数の前記ブロックにより立体物を造形可能な立体物造形装置であって、
    前記硬化ユニットは、
    前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、
    前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、
    を含む複数の硬化モードにより、前記液体の硬化が可能であり、
    前記第2硬化モードにより硬化された液体を用いて形成されるブロックは、
    前記立体物の形状を指定するためのモデルを、前記第1サイズの仮想的な直方体であるボクセルを複数用いたボクセル集合体により近似した場合に、
    前記ボクセル集合体を構成する複数のボクセルのうち、
    ボクセルの有する6面の中で下面を含む2以上の面が前記ボクセル集合体の表面を構成する第1エッジボクセルの上面と隣り合うボクセルと、
    前記第1エッジボクセルの一部と、に形成される、
    ことを特徴とする、立体物造形装置。
  2. 前記ヘッドユニットは、
    前記ブロックを形成する場合に、前記第1基準量の液体、または、前記第1基準量よりも少ない第2基準量の液体を吐出可能であり、
    前記第2基準量の液体を用いて形成されるブロックは、
    前記立体物の形状を指定するためのモデルを、前記第1サイズの仮想的な直方体であるボクセルを複数用いたボクセル集合体により近似した場合に、
    前記ボクセル集合体を構成する複数のボクセルのうち、
    ボクセルの有する6面の中で上面を含む2以上の面が前記ボクセル集合体の表面を構成する第2エッジボクセルの一部に設けられる、
    ことを特徴とする、請求項1に記載の立体物造形装置。
  3. 前記液体は、
    所定波長の光が照射されることで硬化し、
    前記硬化ユニットは、
    前記ヘッドユニットから吐出された液体に対して前記所定波長の光を照射可能であり、
    前記第1硬化モードにおいて、前記硬化ユニットが照射する光の強度は、
    前記第2硬化モードにおいて、前記硬化ユニットが照射する光の強度よりも強い、
    ことを特徴とする、請求項1又は請求項2に記載の立体物造形装置。
  4. 液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、
    を備え、
    硬化した前記液体を用いてブロックを形成し、
    複数の前記ブロックにより立体物を造形可能な立体物造形装置であって、
    前記硬化ユニットは、
    前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、
    前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、
    を含む複数の硬化モードにより、前記液体の硬化が可能であり、
    前記液体は、
    加熱されることで硬化し、
    前記硬化ユニットは、
    前記ヘッドユニットから吐出された液体を加熱することが可能であり、
    前記第1硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量は、
    前記第2硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量よりも大きい、
    ことを特徴とする、立体物造形装置。
  5. 前記ヘッドユニットは、
    前記ブロックを形成する場合に、前記第1基準量の液体、または、前記第1基準量よりも少ない第2基準量の液体を吐出可能であり、
    前記第2基準量の液体を用いて形成されるブロックは、
    前記立体物の形状を指定するためのモデルを、前記第1サイズの仮想的な直方体であるボクセルを複数用いたボクセル集合体により近似した場合に、
    前記ボクセル集合体を構成する複数のボクセルのうち、
    ボクセルの有する6面の中で上面を含む2以上の面が前記ボクセル集合体の表面を構成する第2エッジボクセルの一部に設けられる、
    ことを特徴とする、請求項4に記載の立体物造形装置。
  6. 前記第1硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体を硬化する時間は、
    前記第2硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体を硬化する時間よりも長い、
    ことを特徴とする、請求項1乃至5のうち何れか1項に記載の立体物造形装置。
  7. 液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、
    を備え、
    硬化した前記液体を用いてブロックを形成し、
    複数の前記ブロックにより立体物を造形可能な立体物造形装置の制御方法であって、
    前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、
    前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、
    を含む複数の硬化モードのうち、何れかの硬化モードにより前記ヘッドユニットから吐出された液体を硬化させ
    前記液体は、
    加熱されることで硬化し、
    前記硬化ユニットは、
    前記ヘッドユニットから吐出された液体を加熱することが可能であり、
    前記第1硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量は、
    前記第2硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量よりも大きい、
    ことを特徴とする、立体物造形装置の制御方法。
  8. 液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された液体を硬化させる硬化ユニットと、
    コンピューターと、
    を備え、
    硬化した前記液体を用いてブロックを形成し、
    複数の前記ブロックにより立体物を造形可能な立体物造形装置の制御プログラムであって、
    前記コンピューターを、
    前記ヘッドユニットから吐出された第1基準量の液体により第1サイズの前記ブロックが形成されるように、前記液体を硬化させる第1硬化モードと、
    前記ヘッドユニットから吐出された前記第1基準量の液体により前記第1サイズよりも大きい第2サイズの前記ブロックが形成されるように、前記液体を硬化させる第2硬化モードと、
    を含む複数の硬化モードのうち、何れかの硬化モードにより前記ヘッドユニットから吐出された液体を硬化させるように前記硬化ユニットを制御する制御部として機能させ
    前記液体は、
    加熱されることで硬化し、
    前記硬化ユニットは、
    前記ヘッドユニットから吐出された液体を加熱することが可能であり、
    前記第1硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量は、
    前記第2硬化モードにおいて、
    前記硬化ユニットが前記ヘッドユニットから吐出された液体に加える熱量よりも大きい、
    ことを特徴とする、立体物造形装置の制御プログラム。
JP2015030330A 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム Active JP6485097B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015030330A JP6485097B2 (ja) 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
US14/978,255 US10220604B2 (en) 2015-02-19 2015-12-22 Solid object shaping apparatus, control method for solid object shaping apparatus, and control program for solid object shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030330A JP6485097B2 (ja) 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム

Publications (2)

Publication Number Publication Date
JP2016150553A JP2016150553A (ja) 2016-08-22
JP6485097B2 true JP6485097B2 (ja) 2019-03-20

Family

ID=56692947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030330A Active JP6485097B2 (ja) 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム

Country Status (2)

Country Link
US (1) US10220604B2 (ja)
JP (1) JP6485097B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786310B2 (ja) * 2016-08-31 2020-11-18 株式会社ミマキエンジニアリング 造形装置及び造形方法
JP2018065308A (ja) * 2016-10-20 2018-04-26 株式会社ミマキエンジニアリング 造形装置及び造形方法
JP6922323B2 (ja) 2017-03-28 2021-08-18 セイコーエプソン株式会社 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
KR102089406B1 (ko) * 2017-04-26 2020-03-16 주식회사 엘지화학 노즐 조립체 및 이를 포함하는 3d 프린터
JP7040236B2 (ja) * 2018-04-05 2022-03-23 富士フイルムビジネスイノベーション株式会社 三次元形状データの編集装置、三次元造形装置、三次元造形システム、及び三次元形状データの編集プログラム
JP7135683B2 (ja) * 2018-09-28 2022-09-13 株式会社リコー 液体吐出装置、方法、およびプログラム
EP3666500B1 (en) * 2018-12-13 2021-10-27 Canon Production Printing Holding B.V. A method of 3d ink jet printing
JP7310374B2 (ja) * 2019-07-03 2023-07-19 セイコーエプソン株式会社 三次元造形物の製造装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6612824B2 (en) 1999-03-29 2003-09-02 Minolta Co., Ltd. Three-dimensional object molding apparatus
JP2000280354A (ja) 1999-03-29 2000-10-10 Minolta Co Ltd 三次元造形装置および三次元造形方法
US6306467B1 (en) * 1999-06-14 2001-10-23 Ford Global Technologies, Inc. Method of solid free form fabrication of objects
WO2003016031A1 (en) * 2001-08-16 2003-02-27 Riken Rapid prototyping method and device using v-cad data
JP4088861B2 (ja) * 2001-11-16 2008-05-21 リコープリンティングシステムズ株式会社 プリンタ制御装置及び画像記録装置
US7700020B2 (en) * 2003-01-09 2010-04-20 Hewlett-Packard Development Company, L.P. Methods for producing an object through solid freeform fabrication
AU2003900180A0 (en) * 2003-01-16 2003-01-30 Silverbrook Research Pty Ltd Method and apparatus (dam001)
WO2009075970A1 (en) * 2007-12-12 2009-06-18 3M Innovative Properties Company Method for making structures with improved edge definition
US9561622B2 (en) * 2008-05-05 2017-02-07 Georgia Tech Research Corporation Systems and methods for fabricating three-dimensional objects
JP4860742B2 (ja) * 2009-10-06 2012-01-25 株式会社ミマキエンジニアリング 3次元対象物形成装置および3次元対象物形成方法
PL2632696T3 (pl) * 2010-10-27 2021-03-08 Rize Inc. Sposób i urządzenie do wytwarzania obiektów trójwymiarowych
EP2846983B8 (en) * 2012-05-08 2020-08-19 Luxexcel Holding B.V. Method for printing a three-dimensional structure with smooth surfaces
JP2016013671A (ja) * 2014-07-03 2016-01-28 キヤノン株式会社 凹凸形成装置および凹凸形成方法

Also Published As

Publication number Publication date
US20160243758A1 (en) 2016-08-25
JP2016150553A (ja) 2016-08-22
US10220604B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6485097B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6451234B2 (ja) 立体物造形装置、立体物造形装置の制御方法、立体物造形装置の制御プログラム
US10449720B2 (en) Solid object shaping apparatus, control method for solid object shaping apparatus, and control program for solid object shaping apparatus
JP6485005B2 (ja) 立体物造形装置
JP6485096B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2017030177A (ja) 立体物造形装置、立体物造形装置の制御方法、立体物造形装置を用いた立体物の生産方法、立体物造形装置と通信可能な情報処理装置、及び、立体物造形システム
JP6565177B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
US20180015667A1 (en) Solid object shaping apparatus, control method for solid object shaping apparatus, and control program for solid object shaping apparatus
JP6464685B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2017113986A (ja) 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP6582684B2 (ja) 立体物造形装置、立体物造形装置と通信可能な情報処理装置、立体物造形装置の制御方法、立体物造形装置を用いた立体物の生産方法、及び、立体物造形システム
JP6515508B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2016150457A (ja) 立体物造形装置、立体物造形装置の制御装置、立体物造形装置の制御方法および立体物造形装置の制御プログラム
JP6565178B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6515507B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2017094625A (ja) 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP2017094626A (ja) 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180115

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150