JP6485096B2 - 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム - Google Patents

立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム Download PDF

Info

Publication number
JP6485096B2
JP6485096B2 JP2015030154A JP2015030154A JP6485096B2 JP 6485096 B2 JP6485096 B2 JP 6485096B2 JP 2015030154 A JP2015030154 A JP 2015030154A JP 2015030154 A JP2015030154 A JP 2015030154A JP 6485096 B2 JP6485096 B2 JP 6485096B2
Authority
JP
Japan
Prior art keywords
dimensional object
color
region
block
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015030154A
Other languages
English (en)
Other versions
JP2016150551A (ja
Inventor
山▲崎▼ 郷志
郷志 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015030154A priority Critical patent/JP6485096B2/ja
Priority to PCT/JP2016/000237 priority patent/WO2016132672A1/en
Priority to US15/548,560 priority patent/US10328633B2/en
Publication of JP2016150551A publication Critical patent/JP2016150551A/ja
Application granted granted Critical
Publication of JP6485096B2 publication Critical patent/JP6485096B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/002Coloured

Description

本発明は、立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラムに関する。
近年、3Dプリンター等の立体物造形装置が多く提案されている。立体物造形装置は、インク等の液体を吐出して形成したドットを用いて、仮想的な直方体であるボクセルにブロックを形成し、複数のブロックを用いて立体物を造形する。このような立体物造形装置において、複数色のインクを吐出して複数色のドットを形成し、これにより、彩色の施された立体物を造形する技術が提案されている(例えば、特許文献1)。
特開2002−264221号公報
ところで、ボクセルに対して、1または複数のドットを用いてブロックを形成する場合、ボクセルの形状とドットの形状が異なる場合がある。このため、例えば、均一な色の立体物を造形するために、立体物を彩色するための色を有するドットを含むブロックを均一な密度で配置しても、ドットの分布密度が不均一となる場合がある。この場合、視角方向によって立体物の色に濃淡が生じる等、不均一な色の立体物が造形される。また、例えば、均一な色を有さない立体物を造形する場合においても、ブロックとドットの形状の相違に起因して、色むらや色再現性の劣化が生じ、本来表示すべき色を正確に再現できないことがあった。
本発明は、上述した事情に鑑みてなされたものであり、立体物造形装置が立体物を造形する場合に、立体物において正確な色の再現する技術を提供することを、解決課題の一つとする。
以上の課題を解決するために、本発明に係る立体物造形装置は、立体物の形状及び色彩を表すためのモデルが指定する指定色を表す際に用いられる第1の色材成分を含む第1の液体、及び、前記第1の液体とは異なる色を有する第2の液体を含む複数種類の液体を吐出可能なヘッドユニットと、前記ヘッドユニットから吐出された前記第1の液体を硬化させて第1ドットを形成し、前記ヘッドユニットから吐出された前記第2の液体を硬化させて第2ドットを形成可能な硬化ユニットと、を備え、前記第1ドットを用いて第1色ブロックを形成し、前記第1ドットを用いず、前記第2ドットを用いて第2色ブロックを形成し、前記第1色ブロック及び前記第2色ブロックを含む複数のブロックを用いて、前記立体物を造形可能な立体物造形装置であって、前記立体物を構成する複数のブロックは、前記立体物の造形時におけるブロックの上面または下面が前記立体物の表面である第1表面ブロックと、前記立体物の造形時におけるブロックの一つの側面が前記立体物の表面である第2表面ブロックと、を含み、前記モデルが、所定数の前記第1表面ブロックからなる第1領域に対して、前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数と、前記モデルが、前記所定数の前記第2表面ブロックからなる第2領域に対して、前記指定色を指定する場合に、前記第2領域を形成する前記第1色ブロックの個数とは、異なる、ことを特徴とする。
一般的に、ブロックを配置するための仮想的な直方体であるボクセルの形状と、ドットの形状とは、一致しない。このため、指定色を表すための第1ドットを含む第1色ブロックを、第1領域と第2領域とで同一の密度となるように配置した場合、第1領域において再現される色と、第2領域において再現される色とは異なる色、または、異なる濃度の色となる可能性が高い。
この発明によれば、第1色ブロックが、第1領域と第2領域とで同一の密度で配置されることを防止する。このため、第1色ブロックを第1領域と第2領域とで同一の密度で配置する場合と比較して、第1領域及び第2領域の間において、色が不均一となる可能性を低く抑えることができる。これにより、立体物において正確な色の再現が可能となる。
なお、第1の液体としては、例えば、有彩色インクまたは無彩色インクを採用することができる。また、第2の液体としては、第1の液体と異なる色を有する液体であればよく、例えば、有彩色インク、無彩色インク、または、クリアーインク等を採用することができる。
また、本発明において、立体物の造形時におけるブロックの上面とは、立体物造形装置が、複数のブロックにより造形層を形成し、複数の造形層を順番に積層させて立体物を造形する場合における、積層方向である。
また、各ドット(第1ドット、第2ドット)は、ヘッドユニットから吐出された液体のみからなるものであってもよいし、ヘッドユニットから吐出された液体に加え、当該液体以外の物体、例えば、液体が吐出される位置に予め設けられた粉末等を含むものであってもよい。この場合、当該粉末は、液体が硬化することで、固められるものであればよい。
また、上述した立体物造形装置において、前記立体物を構成する複数のブロックは、前記立体物の造形時におけるブロックの上面または下面と、側面のうち少なくとも一面とが前記立体物の表面である第3表面ブロックを含み、前記モデルが、前記所定数の前記第3表面ブロックを含む第3領域に対して、前記指定色を指定する場合に、前記第3領域を形成する前記第1色ブロックの個数と、前記モデルが、前記第1領域に対して前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数とは、異なる、ことを特徴とすることが好ましい。
一般的に、ブロックを配置するための仮想的な直方体であるボクセルの形状と、ドットの形状とは、一致しないため、第1色ブロックを、第1領域と第3領域とで同一の密度となるように配置した場合、第1領域において再現される色と、第3領域において再現される色とは、異なる色、または、異なる濃度の色となる可能性が高い。
この発明によれば、第1色ブロックが、第1領域と第3領域とで、同一の密度で配置されることを防止するため、第1領域及び第3領域の間において、色が不均一となる可能性を低く抑えることができる。
また、上述した立体物造形装置において、前記モデルが、前記第1領域に対して前記指定色を指定する場合に、当該第1領域に含まれる1または複数の前記第1ドットの、前記第1領域に占める面積の割合と、前記モデルが、前記第2領域に対して前記指定色を指定する場合に、当該第2領域に含まれる1または複数の前記第1ドットの、前記第2領域に占める面積の割合と、は略同じである、ことを特徴とすることが好ましい。
この態様によれば、第1領域と第2領域との間で、指定色を表すための第1ドットの密度が略同一となるように第1色ブロックを配置する。このため、第1領域及び第2領域の間において、色を均一化することが可能となり、立体物において正確な色の再現が可能となる。
また、上述した立体物造形装置において、前記モデルが、前記第1領域に対して前記指定色を指定する場合に、当該第1領域に含まれる1または複数の前記第1ドットの、前記第1領域に占める面積の割合と、前記モデルが、前記第3領域に対して前記指定色を指定する場合に、当該第3領域に含まれる1または複数の前記第1ドットの、前記第3領域に占める面積の割合と、は略同じである、ことを特徴とすることが好ましい。
この態様によれば、第1領域と第3領域との間で、指定色を表すための第1ドットの密度が略同一となるように第1色ブロックを配置する。このため、第1領域及び第3領域の間において、色を均一化することが可能となり、立体物において正確な色の再現が可能となる。
また、上述した立体物造形装置において、前記第2の液体が有する色材成分は、前記第1の液体が有する色材成分よりも少ない、ことを特徴とすることが好ましい。
この態様によれば、第1の液体を硬化させて形成される第1ドットと、第2の液体を硬化させて形成される第2ドットとの、立体物の表面における比率を調整することで、立体物において再現される色の濃度を制御することができる。このため、立体物において、指定色を正確に再現することができる。
なお、第2の液体としては、色材成分を含まない透明の液体、または、色材成分が含まないと看做すことができる程度に色材成分量が少ない略透明の液体を採用してもよい。例えば、第2の液体としては、クリアーインクを採用することができる。
また、上述した立体物造形装置において、前記第2の液体は、前記指定色を表す際に用いられる第2の色材成分を有する、ことを特徴とすることが好ましい。
この態様によれば、第1の液体を硬化させて形成される第1ドットと、第2の液体を硬化させて形成される第2ドットとの、立体物の表面における比率を調整することで、立体物において、指定色を正確に再現することができる。
なお、第2の液体としては、有彩色の色材成分を含む液体、または、ホワイト等の無彩色の色材成分を含む液体のいずれを採用しても良い。
また、本発明に係る立体物造形装置の制御方法は、立体物の形状及び色彩を表すためのモデルが指定する指定色を表す際に用いられる第1の色材成分を含む第1の液体、及び、前記第1の液体とは異なる色を有する第2の液体を含む複数種類の液体を吐出可能なヘッドユニットと、前記ヘッドユニットから吐出された前記第1の液体を硬化させて第1ドットを形成し、前記ヘッドユニットから吐出された前記第2の液体を硬化させて第2ドットを形成可能な硬化ユニットと、を備え、前記第1ドットを用いて第1色ブロックを形成し、前記第1ドットを用いず、前記第2ドットを用いて第2色ブロックを形成し、前記第1色ブロック及び前記第2色ブロックを含む複数のブロックを用いて、前記立体物を造形可能な立体物造形装置の制御方法であって、前記立体物を構成する複数のブロックが、前記立体物の造形時におけるブロックの上面または下面が前記立体物の表面である第1表面ブロックと、前記立体物の造形時におけるブロックの一つの側面が前記立体物の表面である第2表面ブロックと、を含み、前記モデルが所定数の前記第1表面ブロックからなる第1領域に対して前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数と、前記モデルが前記所定数の前記第2表面ブロックからなる第2領域に対して前記指定色を指定する場合に、前記第2領域を形成する前記第1色ブロックの個数と、を異ならせて、前記立体物を造形するように、前記ヘッドユニット及び前記硬化ユニットを制御する、ことを特徴とする。
この発明によれば、第1色ブロックが、第1領域と第2領域とで、同一の密度で配置されることを防止するため、第1領域及び第2領域の間において、色が不均一となる可能性を低く抑えることができる。
また、本発明に係る立体物造形装置の制御プログラムは、立体物の形状及び色彩を表すためのモデルが指定する指定色を表す際に用いられる第1の色材成分を含む第1の液体、及び、前記第1の液体とは異なる色を有する第2の液体を吐出可能なヘッドユニットと、前記ヘッドユニットから吐出された前記第1の液体を硬化させて第1ドットを形成し、前記ヘッドユニットから吐出された前記第2の液体を硬化させて第2ドットを形成可能な硬化ユニットと、コンピューターと、を備え、前記第1ドットを用いて第1色ブロックを形成し、前記第1ドットを用いず、前記第2ドットを用いて第2色ブロックを形成し、前記第1色ブロック及び前記第2色ブロックを含む複数のブロックを用いて、前記立体物を造形可能な立体物造形装置の制御プログラムであって、前記コンピューターを、前記立体物を構成する複数のブロックが、前記立体物の造形時におけるブロックの上面または下面が前記立体物の表面である第1表面ブロックと、前記立体物の造形時におけるブロックの一つの側面が前記立体物の表面である第2表面ブロックと、を含み、前記モデルが所定数の前記第1表面ブロックからなる第1領域に対して前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数と、前記モデルが前記所定数の前記第2表面ブロックからなる第2領域に対して前記指定色を指定する場合に、前記第2領域を形成する前記第1色ブロックの個数と、を異ならせて、前記立体物を造形するように、前記ヘッドユニット及び前記硬化ユニットを制御する制御部として機能させる、ことを特徴とする。
この発明によれば、第1色ブロックが、第1領域と第2領域とで、同一の密度で配置されることを防止するため、第1領域及び第2領域の間において、色が不均一となる可能性を低く抑えることができる。
本発明に係る立体物造形システム100の構成を示すブロック図である。 立体物造形システム100による立体物Objの造形を説明するための図である。 立体物造形システム100による立体物Objの造形を説明するための図である。 立体物造形装置1の概略的な断面図である。 記録ヘッド30の概略的な断面図である。 駆動信号Vinの供給時における吐出部Dの動作を説明するための説明図である。 記録ヘッド30におけるノズルNの配置例を示す平面図である。 駆動信号生成部31の構成を示すブロック図である。 選択信号Selの内容を示す説明図である。 駆動波形信号Comの波形を表すタイミングチャートである。 データ生成処理及び造形処理を示すフローチャートである。 立体物Objを説明するための説明図である。 形状補完処理を示すフローチャートである。 指定データ生成処理を示すフローチャートである。 ブロックBLの種類を説明するための説明図である。 ボクセルデータVDの示すボクセル集合体を説明するための説明図である。 立体物ObjにおけるブロックBLの配置を説明するための説明図である。 変形例1に係る立体物ObjにおけるブロックBLの配置を説明する図である。 変形例2に係る立体物ObjにおけるブロックBLの配置を説明する図である。 変形例3に係る立体物ObjにおけるブロックBLの配置を説明する図である。
以下、本発明を実施するための形態について図面を参照して説明する。ただし、各図において、各部の寸法及び縮尺は、実際のものと適宜に異ならせてある。また、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。
<A.実施形態>
本実施形態では、立体物造形装置として、樹脂エマルジョンを含むレジンインクや、紫外線硬化型インク等の、硬化性インク(「液体」の一例)を吐出して立体物Objを造形する、インクジェット式の立体物造形装置を例示して説明する。
<1.立体物造形システムの構成>
以下、図1乃至図10を参照しつつ、本実施形態に係る立体物造形装置1を具備する立体物造形システム100の構成について説明する。
図1は、立体物造形システム100の構成を示す機能ブロック図である。
図1に示すように、立体物造形システム100は、インクを吐出し、吐出したインクを用いて形成されるドットにより所定の厚さΔZの層状の造形体LY(「造形層」の一例)を形成し、造形体LYを積層することで立体物Objを造形する造形処理を実行する立体物造形装置1と、立体物造形装置1が造形する立体物Objを構成する複数の造形体LYの各々の形状及び色彩を指定する指定データSDを生成するデータ生成処理を実行するホストコンピューター9と、を備える。
<1.1.ホストコンピューターについて>
図1に示すように、ホストコンピューター9は、ホストコンピューター9の各部の動作を制御するCPU(図示省略)と、ディスプレイ等の表示部(図示省略)と、キーボードやマウス等の操作部91と、ホストコンピューター9の制御プログラム、立体物造形装置1のドライバープログラム、及び、CAD(computer aided design)ソフト等のアプリケーションプログラムを記憶する情報記憶部(図示省略)と、モデルデータDatを生成するモデルデータ生成部92と、モデルデータDatに基づいて指定データSDを生成するデータ生成処理を実行する指定データ生成部93と、を備える。
ここで、モデルデータDatとは、立体物造形装置1が造形すべき立体物Objを表すためのモデルの形状及び色彩を示すデータであり、立体物Objの形状及び色彩を指定するためのデータである。なお、以下において、立体物Objの色彩には、立体物Objに複数色が付される場合における当該複数色の付され方、すなわち、立体物Objに付される複数色により表される模様、文字、その他の画像も含むこととする。
モデルデータ生成部92は、ホストコンピューター9のCPUが情報記憶部に記憶されているアプリケーションプログラムを実行することにより実現される機能ブロックである。モデルデータ生成部92は、例えばCADアプリケーションであり、立体物造形システム100の利用者が操作部91を操作して入力した情報等に基づいて、立体物Objの形状及び色彩を表すためのモデルを示すモデルデータDatを生成する。
本実施形態では、モデルデータDatが、立体物Objの外部形状を指定する場合を想定する。換言すれば、モデルデータDatが、立体物Objを中空の物体であると仮定した場合の当該中空の物体の形状、すなわち、立体物Objのモデルの輪郭である外面SFの形状を指定するデータである場合を想定する。例えば、立体物Objが球体である場合には、モデルデータDatは当該球体の輪郭である球面の形状を指定する。
但し、本発明はこのような態様に限定されるものではなく、モデルデータDatは、少なくとも立体物Objのモデルの外面SFの形状を特定可能な情報を含むものであればよい。例えば、モデルデータDatは、立体物Objのモデルの外面SFの形状及び立体物Objの色彩に加えて、立体物Objのモデルの外面SFより内側の形状や、立体物Objの材料等を指定するものであってもよい。
モデルデータDatとしては、例えば、AMF(Additive Manufacturing File Format)、または、STL(Standard Triangulated Language)等のデータ形式を例示することができる。
指定データ生成部93は、ホストコンピューター9のCPUが情報記憶部に記憶されている立体物造形装置1のドライバープログラムを実行することにより実現される機能ブロックである。指定データ生成部93は、モデルデータ生成部92が生成するモデルデータDatに基づいて、立体物造形装置1が形成する造形体LYの形状及び色彩を指定する指定データSDを生成するデータ生成処理を実行する。
なお、以下では、立体物Objが、Q個の造形体LYを積層させることで造形される場合を想定する(Qは、Q≧2を満たす自然数)。また、立体物造形装置1が造形体LYを形成する処理を積層処理と称する。すなわち、立体物造形装置1が立体物Objを造形する造形処理は、Q回の積層処理を含む。以下では、造形処理に含まれるQ回の積層処理のうちq回目の積層処理で形成される造形体LYを造形体LY[q]と称し、造形体LY[q]の形状及び色彩を指定する指定データSDを指定データSD[q]と称する(qは、1≦q≦Qを満たす自然数)。
図2は、モデルデータDatの指定する立体物Objのモデルの外面SFの形状と、指定データSDを用いて形成される造形体LYと、の関係を説明するための説明図である。
図2(A)及び(B)に示すように、指定データ生成部93は、所定の厚さΔZを有する造形体LY[1]〜LY[Q]の形状及び色彩を指定する指定データSD[1]〜SD[Q]を生成するために、まず、モデルデータDatの示す三次元の形状を有する外面SFのモデルを所定の厚さΔZ毎にスライスすることで、造形体LY[1]〜LY[Q]と1対1に対応する断面モデルデータLdat[1]〜Ldat[Q]を生成する。ここで、断面モデルデータLdatとは、モデルデータDatの示す三次元の形状のモデルをスライスして得られる断面体の形状及び色彩を示すデータである。但し、断面モデルデータLdatは、モデルデータDatの示す三次元の形状のモデルをスライスしたときの二次元の断面の形状及び色彩を含むデータであればよい。なお、図2(A)は、1回目の積層処理で形成される造形体LY[1]に対応する断面モデルデータLdat[1]を例示し、図2(B)は、2回目の積層処理で形成される造形体LY[2]に対応する断面モデルデータLdat[2]を例示している。
次に、指定データ生成部93は、断面モデルデータLdat[q]の示す形状及び色彩に対応する造形体LY[q]を形成するために、立体物造形装置1が形成すべきドットの配置を決定し、決定結果を、指定データSDとして出力する。より具体的には、指定データ生成部93は、断面モデルデータLdatに基づいてボクセルデータVDを生成し、ボクセルデータVDに基づいて指定データSDを生成する。なお、以下では、ボクセルデータVDのうち、断面モデルデータLdat[q]に基づいて生成されるボクセルデータVDを、ボクセルデータVD[q]と称する。すなわち、指定データ生成部93は、断面モデルデータLdat[q]に基づいてボクセルデータVD[q]を生成し、ボクセルデータVD[q]に基づいて指定データSD[q]を生成する。
ここで、ボクセルデータVD[q]とは、断面モデルデータLdat[q]の示す立体物Objのモデルの断面体の形状及び色彩をボクセルVxの単位で格子状に細分化することで、断面モデルデータLdat[q]の示す立体物Objのモデルの断面体の形状及び色彩をボクセルVxの集合として表すデータである。
また、指定データSD[q]とは、複数のボクセルVxの各々に形成すべきドットを指定するデータである。すなわち、指定データSDは、立体物Objを造形するために形成すべきドットの色及びサイズを指定するデータである。例えば、指定データSDは、ドットの色を、当該ドットを形成するインクの種類により指定すればよい。なお、インクの種類については後述する。
ボクセルVxとは、所定の厚さΔZを有し、所定体積を有する、所定サイズの仮想的な直方体である。なお、本明細書では、直方体が立方体を含む概念であることとして説明する。本実施形態において、ボクセルVxの体積及びサイズは、立体物造形装置1が形成可能なドットのサイズに応じて定められる。以下では、造形体LY[q]に対応するボクセルVxを、ボクセルVx[q]と称する場合がある。
また、以下では、1個のボクセルVxにより区画された立体物Objの構成要素をブロックBLと称する。詳細は後述するが、ブロックBLは、1または複数のドットを含んで構成される。換言すれば、ブロックBLとは、1個のボクセルVxの内部に設けられ、1または複数のドットを含む、立体物Objの構成要素である。すなわち、本実施形態において、指定データSDは、各ボクセルVxに形成すべき1または複数のドットを指定する。
立体物造形システム100は、複数のブロックBLの集合(以下、「ブロック集合体」と称する)として立体物Objを造形する。換言すれば、立体物造形システム100は、モデルデータDatの示す立体物Objのモデルを格子状に細分化して複数のボクセルVxの集合体(以下、「ボクセル集合体」と称する)として表し、当該ボクセル集合体を構成する複数のボクセルVxの各々に、ドットを用いてブロックBLを形成することで、ブロック集合体として立体物Objを造形する。
図2(C)及び(D)に示すように、立体物造形装置1は、指定データ生成部93から指定データSD[q]が供給されると、造形体LY[q]を形成する積層処理を実行する。図2(C)は、断面モデルデータLdat[1]から生成された指定データSD[1]に基づいて、造形台45(図3参照)の+Z方向(以下、+Z方向を「上側」または「上方向」と称する場合がある)に第1番目の造形体LY[1]が形成された場合を例示し、図2(D)は、断面モデルデータLdat[2]から生成された指定データSD[2]に基づいて、造形体LY[1]の上側に第2番目の造形体LY[2]が形成された場合を例示している。
そして、立体物造形装置1は、指定データSD[1]〜SD[Q]に対応してされる造形体LY[1]〜LY[Q]を上方向に順番に積層させることで、図2(E)に示す立体物Objを造形する。
なお、立体物Objは、図2に示すような、硬化性のインクを硬化させることで形成されたドットからなる造形体LYを積層することで造形する方法(以下、「第1の造形方法」と称する)の他に、所定の厚さΔZに層状に敷き詰められた粉体(以下、「粉体層PW」と称する)に対して硬化性のインクを吐出し、当該粉体を硬化性インクにより固めることで形成された造形体LYを積層することで立体物Objを造形する方法(以下、「第2の造形方法」と称する)によっても造形することができる(後述する図3参照)。
本発明において、造形処理及び積層処理は、第1の造形方法または第2の造形方法のいずれの方法により実行されるものであってもよいが、以下では、説明の便宜上、第2の造形方法により実行される場合を例示して説明する。なお、以下では、造形体LY[q]を形成するのに先立ち、q回目の積層処理において設けられる粉体層PWを、粉体層PW[q]と称する。
図3は、第2の造形方法による造形処理の概要を説明するための説明図である。
このうち、図3(A)及び(B)は、図2(A)及び(B)と同様、断面モデルデータLdat[1]及びLdat[2]を例示している。
図3(C)に示すように、立体物造形装置1は、造形体LY[1]の形成に先立ち、粉体層PW[1]を形成する。次に、立体物造形装置1は、図3(D)に示すように、粉体層PW[1]に対してインクを吐出して当該インクを粉体とともに硬化させることにより、粉体層PW[1]内に造形体LY[1]を形成する。更に、立体物造形装置1は、図3(E)に示すように、造形体LY[1]を含む粉体層PW[1]の上側に、粉体層PW[2]を形成する。次に、立体物造形装置1は、図3(F)に示すように、粉体層PW[2]に対してインクを吐出して当該インクを粉体とともに硬化させることにより、粉体層PW[2]内に造形体LY[2]を形成する。
このように、本実施形態に係る立体物造形装置1は、指定データSD[q]に対応する造形体LY[q]を粉体層PW[q]に形成し、造形体LY[1]〜LY[Q]を順番に積層させることで、立体物Objを造形する。なお、粉体層PW[1]〜PW[Q]を構成する粉体のうち、立体物Objを構成しない粉体は、立体物Objの造形後に廃棄すればよい。
ところで、本実施形態に係るモデルデータDatは、上述のとおり、立体物Objのモデルの外面SFの形状(輪郭の形状)を指定する。このため、モデルデータDatの示す形状を有する立体物Objを忠実に造形した場合、立体物Objの形状は、厚みを有さない輪郭だけの中空形状となる。しかし、立体物Objを造形する場合、立体物Objの強度等を考慮して、外面SFよりも内側の形状を決定することが好ましい。具体的には、立体物Objを造形する場合、立体物Objの外面SFよりも内側の領域の一部または全部が中実構造であることが好ましい。
このため、本実施形態に係る指定データ生成部93は、図2及び図3に示すように、モデルデータDatの指定する形状が中空形状であるか否かに関わらず、外面SFよりも内側の領域の一部または全部が中実構造となるような断面モデルデータLdatを生成する。
以下では、データ生成処理のうち、モデルデータDatの示すモデルの形状の中空部分を補完して、当該中空部分の一部または全部が中実構造となる形状を示す断面モデルデータLdatを生成する処理を、形状補完処理と称する。なお、形状補完処理と、形状補完処理により生成される断面モデルデータLdatが指定する外面SFよりも内側の構造と、についての詳細は、後述する。
ところで、図2に示す例では、2回目の積層処理で形成される造形体LY[2]を構成するボクセルVx2の−Z方向(以下、−Z方向を「下側」または「下方向」と称する場合がある)に、1回目の積層処理で形成される造形体LY[1]を構成するボクセルVx[1]が存在する。しかし、立体物Objの形状によっては、ボクセルVx[2]の下側にボクセルVx[1]が存在しない場合がある。このような場合、ボクセルVx[2]にドットを形成しようとしても、当該ドットが、本来形成すべき位置よりも下側に形成されてしまうことがある。よって、「q≧2」である場合、造形体LY[q]を構成するためのドットを本来形成されるべきボクセルVx[q]に形成するためには、当該ボクセルVx[q]の下側の少なくとも一部に、当該ボクセルVx[q]に形成されるドットを支持するための支持部を設ける必要がある。
そこで、本実施形態では、断面モデルデータLdatが、立体物Objの他に、立体物Objを造形する際に必要となる支持部の形状を定めるデータを含むこととする。つまり、本実施形態において、造形体LY[q]には、立体物Objのうちq回目の積層処理で形成すべき部分と、支持部のうちq回目の積層処理で形成すべき部分と、の双方が含まれる。換言すれば、指定データSD[q]は、立体物Objのうち造形体LY[q]として形成される部分の形状及び色彩をボクセルVx[q]の集合として表したデータと、支持部のうち造形体LY[q]として形成される部分の形状をボクセルVx[q]の集合として表したデータと、を含む。
本実施形態に係る指定データ生成部93は、モデルデータDatに基づいて、ボクセルVx[q]の形成のために支持部を設ける必要があるか否かを判定する。そして、指定データ生成部93は、当該判定の結果が肯定である場合には、立体物Objの他に支持部が設けられるような断面モデルデータLdatを生成する。
なお、支持部は、立体物Objの造形後に容易に除去することのできる材料、例えば、水溶性のインク、または、立体物Objを造形するインクよりも低い融点のインク等で構成されることが好ましい。
<1.2.立体物造形装置について>
次に、図1に加え図4を参照しつつ、立体物造形装置1について説明する。図4は、立体物造形装置1の構造の概略を示す斜視図である。
図1及び図4に示すように、立体物造形装置1は、筐体40と、造形台45と、立体物造形装置1の各部の動作を制御する制御部6と、造形台45に向かってインクを吐出する吐出部Dを具備する記録ヘッド30が設けられたヘッドユニット3と、造形台45の上に吐出されたインクを硬化させる硬化ユニット61と、インクを貯蔵する6個のインクカートリッジ48と、ヘッドユニット3及びインクカートリッジ48を搭載するキャリッジ41と、粉体層PWを構成するための粉体を噴出させて造形台45上に粉体を所定の厚さΔZで敷き詰めることで粉体層PWを形成する粉体層形成部(図示省略)と、立体物Objの形成後に立体物Objを構成しない余分な粉体を廃棄するための粉体廃棄部(図示省略)と、筐体40に対するヘッドユニット3、造形台45、及び、硬化ユニット61の位置を変化させるための位置変化機構7と、立体物造形装置1の制御プログラムやその他の各種情報を記憶する記憶部60と、を備える。
なお、制御部6及び指定データ生成部93は、立体物造形システム100の各部の動作を制御するシステム制御部101として機能する。
硬化ユニット61は、造形台45の上に吐出されたインクを硬化させるための構成要素であり、例えば、紫外線硬化型インクに対して紫外線を照射するための光源や、レジンインクを加熱するための加熱器等を例示することができる。硬化ユニット61が紫外線の光源である場合、硬化ユニット61は、例えば造形台45の上側(+Z方向)に設けられればよい。以下では、硬化ユニット61が紫外線の光源である場合を想定し、硬化ユニット61が造形台45の+Z方向に位置する場合を想定して説明する。
6個のインクカートリッジ48は、立体物Objを造形するための5種類の造形用インクと、支持部を形成するための支持用インクと、の合計6種類のインクと1対1に対応して設けられたものである。各インクカートリッジ48には、当該インクカートリッジ48に対応する種類のインクが貯蔵されている。
立体物Objを造形するための5種類の造形用インクには、有彩色の色材成分を有する有彩色インクと、無彩色の色材成分を有する無彩色インクと、有彩色インク及び無彩色インクと比較して単位重量または単位体積あたりの色材成分の含有量が少ないクリアー(CL)インクと、が含まれる。
本実施形態では、有彩色インクとして、シアン(CY)、マゼンタ(MG)、及び、イエロー(YL)の3種類のインクを採用する。
また、本実施形態では、無彩色インクとして、ホワイト(WT)のインクを採用する。本実施形態に係るホワイトインクとは、可視光の波長領域(概ね、400nm〜700nm)に属する波長を有する光がホワイトインクに照射された場合において、当該照射された光のうち、30%以上の光を反射するインクであり、好ましくは、50%以上の光を反射するインクであり、より好ましくは、80%以上の光を反射するインクである。
また、本実施形態において、クリアーインクは、有彩色インク及び無彩色インクと比較して、色材成分の含有量が少なく透明度の高いインクである。
以下では、5種類の造形用インクのうち、3種類の有彩色インク及び1種類の無彩色インクを、彩色インクと総称する場合がある。すなわち、本実施形態では、立体物造形装置1が4種類の彩色インクを吐出可能な場合を想定する。
また、以下では、立体物造形装置1が吐出可能な5種類の造形用インクのうち、モデルデータDatの表すモデルの指定する色(以下、「指定色」と称する)を再現する際に使用される任意の1色(以下、「第1色」と称する)のインクを「第1の液体」と称する。また、5種類の造形用インクのうち、指定色を再現する際に使用される色のうち第1色とは異なる色(以下、「第2色」と称する)のインクを「第2の液体」と称する。以下では、第1の液体が、有彩色インクである場合を想定し、第2の液体が、クリアーインクである場合を想定して説明する。
なお、本実施形態では、各インクカートリッジ48はキャリッジ41に搭載されているが、キャリッジ41に搭載される代わりに、立体物造形装置1の別の場所に設けられるものであってもよい。
図1及び図4に示すように、位置変化機構7は、造形台45を+Z方向及び−Z方向(以下、+Z方向及び−Z方向を「Z軸方向」と総称する場合がある)に昇降させる造形台昇降機構79aを駆動するための昇降機構駆動モーター71と、キャリッジ41をガイド79bに沿って+Y方向及び−Y方向(以下、+Y方向及び−Y方向を「Y軸方向」と総称する場合がある)に移動させるためのキャリッジ駆動モーター72と、キャリッジ41をガイド79cに沿って+X方向及び−X方向(以下、+X方向及び−X方向を「X軸方向」と総称する場合がある)に移動させるためのキャリッジ駆動モーター73と、硬化ユニット61をガイド79dに沿ってX軸方向に移動させるための硬化ユニット駆動モーター74と、を備える。また、位置変化機構7は、昇降機構駆動モーター71を駆動するためのモータードライバー75と、キャリッジ駆動モーター72を駆動するためのモータードライバー76と、キャリッジ駆動モーター73を駆動するためのモータードライバー77と、硬化ユニット駆動モーター74を駆動するためのモータードライバー78と、を備える。
記憶部60は、ホストコンピューター9から供給される指定データSDを格納する不揮発性半導体メモリーの一種であるEEPROM(Electrically Erasable Programmable Read-Only Memory)と、立体物Objを造形する造形処理等の各種処理を実行する際に必要なデータを一時的に格納し、あるいは造形処理等の各種処理が実行されるように立体物造形装置1の各部を制御するための制御プログラムを一時的に展開するRAM(Random Access Memory)と、制御プログラムを格納する不揮発性半導体メモリーの一種であるPROMと、を備える。
制御部6は、CPU(Central Processing Unit)やFPGA(field-programmable gate array)等を含んで構成され、当該CPU等が記憶部60に記憶されている制御プログラムに従って動作することで、立体物造形装置1の各部の動作を制御する。
制御部6は、ホストコンピューター9から指定データSDが供給された場合、ヘッドユニット3及び位置変化機構7の動作を制御することにより、造形台45上にモデルデータDatに応じた立体物Objを造形する造形処理の実行を制御する。
具体的には、制御部6は、まず、ホストコンピューター9から供給される指定データSDを記憶部60に格納する。次に、制御部6は、指定データSD等の記憶部60に格納されている各種データに基づいて、ヘッドユニット3の動作を制御して吐出部Dを駆動させるための駆動波形信号Com及び波形指定信号SIを含む各種信号を生成し、これら生成した信号を出力する。また、制御部6は、指定データSD等の記憶部60に格納されている各種データに基づいて、モータードライバー75〜78の動作を制御するための各種信号を生成し、これら生成した信号を出力する。
なお、駆動波形信号Comはアナログの信号である。このため、制御部6は、図示省略したDA変換回路を含み、制御部6が備えるCPU等において生成されるデジタルの駆動波形信号を、アナログの駆動波形信号Comに変換したうえで、出力する。
このように、制御部6は、モータードライバー75、76、及び、77の制御を介して、造形台45に対するヘッドユニット3の相対位置を制御し、モータードライバー75、及び、78の制御を介して、造形台45に対する硬化ユニット61の相対位置を制御する。また、制御部6は、ヘッドユニット3の制御を介して、吐出部Dからのインクの吐出の有無、インクの吐出量、及び、インクの吐出タイミング等を制御する。
これにより、制御部6は、ドットサイズ及びドット配置を調整しつつ造形台45上の粉体層PWにドットを形成し、粉体層PWに形成されたドットを硬化させて造形体LYを形成する積層処理の実行を制御する。更に、制御部6は、積層処理を繰り返し実行することで、既に形成された造形体LYの上に新たな造形体LYを積層し、これにより、モデルデータDatに対応する立体物Objを造形する造形処理の実行を制御する。
図1に示すように、ヘッドユニット3は、M個の吐出部Dを具備する記録ヘッド30と、吐出部Dを駆動するための駆動信号Vinを生成する駆動信号生成部31と、を備える(Mは、1以上の自然数)。以下では、記録ヘッド30に設けられるM個の吐出部Dの各々を区別するために、順番に、1段、2段、…、M段と称することがある。また、以下では、記録ヘッド30に設けられるM個の吐出部Dのうちm段の吐出部Dを、吐出部D[m]と表現する場合がある(mは、1≦m≦Mを満たす自然数)。また、以下では、駆動信号生成部31が生成する駆動信号Vinのうち、吐出部D[m]を駆動するための駆動信号Vinを駆動信号Vin[m]と表現する場合がある。なお、駆動信号生成部31の詳細については、後述する。
<1.3.記録ヘッドについて>
次に、図5乃至図7を参照しつつ、記録ヘッド30と、記録ヘッド30に設けられる吐出部Dと、について説明する。
図5は、記録ヘッド30の、概略的な一部断面図の一例である。なお、この図では、図示の都合上、記録ヘッド30のうち、当該記録ヘッド30が有するM個の吐出部Dの中の1個の吐出部Dと、当該1個の吐出部Dにインク供給口360を介して連通するリザーバ350と、インクカートリッジ48からリザーバ350にインクを供給するためのインク取り入れ口370と、を示している。
図5に示すように、吐出部Dは、圧電素子300と、インクが充填されたキャビティ320と、キャビティ320に連通するノズルNと、振動板310と、を備える。吐出部Dは、圧電素子300が駆動信号Vinにより駆動されることにより、キャビティ320内のインクをノズルNから吐出させる。キャビティ320は、キャビティプレート340と、ノズルNが形成されたノズルプレート330と、振動板310と、により区画される空間である。キャビティ320は、インク供給口360を介してリザーバ350と連通している。リザーバ350は、インク取り入れ口370を介して1個のインクカートリッジ48と連通している。
本実施形態では、圧電素子300として、例えば、図4に示すようなユニモルフ(モノモルフ)型を採用するが、バイモルフ型や積層型など、圧電素子300を変形させてインク等の液体を吐出させることができるものであれば良い。
圧電素子300は、下部電極301と、上部電極302と、下部電極301及び上部電極302の間に設けられた圧電体303と、を有する。そして、下部電極301の電位が所定の基準電位VSSに設定され、上部電極302に駆動信号Vinが供給されることで、下部電極301及び上部電極302の間に電圧が印加されると、当該印加された電圧に応じて圧電素子300が図において上下方向に変位し、その結果、圧電素子300が振動する。
キャビティプレート340の上面開口部には、振動板310が設置され、振動板310には、下部電極301が接合されている。このため、圧電素子300が駆動信号Vinにより振動すると、振動板310も振動する。そして、振動板310の振動によりキャビティ320内の圧力が変化し、キャビティ320内に充填されたインクがノズルNより吐出される。キャビティ320内のインクが減少した場合、リザーバ350からインクが供給される。また、リザーバ350へは、インクカートリッジ48からインク取り入れ口370を介してインクが供給される。
図6は、吐出部Dからのインクの吐出動作を説明するための説明図である。図6(a)に示す状態において、吐出部Dが備える圧電素子300に対して駆動信号生成部31から駆動信号Vinが供給されると、当該圧電素子300において、電極間に印加された電界に応じた歪が発生し、当該吐出部Dの振動板310は図において上方向へ撓む。これにより、図6(a)に示す初期状態と比較して、図6(b)に示すように、当該吐出部Dのキャビティ320の容積が拡大する。図6(b)に示す状態において、駆動信号Vinの示す電位を変化させると、振動板310は、その弾性復元力によって復元し、初期状態における振動板310の位置を越えて図において下方向に移動し、図6(c)に示すようにキャビティ320の容積が急激に収縮する。このときキャビティ320内に発生する圧縮圧力により、キャビティ320を満たすインクの一部が、このキャビティ320に連通しているノズルNからインク滴として吐出される。
図7は、+Z方向または−Z方向から記録ヘッド30を平面視した場合の、記録ヘッド30に設けられたM個のノズルNの配置の一例を説明するための説明図である。
図7に示すように、記録ヘッド30には、複数のノズルNからなるノズル列Lnが6列設けられている。具体的には、記録ヘッド30には、ノズル列Ln-CY、ノズル列Ln-MG、ノズル列Ln-YL、ノズル列Ln-WT、ノズル列Ln-CL、及び、ノズル列Ln-SP、からなる6列のノズル列Lnが設けられている。
ここで、ノズル列Ln-CYに属するノズルNは、シアン(CY)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-MGに属するノズルNは、マゼンタ(MG)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-YLに属するノズルNは、イエロー(YL)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-WTに属するノズルNは、ホワイト(WT)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-CLに属するノズルNは、クリアー(CL)のインクを吐出する吐出部Dに設けられたノズルNであり、ノズル列Ln-SPに属するノズルNは、支持用インクを吐出する吐出部Dに設けられたノズルNである。
なお、本実施形態では、図7に示すように、各ノズル列Lnを構成する複数のノズルNがX軸方向に一列に整列するように配置される場合を例示しているが、例えば、各ノズル列Lnを構成する複数のノズルNのうち一部のノズルN(例えば、偶数番目のノズルN)と、その他のノズルN(例えば、奇数番目のノズルN)とのY軸方向の位置が異なる、所謂千鳥状に配列されるものであってもよい。また、各ノズル列Lnにおいて、ノズルN間の間隔(ピッチ)は、印刷解像度(dpi:dot per inch)に応じて適宜設定され得る。
<1.4.駆動信号生成部について>
次に、図8乃至図10を参照しつつ、駆動信号生成部31の構成及び動作について説明する。
図8は、駆動信号生成部31の構成を示すブロック図である。
図8に示すように、駆動信号生成部31は、シフトレジスタSR、ラッチ回路LT、デコーダーDC、及び、トランスミッションゲートTGからなる組を、M個の吐出部Dと1対1に対応するように、M個有する。以下では、駆動信号生成部31及び記録ヘッド30が備えるこれらM個の組を構成する各要素を、図において上から順番に、1段、2段、…、M段と称することがある。
駆動信号生成部31には、制御部6から、クロック信号CLK、波形指定信号SI、ラッチ信号LAT、チェンジ信号CH、及び、駆動波形信号Comが供給される。
波形指定信号SIは、指定データSDに基づいて定められる、吐出部Dからのインクの吐出の有無及び吐出部Dが吐出すべきインク量を指定するデジタルの信号であり、波形指定信号SI[1]〜SI[M]を含む。このうち、波形指定信号SI[m]は、吐出部D[m]からのインクの吐出の有無、及び、吐出されるインク量を、上位ビットb1及び下位ビットb2の2ビットで規定する。具体的には、波形指定信号SI[m]は、吐出部D[m]に対して、大ドットに相当する量のインクの吐出、小ドットに相当する量のインクの吐出、または、インクの非吐出、のうち、いずれか1つを指定する。
シフトレジスタSRのそれぞれは、波形指定信号SI(SI[1]〜SI[M])のうち、各段に対応する2ビットの波形指定信号SI[m]を、一旦保持する。詳細には、M個の吐出部D[1]〜D[M]に1対1に対応する、1段、2段、…、M段のM個のシフトレジスタSRが互いに縦続接続されるとともに、シリアルで供給された波形指定信号SIが、クロック信号CLKに従って順次後段に転送される。そして、M個のシフトレジスタSRの全てに波形指定信号SIが転送された場合に、M個のシフトレジスタSRのそれぞれが波形指定信号SIのうち自身に対応する2ビット分の波形指定信号SI[m]を保持する。
M個のラッチ回路LTのそれぞれは、ラッチ信号LATが立ち上がるタイミングで、M個のシフトレジスタSRのそれぞれに保持された各段に対応する2ビット分の波形指定信号SI[m]を一斉にラッチする。
ところで、立体物造形装置1が造形処理を実行する期間である動作期間は、複数の単位期間Tuから構成される。また、本実施形態では、各単位期間Tuは、2個の制御期間Ts(Ts1、Ts2)からなる。なお、本実施形態では、2個の制御期間Ts1、Ts2は、互いに等しい時間長を有することとする。詳細は後述するが、単位期間Tuは、ラッチ信号LATにより規定され、制御期間Tsは、ラッチ信号LAT及びチェンジ信号CHにより規定される。
制御部6は、駆動信号生成部31に対して、単位期間Tuが開始されるよりも前のタイミングで波形指定信号SIを供給する。そして、制御部6は、駆動信号生成部31の各ラッチ回路LTに対して、単位期間Tu毎に波形指定信号SI[m]がラッチされるように、ラッチ信号LATを供給する。
m段のデコーダーDCは、m段のラッチ回路LTによってラッチされた2ビット分の波形指定信号SI[m]をデコードし、制御期間Ts1及びTs2のそれぞれにおいて、ハイレベル(Hレベル)またはローレベル(Lレベル)のいずれかのレベルに設定された選択信号Sel[m]を出力する。
図9は、デコーダーDCが行うデコードの内容を説明するための説明図である。この図に示すように、m段のデコーダーDCは、波形指定信号SI[m]の示す内容が(b1、b2)=(1、1)であれば、制御期間Ts1及びTs2において選択信号Sel[m]をHレベルに設定する。波形指定信号SI[m]の示す内容が(b1、b2)=(1、0)であれば、制御期間Ts1において選択信号Sel[m]をHレベルに設定し、制御期間Ts2において選択信号Sel[m]をLレベルに設定する。波形指定信号SI[m]の示す内容が(b1、b2)=(0、0)であれば、制御期間Ts1及びTs2において選択信号Sel[m]をLレベルに設定する。
図8に示すように、M個のトランスミッションゲートTGは、M個の吐出部Dと1対1に対応するように設けられる。m段のトランスミッションゲートTGは、m段のデコーダーDCから出力される選択信号Sel[m]がHレベルのときにオンし、Lレベルのときにオフする。各トランスミッションゲートTGの一端には、駆動波形信号Comが供給される。m段のトランスミッションゲートTGの他端は、m段の出力端OTNに電気的に接続されている。
選択信号Sel[m]がHレベルとなり、m段のトランスミッションゲートTGがオンする場合、m段の出力端OTNから吐出部D[m]に対して、駆動波形信号Comが駆動信号Vin[m]として供給される。
なお、本実施形態では、トランスミッションゲートTGがオンからオフに切り替わるタイミング、つまり、制御期間Tsの開始及び終了のタイミングにおける駆動波形信号Comの電位を基準電位V0としている。このため、トランスミッションゲートTGがオフする場合、吐出部D[m]の圧電素子300が有する容量等により、出力端OTNの電位は基準電位V0に維持される。但し、以下では、説明の便宜上、トランスミッションゲートTGがオフする場合には、駆動信号Vin[m]の電位が基準電位V0に維持されることとして説明する。
以上において説明したように、制御部6は、各吐出部Dに対して単位期間Tu毎に駆動信号Vinが供給されるように、駆動信号生成部31を制御する。これにより、各吐出部Dは、単位期間Tu毎に、波形指定信号SIに基づいて定められる波形指定信号SIの示す値に応じた量のインクを吐出し、造形台45上にドットを形成することができる。
図10は、各単位期間Tuにおいて制御部6が駆動信号生成部31に供給する各種信号を説明するためのタイミングチャートである。
図10に例示するように、ラッチ信号LATは、パルス波形Pls-Lを含み、当該パルス波形Pls-Lにより単位期間Tuが規定される。また、チェンジ信号CHは、パルス波形Pls-Cを含み、当該パルス波形Pls-Cにより単位期間Tuが制御期間Ts1及びTs2に区分される。また、図示は省略するが、制御部6は、単位期間Tu毎に、波形指定信号SIを、クロック信号CLKに同期させて、駆動信号生成部31に対してシリアルで供給する。
また、図10に例示するように、駆動波形信号Comは、制御期間Ts1に配置された波形PL1と、制御期間Ts2に配置された波形PL2と、を含む。以下では、波形PL1及びPL2を波形PLと総称する場合がある。また、本実施形態において、駆動波形信号Comの電位は、各制御期間Tsの開始または終了のタイミングにおいて、基準電位V0に設定される。
駆動信号生成部31は、一の制御期間Tsにおいて、選択信号Sel[m]がHレベルである場合には、駆動波形信号Comのうち当該一の制御期間Tsに配置される波形PLを、駆動信号Vin[m]として吐出部D[m]に供給する。逆に、駆動信号生成部31は、一の制御期間Tsにおいて、選択信号Sel[m]がLレベルである場合には、基準電位V0に設定された駆動波形信号Comを、駆動信号Vin[m]として吐出部D[m]に供給する。
よって、駆動信号生成部31が、単位期間Tuにおいて、吐出部D[m]に供給する駆動信号Vin[m]は、波形指定信号SI[m]の示す値が(b1、b2)=(1、1)であれば、波形PL1及びPL2を有する信号となり、波形指定信号SI[m]の示す値が(b1、b2)=(1、0)であれば、波形PL1を有する信号となり、波形指定信号SI[m]の示す値が(b1、b2)=(0、0)であれば、基準電位V0に設定された信号となる。
1つの波形PLを有する駆動信号Vin[m]が供給されると、吐出部D[m]は、小程度の量のインクを吐出して小ドットを形成する。
このため、単位期間Tuにおいて、波形指定信号SI[m]の示す値が(b1、b2)=(1,0)であり、吐出部D[m]に供給される駆動信号Vin[m]が1つの波形PL(PL1)を有する場合、吐出部D[m]からは、当該1つの波形PLに基づいて小程度の量のインクが吐出され、吐出されたインクにより小ドットが形成される。
また、単位期間Tuにおいて、波形指定信号SI[m]の示す値が(b1、b2)=(1,1)であり、吐出部D[m]に供給される駆動信号Vin[m]が2つの波形PL(PL1、PL2)を有する場合、吐出部D[m]からは、当該2つの波形PLに基づいて小程度の量のインクが2度吐出され、当該2度にわたり吐出された小程度の量のインクが合体することで、大ドットが形成される。
一方、単位期間Tuにおいて、波形指定信号SI[m]の示す値が(b1、b2)=(0,0)であり、吐出部D[m]に供給される駆動信号Vin[m]が波形PLを有さず基準電位V0に保たれる場合、吐出部D[m]からインクは吐出されず、当該ドットは形成されない(非記録となる)。
本実施形態において、駆動波形信号Comの波形PLは、小ドットを形成するために吐出される小程度の量のインクが、ブロックBLを形成するために必要なインク量の略2分の1の量となるように定められる。つまり、ブロックBLは、1個の大ドット、または、2個の小ドット、のうちいずれかを含んで構成される。
また、本実施形態では、1個のボクセルVxに対して、1個のブロックBLが設けられる。すなわち、本実施形態において、1個のボクセルVxには、1個の大ドットを含むブロックBL、または、2個の小ドットを含むブロックBL、のうちいずれかのパターンでドットが形成される。
<2.データ生成処理及び造形処理>
次に、図11乃至図16を参照しつつ、立体物造形システム100が実行するデータ生成処理及び造形処理について説明する。
<2.1.データ生成処理及び造形処理の概要>
図11は、データ生成処理及び造形処理を実行する場合における立体物造形システム100の動作の一例を示すフローチャートである。
データ生成処理は、ホストコンピューター9の指定データ生成部93が実行する処理であり、モデルデータ生成部92が出力したモデルデータDatを、指定データ生成部93が取得したときに開始される。図11に示すステップS100、S110、及び、S120の処理が、データ生成処理に該当する。
図11に示すように、指定データ生成部93は、データ生成処理が開始されると、モデルデータ生成部92が出力したモデルデータDatに基づいて、断面モデルデータLdat[q](Ldat[1]〜Ldat[Q])を生成する(S100)。なお、上述のとおり、指定データ生成部93は、ステップS100において、モデルデータDatの示す形状の中空部分を補完して、モデルデータDatの示す立体物Objのモデルの外面SFよりも内側の領域の一部または全部が中実の形状となるような断面モデルデータLdatを生成する形状補完処理を実行する。形状補完処理の詳細については、後述する。
次に、指定データ生成部93は、断面モデルデータLdat[q]により表されるモデルの断面体の示す形状及び色彩を、ボクセルVxの単位で離散化したボクセルデータVD[q]を生成する(S110)。
次に、指定データ生成部93は、ボクセルデータVDとモデルデータDatとに基づいて、造形体LY[q]を形成するために立体物造形装置1が形成すべきブロックBLの配置(つまり、立体物造形装置1が形成すべきドットの配置)を決定し、決定結果に基づいて指定データSD[q]を生成する指定データ生成処理を実行する(S120)。指定データ生成処理の詳細については、後述する。
このように、指定データ生成部93は、図11のステップS100〜S120に示すデータ生成処理を実行する。
立体物造形システム100は、データ生成処理を実行した後に、造形処理を実行する。
造形処理は、制御部6による制御の下で、立体物造形装置1が実行する処理であり、ホストコンピューター9が出力した指定データSDを、立体物造形装置1が取得して記憶部60に格納したときに開始される。図11に示すステップS130〜S184の処理が、造形処理に該当する。
図11に示すように、制御部6は、積層処理の実行回数を示す変数qに「1」を設定する(S130)。
次に、制御部6は、指定データ生成部93が生成した指定データSD[q]を記憶部60から取得する(S140)。また、制御部6は、造形台45が、造形体LY[q]を形成するための位置に移動するように、昇降機構駆動モーター71を制御する(S150)。
なお、造形体LY[q]を形成するための造形台45の位置とは、ヘッドユニット3から吐出されたインクが、指定データSD[q]の指定するドット形成位置(ボクセルVx[q])に対して、着弾可能な位置であれば、どのような位置であってもよい。例えば、制御部6は、ステップS150において、造形体LY[q]とヘッドユニット3とのZ軸方向の間隔が一定となるように、造形台45の位置を制御してもよい。この場合、制御部6は、例えば、q回目の積層処理において造形体LY[q]を形成した後、(q+1)回目の積層処理による造形体LY[q+1]の形成が開始されるまでの間に、造形台45を所定の厚さΔZだけ−Z方向に移動させればよい。
次に、制御部6は、粉体層PW[q]が形成されるように、粉体層形成部の動作を制御する(S160)。
そして、制御部6は、粉体層PW[q]において、指定データSD[q]に応じた造形体LY[q]が形成されるように、ヘッドユニット3、位置変化機構7、及び、硬化ユニット61(以下、「ヘッドユニット3等」と称する)の動作を制御する(S170)。具体的には、制御部6は、ステップS170において、まず、指定データSD[q]に基づいて波形指定信号SIを生成し、生成した波形指定信号SIにより、粉体層PW[q]に対して造形用インクまたは支持用インクを吐出させるようにヘッドユニット3の動作を制御する。次に、制御部6は、ステップS170において、粉体層PW[q]に対して吐出されたインクを粉体とともに硬化させて粉体層PW[q]にドットを形成するように、硬化ユニット61の動作を制御する。これにより、粉体層PW[q]において、造形体LY[q]が形成される。
なお、ステップS140〜S170の処理が、積層処理に該当する。
その後、制御部6は、変数qが「q<Q」を充足するか否かを判定する(S180)。そして、ステップS180における判定結果が肯定である場合、変数qに1を加算した上で、処理をステップS140に進める(S182)。一方、ステップS180における判定結果が否定である場合、立体物Objを構成しない余分な粉体を廃棄するように粉体廃棄部の動作を制御した後に、造形処理を終了させる(S184)。
このように、立体物造形システム100のうち指定データ生成部93が、図11のステップS100〜S120に示すデータ生成処理を実行することで、モデルデータDatに基づいて指定データSD[1]〜SD[Q]を生成する。また、立体物造形システム100のうち立体物造形装置1が、制御部6の制御の下で、図11のステップS130〜S184に示す造形処理を実行することで、モデルデータDatの示すモデルの形状及び色彩を再現するような立体物Objを造形する。
なお、図11は、データ生成処理及び造形処理の流れの一例を示すものに過ぎない。例えば、図11では、データ生成処理が終了した後に、造形処理を開始するが、本発明はこのような態様に限定されるものではなく、データ生成処理が終了する前に造形処理を開始してもよい。例えば、データ生成処理において指定データSD[q]が生成された場合には、次の指定データSD[q+1]の生成を待つことなく、指定データSD[q]を取得した後に造形体LY[q]を形成する造形処理(つまり、q回目の積層処理)を実行してもよい。
<2.2.形状補完処理>
上述のとおり、ステップS100において、指定データ生成部93は、モデルデータDatの指定する立体物Objのモデルの中空部分の一部または全部を補完して、立体物Objのモデルの外面SFよりも内側の領域の一部または全部が中実構造となるような断面モデルデータLdatを生成する形状補完処理を実行する。
以下では、図12及び図13を参照しつつ、断面モデルデータLdatの示す立体物Objのモデルの外面SFよりも内側の構造と、外面SFよりも内側の構造を定める形状補完処理と、について説明する。
まず、図12を参照しつつ、断面モデルデータLdatの示す、立体物Objのモデルの外面SFよりも内側の構造について説明する。
ここで、図12(A)は、断面モデルデータLdatの示す立体物Objのモデルの斜視図であり、図12(B)は、図12(A)に示す立体物ObjもモデルをY軸及びZ軸に平行な平面で切断したときの断面図である。なお、図12では、図示の都合上、図2及び図3とは異なる、矩形の上底及び下底を有する錐台形状の立体物Objを造形する場合を想定する。
図12(B)に示すように、断面モデルデータLdatに基づいて造形される立体物Objは、立体物Objの表面から、立体物Objの内側にむけて順番に、彩色層L1、遮蔽層L2、及び、内部層L3の3層を備え、また、当該3層よりも内側に中空部HLを備える。
ここで、彩色層L1とは、造形用インクを含むインクにより形成される層であり、立体物Objの色彩を表現するための立体物Objの表面を含む層である。また、遮蔽層L2とは、例えば、ホワイトインクを用いて形成される層であり、立体物Objのうち彩色層L1よりも内側部分の色が、彩色層L1を透過して立体物Objの外部から視認されることを防止するための層である。すなわち、彩色層L1及び遮蔽層L2は、立体物Objが表示すべき色彩を正確に表現するために設けられる。以下では、立体物Objのうち、立体物Objが表示すべき色彩を正確に表現するために設けられる彩色層L1及び遮蔽層L2を、立体物Objの外部領域LOUTと称する場合がある。
また、内部層L3とは、立体物Objの強度を確保するために設けられる層であり、例えばクリアーインクを用いて形成される。以下では、立体物Objのうち、外部領域LOUTよりも内側に設けられる内部層L3及び中空部HLを、立体物Objの内部領域LIN(または、「立体物Objの内部」)と称する場合がある。
本実施形態では、簡単のために、図12(B)に示すように、彩色層L1が略一様な厚さΔL1を有し、遮蔽層L2が略一様な厚さΔL2を有し、内部層L3が略一様な厚さΔL3を有するように、各層が設けられる場合を想定するが、各層の厚さは略一様でなくてもよい。
なお、本明細書において「略一様」や「略同じ」等の表現は、完全に一様または同一である場合の他に、立体物造形装置1の製造誤差や、各種信号に重畳するノイズに起因する誤差等、各種誤差を無視すれば一様または同一と看做すことができる場合も含む。
図13は、形状補完処理を実行する場合における指定データ生成部93の動作の一例を示すフローチャートである。
図13に示すように、指定データ生成部93は、まず、モデルデータDatの表す立体物Objのモデルにおいて、立体物Objのモデルの外面SFから立体物Objのモデルの内側に向かう厚さΔL1の領域を、彩色層L1として定める(S200)。また、指定データ生成部93は、彩色層L1の内側の面から立体物Objのモデルの内側に向かう厚さΔL2の領域を、遮蔽層L2として定める(S210)。また、指定データ生成部93は、遮蔽層L2の内側の面から立体物Objのモデルの内側に向かう厚さΔL3の領域を、内部層L3として定める(S220)。また、指定データ生成部93は、内部層L3よりも立体物Objのモデルの内側の部分を、中空部HLとして定める(S230)。
指定データ生成部93は、上述した形状補完処理を実行することにより、図12(B)に例示するような、彩色層L1、遮蔽層L2、及び、内部層L3を有する立体物Objを造形するための断面モデルデータLdatを生成する。
<2.3.指定データ生成処理>
指定データ生成部93は、ステップS120において、ボクセルデータVD及びモデルデータDatに基づいて、各ボクセルVxに形成すべきブロックBLの配置を決定し、当該決定結果とボクセルデータVDとに基づいて指定データSDを生成する指定データ生成処理を実行する。以下、図14乃至図17を参照しつつ、指定データ生成処理について説明する。
図14は、指定データ生成処理を実行する場合における指定データ生成部93の動作の一例を示すフローチャートである。
図14に示すように、指定データ生成部93は、モデルデータDatとボクセルデータVDとに基づいて、ボクセル集合体の中から、水平領域RA(「第1領域」の一例)、側面領域RB(「第2領域」の一例)、及び、斜面領域RC(「第3領域」の一例)を特定する(S300)。
ここで、水平領域RAとは、所定数の水平面ボクセルVx-Aからなる領域である。水平面ボクセルVx-Aとは、ボクセルVxの表面を構成する6面のうち、+Z方向の法線ベクトルを有する面(以下、「上面」と称する)、または、−Z方向の法線ベクトルを有する面(以下、「下面」と称する)の一方が、ボクセル集合体の表面に該当する面である。つまり、水平面ボクセルVx-Aとは、上面または下面が、ボクセル集合体の表面として露出するボクセルVxである。
側面領域RBとは、所定数の側面ボクセルVx-Bからなる領域である。側面ボクセルVx-Bとは、ボクセルVxの表面を構成する6面の中で、上面及び仮面を除く4面(以下、「側面」と称する)のうちの1面が、ボクセル集合体の表面に該当する面である。つまり、側面ボクセルVx-Bとは、1つの側面が、ボクセル集合体の表面として露出するボクセルVxである。
斜面領域RCとは、所定数の斜面ボクセルVx-Cからなる領域である。斜面ボクセルVx-Cとは、ボクセルVxの表面を構成する6面のうち、上面または下面と、少なくとも1つの側面とが、ボクセル集合体の表面として露出するボクセルVxである。
以下では、水平面ボクセルVx-A、側面ボクセルVx-B、及び、斜面ボクセルVx-Cを、表面ボクセルVx-Sと総称することがある。すなわち、ボクセル集合体の表面は、複数の表面ボクセルVx-Sからなる。
なお、本実施形態では、水平領域RAを、所定数の水平面ボクセルVx-Aからなる領域としているが、本発明はこのような態様に限定されるものではなく、水平領域RAは、所定数以上の水平面ボクセルVx-Aを含む領域であればよい。この場合、水平領域RAは、複数の表面ボクセルVx-Sから構成され、当該水平領域RAを構成する複数の表面ボクセルVx-Sにおける、水平面ボクセルVx-Aの占める割合が、第1の割合(例えば、90%)以上であればよい。
同様に、側面領域RBは、所定数以上の側面ボクセルVx-Bを含む複数の表面ボクセルVx-Sから構成され、当該側面領域RBを構成する複数の表面ボクセルVx-Sにおける、側面ボクセルVx-Bの占める割合が、第1の割合以上であればよい。
同様に、斜面領域RCは、所定数以上の斜面ボクセルVx-Cを含む複数の表面ボクセルVx-Sから構成され、当該斜面領域RCを構成する複数の表面ボクセルVx-Sにおける、斜面ボクセルVx-Cの占める割合が、第2の割合(例えば、30%)以上であればよい。なお、第1の割合は、第2の割合よりも大きい値であることが好ましい。
図15は、表面ボクセルVx-Sに形成されるブロックBLを説明するための説明図である。なお、図15(A)は、図12(A)の符号γ1で表した部分の拡大図であり、図15(B)は、図12(A)の符号γ2で表した部分の拡大図であり、図15(C)は、図12(A)の符号γ3で表した部分の拡大図である。
図15(A)及び(B)に示すように、水平面ボクセルVx-Aには、水平面ブロックBL-A(「第1表面ブロック」の一例)が設けられる。この図に示すように、水平面ブロックBL-Aとは、上面または下面が、ブロック集合体の表面に露出するブロックBLである。
図15(A)及び(B)に示すように、側面ボクセルVx-Bには、側面ブロックBL-B(「第2表面ブロック」の一例)が設けられる。この図に示すように、側面ブロックBL-Bとは、1つの側面が、ブロック集合体の表面に露出するブロックBLである。
図15(B)及び(C)に示すように、斜面ボクセルVx-Cには、斜面ブロックBL-C(「第3表面ブロック」の一例)が設けられる。この図に示すように、斜面ブロックBL-Cとは、上面または下面と1以上の側面とが、ブロック集合体の表面に露出するブロックBLである。
なお、以下では、水平面ブロックBL-A、側面ブロックBL-B、及び、斜面ブロックBL-Cを、表面ブロックBL-Sと総称することがある。すなわち、ブロック集合体の表面は、複数の表面ブロックBL-Sからなる。
ステップS300において、指定データ生成部93が行う、水平領域RA、側面領域RB、及び、斜面領域RCの特定は、どのような方法によって実行してもよい。
例えば、指定データ生成部93は、モデルデータDatの示すモデルの外面SFの法線ベクトルに基づいて、水平領域RA、側面領域RB、及び、斜面領域RCを特定してもよい。
具体的には、指定データ生成部93は、ボクセル集合体の中から、モデルの外面SFの法線ベクトルとZ軸とが略平衡である外面SF上の位置に対応する領域を、水平領域RAとして特定し、モデルの外面SFの法線ベクトルとZ軸とが略垂直である外面SF上の位置に対応する領域を、側面領域RBとして特定し、水平領域RAまたは側面領域RB以外の領域を、斜面領域RCとして特定してもよい。ここで、法線ベクトルがZ軸と略平行となる場合とは、法線ベクトルとZ軸のなす角度が所定角度以下(例えば、5度以下)の場合をいう。また、法線ベクトルがZ軸と略垂直となる場合とは、法線ベクトルとXY平面のなす角度が所定角度以下の場合をいう。
また、例えば、指定データ生成部93は、ボクセルデータVDに基づいて、水平領域RA、側面領域RB、及び、斜面領域RCを特定してもよい。
具体的には、指定データ生成部93は、まず、ボクセルデータVDの示すボクセル集合体を構成する複数のボクセルVxの中から、ボクセル集合体の表面を構成する複数の表面ボクセルVx-Sを特定する。次に、指定データ生成部93は、特定した複数の表面ボクセルVx-Sの中から、所定数以上の水平面ボクセルVx-Aの集合を含む領域を水平領域RAとして特定し、所定数以上の側面ボクセルVx-Bの集合を含む領域を側面領域RBとして特定し、所定数以上の斜面ボクセルVx-Cの集合を含む領域を斜面領域RCとして特定してもよい。
図14に示すように、本実施形態に係る指定データ生成部93は、側面領域RB及び斜面領域RCにおける第1色ブロックBL1の密度が、ボクセルデータVDに基づいてブロックBLを配置する場合における第1色ブロックBL1の密度と比べて高くなるように、ブロックBLの配置を決定する(S310)。そして、指定データ生成部93は、ステップS310における決定結果に基づいて、ボクセルデータVDの示すブロックBLの配置のうち、側面領域RB及び斜面領域RCにおけるブロックBLの配置を変更することで、指定データSDを生成する(S320)。
なお、第1色ブロックBL1とは、第1の液体に該当する有彩色インクを用いて形成された第1色ドットDt1(「第1ドット」の一例)を有するブロックBLである。また、以下では、第2の液体に該当するクリアーインクを用いて形成された第2色ドットDt2(「第2ドット」の一例)を有するブロックBLを、第2色ブロックBL2と称する。
図16は、ボクセルデータVDの示すボクセル集合体におけるボクセルVxの配置を説明するための説明図である。また、図17は、立体物ObjにおけるブロックBL及びドットの配置を説明するための説明図である。このうち、図17(A)は、ボクセルデータVDに基づいて造形された立体物ObjにおけるブロックBL及びドットの配置を示し、図17(B)は、指定データSDに基づいて造形された立体物ObjにおけるブロックBL及びドットの配置を示す。
なお、図16及び図17は、図12(A)に示す立体物ObjをYZ平面で切断した場合の切断面を示している。また、図16及び図17では、説明を簡略化するために、表面ボクセルVx-Sと表面ブロックBL-Sのみに着目し、彩色層L1が1層分のブロックBLからなる層であることを想定し、彩色層L1よりも内側には内部層L3のみが設けられる場合を想定する。また、図16及び図17では、モデルデータDatの示すモデルの指定色が、有彩色インクである第1の液体と、クリアーインクである第2の液体とを、1対1で混合することで再現される色である場合を想定する。
上述のとおり、ボクセルデータVDの示すボクセル集合体は、モデルデータDatの示すモデルの形状及び色彩を格子状に離散化したものである。そして、ボクセルデータVDにおいて、各ボクセルVxには、単一の色が付される。例えば、第1色が付されたボクセルVxは、当該ボクセルVxの全体が第1色により一様に着色され、当該ボクセルVxの一部に第1色とは異なる色が付されることは無い。
よって、図16に示す例のように、モデルデータDatの示すモデルの指定色が、第1の液体と第2の液体とを1対1で混合することで再現可能な色である場合、水平領域RA、側面領域RB、及び、斜面領域RCの各々において、第1色の仮想的な直方体である第1色ボクセルVx1の個数と、第2色の仮想的な直方体である第2色ボクセルVx2の個数と、が1対1となるように、ボクセル集合体の表面を構成する複数の表面ボクセルVx-Sを設けることで、水平領域RA、側面領域RB、及び、斜面領域RCの各々において、第1色を有する第1の液体で構成される部分の面積と、第2色を有する第2の液体で構成される部分の面積と、を1対1にすることができ、指定色を正確に再現したボクセル集合体を生成することができる。
しかし、ボクセルVxが、理論上の仮想的な直方体であるのに対して、ドットは、吐出部Dから吐出されるインクにより形成される。よって、ドットの形状は、直方体とはならないことがある。また、インクの種類毎に、粉体層PWへの浸透(広がり)の程度も異なることがある。すなわち、一般的に、ドットの形状は、ボクセルVxの形状とは異なる。
例えば、本実施形態のように、吐出部Dからインクを2度吐出させることにより大ドットを設けるような場合、大ドットの形状はZ軸方向に縦長の形状となる可能性が高い。このため、本実施形態では、ボクセルVxの形状も縦長することが好ましい。そして、本実施形態のように、ボクセルVxの形状を縦長にする場合、インクの種類によっては、色材成分が、ボクセルVxの有する厚さΔZ分だけ浸透できない場合も存在する。例えば、図17(A)に例示するように、クリアーインクを用いて形成される第2色ブロックBL2は、ボクセルVxの厚さΔZ分だけ浸透できるが、有彩色インクにより形成される第1色ブロックBL1は、ボクセルVxの厚さΔZの約半分しか浸透しない、等といったことも生じうる。
このため、図17(A)に示す例では、水平領域RA、側面領域RB、及び、斜面領域RCの各々において、第1色ブロックBL1の個数と、第2色ブロックBL2の個数と、が1対1となるように、ブロック集合体の表面を構成する複数の表面ブロックBL-Sを設けても、側面領域RB、及び、斜面領域RCにおいて、第1色ドットDt1の面積と、第2色ドットDt2の面積と、が1対1とはならず、指定色を正確に再現したブロック集合体を生成することができないことになる。
すなわち、図17(A)に示す例において、水平領域RAでは、第1色ドットDt1の面積が、略50%を占めるが、側面領域RB及び斜面領域RCでは、第1色ドットDt1の面積が、略25%を占めるに過ぎない。この結果、側面領域RBまたは斜面領域RCと、水平領域RAとの間において、第1色についての濃淡が生じる結果となる。
そこで、本実施形態では、図17(B)に示すように、側面領域RB及び斜面領域RCにおいて、所定数あたりの第1色ブロックBL1の個数を、所定数あたりの第2色ブロックBL2の個数よりも多くなるように、ブロック集合体の表面を構成する複数の表面ブロックBL-Sを設ける。すなわち、側面領域RBにおける第1色ブロックBL1の個数、及び、斜面領域RCにおける第1色ブロックBL1の個数が、水平領域RAにおける第1色ブロックBL1の個数とは異なるように、ブロック集合体の表面を構成する複数の表面ブロックBL-Sを設ける。より具体的には、側面領域RB及び斜面領域RCにおける、第1色ドットDt1の占める面積の割合が、水平領域RAと同様の割合(この例では、50%)となるように、第1色ブロックBL1の個数を調整する。これにより、水平領域RA、側面領域RB、及び、斜面領域RCの間において、第1色についての濃淡が生じることを防止することができる。
なお、図17(B)に示す例では、水平領域RA、側面領域RB、及び、斜面領域RCにおいて、均一な色を表示する場合を想定しているが、水平領域RA、側面領域RB、及び、斜面領域RCの間で異なる色を表示する場合には、第1色ドットDt1の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、第1色ブロックBL1の個数を調整すればよい。
この場合、水平領域RA、側面領域RB、及び、斜面領域RC毎に、モデルデータDatの示すモデルの色と、所定数のブロックBLあたりの第1色ブロックBL1の個数と、を対応付けた情報を、記憶部60に記憶しておけばよい。または、外面SFの法線ベクトルとZ軸とのなす角度と、モデルデータDatの示すモデルの色と、所定数のブロックBLあたりの第1色ブロックBL1の個数と、を対応付けた情報を、記憶部60に記憶しておいてもよい。
そして、この場合、これらの記憶部60に記憶している情報に基づいて、第1色ドットDt1の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、ブロックBLの配置を決定し、当該決定結果に基づいて指定データSDを生成すればよい。
<3.実施形態の結論>
以上において説明したように、本実施形態では、ボクセルVx及びドットの間の形状の相違と、水平領域RA、側面領域RB、及び、斜面領域RCといった、ドットが形成されるボクセルVxの位置と、を考慮することで、第1色ブロックBL1が、モデルデータDatの表すモデルの指定色を再現するのに適した密度となるように、ブロックBLの配置を決定する。このため、色むらや色再現性の劣化等の発生を抑制した、本来表示すべき色(指定色)を正確に再現した立体物Objの造形が可能となる。
<B.変形例>
以上の実施形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は、相互に矛盾しない範囲内で適宜に併合され得る。
なお、以下に例示する変形例において作用や機能が実施形態と同等である要素については、以上の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
<変形例1>
上述した実施形態において、指定データ生成部93は、ステップS310の処理で、図17に示すように、側面領域RB及び斜面領域RCにおける第1色ブロックBL1の密度を、ボクセルデータVDに基づいてブロックBLを配置する場合と比べて高めるように、ブロックBLの配置を決定するが、本発明はこのような態様に限定されるものではない。
例えば、指定データ生成部93は、ステップS310の処理において、図18に示すように、水平領域RAにおける第1色ブロックBL1の密度が、ボクセルデータVDに基づいてブロックBLを配置する場合(図18(A)参照)と比べて低くなるようなブロックBLの配置(図18(B)参照)とすることで、指定データSDを生成してもよい。
また、指定データ生成部93は、側面領域RB及び斜面領域RCにおける第1色ブロックBL1の密度が、ボクセルデータVDに基づいてブロックBLを配置する場合と比べて高くなり、且つ、水平領域RAにおける第1色ブロックBL1の密度が、ボクセルデータVDに基づいてブロックBLを配置する場合と比べて低くなるように、ブロックBLの配置を決定することで、指定データSDを生成してもよい。
要するに、水平領域RA、側面領域RB、及び、斜面領域RCの各領域における、第1色ドットDt1の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、第1色ブロックBL1の密度を調整すればよい。
<変形例2>
上述した実施形態及び変形例において、ボクセルVxはZ軸方向に縦長の形状を有するが、本発明はこのような態様に限定されるものではなく、ボクセルVxは任意の直方体形状を有していればよい。例えば、図19に示すように、ボクセルVxのX軸方向及びY軸方向の辺が、Z軸方向の辺に比べて短い、横長のボクセルVxを採用してもよい。
本変形例のように、横長のボクセルVxを採用する場合においても、ボクセルVxとドットの間の形状が相違する場合には、第1色ドットDt1の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、第1色ブロックBL1の密度を調整すればよい。例えば、図19に示す例では、指定データ生成部93は、ステップS310の処理において、水平領域RA及び斜面領域RCにおける第1色ブロックBL1の密度が、ボクセルデータVDに基づいてブロックBLを配置する場合(図19(A)参照)と比べて高くなるようなブロックBLの配置(図19(B)参照)とすることで、指定データSDを生成してもよい。
<変形例3>
上述した実施形態及び変形例において、立体物造形装置1は、粉体層PWにインクを吐出し、粉体と共にインクを固めることで、ドットを形成する、第2の造形方法による造形処理を実行するが、本発明はこのような態様に限定されるものではなく、粉体層PWを用いずに、インクのみを硬化させてドットを形成する、第1の造形方法により造形処理を実行するものであってもよい。
この場合も、特に、1つのボクセルVxに2つの小ドットを形成する場合等、ボクセルVxとドットの間の形状が相違する場合には、第1色ドットDt1の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、第1色ブロックBL1の密度を調整すればよい。
図20は、第1色ブロックBL1が、第1の液体からなる小ドットの第1色ドットDt1と、第2の液体からなる小ドットの第2色ドットDt2と、により形成され、第2色ブロックBL2が、第2の液体からなる大ドットの第2色ドットDt2から形成される場合を想定している。この図に示す場合、指定データ生成部93は、ステップS310の処理において、例えば、水平領域RAにおける第1色ブロックBL1の密度が、ボクセルデータVDに基づいてブロックBLを配置する場合(図20(A)参照)と比べて低くなるようなブロックBLの配置(図20(B)参照)とすることで、指定データSDを生成してもよい。
<変形例4>
上述した実施形態及び変形例において、立体物造形装置1が造形する立体物Objは、図12(B)に例示するように、彩色層L1及び遮蔽層L2を具備する外部領域LOUTと、内部層L3及び中空部HLを具備する内部領域LINと、を備えるが、本発明はこのような態様に限定されるものではなく、立体物造形装置1は、少なくとも彩色層L1を具備する立体物Objを造形できればよい。
また、立体物Objは、彩色層L1の外側に、彩色層L1を覆うように、クリアーインクからなり所定の厚みを有するクリアー層が設けられていてもよい。
<変形例5>
上述した実施形態及び変形例において、立体物造形装置1が吐出可能なインクは、5種類の造形用インクと、1種類の支持用インクとからなる、合計6種類のインクであるが、本発明はこのような態様に限定されるものではなく、立体物造形装置1は、少なくとも、第1色のインク(第1の液体)と、第2色のインク(第2の液体)を吐出可能なものであればよい。この場合、第1色のインク(第1の液体)は、有彩色インクであっても、無彩色インクであってもよい。また、この場合、第2色のインク(第2の液体)は、第1の液体と異なる色を有していればよく、有彩色インク、ホワイトインク等の無彩色インク、または、クリアーインクのいずれであってもよい。
第1の液体及び第2の液体の双方が有彩色インクの場合には、第1色ドットDt1の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、第1色ブロックBL1の密度を調整するとともに、第2色ドットDt2の占める面積の割合が、モデルデータDatの示すモデルの色に応じた割合となるように、第2色ブロックBL2の密度を調整すればよい。
なお、第1の液体の有する色材成分が、「第1の色材成分」に該当する。また、第2の液体が色材成分を有する場合、当該第2の液体の有する色材成分が、「第2の色材成分」に該当する。
<変形例6>
上述した実施形態及び変形例では、ステップS300に示す水平領域RA等の領域を特定する処理、ステップS310に示すブロックBLの配置を決定する処理、及び、ステップS320に示す指定データSDを生成する処理を、ホストコンピューター9に設けられた指定データ生成部93で実行するが、本発明はこのような態様に限定されるものではなく、これらの処理を制御部6で実行してもよい。そして、ステップS300〜S320に示す処理を制御部6が実行する場合、指定データ生成部93が生成する指定データSDは、ボクセルデータVDが示す内容と同様の内容のドットの形成を指定するものであればよい。
<変形例7>
上述した実施形態及び変形例において、吐出部Dから吐出されるインクは、紫外線硬化型インク等の硬化性インクであるが、本発明はこのような態様に限定されるものではなく、熱可塑性樹脂等からなるインクであってもよい。
この場合、インクは、吐出部Dにおいて加熱された状態で吐出されることが好ましい。例えば、本変形例に係る吐出部Dは、キャビティ320に設けられた発熱体(図示省略)を発熱させることでキャビティ320内に気泡を生じさせてキャビティ320の内側の圧力を高め、これによりインクを吐出させる、所謂サーマル方式のインクの吐出を実行するものであってもよい。
また、この場合、吐出部Dから吐出されたインクは外気により冷却されて硬化するため、立体物造形装置1は、硬化ユニット61を具備しなくてもよい。
<変形例8>
上述した実施形態及び変形例において、立体物造形装置1が吐出可能なドットのサイズは、小ドット、及び、大ドットの2種類であるが、本発明はこのような態様に限定されるものではなく、立体物造形装置1が吐出可能なドットのサイズは1種類以上あればよい。
例えば、ヘッドユニット3は、ボクセルVxの3分の1のサイズを満たす小ドット、ボクセルVxの3分の2のサイズを満たす中ドット、及び、ボクセルVxの全体を満たす大ドットの3種類のサイズのドットを吐出可能であってもよい。
<変形例9>
上述した実施形態及び変形例において、指定データ生成部93はホストコンピューター9に設けられるが、本発明はこのような態様に限定されるものではなく、指定データ生成部93は立体物造形装置1に設けられるものであってもよい。例えば、指定データ生成部93は、制御部6が制御プログラムに従って動作すること実現される機能ブロックとして実装されてもよい。つまり、指定データ生成部93は、制御部6に設けられるものであってもよい。
立体物造形装置1が指定データ生成部93を備える場合、立体物造形装置1は、立体物造形装置1の外部から供給されるモデルデータDatに基づいて指定データSDを生成し、さらに、生成した指定データSDを用いて生成した波形指定信号SIに基づいて立体物Objを造形することができる。
<変形例10>
上述した実施形態及び変形例において、立体物造形システム100はモデルデータ生成部92を備えるが、本発明はこのような態様に限定されるものではなく、立体物造形システム100がモデルデータ生成部92を含まずに構成されてもよい。つまり、立体物造形システム100は、立体物造形システム100の外部から供給されるモデルデータDatに基づいて、立体物Objを造形するものであればよい。
<変形例11>
上述した実施形態及び変形例において、駆動波形信号Comは、波形PL1及びPL2を有する信号であるが、本発明はこのような態様に限定されるものではなく、駆動波形信号Comは、少なくとも1種類のサイズのドットに対応する量のインクを吐出部Dから吐出させることが可能な波形を有する信号であれば、どのような信号であってもよい。例えば、駆動波形信号Comは、インクの種類に応じて異なる波形としてもよい。
また、上述した実施形態及び変形例において、波形指定信号SI[m]のビット数は2ビットであるが、本発明はこのような態様に限定されるものではなく、波形指定信号SI[m]のビット数は、吐出部Dから吐出されたインクにより形成されるドットのサイズの種類数に応じて、適宜定めればよい。
1…立体物造形装置、3…ヘッドユニット、6…制御部、7…位置変化機構、9…ホストコンピューター、30…記録ヘッド、31…駆動信号生成部、45…造形台、60…記憶部、61…硬化ユニット、92…モデルデータ生成部、93…指定データ生成部、100…立体物造形システム、101…システム制御部、D…吐出部、N…ノズル。

Claims (8)

  1. 立体物の形状及び色彩を表すためのモデルが指定する指定色を表す際に用いられる第1の色材成分を含む第1の液体、及び、前記第1の液体とは異なる色を有する第2の液体を含む複数種類の液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された前記第1の液体を硬化させて第1ドットを形成し、
    前記ヘッドユニットから吐出された前記第2の液体を硬化させて第2ドットを形成可能な硬化ユニットと、
    前記ヘッドユニット及び前記硬化ユニットを制御する制御部と、
    を備え、
    前記第1ドットを用いて第1色ブロックを形成し、
    前記第1ドットを用いず、前記第2ドットを用いて第2色ブロックを形成し、
    前記第1色ブロック及び前記第2色ブロックを含む複数のブロックを用いて、
    前記立体物を造形可能な立体物造形装置であって、
    前記立体物を構成する複数のブロックは、
    前記立体物の造形時におけるブロックの上面または下面が前記立体物の表面である第1表面ブロックと、
    前記立体物の造形時におけるブロックの一つの側面が前記立体物の表面である第2表面ブロックと、を含み、
    前記制御部は、
    前記モデルが、所定数の前記第1表面ブロックからなる第1領域に対して、前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数と、
    前記モデルが、前記所定数の前記第2表面ブロックからなる第2領域に対して、前記指定色を指定する場合に、前記第2領域を形成する前記第1色ブロックの個数とは、異なるよう制御する
    ことを特徴とする、立体物造形装置。
  2. 前記立体物を構成する複数のブロックは、
    前記立体物の造形時におけるブロックの上面または下面と、側面のうち少なくとも一面とが前記立体物の表面である第3表面ブロックを含み、
    前記モデルが、前記所定数の前記第3表面ブロックを含む第3領域に対して、前記指定色を指定する場合に、前記第3領域を形成する前記第1色ブロックの個数と、
    前記モデルが、前記第1領域に対して前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数とは、異なる、
    ことを特徴とする、請求項1に記載の立体物造形装置。
  3. 前記モデルが、前記第1領域に対して前記指定色を指定する場合に、当該第1領域に含まれる1または複数の前記第1ドットの、前記第1領域に占める面積の割合と、
    前記モデルが、前記第2領域に対して前記指定色を指定する場合に、当該第2領域に含まれる1または複数の前記第1ドットの、前記第2領域に占める面積の割合と、
    は略同じである、
    ことを特徴とする、請求項1または2に記載の立体物造形装置。
  4. 前記モデルが、前記第1領域に対して前記指定色を指定する場合に、当該第1領域に含まれる1または複数の前記第1ドットの、前記第1領域に占める面積の割合と、
    前記モデルが、前記第3領域に対して前記指定色を指定する場合に、当該第3領域に含まれる1または複数の前記第1ドットの、前記第3領域に占める面積の割合と、
    は略同じである、
    ことを特徴とする、請求項2に記載の立体物造形装置。
  5. 前記第2の液体が有する色材成分は、前記第1の液体が有する色材成分よりも少ない、
    ことを特徴とする、請求項1乃至4のうち何れか1項に記載の立体物造形装置。
  6. 前記第2の液体は、前記指定色を表す際に用いられる第2の色材成分を有する、
    ことを特徴とする、請求項1乃至4のうち何れか1項に記載の立体物造形装置。
  7. 立体物の形状及び色彩を表すためのモデルが指定する指定色を表す際に用いられる第1の色材成分を含む第1の液体、及び、前記第1の液体とは異なる色を有する第2の液体を含む複数種類の液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された前記第1の液体を硬化させて第1ドットを形成し、
    前記ヘッドユニットから吐出された前記第2の液体を硬化させて第2ドットを形成可能な硬化ユニットと、
    を備え、
    前記第1ドットを用いて第1色ブロックを形成し、
    前記第1ドットを用いず、前記第2ドットを用いて第2色ブロックを形成し、
    前記第1色ブロック及び前記第2色ブロックを含む複数のブロックを用いて、
    前記立体物を造形可能な立体物造形装置の制御方法であって、
    前記立体物を構成する複数のブロックが、
    前記立体物の造形時におけるブロックの上面または下面が前記立体物の表面である第1表面ブロックと、
    前記立体物の造形時におけるブロックの一つの側面が前記立体物の表面である第2表面ブロックと、を含み、
    前記モデルが所定数の前記第1表面ブロックからなる第1領域に対して前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数と、
    前記モデルが前記所定数の前記第2表面ブロックからなる第2領域に対して前記指定色を指定する場合に、前記第2領域を形成する前記第1色ブロックの個数と、を異ならせて、
    前記立体物を造形するように、
    前記ヘッドユニット及び前記硬化ユニットを制御する、
    ことを特徴とする、立体物造形装置の制御方法。
  8. 立体物の形状及び色彩を表すためのモデルが指定する指定色を表す際に用いられる第1の色材成分を含む第1の液体、及び、前記第1の液体とは異なる色を有する第2の液体を吐出可能なヘッドユニットと、
    前記ヘッドユニットから吐出された前記第1の液体を硬化させて第1ドットを形成し、
    前記ヘッドユニットから吐出された前記第2の液体を硬化させて第2ドットを形成可能な硬化ユニットと、
    コンピューターと、
    を備え、
    前記第1ドットを用いて第1色ブロックを形成し、
    前記第1ドットを用いず、前記第2ドットを用いて第2色ブロックを形成し、
    前記第1色ブロック及び前記第2色ブロックを含む複数のブロックを用いて、
    前記立体物を造形可能な立体物造形装置の制御プログラムであって、
    前記コンピューターを、
    前記立体物を構成する複数のブロックが、
    前記立体物の造形時におけるブロックの上面または下面が前記立体物の表面である第1表面ブロックと、
    前記立体物の造形時におけるブロックの一つの側面が前記立体物の表面である第2表面ブロックと、を含み、
    前記モデルが所定数の前記第1表面ブロックからなる第1領域に対して前記指定色を指定する場合に、前記第1領域を形成する前記第1色ブロックの個数と、
    前記モデルが前記所定数の前記第2表面ブロックからなる第2領域に対して前記指定色を指定する場合に、前記第2領域を形成する前記第1色ブロックの個数と、を異ならせて、
    前記立体物を造形するように、
    前記ヘッドユニット及び前記硬化ユニットを制御する制御部として機能させる、
    ことを特徴とする、立体物造形装置の制御プログラム。
JP2015030154A 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム Active JP6485096B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015030154A JP6485096B2 (ja) 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
PCT/JP2016/000237 WO2016132672A1 (en) 2015-02-19 2016-01-19 Solid object shaping apparatus, control method for solid object shaping apparatus, and control program for solid object shaping apparatus
US15/548,560 US10328633B2 (en) 2015-02-19 2016-01-19 Solid object shaping apparatus, control method for solid object shaping apparatus, and control program for solid object shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030154A JP6485096B2 (ja) 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム

Publications (2)

Publication Number Publication Date
JP2016150551A JP2016150551A (ja) 2016-08-22
JP6485096B2 true JP6485096B2 (ja) 2019-03-20

Family

ID=56688978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030154A Active JP6485096B2 (ja) 2015-02-19 2015-02-19 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム

Country Status (3)

Country Link
US (1) US10328633B2 (ja)
JP (1) JP6485096B2 (ja)
WO (1) WO2016132672A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199019A1 (ja) * 2014-06-24 2015-12-30 株式会社ミマキエンジニアリング 三次元印刷装置および三次元印刷方法
JP6618688B2 (ja) * 2015-03-03 2019-12-11 セイコーエプソン株式会社 三次元造形装置、製造方法およびコンピュータープログラム
CN108495741B (zh) * 2016-01-20 2020-08-04 惠普发展公司,有限责任合伙企业 打印设备
TWI655105B (zh) * 2017-01-05 2019-04-01 三緯國際立體列印科技股份有限公司 多色3d物件的切層列印方法
TWI711532B (zh) * 2017-01-05 2020-12-01 三緯國際立體列印科技股份有限公司 彩色3d物件的顏色補償方法
JP6922323B2 (ja) 2017-03-28 2021-08-18 セイコーエプソン株式会社 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP6914593B2 (ja) 2017-08-03 2021-08-04 株式会社ミマキエンジニアリング 造形方法及び造形システム
CN109878090A (zh) * 2017-12-06 2019-06-14 三纬国际立体列印科技股份有限公司 切层方法、切层数据的更新方法及打印系统
JP7310374B2 (ja) * 2019-07-03 2023-07-19 セイコーエプソン株式会社 三次元造形物の製造装置
CN112277319A (zh) * 2019-07-23 2021-01-29 三纬国际立体列印科技股份有限公司 彩色3d物件的水平面切层方法
CN111267488B (zh) * 2020-03-04 2021-06-15 深圳市汉森软件有限公司 控制喷墨打印机制备幕布折光层的方法、装置、设备及介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280354A (ja) * 1999-03-29 2000-10-10 Minolta Co Ltd 三次元造形装置および三次元造形方法
US6612824B2 (en) 1999-03-29 2003-09-02 Minolta Co., Ltd. Three-dimensional object molding apparatus
JP2002264221A (ja) 2001-03-14 2002-09-18 Minolta Co Ltd 三次元造形装置、および三次元造形方法
JP4894369B2 (ja) * 2006-06-19 2012-03-14 富士通株式会社 3次元モデルの画像処理装置
JP5831791B2 (ja) * 2011-08-23 2015-12-09 コニカミノルタ株式会社 立体物造形装置及び立体物造形方法
US10005303B2 (en) * 2014-03-31 2018-06-26 Xerox Corporation System for detecting inoperative inkjets in three-dimensional object printing using a profilometer and predetermined test pattern printing

Also Published As

Publication number Publication date
US20180001546A1 (en) 2018-01-04
US10328633B2 (en) 2019-06-25
WO2016132672A1 (en) 2016-08-25
JP2016150551A (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6485096B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6485005B2 (ja) 立体物造形装置
JP6451234B2 (ja) 立体物造形装置、立体物造形装置の制御方法、立体物造形装置の制御プログラム
JP6500483B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6485097B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
US20170028649A1 (en) Three-dimensional object forming apparatus, method of controlling three-dimensional object forming apparatus, method of producing three-dimensional object using three-dimensional object forming apparatus, information processing apparatus capable of communicating with three-dimensional object forming apparatus, and three-dimensional object forming system
JP6547327B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6464685B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6565177B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2017113986A (ja) 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP6582684B2 (ja) 立体物造形装置、立体物造形装置と通信可能な情報処理装置、立体物造形装置の制御方法、立体物造形装置を用いた立体物の生産方法、及び、立体物造形システム
JP6515508B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2016150457A (ja) 立体物造形装置、立体物造形装置の制御装置、立体物造形装置の制御方法および立体物造形装置の制御プログラム
JP6565178B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2018164986A (ja) 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP6515507B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2018164984A (ja) 立体物造形装置および立体物造形方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150