JP6472763B2 - ゲート制御回路および電源回路 - Google Patents

ゲート制御回路および電源回路 Download PDF

Info

Publication number
JP6472763B2
JP6472763B2 JP2016019178A JP2016019178A JP6472763B2 JP 6472763 B2 JP6472763 B2 JP 6472763B2 JP 2016019178 A JP2016019178 A JP 2016019178A JP 2016019178 A JP2016019178 A JP 2016019178A JP 6472763 B2 JP6472763 B2 JP 6472763B2
Authority
JP
Japan
Prior art keywords
transistor
current
gate
signal
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016019178A
Other languages
English (en)
Other versions
JP2017139622A (ja
Inventor
幸男 常次
幸男 常次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2016019178A priority Critical patent/JP6472763B2/ja
Priority to US15/250,569 priority patent/US9768765B2/en
Publication of JP2017139622A publication Critical patent/JP2017139622A/ja
Application granted granted Critical
Publication of JP6472763B2 publication Critical patent/JP6472763B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08128Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • H03K17/284Modifications for introducing a time delay before switching in field effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/30Modifications for providing a predetermined threshold before switching
    • H03K17/302Modifications for providing a predetermined threshold before switching in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • H03K3/0377Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Description

本発明の実施形態は、ゲート制御回路および電源回路に関する。
IGBTなどの高電流をスイッチするパワー半導体素子は、10V以上の高電圧をゲートに印加する必要がある。よって、パワー半導体素子のゲートは、高耐圧のハイサイド側MOSトランジスタとローサイド側MOSトランジスタとで駆動されることが多い。
ハイサイド側MOSトランジスタのソースは抵抗を介してパワー半導体素子のゲートに接続され、ローサイド側MOSトランジスタのドレインも抵抗を介してパワー半導体素子のゲートに接続される。
しかしながら、何らかの不具合により、ハイサイド側MOSトランジスタのドレインが接地レベルに短絡(地絡)したり、ローサイド側MOSトランジスタのドレインが電源レベルに短絡(天絡)すると、短絡したハイサイド側MOSトランジスタやローサイド側MOSトランジスタのソース−ドレイン間に多大な電流が流れて破壊する。
特開2012−10577号公報
本発明の一実施形態では、トランジスタのドレインやソースが電源レベルや接地レベルに短絡しても、トランジスタのソース−ドレイン間に多大な電流が流れないようにしたゲート制御回路および電源回路を提供するものである。
本実施形態によれば、入力信号が第1論理から第2論理に変化すると、第1時間長さのパルス幅を有する第1パルス信号を出力する第1パルス生成器と、
前記入力信号が前記第2論理のときに、第1制御信号に基づいて第1トランジスタのゲート電圧を制御する第1ゲート制御部と、
前記入力信号が前記第2論理から前記第1論理に変化すると、第2時間長さのパルス幅を有する第2パルス信号を出力する第2パルス生成器と、
前記入力信号が前記第1論理のときに、第2制御信号に基づいて第1トランジスタのゲート電圧を制御する第2ゲート制御部と、を備え、
前記第1ゲート制御部は、
前記入力信号が前記第2論理のときに前記第1制御信号に基づいて前記第1トランジスタのゲート電圧を制御する第2トランジスタと、
前記第1パルス信号の出力期間が終了した後、前記第2トランジスタのソース−ドレイン間の電流が第1閾値を超えないように、前記第1制御信号の電圧レベルを制御する第1過電流制御部と、を有し、
前記第2ゲート制御部は、
前記入力信号が前記第2論理のときに前記第2制御信号に基づいて前記第1トランジスタのゲート電圧を制御する第3トランジスタと、
前記第2パルス信号の出力期間が終了した後、前記第3トランジスタのソース−ドレイン間の電流が第2閾値を超えないように、前記第2制御信号の電圧レベルを制御する第2過電流制御部と、を有するゲート制御回路が提供される。
一実施形態に係るゲート制御回路を備えた電源回路の概略的な構成を示すブロック図。 ゲート制御回路内の第1パルス生成器と第1ゲート制御部の内部構成の一例を示す回路図。 図1の電源回路の動作タイミング図。 図1のトランジスタのドレインをハイサイド接地電圧ノードに短絡した場合のシミュレーション波形図。 ゲート制御回路内の第2パルス生成器と第2ゲート制御部の内部構成の一例を示す回路図。 図5のトランジスタのドレインをローサイド電源電圧ノードに短絡した場合のシミュレーション波形図。 第2の実施形態に係る第1ゲート制御部の内部構成を示す回路図。 第2の実施形態に係る第2ゲート制御部の内部構成を示す回路図。 第3の実施形態に係る第1ゲート制御部の内部構成を示す回路図。 第3の実施形態に係る第2ゲート制御部の内部構成を示す回路図。
以下、図面を参照しながら、本発明の一実施形態を説明する。図1は一実施形態に係るゲート制御回路1を備えた電源回路2の概略的な構成を示すブロック図である。図1の電源回路2内のゲート制御回路1は、IGBTなどのパワー半導体素子からなるトランジスタ(第1トランジスタ)Q1のゲート電圧を制御する。ゲート制御回路1は、第1パルス生成器3と、第1ゲート制御部4と、第2パルス生成器5と、第2ゲート制御部6とを有する。
第1ゲート制御部4は、入力信号INが第2論理(例えばL)のときに、第1制御信号PGEに基づいてトランジスタQ1のゲート電圧を制御する。第1ゲート制御部4は、例えばPMOSトランジスタ(第2トランジスタ)Q2を有し、入力信号INに応じてトランジスタQ2のゲート電圧を制御する。より詳細には、第1ゲート制御部4は、例えば入力信号INがHのときに、第1制御信号PGEに基づいてトランジスタQ2をオンさせて、トランジスタQ1のゲートをHにする。第1ゲート制御部4は、ハイサイドドライバとも呼ばれる。
第2ゲート制御部6は、入力信号INが第1論理(例えばH)のときに、第2制御信号NGEに基づいてトランジスタQ1のゲート電圧を制御する。第2ゲート制御部6は、例えばNMOSトランジスタ(第3トランジスタ)Q3を有し、入力信号INに応じてトランジスタQ3のゲート電圧を制御する。より詳細には、第2ゲート制御部6は、例えば入力信号INがLのときに、第2制御信号NGEに基づいてトランジスタQ3をオンさせて、トランジスタQ1のゲートをLにする。第1ゲート制御部4は、ローサイドドライバとも呼ばれる。
トランジスタQ1のゲートは、抵抗R1を介してトランジスタQ2のドレインに接続されている。同様に、トランジスタQ1のゲートは、抵抗R2を介してトランジスタQ3のドレインに接続されている。
本実施形態に係るゲート制御回路1は、後述するように、トランジスタQ2のドレインがハイサイド電源電圧VCCHノードに短絡したり、あるいはトランジスタQ3のドレインがローサイド接地電圧VEEノードに短絡するような不具合が生じても、トランジスタQ2やQ3に過電流が流れないようにして、トランジスタQ2やQ3の破壊を防止する対策を施している。
第1パルス生成器3は、入力信号INが第1論理(例えばL)から第2論理(例えばH)に変化すると、第1時間長さのパルス幅を有する第1パルス信号P1を出力する。第1パルス信号P1は、例えば第1時間長さだけハイレベルになるパルス信号である。第2パルス生成器5は、入力信号INが第2論理から第1論理に変化すると、第2時間長さのパルス幅を有する第2パルス信号P2を出力する。第2パルス信号P2は、例えば第2時間長さだけハイレベルになるパルス信号である。
第1パルス生成器3と第1ゲート制御部4は、ハイサイド電源電圧VCCHとハイサイド接地電圧HS_GNDとを用いて出力信号の電圧レベルを設定する。第2パルス生成器5と第2ゲート制御部6は、ローサイド電源電圧VCCLとローサイド接地電圧VEEとを用いて出力信号の電圧レベルを設定する。ハイサイド電源電圧VCCHはローサイド電源電圧VCCLより高い電圧であり、ハイサイド接地電圧HS_GNDはローサイド接地電圧VEEより高い電圧である。
このように、第1パルス生成器3と第1ゲート制御部4には、第2パルス生成器5と第2ゲート制御部6とは異なる電源(接地)電圧が供給されるため、第1パルス生成器3および第1ゲート制御部4と、第2パルス生成器5および第2ゲート制御部6とで信号の送受を行う場合は、信号レベルの変換を行う必要がある。
そこで、図1の電源回路2は、第1レベル変換器7と、第1遅延器8と、第2レベル変換器9と、第2遅延器10と、を有する。
第1レベル変換器7は、入力信号INの信号レベルを変換させた第1信号S1を出力する。第1遅延器8は、第1信号S1の立ち上がりまたは立ち下がりを遅延させて、第1パルス生成器3が第1パルス信号P1を生成するのに利用する第2信号S2を生成する。第1パルス生成器3は、第2信号S2がLからHに変化してから第1時間長さのパルス幅を有する第1パルス信号P1を生成する。第2レベル変換器9は、第1制御信号PGEの信号レベルを変換させた第3信号S3を出力する。第1制御信号PGEとは、後述するように、第1ゲート制御部4内のトランジスタQ2のゲート電圧信号である。第2遅延器10は、第2制御信号NGEの立ち上がりまたは立ち下がりを遅延させて、第4信号S4を出力する。第2制御信号NGEとは、後述するように、第2ゲート制御部6内のトランジスタQ3のゲート電圧信号である。第1レベル変換器7は、第4信号S4に基づいて第1信号S1を出力する。
この他、図1の電源回路2は、第3遅延器11と、第4遅延器12とを有する。第3遅延器11は、第2レベル変換器9が生成した第3信号S3の立ち上がりまたは立ち下がりを遅延させて第5信号S5を生成して出力する。第4遅延器12は、入力信号と第5信号S5に基づいて第6信号S6を生成して出力する。第2ゲート制御部6は、第2パルス生成器が生成した第2パルス信号P2と第6信号S6に基づいて、第2ゲート制御信号NGEを生成する。
第1遅延器8、第2遅延器10、第3遅延器11および第4遅延器12は、第1ゲート制御部4がトランジスタQ1をオンするタイミングと、第2ゲート制御部6がトランジスタQ1をオフするタイミングとをずらすために設けられている。また、第1遅延器8を設けることで、第1ゲート制御部4内のハイサイド電源電圧VCCHノードからハイサイド接地電圧HS_GNDノードに貫通電流が流れることを防止できる。さらに、第4遅延器12を設けることで、第2ゲート制御部6内のローサイド電源電圧VCCLノードからローサイド接地ノードに貫通電流が流れることを防止できる。
図2はゲート制御回路1内の第1パルス生成器3と第1ゲート制御部4の内部構成の一例を示す回路図である。
図2の第1ゲート制御部4は、第1過電流制御部4aを有する。第1過電流制御部4aは、第1パルス信号P1の出力期間が終了した後、トランジスタQ2のソース−ドレイン間の電流が第1閾値を超えないように、第1制御信号PGEの電圧レベルを制御する。より詳細には、第1過電流制御部4aは、第1電流検出部21と、第1電流変換部22と、第1ゲート設定部23と、第1電流源24とを有する。第1電流検出部21は、トランジスタQ2のソース−ドレイン電流に応じた電流を検出して出力する。第1電流変換部22は、第1電流検出部21から出力される電流に応じた電流を出力する。第1電流変換部22に流れる初期電流は、第1電流源24にて生成される。第1ゲート設定部23は、第1電流変換部22から出力される電流に基づいてトランジスタQ2のゲート電圧を設定する。
第1電流検出部21は、トランジスタQ2のソース−ドレイン間を流れる過電流を検出するために設けられている。第1電流検出部21は、第1パルス生成器3が第1パルス信号P1を出力している最中は過電流検出を行わず、第1パルス信号P1の出力が終了した後に過電流検出を開始する。より詳細には、第1電流検出部21は、入力信号INがLからHに変化して、第1パルス信号P1が出力し終わった後に、過電流検出を開始する。
第1電流検出部21は、トランジスタQ2とカレントミラー回路を構成するトランジスタ(第4トランジスタ)Q4を有する。トランジスタQ4は、トランジスタQ2と同じ導電型のトランジスタ(例えばPMOSトランジスタ)である。トランジスタQ2とトランジスタQ4のゲート幅W、ゲート長L、各トランジスタの並列数mを調整することで、トランジスタQ2のソース−ドレイン電流よりもはるかに小さな電流をトランジスタQ4のソース−ドレイン間に流すことができる。
第1電流変換部22は、PNPトランジスタQ5〜Q7と、抵抗R3,R4と、NMOSトランジスタQ8〜Q10とを有する。トランジスタQ5のエミッタには、トランジスタQ4のソースが接続されており、トランジスタQ5のコレクタにはトランジスタQ8のドレインとトランジスタQ7のベースが接続されている。トランジスタQ4のソース−ドレイン間を流れる電流に応じて、トランジスタQ5のコレクタ−エミッタ間と、トランジスタQ8のドレイン−ソース間とを流れる電流が変化する。
トランジスタQ5は、トランジスタQ6とカレントミラー回路を構成しており、トランジスタQ5のエミッタ−コレクタ間を流れる電流と、トランジスタQ6のエミッタ−コレクタ間を流れる電流との比(ミラー比)は、例えば1:1である。トランジスタQ10は、入力信号INがLの期間内と、入力信号INがLからHに変化して所定期間が経過するまではオンし、それ以外のタイミングではオフする。
第1電流源24は、ハイサイド電源電圧VCCHノードとハイサイド接地電圧HS_GNDノードとの間に縦続接続された抵抗R5およびトランジスタQ11〜Q13と、ハイサイド電源電圧VCCHノードとハイサイド接地電圧HS_GNDノードとの間に縦続接続されたトランジスタQ14,Q15および抵抗R6とを有する。
トランジスタQ11とQ14は交差接続されている。トランジスタQ14にはトランジスタQ15が縦続接続されている。トランジスタQ11にはトランジスタQ12が縦続接続されている。トランジスタQ13は、第1電流変換部22内のトランジスタQ8とカレントミラー回路を構成している。これにより、トランジスタQ8のドレイン−ソース間を流れる初期電流は、第1電流源24内のトランジスタQ13のドレイン−ソース間電流に依存する。このように、第1電流源24は、第1電流変換部22に流れる初期電流(Iref)を生成する。Iref=(VT/R5)×ln(N)、NはQ11とQ14の面積比で、N>1であり、Q12とQ15は同サイズとする。なお、lnは自然対数である。
第1ゲート設定部23は、ハイサイド電源電圧VCCHノードとハイサイド接地電圧HS_GNDノードとの間に縦続接続されたトランジスタQ16,Q17と、トランジスタQ16とカレントミラー回路を構成するPMOSトランジスタQ18と、トランジスタQ18のドレインとハイサイド接地電圧HS_GNDノードとの間に縦続接続された抵抗R8,R9およびトランジスタQ19を有する。
第1パルス生成器3は、トランジスタQ9のソースとハイサイド接地電圧HS_GNDノードとの間に接続されたQ20と、ハイサイド電源電圧VCCHノードとハイサイド接地電圧HS_GNDノードとの間に縦続接続されたPMOSトランジスタQ21、抵抗R9およびNMOSトランジスタQ22とを有する。
トランジスタQ19は、入力信号INがLからHに変化してから所定期間が経過すると、オンする。トランジスタQ20とQ22は、第1パルス信号P1が出力されている間はオンする。トランジスタQ21は、入力信号INがLの期間内と、入力信号INがLからHに変化してから所定期間が経過する前はオンし、それ以外はオフする。
図3は図1の電源回路2の動作タイミング図である。以下、図3を用いて、まず図1の電源回路2の動作を説明する。
まず、時刻t1で入力信号INがLからHに変化すると、第1レベル変換器7は、ハイサイド電源電圧VCCHとハイサイド接地電圧HS_GNDとを用いて、入力信号INの信号レベルを引き上げた第1信号S1を生成する。第1レベル変換器7は、入力信号INよりも所定時間遅延させたタイミングで第1信号S1を生成する。第1遅延器8は、第1信号S1の立ち下がりタイミングを所定時間遅延させた第2信号S2を生成する。第1パルス生成器3は、第2信号S2がLからHに変化してから第1時間長さのパルス幅を有する第1パルス信号P1を生成する。第1パルス信号P1が出力されている間は、第1ゲート制御部4内の第1電流検出部21は、トランジスタQ2のソース−ドレイン間の過電流検出を行わない。この期間内に過電流検出を行わない理由は、第1パルス信号P1が出力されている期間は、入力信号INがLからHに変化した直後であり、トランジスタQ1のゲート電位を迅速に大きく変化させるために、トランジスタQ2のソース−ドレイン間に多大な電流を流す必要があるためである。第1電流検出部21による過電流検出は、第1パルス信号P1のパルス出力が終わった時点で開始される。
図3の第1制御信号PGEは、トランジスタQ2のゲート電圧信号である。第1制御信号PGEの立ち下がりタイミングは第1パルス信号P1の立ち上がりタイミングに依存し、第1制御信号PGEの立ち上がりタイミングは第2信号S2の立ち下がりタイミングに依存している。
第2レベル変換器9は、第1制御信号PGEの信号レベルを変換した第3信号S3を出力する。第3遅延器11は、第3信号S3の立ち下がりを遅延させた第5信号S5を出力する。第2パルス生成器8は、入力信号がHからLに変化し、その後に第5信号S5が立ち上がる際に第2時間長さのパルス幅を有する第2パルス信号P2を出力する。第4遅延器12は、入力信号と第5信号S5に基づいて、入力信号がLからHに変化するタイミングでHになり、第5信号S5がLからHになるタイミングでLになる第6信号S6を出力する。第2ゲート制御部6は、入力信号がLからHになるタイミングでLになり、第6信号S6がHからLになるタイミングでHになる第2制御信号NGEを出力する。第2遅延器10は、第2制御信号NGEの立ち下がりタイミングを遅延させた第4信号S4を出力する。
図3に示すように、第2制御信号NGEがハイの期間は、第1制御信号PGEがローの期間とは重ならないようにしており、これにより、トランジスタQ2とQ3を貫通する電流が流れることを防止している。
次に、図2の第1ゲート制御部4の動作を説明する。トランジスタQ21のゲートに入力されるS2信号は、第1遅延器8の出力信号であり、入力信号INを遅延させた信号である。S2信号がLの間は、トランジスタQ21はオンし、トランジスタQ2はオフする。
トランジスタQ22のゲートに入力される第1パルス信号P1は、S2信号がLからHに変化してから第1時間長さだけHになる。第1パルス信号P1がHの間は、トランジスタQ22はオンになる。
よって、入力信号INがLからHに変化してから第1パルス信号P1が出力されるまでは、トランジスタQ21がオンしてトランジスタQ22はオフし、その後、第1パルス信号P1が出力されている期間内は、トランジスタQ21はオフしてトランジスタQ22はオンする。
入力信号INがLからHに変化してから第1パルス信号P1が出力されるまでの期間内は、トランジスタQ2のゲート電圧は高くなり、トランジスタQ2はオフする。このように、入力信号INがLからHに変化してから所定期間内は、トランジスタQ2をオフすることで、トランジスタQ2とQ3の同時オンを防止することができる。
また、入力信号INがLからHに変化した後の第1パルス信号P1が出力されている期間内は、トランジスタQ22がオンすることから、トランジスタQ2のゲート電圧は低くなり、トランジスタQ2はオンする。これにより、第1パルス信号P1が出力されている期間内は、トランジスタQ2のソース−ドレイン間に十分な量の電流を流すことができ、トランジスタQ1のゲート電圧を迅速に立ち上げることができる。
入力信号INがLからHに変化して、第1パルス信号P1の出力が終了した後は、トランジスタQ21,Q22はともにオフし、第1電流検出部21は、トランジスタQ2のソース−ドレイン間の過電流検出を開始する。
このように、第1電流検出部21は、入力信号INがLからHに変化してから第1パルス信号P1が出力されている間は、過電流検出を行わず、その後に、過電流検出を開始する。
第1電流検出部21は、トランジスタQ2のソース−ドレイン間電流に比例した電流をトランジスタQ4のソース−ドレイン間に流すようにして、トランジスタQ4にて過電流を検出する。トランジスタQ2とQ4はカレントミラー回路を構成しており、ミラー比を例えば数千分の1にする。これにより、トランジスタQ2のソース−ドレイン間電流の変化を、わずかな電流の変化に変換してトランジスタQ4で検出する。
トランジスタQ4のソース−ドレイン電流は、第1電流変換部22から供給される。すなわち、トランジスタQ4のソース−ドレイン電流が変化すると、第1電流変換部22内の抵抗R3の両端電圧が変化する。トランジスタQ5のコレクタ電流は、第1電流源24で生成した基準電流Irefと同じ電流である。トランジスタQ4のドレイン電流ISENが増加すると、トランジスタQ13とカレントミラー回路を構成するトランジスタQ8には、ミラー電流とは異なる電流が流れることになる。すなわち、トランジスタQ4のドレイン電流ISENが基準電流Irefより十分大きい時、トランジスタQ6のコレクタ電流はISENに近似できる。
図1では、トランジスタQ2のソース電流をI0、トランジスタQ4のドレイン電流をISEN、第1電流源24内の抵抗R5を流れる基準電流をIref、第1電流変換部22内の抵抗R3、R4を流れる電流をそれぞれI1、I2、トランジスタQ5のコレクタ電流をI3、トランジスタQ6のコレクタ電流をI4、トランジスタQ5のベース−エミッタ間電圧をVBEQ5、トランジスタQ6のベース−エミッタ間電圧をVBEQ6、各トランジスタの飽和電流をIs、トランジスタQ2とQ4のミラー比をMとしている。
ISEN=I0/M …(2)
I1=I3+ISEN …(3)
I3=Iref …(4)
I1×R3+VBEQ5=I2×R4+VBEQ6 …(5)
VBEQ5=VT×ln(I2/Is) …(6)
VBEQ6=VT×ln(Iref/Is) …(7)
(5)式は、(6)式と(7)式を用いると、(8)式のようになる。
I2×R4+VT×ln(I2/Is)=R3×(Iref+ISEN)+VT×ln(Iref/Is)
…(8)
ISEN>>Irefの場合、(8)式のVT項は無視できる。よって、R3=R4であれば、(8)式は(9)式のように近似できる。
I2=I4=ISEN …(9)
(9)式からわかるように、トランジスタQ2のソース−ドレイン間に過電流が流れると、トランジスタQ4で検出した電流ISENにほぼ等しい電流が第1電流変換部22内のR4に流れる。
トランジスタQ10のゲートに入力される信号は、第1遅延器8から出力された第2信号S2を反転した信号であり、入力信号INがLからHになってから所定時間後にLになる信号である。よって、トランジスタQ10は、入力信号INがLの期間内と、入力信号INがLからHになってから所定期間が経過するまでは、オンし、それ以外の期間内はオフする。トランジスタQ10がオンすると、トランジスタQ7のコレクタはハイサイド接地電圧HS_GNDになるため、トランジスタQ9には電流が流れなくなり、第1ゲート設定部23はトランジスタQ2のゲート電圧を制御する動作を行わない。
入力信号INがLからHに変化してから所定期間が経過すると、トランジスタQ10がオフし、トランジスタQ6のソース−ドレイン間電流に応じた電流がトランジスタQ9のドレイン−ソース間に流れる。トランジスタQ17はトランジスタQ9とカレントミラー回路を構成しているため、トランジスタQ9のドレイン−ソース間電流に比例した電流がトランジスタQ17のドレイン−ソース間に流れる。
トランジスタQ16はトランジスタQ17に縦続接続されているため、トランジスタQ16のソース−ドレイン間には、トランジスタQ17のドレイン−ソース間電流と略等しい電流が流れる。トランジスタQ18は、トランジスタQ17とカレントミラー回路を構成しているため、トランジスタQ18のソース−ドレイン間には、トランジスタQ17のソース−ドレイン間に比例した電流が流れる。
上述したように、入力信号INがLからHに変化してから所定期間が経過すると、トランジスタQ19がオンする。トランジスタQ19がオンの間に、トランジスタQ2のソース−ドレイン間に過電流が流れると、第1ゲート設定部23は、トランジスタQ2のゲート電圧を、抵抗R8とR9の抵抗比に応じた固定電圧Vsetにする。これにより、トランジスタQ2のソース−ドレイン間に過電流が流れても、トランジスタQ2のゲート電圧が予め定めた固定電圧Vsetに設定されるため、ソース−ドレイン間を流れる電流を制限することができる。
図4は図1のトランジスタQ2のドレインをハイサイド接地電圧HS_GNDレベルに短絡した場合のシミュレーション波形図である。入力信号INがLからHに変化してから所定期間内は、過電流検出は行われないため、トランジスタQ2のソースからドレインに流れ込む電流は大きいが、その後は、第1電流検出部21がトランジスタQ2のソース−ドレイン間の電流Iq2を抑制するような動作を行い、トランジスタQ2のゲート電圧は徐々に上昇して、最終的には固定電圧Vsetになる。これにより、トランジスタQ2のソースからドレインに流れる込む電流Iq2も小さくなる。
入力信号INがHからLに変化する場合は、図1の第2ゲート制御部6により、トランジスタQ3のゲート電圧が制御される。
図5はゲート制御回路1内の第2パルス生成器5と第2ゲート制御部6の内部構成の一例を示す回路図である。
図5の第2ゲート制御部6は、第2過電流制御部6aを有する。第2過電流制御部6aは、第2パルス信号P2の出力期間が終了した後、トランジスタQ3のソース−ドレイン間の電流が第2閾値を超えないように、第2制御信号NGEの電圧レベルを制御する。より詳細には、第2過電流制御部6aは、第2電流検出部31と、第2電流変換部32と、第2ゲート設定部33と、第2電流源34とを有する。第2電流検出部31は、トランジスタQ3のドレイン−ソース電流に応じた電流を検出して出力する。第2電流変換部32は、第2電流検出部31から出力される電流に応じた電流を出力する。第2電流変換部32に流れる初期電流は、第2電流源34にて生成される。第2ゲート設定部33は、第2電流変換部32から出力される電流に基づいてトランジスタQ3のゲート電圧を設定する。
第2電流検出部31は、トランジスタQ3とカレントミラー回路を構成するトランジスタ(第5トランジスタ)Q31を有する。トランジスタQ31は、トランジスタQ3と同じ導電型のトランジスタ(例えばNMOSトランジスタ)である。
第2電流変換部32は、ローサイド電源電圧VCCLノードとローサイド接地電圧VEEノードとの間に縦続接続されたPMOSトランジスタQ32、NPNトランジスタQ33,Q34、および抵抗R21と、同じくローサイド電源電圧VCCLノードとローサイド接地電圧VEEノードとの間に縦続接続されたPMOSトランジスタQ35およびQ36と、NMOSトランジスタQ37とを有する。
第2電流源34は、ローサイド電源電圧VCCLノードとローサイド接地電圧VEEノードとの間に縦続接続された抵抗R22、トランジスタQ38〜Q40と、同じくローサイド電源電圧VCCLノードとローサイド接地電圧VEEノードとの間に縦続接続されたトランジスタQ41,Q42と抵抗R24とを有する。
第2ゲート設定部33は、ローサイド電源電圧VCCLノードとローサイド接地電圧VEEノードとの間に縦続接続されたPMOSトランジスタQ43、抵抗R26,R27、およびNMOSトランジスタQ44とを有する。
第2パルス生成器5は、ローサイド電源電圧VCCLノードとローサイド接地電圧VEEノードとの間に縦続接続されたPMOSトランジスタQ46、抵抗R28およびPMOSトランジスタQ47と、NMOSトランジスタQ45とを有する。
図5の第2ゲート制御部6の回路構成および回路動作は、図2の第1ゲート制御部4とほぼ共通するため、以下では詳細な説明を省略する。
図6は図5のトランジスタQ3のドレインをローサイド電源電圧VCCLノードに短絡した場合のシミュレーション波形図である。入力信号INがHからLに変化してから第2パルス信号P2が出力されている間は過電流検出は行われないため、ローサイド電源電圧VCCLノードからトランジスタQ3のドレインに流れ込む電流Iq3は大きいが、その後は、第2電流検出部31がトランジスタQ3のドレイン−ソース間の電流Iq3を抑制するような動作を行い、トランジスタQ3のゲート電圧は徐々に低下して、最終的には固定電圧になる。これにより、ローサイド電源電圧VCCLノードからトランジスタQ3のドレインに流れる込む電流Iq3も小さくなる。
図1に示すように、第2レベル変換器9の入力段と第2遅延器10の入力段には、それぞれシュミットトリガインバータ9a、10aが設けられている。シュミットトリガインバータ9a、10aは、その入力信号INをHと判定する閾値レベルと、Lと判定する閾値レベルとが互いに異なることを特徴としている。図2に詳細構成を示す第1ゲート制御部4は、トランジスタQ2のソース−ドレイン間に過電流が流れると、トランジスタQ2のゲート電圧を調整して、過電流が流れ続けることを防止している。第1ゲート制御部4のゲート電圧信号である第1制御信号PGEが第2レベル変換器9に入力される。第1ゲート制御部4が過電流を防止するために第1制御信号PGEの信号レベルを調整した場合、そのままでは、第2レベル変換器9が論理を誤って信号レベルの変換を行うおそれがある。そこで、第2レベル変換器9の入力段にシュミットトリガインバータ9aを設けて、第2レベル変換器9が論理を誤って信号レベルの変換を行わないようにしている。
第2遅延器10も同様である。第2遅延器10は、第2ゲート制御部6内のトランジスタQ3のゲートに繋がる第2制御信号NGEを遅延させる。第2ゲート制御部6は、トランジスタQ3のドレイン−ソース間に過電流が流れると、第2制御信号NGEの信号レベルを調整して、過電流を抑制する。第2制御信号NGEの信号レベルを調整したことによって、第2遅延器10が第2制御信号NGEの論理を誤らないように、第2遅延器10の入力段にシュミットトリガインバータ10aを設けている。
このように、第1の実施形態では、トランジスタQ1のゲート電圧を制御するトランジスタQ2やQ3のソース−ドレイン(ドレイン−ソース)間に過電流が流れると、トランジスタQ2やQ3のゲート電圧を自動的に調整して、過電流を抑制するようにしたため、トランジスタQ2やQ3のソースやドレイン等が電源電圧や接地電圧等に短絡したとしても、トランジスタQ2やQ3が壊れなくなり、安全性および保守性が向上する。
このような過電流抑制機能は、トランジスタQ2のゲート電圧を制御する第1ゲート制御部4と、トランジスタQ3のゲート電圧を制御する第2ゲート制御部6とに設けられている。例えば、第1ゲート制御部4は、トランジスタQ2のソース−ドレイン間電流を監視し、トランジスタQ2のソース−ドレイン間に過電流が流れると、トランジスタQ2のゲート電圧を固定電圧にする。ただし、入力信号INがLからHに変化してから所定時間内は、過電流抑制機能が働かないようにする。これにより、入力信号INの論理が変化した直後に、トランジスタQ2のソース−ドレイン間に十分な電流を流して、トランジスタQ1のゲート電圧を迅速に所望の電圧レベルに設定できる。第2ゲート制御部6も同様である。
このように、第1ゲート制御部4と第2ゲート制御部6は、トランジスタQ1の応答性を犠牲にすることなく、トランジスタQ2とQ3のソース−ドレイン(ドレイン−ソース)間に過電流が流れることを防止できる。
また、本実施形態では、第1遅延器8、第2遅延器10、第3遅延器11および第4遅延器12を設けることで、トランジスタQ2とQ3が同時にオンしないようにするため、トランジスタQ2とQ3を貫通する電流が生じなくなる。また、これらの遅延器を設けることで、第1ゲート制御部4内のハイサイド電源電圧VCCHノードからハイサイド接地電圧HS_GNDノードに流れる貫通電流と、第2ゲート制御部6内のローサイド電源電圧VCCLノードからローサイド接地電圧VEEノードに流れる貫通電流とが生じなくなる。
(第2の実施形態)
図1の第1ゲート制御部4は、複数のカレントミラー回路を設けて、各カレントミラー回路にて、比例関係にある電流を生成して、最終的にトランジスタQ2のゲート電圧を制御している。これに対して、第2の実施形態は、一部のカレントミラー回路の代わりに、アンプを設けるものである。
図7は第2の実施形態に係る第1ゲート制御部4の内部構成を示す回路図である。図7の第1ゲート制御部4は、第1電流検出部21と、第1電流変換部22と、第1ゲート設定部23と、第1電流源24とを有する。このうち、第1電流検出部21、第1電流変換部22および第1電流源24は、図2と同様に構成されているため、詳細な説明は省略する。
図7の第1ゲート設定部23は、ハイサイド電源電圧VCCHノードとハイサイド接地電圧HS_GNDノードとの間に縦続接続されたPMOSトランジスタQ16およびNMOSトランジスタQ23と、トランジスタQ16とカレントミラー回路を構成するPMOSトランジスタQ18と、このトランジスタQ18のドレインとハイサイド接地電圧HS_GNDノードとの間に介挿された抵抗R8と、アンプ(第1比較器)25と、PMOSトランジスタ(第6トランジスタ)Q24とを有する。
アンプ25は、トランジスタQ18のドレインと抵抗R8との接続ノードの電圧を基準電圧として、トランジスタQ7のコレクタ電圧が基準電圧よりも高いか否かを検出する。トランジスタQ2のソース−ドレイン間に過電流が流れると、トランジスタQ7のエミッタ電流が増大して、トランジスタQ7のコレクタ電圧が高くなる。これにより、アンプ25の出力電圧は高くなる。アンプ25の出力端子は、トランジスタQ24のドレインに接続されている。トランジスタQ24のゲートには、S2信号をインバータで反転した信号が入力される。S2信号は、入力信号INがLからHに変化してから所定期間経過後にHになる信号である。よって、トランジスタQ24のゲートは、所定期間経過後はローである。よって、アンプ25の出力レベルが高くなると、トランジスタQ24はオンし、トランジスタQ2のゲート電圧が高くなって、過電流が抑制される。
図7の回路は、アンプ25での電圧比較によりトランジスタQ2のゲート電圧を上昇させるか否かを決定するため、図2の回路のように、複数のカレントミラー回路を設けてミラー比を適切に設定しなくて済み、設計が容易になる。
図8は第2の実施形態に係る第2ゲート制御部6の内部構成を示す回路図である。図8の第2ゲート制御部6は、第2電流検出部31と、第2電流変換部32と、第2ゲート設定部33と、第2電流源34とを有する。
図8の第2ゲート設定部33は、ローサイド電源電圧LS_REGノードとローサイド接地電圧VEEノードとの間に縦続接続されたPMOSトランジスタQ52、NPNトランジスタQ53,Q54、および抵抗R32と、トランジスタQ52とカレントミラー回路を構成するPMOSトランジスタQ55と、このトランジスタQ55のドレインとローサイド接地電圧VEEノードとの間に並列接続されたNMOSトランジスタQ34および抵抗R33と、ローサイド電源電圧LS_REGノードとローサイド接地電圧VEEノードとの間に縦続接続されたPMOSトランジスタQ56および抵抗R34と、アンプ35(第2比較器)と、NMOSトランジスタ(第7トランジスタ)Q57と、インバータIV2とを有する。図8の回路動作は、図7と同様であるため、詳細な説明を省略する。
このように、第2の実施形態では、カレントミラー回路の代わりにアンプ25,35を設けて過電流の検出とトランジスタQ2,Q3のゲート電圧を制御するため、第1の実施形態よりも、第1ゲート制御部4と第2ゲート制御部6の内部構成を簡略化できる。
(第3の実施形態)
第3の実施形態は、第1電流検出部21と第2電流検出部31の内部構成が第1および第2の実施形態とは異なるものである。
図9は第3の実施形態に係る第1ゲート制御部4の内部構成を示す回路図である。図9は、第1電流検出部21を除いて、図2と同様の回路構成を有する。図9の第1電流検出部21は、メタル抵抗(第1メタル抵抗)R12を有し、図1のNMOSトランジスタQ4は省略されている。このメタル抵抗R12は、例えば、トランジスタQ2のソースに接続される配線パターンで構成されている。配線パターンの幅および長さを調整することで、メタル抵抗R12を所望の抵抗値に精度よく設定することができる。メタル抵抗R12の一端はトランジスタQ2のソースと抵抗R3に接続され、他端は抵抗R4に接続されている。
メタル抵抗R12の抵抗値をrx、メタル抵抗R12を流れる電流をI0、トランジスタQ5を流れる電流をI1、抵抗R4を流れる電流をI2、トランジスタの飽和電流をIs、トランジスタの熱起電力をVTとすると、以下の式が成り立つ。
rx×(I0+I1)+R3×I1+VT×ln(I1/Is)=R4×I2+VT×ln(I2/Is)
…(1)
(1)式からわかるように、メタル抵抗R12を流れる電流に応じて、抵抗R3とR4を流れる電流が変化する。抵抗R4を流れる電流を検出して、第1ゲート設定部23にてトランジスタQ2のゲート電圧を制御することで、過電流を抑制することができる。
図10は第3の実施形態に係る第2ゲート制御部6の内部構成を示す回路図である。図10は、第2電流検出部31を除いて、図5と同様の回路構成を有する。図10の第2電流検出部31は、メタル抵抗(第2メタル抵抗)R29を有し、図5のNMOSトランジスタQ4は省略されている。図10の第2ゲート制御部6の動作は、図9の第1ゲート制御部4と同様であるため、詳細な説明を省略する。
このように、第3の実施形態では、トランジスタQ1、Q2のソース−ドレイン間を流れる過電流を、トランジスタの代わりにメタル抵抗R12,R29で検出するため、過電流を正確に検出できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 ゲート制御回路、2 電源回路、3 第1パルス生成器、4 第1ゲート制御部、5 第2パルス生成器、6 第2ゲート制御部、7 第1レベル変換器、8 第1遅延器、9 第2レベル変換器、10 第2遅延器、11 第3遅延器、12 第4遅延器、21 第1電流検出部、22 第1電流変換部、23 第1ゲート設定部、24 第1電流源、25 アンプ、31 第2電流検出部、32 第2電流変換部、33 第2ゲート設定部、34 第2電流源

Claims (10)

  1. 入力信号が第1論理から第2論理に変化すると、第1時間長さのパルス幅を有する第1パルス信号を出力する第1パルス生成器と、
    前記入力信号が前記第2論理のときに、第1制御信号に基づいて第1トランジスタのゲート電圧を制御する第1ゲート制御部と、
    前記入力信号が前記第2論理から前記第1論理に変化すると、第2時間長さのパルス幅を有する第2パルス信号を出力する第2パルス生成器と、
    前記入力信号が前記第1論理のときに、第2制御信号に基づいて第1トランジスタのゲート電圧を制御する第2ゲート制御部と、を備え、
    前記第1ゲート制御部は、
    前記入力信号が前記第2論理のときに前記第1制御信号に基づいて前記第1トランジスタのゲート電圧を制御する第2トランジスタと、
    前記第1パルス信号の出力期間が終了した後、前記第2トランジスタのソース−ドレイン間の電流が第1閾値を超えないように、前記第1制御信号の電圧レベルを制御する第1過電流制御部と、を有し、
    前記第2ゲート制御部は、
    前記入力信号が前記第2論理のときに前記第2制御信号に基づいて前記第1トランジスタのゲート電圧を制御する第3トランジスタと、
    前記第2パルス信号の出力期間が終了した後、前記第3トランジスタのソース−ドレイン間の電流が第2閾値を超えないように、前記第2制御信号の電圧レベルを制御する第2過電流制御部と、を有し、
    前記第1トランジスタがオンの場合には、第1基準電位ノードから、前記第2トランジスタのソース−ドレイン間を通って、前記第1トランジスタのゲートに電流が流れ、
    前記第1トランジスタがオフの場合には、第2基準電位ノードから、前記第3トランジスタのドレイン−ソース間を通って、第3基準電位ノードに電流が流れるゲート制御回路。
  2. 前記第1ゲート制御部は、前記第トランジスタが前記第トランジスタと同タイミングでオンしないように、前記入力信号の論理が変化するタイミングからずれたタイミングで論理が変化する前記第1制御信号を生成する請求項1に記載のゲート制御回路。
  3. 前記入力信号の信号レベルを変換させた第1信号を出力する第1レベル変換器と、
    前記第1信号の立ち上がりまたは立ち下がりを遅延させて、前記第1パルス生成器が前記第1パルス信号を生成するのに利用する第2信号を生成する第1遅延器と、
    前記第1制御信号の信号レベルを変換させた第3信号を出力する第2レベル変換器と、 前記第2制御信号の立ち上がりまたは立ち下がりを遅延させて、第4信号を出力する第2遅延器と、を備え、
    前記第1レベル変換器は、前記第4信号に基づいて前記第1信号を出力し、
    前記第1パルス生成器は、前記第2信号が前記第1論理から前記第2論理に変化すると、前記第1時間長さのパルス幅を有する前記第1パルス信号を出力する請求項1または2に記載のゲート制御回路。
  4. 前記第2レベル変換器の入力段に設けられ、前記第1制御信号の論理に応じて閾値を変えて反転する第1シュミットトリガインバータと、
    前記第2遅延器の入力段に設けられ、前記第2制御信号の論理に応じて閾値を変えて反転する第2シュミットトリガインバータと、を備える請求項3に記載のゲート制御回路。
  5. 前記第1過電流制御部は、
    前記第2トランジスタのソース−ドレイン電流に応じた電流を出力する第1電流検出部と、
    前記第1電流検出部から出力される電流に応じた電流を出力する第1電流変換部と、
    前記第1電流変換部から出力される電流に基づいて前記第2トランジスタのゲート電圧を設定する第1ゲート設定部と、を有し、
    前記第2過電流制御部は、
    前記第3トランジスタのソース−ドレイン電流に応じた電流を出力する第2電流検出部と、
    前記第2電流検出部から出力される電流に応じた電流を出力する第2電流変換部と、
    前記第2電流変換部から出力される電流に基づいて前記第3トランジスタのゲート電圧を設定する第2ゲート設定部と、を有する請求項1乃至4のいずれか1項に記載のゲート制御回路。
  6. 前記第1ゲート設定部は、前記第2トランジスタのソース−ドレイン間の電流が前記第1閾値に達すると、前記第2トランジスタのゲート電圧を第1電圧レベルに設定し、
    前記第2ゲート設定部は、前記第3トランジスタのソース−ドレイン間の電流が前記第2閾値に達すると、前記第3トランジスタのゲート電圧を第2電圧レベルに設定する請求項5に記載のゲート制御回路。
  7. 前記第1電流検出部は、前記第2トランジスタとともにカレントミラー回路を構成する第4トランジスタを有し、
    前記第2電流検出部は、前記第3トランジスタとともにカレントミラー回路を構成する第5トランジスタを有し、
    前記第1電流変換部は、前記第4トランジスタのソース−ドレイン間を流れる電流に応じた電流を出力し、
    前記第2電流変換部は、前記第5トランジスタのソース−ドレイン間を流れる電流に応じた電流を出力する請求項5または6に記載のゲート制御回路。
  8. 前記第1ゲート設定部は、
    前記第1電流変換部が出力する電流に応じた電圧と、第1基準電圧とを比較する第1比較器と、
    前記第1比較器の出力レベルに応じて、前記第2トランジスタのゲート電圧を前記第1電圧レベルに設定するか否かを制御する第6トランジスタと、を有し、
    前記第2ゲート設定部は、
    前記第2電流変換部が出力する電流に応じた電圧と、第2基準電圧とを比較する第2比較器と、
    前記第2比較器の出力レベルに応じて、前記第3トランジスタのゲート電圧を前記第2電圧レベルに設定するか否かを制御する第7トランジスタと、を有する請求項5または6に記載のゲート制御回路。
  9. 前記第1電流検出部は、前記第2トランジスタのソースまたはドレインに接続された第1メタル抵抗を有し、
    前記第1電流変換部は、前記第1メタル抵抗に流れる電流に応じた電流を出力し、
    前記第2電流検出部は、前記第3トランジスタのドレインまたはソースに接続された第2メタル抵抗を有し、
    前記第2電流変換部は、前記第2メタル抵抗に流れる電流に応じた電流を出力する請求項5または6に記載のゲート制御回路。
  10. 第1トランジスタと、
    前記第1トランジスタのゲート電圧を制御するゲート制御回路と、を備え、
    前記ゲート制御回路は、
    入力信号が第1論理から第2論理に変化すると、第1時間長さのパルス幅を有する第1パルス信号を出力する第1パルス生成器と、
    前記入力信号が前記第2論理のときに、第1制御信号に基づいて第1トランジスタのゲート電圧を制御する第1ゲート制御部と、
    前記入力信号が前記第2論理から前記第1論理に変化すると、第時間長さのパルス幅を有する第2パルス信号を出力する第2パルス生成器と、
    前記入力信号が前記第1論理のときに、第2制御信号に基づいて第1トランジスタのゲート電圧を制御する第2ゲート制御部と、を備え、
    前記第1ゲート制御部は、
    前記入力信号が前記第2論理のときに前記第1制御信号に基づいて前記第1トランジスタのゲート電圧を制御する第2トランジスタと、
    前記第1パルス信号の出力期間が終了した後、前記第2トランジスタのソース−ドレイン間の電流が第1閾値を超えないように、前記第1制御信号の電圧レベルを制御する第1過電流制御部と、を有し、
    前記第2ゲート制御部は、
    前記入力信号が前記第2論理のときに前記第2制御信号に基づいて前記第1トランジスタのゲート電圧を制御する第3トランジスタと、
    前記第パルス信号の出力期間が終了した後、前記第3トランジスタのソース−ドレイン間の電流が第2閾値を超えないように、前記第2制御信号の電圧レベルを制御する第2過電流制御部と、を有し、
    前記第1トランジスタがオンの場合には、第1基準電位ノードから、前記第2トランジスタのソース−ドレイン間を通って、前記第1トランジスタのゲートに電流が流れ、
    前記第1トランジスタがオフの場合には、第2基準電位ノードから、前記第3トランジスタのドレイン−ソース間を通って、第3基準電位ノードに電流が流れる電源回路。
JP2016019178A 2016-02-03 2016-02-03 ゲート制御回路および電源回路 Active JP6472763B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016019178A JP6472763B2 (ja) 2016-02-03 2016-02-03 ゲート制御回路および電源回路
US15/250,569 US9768765B2 (en) 2016-02-03 2016-08-29 Gate control circuit and power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019178A JP6472763B2 (ja) 2016-02-03 2016-02-03 ゲート制御回路および電源回路

Publications (2)

Publication Number Publication Date
JP2017139622A JP2017139622A (ja) 2017-08-10
JP6472763B2 true JP6472763B2 (ja) 2019-02-20

Family

ID=59387141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019178A Active JP6472763B2 (ja) 2016-02-03 2016-02-03 ゲート制御回路および電源回路

Country Status (2)

Country Link
US (1) US9768765B2 (ja)
JP (1) JP6472763B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202107642VA (en) * 2019-01-25 2021-08-30 Agency Science Tech & Res A comparator for controlling dead-time between switching transistors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112313A (ja) * 1997-10-02 1999-04-23 Mitsubishi Electric Corp 半導体回路及びパワートランジスタ保護回路
US6580627B2 (en) * 2001-01-29 2003-06-17 International Rectifier Corporation Voltage sensing with high and low side signals for deadtime compensation and shutdown for short circuit protection
JP4315125B2 (ja) * 2005-05-11 2009-08-19 トヨタ自動車株式会社 電圧駆動型半導体素子の駆動装置
JP2007228436A (ja) 2006-02-24 2007-09-06 Denso Corp 駆動装置
JP5411630B2 (ja) 2009-09-03 2014-02-12 ローム株式会社 負荷駆動装置
JP2012010577A (ja) 2010-05-28 2012-01-12 Panasonic Corp 過電流保護回路および過電流保護方法
JP5786890B2 (ja) * 2013-04-26 2015-09-30 トヨタ自動車株式会社 駆動装置及びスイッチング回路の制御方法
JP5890814B2 (ja) 2013-09-12 2016-03-22 株式会社東芝 Dc−dcコンバータ、および、半導体集積回路
JP6525141B2 (ja) * 2014-04-02 2019-06-05 富士電機株式会社 電圧駆動形パワー半導体素子のゲート駆動回路

Also Published As

Publication number Publication date
US20170222637A1 (en) 2017-08-03
US9768765B2 (en) 2017-09-19
JP2017139622A (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6349855B2 (ja) 駆動装置
US8710880B2 (en) Power-on reset circuit
JP2017212583A (ja) 半導体素子の保護回路
US6211709B1 (en) Pulse generating apparatus
JP6472763B2 (ja) ゲート制御回路および電源回路
JP5282492B2 (ja) スイッチング素子駆動回路
JP5348115B2 (ja) 負荷駆動装置
JP5034919B2 (ja) 温度センサ回路
JP6476049B2 (ja) 温度センサ回路
US11437984B2 (en) Delay circuit
JP6675970B2 (ja) 半導体装置
JP5487131B2 (ja) 差動出力バッファ
JP2018169912A (ja) ボルテージレギュレータ
CN106571797B (zh) 上电复位(por)电路
KR101894865B1 (ko) 온도 변화에 따른 리셋 시간 지연회로
US9915964B2 (en) Semiconductor apparatus
US8369174B2 (en) Power up signal generation circuit
JP2016171720A (ja) ゲート駆動回路
JP2015154437A (ja) パワーオンリセット回路
JP6677034B2 (ja) ゲート駆動回路、半導体装置
US8779830B2 (en) Inverse level shift circuit
TWI788245B (zh) 脈波寬度調變控制器及其控制方法
JP2018061115A (ja) イネーブル信号生成回路
JP2002232270A (ja) クランプ回路およびこれを用いた入力インターフェース回路
JP2006279765A (ja) ヒステリシスコンパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6472763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150