JP6466668B2 - 赤外線センサ装置 - Google Patents

赤外線センサ装置 Download PDF

Info

Publication number
JP6466668B2
JP6466668B2 JP2014175781A JP2014175781A JP6466668B2 JP 6466668 B2 JP6466668 B2 JP 6466668B2 JP 2014175781 A JP2014175781 A JP 2014175781A JP 2014175781 A JP2014175781 A JP 2014175781A JP 6466668 B2 JP6466668 B2 JP 6466668B2
Authority
JP
Japan
Prior art keywords
light receiving
compound semiconductor
unit
sensor device
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014175781A
Other languages
English (en)
Other versions
JP2016050833A (ja
Inventor
エジソン ゴメス カマルゴ
エジソン ゴメス カマルゴ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2014175781A priority Critical patent/JP6466668B2/ja
Publication of JP2016050833A publication Critical patent/JP2016050833A/ja
Application granted granted Critical
Publication of JP6466668B2 publication Critical patent/JP6466668B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、赤外線センサ装置に関し、特に視野の異なる複数の受光部を備えた赤外線センサ装置に関する。
一般に、人体の体温は36度付近であり、皮膚から放射される輻射が2μm以上30μm以下という広い範囲のスペクトラムの赤外線を人体は放出する。この光を検出することによって、人体の位置又は動きを検出することができる。
上記の2μm以上30μm以下の波長帯で動作するセンサの一例として、焦電センサやサーモパイルが挙げられる。これらのセンサを高感度化するためには、受光部と光の入射窓部との間に中空領域を設ける必要があり、そのためこれらセンサの小型化が困難となっている。
2μm以上30μm以下の波長帯で動作する他のセンサとして、量子型(光起電力型)赤外線センサが期待されている。量子型赤外線センサは、多数キャリアが電子であるn型半導体と多数キャリアがホールであるp型半導体とが接合されて構成されるPN接合又はp型半導体とn型半導体との間に真正半導体(i型半導体、π型半導体、あるいはν型半導体とも称される)を有するPIN接合のフォトダイオード構造を有している。
量子型赤外線センサでは、赤外線の光子によりPN接合又はPIN接合に存在する空乏層内で発生した電子ホール対が価電子帯及び導電帯の傾斜に従って空間的に分離蓄積された結果、p型半導体はプラス側に帯電し、n型半導体はマイナス側に帯電して、その間に起電力が生ずる(例えば、特許文献1参照)。
この起電力は開放電圧と呼ばれ、PN接合又はPIN接合部の抵抗より大きな外部抵抗(高入力インピーダンスの回路やアンプでもよい)を使用することにより電圧として読み出すことも、また量子型赤外線センサ外部で短絡することにより電流として読み出すことも可能である。
ところで、このような赤外線センサを人感センサとして用いる際には、異なる複数の視野からの光を分離して検出するため、例えば特許文献2に示されるような複雑なレンズを用いた光学系を設けた装置となってしまう。
国際公開第2005−27228号パンフレット 特開2013−231667号公報
このような複雑な光学系を設けた赤外線センサ装置では、赤外線センサ装置に対する外付けの部品数が増えるため、装置全体が大型化してしまうという問題がある。
また、外付けする分、組み立て工程における製造バラツキが大きくなってしまうという問題もある。
本発明はこの点に着目してなされたものであって、製造バラツキの増加を伴うことなく、小型化を図ることのできる、異なる複数の視野からの光を分離して検出することの可能な赤外線センサ装置を提供することを目的としている。
本願発明の一態様による赤外線センサ装置は、フォトダイオード構造を含む多面体形状の化合物半導体積層部を有する受光素子と前記化合物半導体積層部の一部を覆う赤外線遮蔽部とを備えた受光部を複数有し、当該受光部それぞれに含まれる前記受光素子は同一基板上に形成されており、前記受光部それぞれにおいて、前記化合物半導体積層部の各平面のうち、少なくとも一部が前記赤外線遮蔽部により覆われていない平面のうちの一面が当該受光部の主入射面であり、前記主入射面が、複数の前記受光部間で非平行であることを特徴とする。
本願発明の赤外線センサ装置によれば、外付けの部品等を用いることなく、異なる複数の視野からの光を分離し検出することができ、すなわち赤外線センサ装置の小型化を図ることができる。
本発明の赤外線センサ装置における受光部の一例を示す模式図の断面図である。 本発明の第1実施形態における赤外線センサの一例を示す模式図である。 本発明の第2実施形態における赤外線センサの一例を示す模式図である。 第2実施形態における赤外線センサの動作説明に供する等価回路である。 本発明の第3実施形態における赤外線センサの一例を示す模式図である。 本発明の第4実施形態における赤外線センサの一例を示す模式図である。 本発明の赤外線センサ装置における受光部の出力特性の一例を示す特性図である。
以下、本発明を実施するための形態(以下、本実施形態と称する)を説明する。
本実施形態に係る赤外線センサ装置は、PN接合部又はPIN接合部等を有するフォトダイオード構造を含む、メサ形状(錐台形状)等の多面体形状の化合物半導体積層部を有する受光素子と化合物半導体積層部の一部を覆う赤外線遮蔽部とを備えた受光部を、同一基板上に複数有し、受光部の主入射面が、複数の受光部間で非平行である赤外線センサ装置である。
主入射面が複数の受光部間で非平行であることにより、主入射面の向きにより決定される視野が複数の受光部間で異なるため、各受光部がそれぞれ異なる視野からの光を分離し検出することと同等となる。その結果、外付け部品等を設けることなく各受光部が異なる視野からの光を分離し検出することができる。
ここで、受光部が受光素子を1つ備える場合には、この受光素子が含む化合物半導体積層部の各平面のうち、赤外線遮蔽部により覆われていない領域が最大となる一の平面が「主入射面」となる。
また、受光部が直列接続された複数の受光素子を有し、一の受光素子が含む化合物半導体積層部の各平面のうち、赤外線遮蔽部により覆われていない領域が最大となる一の平面が受光素子全ての間で平行である場合には、複数の受光素子のうちのいずれかの受光素子の一の平面が「主入射面」となる。
また、受光部が直列接続された複数の前記受光素子を有し、一の受光素子が含む化合物半導体積層部の各平面のうち、赤外線遮蔽部により覆われていない領域が最大となる一の平面が受光素子いずれかの間で非平行である場合、すなわち受光素子間で平行でない場合には、受光部の中心から等距離の球面上で強度一定の光源を移動させたときに受光部の出力が最大となるときの光源の中心位置と受光部の中心とを結ぶ直線に垂直な面を「主入射面」とする。
なお、受光部の中心とは、外部からの光がある一点に収束する場合を考えたとき、受光部の出力信号が最大となるその一点の位置を表す。
図1は、本発明を適用した赤外線センサ装置に用いられる受光部50の一例を示す模式図の断面図である。
図1に示すように、受光部50は、基板10上に形成されたn型化合物半導体層21と光吸収層(i型半導体層)22とバリア層24とp型化合物半導体層23とがこの順に積層された化合物半導体積層部20と、赤外線遮蔽部30と、絶縁層60と、を備えている。
受光素子としての化合物半導体積層部20はメサ形状に形成され、化合物半導体積層部20に含まれるPIN接合部を含む第1のメサ部201と、第1のメサ部201の下層に形成され化合物半導体積層部20に含まれるn型化合物半導体層21を含む第2のメサ部202とを備える。
赤外線遮蔽部30は金属材料からなり、化合物半導体積層部20の側面40は覆わずに、上面及び他の3つの側面を覆うように配置される。図1の場合には、赤外線遮蔽部30は、第1のメサ部201において、上面及び側面40を除く3つの側面を覆うように絶縁層60を介して配置される。また、側面40側を含む第2のメサ部202にも赤外線遮蔽部30が絶縁層60を介して配置される。この側面40側の第2のメサ部202に形成される赤外線遮蔽部30は電極、つまり出力端子31としても機能する。基板10が半絶縁性基板である場合、図1中に示される2箇所の赤外線遮蔽部30は化合物半導体積層部20の内部領域により電気的に接続される。すなわち、第2のメサ部202が素子分離の機能を果たしている。
次に本実施形態における赤外線センサ装置の各構成要件について説明する。各々の説明は本実施形態(後述のより具体的な実施形態を含む)においてそれぞれ独立または組み合わせて適用が可能である。
<基板>
本実施形態の赤外線センサ装置において、基板10は受光素子を形成するための土台となる。各々の受光素子を電気的に独立させる観点から、基板10は絶縁性または半絶縁性の基板であることが好ましい。基板10の具体的な材料の例としてはSi、GaAs、サファイヤ、InP、InAs、Ge等が挙げられるがこの限りではない。
半絶縁性基板が作成可能であり、大口径化が可能である観点から、好ましい基板の材料としてGaAsが挙げられる。
また、基板上に形成される化合物半導体積層部20を高品質に形成する観点から、基板10の格子定数は化合物半導体積層部20、特に直接基板と接する層の格子定数と近いことが好ましい。赤外線検知が可能な化合物半導体積層部20の材料であるインジウム(In)とアンチモン(Sb)を含む層を高品質に形成しやすい観点から、好ましい基板の材料としてGaAsが挙げられる。
本実施形態の赤外線センサ装置は、基板10の、化合物半導体積層部20が形成された第1の主面10a側から赤外線を受光素子に取り込む形態となるため、基板10の第1の主面10aと逆側の面である第2の主面10b側には赤外線を吸収する部材や、反射する部材を有していることが好ましい。赤外線透過性の低い基板材料を用いる場合は、第2の主面10b側には赤外線を吸収する部材や、赤外線を反射する部材を設けなくてもよい。
赤外線を反射する部材に利用される材料は、光を効率よく反射する材料であれば、なんでも良いが、製造プロセスのし易さの観点と反射率が良いという観点から、AlやAuやCrを含む合金や積層膜が挙げられる。また、この赤外線を反射する部材は金属材料でなくても良く、基板よりも屈折率の低い材料でもよい。例えば、GaAsやSi基板を用いた場合、SiやSiOやTiOなどが挙げられる。これらの非金属層の屈折率が基板より小さいため、反射効果は発揮されながら、基板の裏面の電気的絶縁も実現できるため、導電性の基板を利用される場合好ましい場合がある。
また、本実施形態の赤外線センサは、検出対象物の出力する赤外線の波長および外乱要因となる赤外線の波長に応じて、特定の波長帯域を選択的に透過することが可能な光学フィルタを更に有してもよい。例えば検出対象物が人体の場合、外乱光との識別性を高めるために、波長5μm以上の波長の赤外線を選択的に透過するフィルタを用いることが好ましい。
<受光部>
本実施形態の赤外線センサ装置において、受光部50は受光素子としての化合物半導体積層部20と赤外線遮蔽部30とを有する。
受光素子は単独であってもよいし、複数の受光素子を直列または並列に接続した形態であってもよい。すなわち、各受光部50は、単独の受光素子を用いてもよいし、複数の受光素子を接続したものを用いてもよい。各受光部50が2つ以上の受光素子で構成される場合において、光起電力を電流として読み出す場合は直列接続されていることが好ましい。電圧出力の場合、電圧を大きくする必要があるため、同様に直列に接続すると良い。
電流出力の場合、信号源の抵抗値及び電流値を高くするとS/N比が向上し、また、電圧出力の場合、信号源の抵抗値を低く、電圧値を大きくするとS/N比が向上する。接続される受光素子の大きさおよび個数は、PN接合の面積当たりの縦方向(基板表面に垂直方向)の抵抗値、アンプの電圧入力換算ノイズ及び製造上の制限(プロセスルールなど)を考慮して、最適なS/N比を実現するために最適化すると良い。無論、受光部50の全体のサイズを大きくすればするほど、信号源の抵抗値及び電流値又は電圧値を調整することにより、最適化されたS/N比が大きくなるので良い。受光部(画素)数や各受光部のサイズは、システムの光学系と合わせて最適化な形状に設計すると良い。
<受光素子>
受光素子は、PN接合部またはPIN接合部を有するメサ形状の化合物半導体積層部20を含む。化合物半導体積層部20の材料としては、測定対象物の赤外線を検知することが可能な材料から選択して用いることができる。III−V族系の化合物半導体が好ましく、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)からなる群より選択される少なくとも1つのIII族原子と、アンチモン(Sb)、ヒ素(As)からなる群より選択される少なくとも1つのV族原子と、の化合物半導体であることがより好ましい。具体的には、InSb系材料、InGaSb系材料、InAlSb系材料、InAsSb系材料等が挙げられ、測定対象物の赤外線を検知することが可能な材料から選択して用いることができる。
InSb系材料で構成された受光素子の場合、1μm以上7μm以下の波長を検知することができる。InGaSb又はInAlSb系材料で構成された受光素子の場合、検知範囲を、1μm以上5μm以下の波長帯に絞ることができる。また、InAsSb系材料で構成された受光素子の場合、1μm以上12μm以下の波長帯を検知することができる。
メサ形状の化合物半導体積層部20を形成する方法としては公知の方法を採用することができる。例えば基板上に化合物半導体積層部を構成する各層を形成し、次いでマスクパターン越しに所望の領域をエッチングすることでメサ形状の化合物半導体積層部20を形成することができる。
本実施形態の赤外線センサ装置の化合物半導体積層部20は、少なくとも1つのメサ形状が形成されていれば良いが、必要に応じて複数のメサ形状、すなわち多段的なメサ形状であってもよい。例えば、図1に示すように、基板上にn型半導体層/i型半導体層/p型半導体層の順で化合物半導体を積層した後に、n型化合物半導体層に接続される出力端子や電極(配線用のものも含む)を形成するための化合物半導体積層部の一部をn型化合物半導体層が表面に露出するまでエッチングし、第1のメサ部201を形成した後にさらに第1のメサ部201を囲む領域を基板が表面に露出するまでエッチングして第2のメサ部202を形成してもよい。この場合、赤外線遮蔽部30は少なくとも第1のメサ部201の一部を覆っていればよい。図1の場合、メサ形状(錐台形状)の化合物半導体積層部20の第1のメサ部(PN接合部またはPIN接合部を含むメサ部)201の側面のうち、赤外線遮蔽部30で覆われていない比率が最も大きい側面を意味する。
本実施形態の赤外線センサ装置の各受光部50の視野は、化合物半導体積層部20の側面の角度に影響を受けるため、エッチング条件等により所望の視野となるメサ角度を適宜形成すればよい。
以下、基板上にn型半導体層/光吸収層(i型半導体層)/p型半導体層が順に積層されたPIN接合のフォトダイオード構造の受光素子を例に、説明する。
被検出光としての赤外線が、フォトダイオード構造部に入射すると、フォトダイオード構造部に存在する空乏層内で発生した電子ホール対が価電子帯と導電帯との電界傾斜に従って空間的に分離蓄積される。その結果、n型化合物半導体層はマイナス側に帯電し、p型化合物半導体層はプラス側に帯電することにより、その間に起電力が生ずる。この起電力は開放電圧と呼ばれ、高入力インピーダンスの信号処理回路(アンプなど)に接続した場合、電圧として読み出すことができ、また赤外線センサ外部で短絡して電流として読み出すことも可能である。
n型化合物半導体層は、高濃度のn型ドーピングを行うことで、バーシュタインモスシフトと呼ばれる効果により、n型化合物半導体層の赤外線吸収波長がより短波長側にシフトする。そのため、長波長の赤外線が吸収されなくなり、赤外線を効率よく透過させることができるようになる。
光吸収層は、赤外線を吸収して光電流Ipを発生させるための光吸収層である。従って、n型化合物半導体層と光吸収層とが接する面積が赤外線の入射される受光面積となる。一般的に、受光素子の光電流Ipは、受光面積に比例して大きくなるため、n型化合物半導体層と光吸収層とが接する面積は大きい方が好ましい。また、光吸収層の体積が大きいほど吸収できる赤外線量は大きくなるので、光吸収層の体積は大きい方が好ましい。光吸収層の膜厚は、赤外線の吸収により発生した電子及び正孔のキャリアが拡散できる程度の膜厚に設定することが好ましい。
一方、光吸収層で使用されるような、赤外線を吸収する半導体は、一般にバンドギャップの小さい半導体であり、このような半導体は、電子の移動度が正孔の移動度よりも非常に大きい。例えばInSbの場合、電子の移動度が約80,000cm/Vsであるのに対して、正孔の移動度は数百cm/Vsである。従って、素子抵抗は電子の流れ易さによる影響が大きい。
光吸収層で赤外線吸収によって発生した電子は、PN又はPIN接合のフォトダイオード構造の部分で形成された電位差によって、光吸収層からn型化合物半導体層側へと拡散し、光電流として取り出される。上述のように、バンドギャップの小さい半導体では正孔の移動度が非常に小さいことから、通常、n型ドーピング層よりもp型ドーピング層の電気抵抗が高くなる。また、電気抵抗は、電流が流れる部分の面積に反比例する。従って、光吸収層とp型化合物半導体層とが接する面積の大きさによって素子抵抗が決まり、素子抵抗が大きくなるためには面積が小さい方が好ましい。
また、波長が5μm以上の赤外線を吸収できる半導体のバンドギャップは0.25eV以下と小さい。このようなバンドギャップの小さな半導体(光吸収層の材料のバンドギャップが0.1eV以上0.25eV以下の半導体)では、p型化合物半導体層側に、電子による拡散電流を抑制するため、バンドギャップが光吸収層よりも大きなバリア層を形成すると、暗電流のような素子の漏れ電流が小さくなり、素子抵抗を大きくすることができるため好ましい。
バリア層は、光吸収層及びp型化合物半導体層よりもバンドギャップが大きくなるように構成される。バリア層を構成する材料としては、例えば、AlInSbが挙げられる。このバリア層を設けることによって、受光部の抵抗は大きくなるため、電流−電圧変換アンプで信号の増幅をすると、高いS/N比が実現できるので、望ましい。
<赤外線遮蔽部>
赤外線遮蔽部30は、各々の受光素子の化合物半導体積層部20の一部を覆い、メサ形状の化合物半導体積層部20のいずれかの側面に赤外線遮蔽部30で覆われていない側面40を形成する。この側面40が主入射面となる。
赤外線遮蔽部30は、赤外線透過率の低い材料で構成されていれば特に制限されない。具体的には、赤外線センサ装置の感度が最も高くなる波長の赤外線の透過率が50%以下であることが好ましく、30%以下であることがより好ましい。
具体的な材料としては、Al、Au、Pt、Tiなどの材料やそれらの積層物や、それらの合金が挙げられる。
製造容易性の観点から、受光素子からの信号を取り出すための出力端子や電極(各受光素子を電気的に接続するための配線を含む)を赤外線遮蔽部30として用いることが好ましい。
<その他の構成>
受光部50は、図1に示すように、化合物半導体積層部20以外に、配線部や出力端子、電極部を備えていてもよい。複数の受光素子を直列または並列に接続するための配線部を設ける場合、配線部と化合物半導体積層部20の側面に絶縁層60を備えていていることが好ましい。絶縁層60の材料としては酸化シリコンや窒化シリコン等が挙げられるが、絶縁性の材料であれば何れの材料であってもよい。また、接続端子やパッド以外に受光部全体を覆うように保護層を設けてもよい。保護層を設ける場合、赤外線透過率の高い材料を用いることが好ましく例えば酸化シリコン、窒化シリコン、酸化チタンや窒化チタン等が挙げられる。
<赤外線センサ装置の実施形態>
次に、図1で説明した受光部50を用いた赤外線センサ装置の具体的な実施形態を、図面を参酌しながら説明する。なお、受光部50a、50bの具体的な構成は図1を用いて説明した通りであり、受光部50a、50bの詳細な説明(例えば化合物半導体積層部20の詳細構造、絶縁層60、第2のメサ部202等)は省略する。
<第1実施形態>
図2は本発明の第1実施形態にかかる赤外線センサ装置の模式図である。
図2(a)は平面模式図であり、図2(b)は図2(a)のA−A′断面図である。図2(a)中、赤外線遮蔽部30a、30b、および出力端子31a、31bはエッジ部のみを点線で示している。
第1実施形態における赤外線センサ装置は、同一基板10上に形成された、2つの受光部50a及び50bを備える。
受光部50aは、例えば、PN接合部またはPIN接合部を有するメサ形状の化合物半導体積層部20aを備えた受光素子と、化合物半導体積層部20aの一部を覆う赤外線遮蔽部30aと、出力端子31aと、を有する。同様に、受光部50bは、PN接合部またはPIN接合部を有するメサ形状の化合物半導体積層部20bを含む受光素子と、化合物半導体積層部20bの一部を覆う赤外線遮蔽部30bと、出力端子31bと、を有する。そして、これら各部は、図2に示すように、出力端子31a、化合物半導体積層部20a、化合物半導体積層部20b、出力端子31bの順に基板10上に、直線上に並べて配置される。
受光部50a、50bの化合物半導体積層部20a、20bは、略同一のメサ形状に形成され、メサ形状を形成する4つの側面は、化合物半導体積層部20a、20bにおいてそれぞれ対応する側面どうしが平行となるように形成される。
赤外線遮蔽部30aは、受光部50aの化合物半導体積層部20aの一部を覆い、化合物半導体積層部20aの側面に赤外線遮蔽部30aで覆われていない側面を形成する。図2の場合には、赤外線遮蔽部30aは、メサ形状の化合物半導体積層部20aの上面全面と、化合物半導体積層部20aの、化合物半導体積層部20b側の面全体を含む3つの側面を覆うように配置される。
これにより、赤外線遮蔽部30aは、化合物半導体積層部20aの4つの側面のうち、化合物半導体積層部20bとは逆側の側面である図2において右側の側面40aは覆わず、上面全面と、4つの側面のうち化合物半導体積層部20b側の側面全面とを覆い、且つ側面40aの左右に隣接する2つの側面の、側面40aと逆側の部分のみを覆うように配
置される。受光部50aにおいて受光素子に含まれる化合物半導体積層部20aの4つの側面のうち、赤外線遮蔽部30aにより覆われていない領域の比率が最大となる面は、側面40aであることから、この側面40aが主入射面となる。
同様に、赤外線遮蔽部30bは、受光部50bの化合物半導体積層部20bの一部を覆い、化合物半導体積層部20bの側面に赤外線遮蔽部30bで覆われていない側面を形成する。図2の場合には、赤外線遮蔽部30bは、メサ形状の化合物半導体積層部20bの上面全面と、化合物半導体積層部20bの、化合物半導体積層部20a側の面全体を含む3つの側面を覆うように配置される。
これにより、赤外線遮蔽部30bは、4つの側面のうち、化合物半導体積層部20aとは逆側の側面である図2において左側の側面40bは覆わず、上面全面と4つの側面のうち側面40bと向かい合う側面全面とを覆い、且つ側面40bの左右に隣接する2つの側面の側面40bと逆側の部分のみを覆う。受光部50bにおいて受光素子に含まれる化合物半導体積層部20bの4つの側面のうち、赤外線遮蔽部30bにより覆われていない領域の比率が最大となる面は、側面40bであることから、この側面40bが主入射面となる。
つまり、図2(a)に示すように、2つの受光部50a、50bのうち、一方の受光部50aの受光素子の化合物半導体積層部20aの赤外線遮蔽部30aで覆われていない主入射面としての側面40aと、他方の受光部50bの受光素子の主入射面としての側面40bとが平行とならないように、メサ形状に形成された化合物半導体積層部20a、20bの4つの側面の中から主入射面となる側面40a、40bが選定される。
メサ形状の化合物半導体積層部20a、20bにおいて互いに平行とならない側面40a、40bを主入射面とすることによって、図2に示すように、一方の受光部50aの視野FOVaと、他方の受光部50bの視野FOVbとは異なる。つまり、化合物半導体積層部20a、20bにおいて互いに平行となる側面を主入射面とした場合、受光部50a、50bの視野は同一方向となる。受光部50a、50bの視野が異なる方向となるようにするため、化合物半導体積層部20a、20bにおいて互いに平行とならない側面、例えば側面40a、40bが主入射面となるようにしている。
赤外線遮蔽部30a、30bを金属材料で形成することにより、赤外線遮蔽部30aおよび出力端子31aからの出力と、赤外線遮蔽部30bおよび出力端子31bからの出力とに基づいて、検出対象物が各視野内に存在するか否か、或いは、検出対象物の動作を検知することが可能になる。
例えば、この赤外線センサ装置を利用者の在席検知装置として用いた場合、一方の受光部50aの視野FOVaを人体が存在する可能性の低い領域(例えば天井等)に設定し、他方の受光部50bの視野FOVbを人体が存在する可能性の高い領域(例えばモニタの正面等)に設定した場合、両受光部50a、50bの出力の差分が閾値よりも小さければ離席中と検知でき、両受光部50a、50bの出力の差分が閾値よりも大きければ在席中であることを検知できる。例えば、図2に示すように、受光部50a、50bの出力端子31a、31bの出力を演算回路80に入力し、演算回路80において、受光部50aと受光部50bとで出力の差分を演算し、この差分と予め設定した差分の閾値とを比較することにより、座席中であるか否かを判定し、その結果を例えば表示装置などに表示することにより、在席検知結果を通知するようにすればよい。
<第2実施形態>
図3は本発明の第2実施形態にかかる赤外線センサ装置の模式図である。
図3(a)は平面模式図であり、図3(b)は図3(a)のA−A′断面図である。図3(a)中、赤外線遮蔽部30および出力端子としての電極31a、31bはエッジ部のみを点線で示した。
第2実施形態にかかる赤外線センサ装置は、第1実施形態にかかる赤外線センサ装置と比較して、一体の赤外線遮蔽部30によって、両受光部50a、50bの化合物半導体積層部20a、20bの一部を覆っている点、つまり、赤外線遮蔽部30が共通している点で異なる。
図3に示すように、赤外線遮蔽部30は、受光部50aの化合物半導体積層部20aの上面から受光部50bの化合物半導体積層部20部の上面にかけて配置される。その結果、赤外線遮蔽部30により、受光部50aの、図3において右側の側面40aは覆われず、上面全面と側面40aと向かい合う側面全面と側面40aの左右に隣接する2つの側面の、側面40aと逆側の部分のみとが覆われ、受光部50bの、図3において左側の側面40bは覆わず、上面全面と側面40bと向かい合う側面全面と側面40bの左右に隣接する2つの側面の側面40bと逆側の部分のみとが覆われ、さらに、受光部50aと受光部50bとの間が覆われる。
つまり、第2実施形態においても、受光部50a、50bのメサ形状の化合物半導体積層部20a、20bの4つの側面のうち、互いに平行とならない側面40aと40bとが主入射面となる。
次に、第2実施形態の赤外線センサ装置の動作について図4を用いて説明する。図4(a)は図3において2つの受光素子つまり化合物半導体積層部20a及び20bが直列接続されてなる受光部50a及び50bそれぞれを一つのダイオードとしてみたときの等価回路図であり、図4(b)は該ダイオードを回路で示した等価回路図である。
受光部50a及び50bのそれぞれでは、検出対象の光が化合物半導体積層部20a、20bの光吸収層に侵入すると、電子・ホール対が発生し、外部からのバイアスが印可されていない場合、電子がn層側へ拡散し、ホールがp層側へ拡散してn層とp層との間に光起電力IpA及びIpBが生成される。
図4(b)において出力端子31a,31b間で生じた信号について説明する。
受光部50a及び50bはそれぞれ内部抵抗としてR0A及びR0Bを有しているため、出力端子31a及び31b間に流れる電流Ipは次式(1)で表される。
Ip=(IpA×R0A−IpB×R0B)/(R0A+R0B) ……(1)
また、内部抵抗R0A及びR0Bが同一であれば、Ipは次式(2)で表される。
Ip=(1/2)×(IpA−IpB) ……(2)
つまり、出力端子31a、31b間の信号によって、受光部50a、50bで生じた信号の差分を出力可能であることがわかる。つまり、第2実施形態の場合、受光部50a、50bで生じた信号の差分を演算しなくてすむため、その分、演算回路80での処理負荷を軽減することができる。
以上説明したように、第1及び第2実施形態の受光デバイス、すなわち赤外線センサ装置は、アンプや演算素子等といった他の手段を介さずに、且つ、外部ノイズの影響を受けずに、高いS/N比で実現することができ、微弱の輻射光源の位置・移動を検出するのに好適である。
また、出力端子31a及び31bが接続される演算回路80をさらに備えることにより、第1および第2の受光部50a、50bで生じた信号の差分、また、差分と閾値との比較結果を容易に得ることが可能になる。演算回路80の具体的な様態については特に制限されないが、例えばオペアンプと抵抗を用いた演算回路80等を用いることができる。このオペアンプの具体的な例としては、トランスインピーダンスアンプ(Transimpedanceアンプ)が挙げられる。トランスインピーダンスアンプは、出力端子の出力電流を電圧信号に変換する。このようなオペアンプを2つの受光部50a、50bの出力端子31a、31bに接続すると、出力端子31a、31bが低いインピーダンスによって短絡(Virtual Short)され、差分の短絡電流が出力される(式(2))。また、オペアンプの出力にはこの差分電流に比例した電圧信号が得られる。
なお、ここでは、出力端子から得られる電流を示したが、高入力インピーダンスのアンプを利用すると開放電圧の取り出しが可能となる。従って、受光部50aと受光部50bのそれぞれの開放電圧の差が得られる。用途によって開放電圧を出力しても良いが、多くの場合、特にナローギャップの半導体(InSb、InAsSb、等)で形成された受光部の場合、受光部の内部抵抗の温度特性の影響を受けにくくするには、上記の説明のように、短絡電流を出力した方が好ましい。
<第3実施形態>
図5は本発明の第3実施形態にかかる赤外線センサ装置の模式図である。
図5(a)は平面模式図であり、図5(b)は図5(a)のA−A′断面図である。図5(a)中、赤外線遮蔽部30a、30bおよび出力端子としての電極31a、31bはエッジ部のみを点線で示した。
第3実施形態の赤外線センサ装置は、受光部50a、50bが、それぞれ複数の受光素子が直列接続されている点で、第1実施形態と異なる。図5では受光部50a、50bともそれぞれ3個の受光素子が直列接続されている。
なお、受光部50aの受光素子の化合物半導体積層部20aの赤外線遮蔽部30aで覆われていない側面40aは、直列接続された受光素子全ての間で平行であり、受光部50bの受光素子の化合物半導体積層部20bの赤外線遮蔽部30bで覆われていない側面40bも直列接続された受光素子全ての間で平行である。
複数の受光素子が直列接続されていることにより、第1実施形態の赤外線センサ装置よりもより高感度な赤外線センサ装置となる点で好ましい。
図5に示した第3実施形態の赤外線センサ装置は、各受光部50a、50bのそれぞれにおいて、受光素子としての化合物半導体積層部20a、20bの赤外線遮蔽部30a、30bで覆われていない側面40aどうし、40bどうしが平行である。つまり、各受光素子において化合物半導体積層部の、赤外線遮蔽部により覆われていない領域の比率が最大となる側面、つまり40a、40bがそれぞれ直列に接続された受光素子全ての間で平行であるため、いずれかの受光素子の側面40a、40bが主入射面となる。
図5の場合、受光部50aにおける主側面である40aと、受光部50bにおける主側面である40bとは平行ではないため、側面40a、40bを主側面とすることによって、視野の異なる2つの受光部50a、50bを備えた赤外線センサ装置を実現することができる。
なお、図5において、例えば、受光部50aの各受光素子の化合物半導体積層部の、赤外線遮蔽部により覆われていない領域の比率が最大となる側面40aがそれぞれ直列に接続されたいずれかの受光素子間で非平行である場合には、受光部50aの中心から等距離の球面上で同じ強度の光源を移動させたとき受光部50aの出力が最も大きくなるときの光源中心位置と受光部50aの中心とを結んだ直線に垂直な面を主入射面とする。そして、このようにして設定される受光部50aの主入射面と、受光部50bの主入射面とが平行とならないように、受光部50a、50bの各受光素子において、赤外線遮蔽部30a、30bにより覆う化合物半導体積層部20a、20bの面を決定すればよい。
そして、図5に示すように、複数の受光素子を有する受光部を用いた場合も、出力端子31a、31bの出力の差分を、演算回路80により演算し、閾値と比較することにより、検出対象物が各視野内に存在するか否か、或いは、検出対象物の動作を容易に検知することができる。
<第4実施形態>
図6は本発明の第4実施形態にかかる赤外線センサ装置の模式図である。
図6に示すように、第2実施形態における赤外線センサ装置100を、光学窓501が設置されたパッケージケース500内に配置し、赤外線センサ装置100の2つの出力端子(図示せず)とパッケージケース500内の配線(図示せず)とをワイヤ502で接続している。パッケージケース500内の配線を介して、赤外線センサ装置100の出力信号を外部に取り出して、第2実施形態における赤外線センサと同様に演算回路80で演算してもよい。或いは、パッケージケース500内に信号処理部を設置し、パッケージケース500内の配線からの出力信号を該信号処理部に入力し、信号処理部での演算処理により得た所望の出力信号を外部に取り出すようにしてもよい。
第4実施形態の赤外線センサ装置において、パッケージケース500を、実質的に赤外線を遮蔽する部材で構成すれば、赤外線センサ装置100の基板の第2の主面側、すなわち化合物半導体積層部が形成されない側に赤外線遮蔽部を更に備える必要はなく、所望の異なる視野を複数有する赤外線センサ装置を実現できる。
<実施形態の効果>
このように、本実施形態では、2つの受光部それぞれのメサ形状の化合物半導体積層部の側面のうち、互いに平行とならない側面を赤外線遮蔽部で覆われていない主入射面とするため、主入射面の向きに応じて決定される視野が、2つの受光部において異なることになる。したがって、外付けの部品等を設けることなく、視野の異なる2つの受光部を有する赤外線センサ装置を実現することができ、赤外線センサ装置の小型化を図ることができる。
以下、本実施形態の赤外線センサ装置に用いる受光部50の一例を説明する。
GaAs基板上に、厚さ1μmのn型InSb層、厚さ2μmのπ型InSb層、厚さ0.02μmのAlInSbのバリア層、及び厚さ0.5μmのp型のInSb層をこの順に積層し、PIN接合のフォトダイオード構造を形成した。
その後、フォトレジストマスクを利用して、2段階のウェットエッチングを施し、図1に示した様な第1のメサ部201と第2のメサ部202とを有する受光素子を形成した。第1のメサ部201の高さは2.82μm、第2のメサ部202の高さは0.7μmであった。第1のメサ部201の底面つまり第2のメサ部202と接している面は90μm×90μmの正方形状とした。第1のメサ部201の斜面と基板10の表面とのなす角度は45度であった。
第1および第2のメサ部201、202を形成後、窒化シリコンからなる絶縁層60を形成し、第1のメサ部201の頂部(pコンタクト部)201aと第2のメサ部202の頂部(nコンタクト部)202aの一部の窒化シリコンを除去し、コンタクトホールを形成した。
次いで、フォトレジストマスクを利用してAu/Pt/Tiの積層配線構造からなる赤外線遮蔽部30をリフトオフ法により形成し、第1のメサ部201の一の側面を除く第1のメサ部201及び第2のメサ部202、基板10を含む部分に、赤外線遮蔽部30を形成した。これにより、第1のメサ部201の一部の側面に、赤外線遮蔽部30で覆われていない側面40を形成し、受光部50を作製した。
この受光部50を用いて、温度500Kの黒体炉輻射に対する出力信号を測定した。
測定方法として、黒体炉の出射口(径φ22mm)から10cmの距離に受光部50を置き、受光部50の側面40への水平面を基準とする入射角度を変化させながら、受光部50の出力信号を測定した。外乱の影響を除去できるように、黒体炉輻射のチョッピングによる変調及びロックインアンプを利用した復調を利用した。
図7はその測定結果を示したものであり、横軸は入射角度、縦軸は受光部50の出力信号である。
その結果、図1において、受光部50の中心部Mを通る水平面を零度として右周りに角度が大きくなるものとすると、図1に破線で示すように、受光部50への入射角が135度(基板垂直に対して45度)付近で最も高い出力が得られることが分かる。受光部50への入射角が0〜45度の場合、つまり、図1において、化合物半導体積層部20の主入射面である側面40に向かい合う側面に赤外線が入射される場合には、幾何学的には黒体炉から出力された赤外線が直接光吸収層22に入射されることはないが、受光部50の出力として、入射角135度の場合の半分程度の出力が確認された。これは第2のメサ部202の赤外線遮蔽部30で覆われていない領域から赤外線が基板10内に入射し、基板10の第2の主面10bで反射し、間接的に光吸収層22に赤外線が入射したためと考えられる。いずれにせよ、本実施例より、本実施形態の赤外線センサ装置によれば、受光部の受光素子の化合物半導体積層部に赤外線遮蔽部で覆われていない主入射面としての側面を設け、このような受光部50を同一基板10上に複数設け且つ受光部50間で主入射面が非平行となるように受光部50を形成し、対象の赤外線を、いずれかの主入射面から入射させることにより、レンズや複雑な光学系、視野制限部などの外付け部品を用いることなく、異なる視野からの光を分離・選択して検出することが可能な赤外線センサ装置を実現できることが確認できた。
<その他>
なお、上記実施形態においては、化合物半導体積層部20をメサ形状に形成した場合について説明したがこれに限るものではなく、多面体形状であってもよい。
また、面の面積は化合物半導体積層部20内において同一でなくてもよい。同様に、複数の受光素子を備えた受光部の場合、複数の受光素子間で、化合物半導体積層部20の各面の面積が異なっていてもよい。
また、上記実施形態においては、メサ形状の化合物半導体積層部20の4つの側面のうちの一の側面を、赤外線遮蔽部30で覆わないようにした場合について説明したが、一の側面全面を赤外線遮蔽部30で覆わないようにしてもよく、入射される赤外線に応じた出力特性を発揮できる程度の赤外線遮蔽部30で覆われていない領域が残っていればよい。
また、上記実施形態においては、複数の受光部が共に、受光素子を1つのみ有する場合、或いは複数の受光素子を有する場合について説明したがこれに限るものではない。各々の受光部を構成する受光素子の数が異なっても良く、また、一の受光部は主入射面が平行な複数の受光素子を有し、他の受光部は主入射面が非平行な複数の受光素子を有する構成であってもよい。
また、各受光部の共通接続点に接続される出力端子を設けても良い。
また、上記実施形態においては、赤外線センサ装置が2つの受光部を備える場合について説明したがこれに限るものではなく、3つ以上の受光部を備える場合であっても適用することができ、3つ以上の受光部を設けることによって、異なる3方向以上の方向からの赤外線を分離し、検出することができる。
また、本発明の範囲は、図示され記載された例示的な実施形態や実施例に限定されるものではない。当業者の知識に基づいて各実施形態や実施例に設計の変更等を加えてもよく、また、各実施形態や実施例を任意に組み合わせてもよく、本発明が目的とするものと均等な効果をもたらす、すべての実施形態をも含む。さらに、本発明の範囲は、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
本発明は、人感センサ等に応用される、複数の受光部を備えた赤外線センサ装置として好適である。
10 基板
20、20a、20b 化合物半導体積層部
21 n型化合物半導体層
22 光吸収層(i型化合物半導体層)
23 p型化合物半導体層
24 バリア層
201 第1のメサ部
202 第2のメサ部
30、30a、30b 赤外線遮蔽部
31a、31b 出力端子
40、40a、40b 赤外線遮蔽部で覆われていない側面
50、50a、50b 受光部
60 絶縁層
100 赤外線センサ装置
500 パッケージケース
501 光学窓
502 ワイヤ

Claims (6)

  1. フォトダイオード構造を含む多面体形状の化合物半導体積層部を有する受光素子と前記化合物半導体積層部の一部を覆う赤外線遮蔽部とを備えた受光部を複数有し、当該受光部それぞれに含まれる前記受光素子は同一基板上に形成されており、
    前記受光部それぞれにおいて、前記化合物半導体積層部の各平面のうち、少なくとも一部が前記赤外線遮蔽部により覆われていない平面のうちの一面が当該受光部の主入射面であり、
    前記主入射面が、複数の前記受光部間で非平行である赤外線センサ装置。
  2. 複数の前記受光部は、前記受光素子を1つのみ備える第1の受光部を含み、
    当該第1の受光部の前記受光素子が含む前記化合物半導体積層部の各平面のうち、前記赤外線遮蔽部により覆われていない領域が最大となる一の平面を、前記主入射面とする請求項1に記載の赤外線センサ装置。
  3. 複数の前記受光部は、直列接続された複数の前記受光素子を有する第2の受光部を含み、
    前記第2の受光部において、一の前記受光素子が含む前記化合物半導体積層部の各平面のうち、前記赤外線遮蔽部により覆われていない領域が最大となる一の平面が前記受光素子全ての間で平行であり、
    数の前記受光素子のうちのいずれかの受光素子の前記一の平面を、前記主入射面とする請求項1又は請求項2に記載の赤外線センサ装置。
  4. 複数の前記受光部は、直列接続された複数の前記受光素子を有する第3の受光部を含み、
    前記第3の受光部において、一の前記受光素子が含む前記化合物半導体積層部の各平面のうち、前記赤外線遮蔽部により覆われていない領域が最大となる一の平面が前記受光素子いずれかの間で非平行であり、
    前記受光部の中心から等距離の球面上で強度一定の光源を移動させたときに前記受光部の出力が最大となるときの前記光源の中心位置と前記受光部の中心とを結ぶ直線に垂直な平面を前記主入射面とする請求項1から請求項3のいずれか1項に記載の赤外線センサ装置。
  5. 前記フォトダイオード構造は、PN接合部又はPIN接合部を含む請求項1から請求項4のいずれか1項に記載の赤外線センサ装置。
  6. 前記化合物半導体積層部は4つの側面を有するメサ形状である請求項1から請求項5のいずれか1項に記載の赤外線センサ装置。
JP2014175781A 2014-08-29 2014-08-29 赤外線センサ装置 Active JP6466668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175781A JP6466668B2 (ja) 2014-08-29 2014-08-29 赤外線センサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175781A JP6466668B2 (ja) 2014-08-29 2014-08-29 赤外線センサ装置

Publications (2)

Publication Number Publication Date
JP2016050833A JP2016050833A (ja) 2016-04-11
JP6466668B2 true JP6466668B2 (ja) 2019-02-06

Family

ID=55658443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175781A Active JP6466668B2 (ja) 2014-08-29 2014-08-29 赤外線センサ装置

Country Status (1)

Country Link
JP (1) JP6466668B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774792B2 (ja) * 2016-06-22 2020-10-28 旭化成エレクトロニクス株式会社 赤外線デバイス
JP6836961B2 (ja) * 2017-06-09 2021-03-03 アズビル株式会社 人検知装置および方法
KR102640525B1 (ko) * 2022-01-05 2024-02-28 (주)파트론 포토다이오드 모듈

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711998A (en) * 1985-12-05 1987-12-08 Santa Barbara Research Center Direction finder system with mirror array
WO1997027450A1 (en) * 1996-01-23 1997-07-31 Science Application International Corporation A position tracking system
JP2002005738A (ja) * 2000-06-23 2002-01-09 Matsushita Electric Works Ltd 照度センサ
JP2002100796A (ja) * 2000-07-18 2002-04-05 Nippon Sheet Glass Co Ltd 受光素子アレイ
JP3826689B2 (ja) * 2000-07-31 2006-09-27 松下電工株式会社 明るさセンサおよび明るさセンサ付き照明装置
JP5290505B2 (ja) * 2006-09-08 2013-09-18 旭化成エレクトロニクス株式会社 光センサの製造方法
WO2008088018A1 (ja) * 2007-01-18 2008-07-24 Nec Corporation 半導体受光素子
US8384559B2 (en) * 2010-04-13 2013-02-26 Silicon Laboratories Inc. Sensor device with flexible interface and updatable information store
JP5859364B2 (ja) * 2012-03-30 2016-02-10 旭化成エレクトロニクス株式会社 受光強度演算デバイス及び位置検出デバイス
JP5917233B2 (ja) * 2012-03-30 2016-05-11 旭化成エレクトロニクス株式会社 受光強度演算デバイス及び位置検出デバイス
JP2014145610A (ja) * 2013-01-28 2014-08-14 Panasonic Corp 赤外線センサユニット

Also Published As

Publication number Publication date
JP2016050833A (ja) 2016-04-11

Similar Documents

Publication Publication Date Title
JP4086875B2 (ja) 赤外線センサic、赤外線センサ及びその製造方法
JP2016062996A (ja) 光検出器
US10115764B2 (en) Multi-band position sensitive imaging arrays
RU2641620C1 (ru) Лавинный фотодетектор
JP2007081225A (ja) 赤外線センサ、および、その製造方法
US10411049B2 (en) Optical sensor having two taps for photon-generated electrons of visible and IR light
US9046410B2 (en) Light receiving device
US11676976B2 (en) PIN photodetector
US20170199078A1 (en) Plasmonic avalanche photodetection
US10128386B2 (en) Semiconductor structure comprising an absorbing area placed in a focusing cavity
JP6466668B2 (ja) 赤外線センサ装置
JP4856031B2 (ja) アバランシェフォトダイオード
US11329184B2 (en) Photodetector and lidar device comprising a detector having a PN junction connected to an optically transmissive quench resistor
US20070075224A1 (en) Two coluor photon detector
US9685477B2 (en) Two-terminal multi-mode detector
JP2008103742A (ja) 赤外線センサic
JP5859364B2 (ja) 受光強度演算デバイス及び位置検出デバイス
JP5917233B2 (ja) 受光強度演算デバイス及び位置検出デバイス
RU2488916C1 (ru) Полупроводниковый приемник инфракрасного излучения
JP2017190994A (ja) 光検出器およびライダー装置
WO2019045652A2 (en) PHOTODETECTOR
US20220399466A1 (en) Graphene photodetector and photodetector array using same
JP4138853B2 (ja) 赤外線センサic
JP5503380B2 (ja) 赤外線センサ
JP2014203877A (ja) 光検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190110

R150 Certificate of patent or registration of utility model

Ref document number: 6466668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150