JP6466557B2 - 検知装置及び送電装置 - Google Patents

検知装置及び送電装置 Download PDF

Info

Publication number
JP6466557B2
JP6466557B2 JP2017244128A JP2017244128A JP6466557B2 JP 6466557 B2 JP6466557 B2 JP 6466557B2 JP 2017244128 A JP2017244128 A JP 2017244128A JP 2017244128 A JP2017244128 A JP 2017244128A JP 6466557 B2 JP6466557 B2 JP 6466557B2
Authority
JP
Japan
Prior art keywords
value
power
circuit
magnetic coupling
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017244128A
Other languages
English (en)
Other versions
JP2018046746A (ja
Inventor
宗 宮本
宗 宮本
裕章 中野
裕章 中野
知倫 村上
知倫 村上
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017244128A priority Critical patent/JP6466557B2/ja
Publication of JP2018046746A publication Critical patent/JP2018046746A/ja
Application granted granted Critical
Publication of JP6466557B2 publication Critical patent/JP6466557B2/ja
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、他の磁気結合素子や異物などと磁気的に結合する磁気結合素子、その磁気結合素子を利用した装置(磁気結合装置)及びシステム(磁気結合システム)に関する。
特に、非接触給電システムを構成する非接触給電装置と電子機器との間に磁束によって発熱しうる異物(金属、磁性体、磁石など)が混入したことを検知する検知装置、及び送電装置に関する。

近年、例えば携帯電話機や携帯音楽プレーヤー等のCE機器(Consumer Electronics Device:民生用電子機器)に対し、非接触に電力供給(電力伝送)を行う給電システム(
非接触給電システムあるいは非接触電力伝送システムなどと呼ばれる)が注目を集めている。これにより、ACアダプタのような電源装置のコネクタをCE機器に挿す(接続する)ことによって充電を開始するのではなく、電子機器(2次側機器)を充電トレー(1次側機器)上に置くだけで充電を開始することができる。すなわち、電子機器と充電トレーと間での端子接続が不要となる。

このようにして非接触で電力供給を行う方式としては、電磁誘導方式がよく知られている。また、最近では、共鳴現象を利用した磁界共鳴方式と呼ばれる方式を用いた非接触給電システムが注目されている。

磁界共鳴方式を用いた非接触給電システムでは、共鳴現象という原理を利用して、電磁誘導方式よりも距離を離した機器間で電力伝送することができるという利点がある。また、給電元(送電コイル)と給電先(受電コイル)との間で多少軸合わせが悪くても伝送効率(給電効率)があまり落ちないという利点がある。ただし、この磁界共鳴方式及び電磁誘導方式のいずれも、給電元(送電コイル;磁気結合素子)と給電先(受電コイル;磁気結合素子)との磁気結合を利用した非接触給電システム(磁気結合システム)であることには変わりない。

ところで、非接触給電システムにおいて重要な要素の一つに、磁束によって発熱しうる金属、磁性体、磁石などの異物の発熱対策がある。電磁誘導方式又は磁界共鳴方式に限らず非接触で給電を行う際、送電コイルと受電コイルとの間隙内に異物が混入すると、その異物を通過する磁束によって異物を発熱させてしまう恐れがある。なお、この異物の発熱は、異物金属を磁束が通過することで異物金属に発生する電流(渦電流,環状電流,円電流)や、異物磁性体や異物磁石を磁束が通過することで異物磁性体や異物磁石に生じる透磁損失(ヒステリシス損)などに起因している。

この発熱対策として、非接触給電システムに異物検知システムを追加して異物金属を検知する数多くの手法が提案されている。例えば光センサあるいは温度センサを用いる手法が知られている。しかしながら、センサを用いた検知方法では、磁界共鳴方式のように給電範囲が広い場合にコストがかかる。また例えば温度センサであれば、温度センサの出力結果がその周囲の熱伝導率に依存するため、送電側及び受電側の機器にデザイン制約を加えることにもなる。

そこで、送電側と受電側の間に異物金属が入ったときのパラメータ(電流、電圧等)の変化を見て、異物金属の有無を判断する手法が提案されている。このような手法であれば、デザイン制約等を課す必要がなくコストを抑えることができる。
例えば、特許文献1では送電側と受電側の通信の際の変調度合い(振幅及び位相の変化情報)によって異物金属を検出する方法、また特許文献2では渦電流損によって異物金属を検出する方法(DC−DC効率による異物検知)が提案されている。

特開2008−206231号公報 特開2001−275280号公報

しかしながら、特許文献1,2により提案された手法は、受電側の金属筺体の影響が加味されていない。一般的な携帯機器への充電を考えた場合、携帯機器に何らかの金属(金属筐体、金属部品等)が使われている可能性が高く、パラメータの変化が「金属筺体等の影響によるもの」か、あるいは「異物金属が混入したことによるもの」なのかの切り分けが困難である。特許文献2を例に挙げると、渦電流損が携帯機器の金属筺体で発生しているのか、それとも送電側と受電側との間に異物金属が混入して発生しているのかが分からない。このように、特許文献1,2で提案された手法は、異物金属を精度よく検知できているとは言えなかった。

本開示は、上記の状況を考慮してなされたものであり、検知コイルすなわち磁気結合素子の近くに存在する異物を、センサを新たに設けることなく検知し、かつ検知精度を向上させるものである。

本開示の検知装置の一側面は、1又は複数のコイルを有するように構成された1又は複数の磁気結合素子と、その磁気結合素子を少なくとも含む回路の抵抗値の変化に応じて変化する値を測定又は計算し、測定又は計算された値と閾値を比較することによって、磁気結合相手との間の異物の有無を判定する検知部と、を備える。上記閾値は、自装置に搭載された物質を除いて1又は複数の磁気結合素子の周囲に磁束により発熱し得る物質が存在しない状態における、上記磁気結合素子を少なくとも含む回路の抵抗値の変化に応じて変化する値である。

磁気結合素子と異物金属とが磁気的に結合する場合、磁気結合素子の実効抵抗値(抵抗値の変化に応じて変化する値)が増加することと、磁気結合素子のインダクタンス値が減少することの2つの理由によって、磁気結合素子(共振回路)のQ値が低下する。そのため、磁気結合素子のインダクタンス値が何らかの要因によって大きく変化する場合には、磁気結合素子(共振回路)のQ値に着目するよりも、磁気結合素子(共振回路)の実効抵抗値に着目する方が、異物金属の検出精度が高い。

本開示の少なくとも一つの実施形態によれば、磁気結合素子の近くに存在する異物を、センサを新たに設けることなく検知し、かつ検知精度を向上させることができる。

本開示における異物金属の検知の一例として用いられるQ値測定の説明に供する概略回路図である。 本開示の一実施形態に係る非接触給電システムの概略外観図である。 本開示の一実施形態に係る非接触給電システムの構成例を示すブロック図である。 図4A〜図4Cは、共振回路の構成例を示す回路図である。 図5A,図5Bは、異物金属の有無による検知コイルの電気特性(Q値、R値)の変化に関する測定結果の一例を示す図である。 検知コイルと異物金属との距離の調整を説明する図である。 図7A,図7Bは、異物金属の有無による受電コイルのQ値の変化に関する測定結果の一例を示す図である。 受電コイルに対する異物金属の配設位置の調整を説明する図である。 図9A,図9Bは、異物金属の有無による受電コイルのR値の変化に関する測定結果の一例を示す図である。 本開示の一実施形態に係る非接触給電システムの変形例を示すブロック図である。 非接触給電システムの給電時における処理の一例を示すフローチャートである。

以下、本開示を実施するための形態(以下、実施形態という)の例について説明する。説明は以下の順序で行う。なお、本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。
1.導入説明
2.Q値測定の原理
3.R値測定の原理
4.非接触給電システムの説明
5.測定データ(1)
6.測定データ(2)
7.変形例
8.その他

[1.導入説明]
本開示では、送電側(1次側)から給電して受電側(2次側)のバッテリ等に充電を行う際に、送電側又は受電側の磁気結合素子の実効抵抗値(高周波抵抗値、Rs値、R値)、もしくはこの磁気結合素子を少なくとも含む回路の実効抵抗値に基づいて異物の検知を行う磁気結合システムを提案する。本開示の磁気結合システムでは、送電側又は受電側において、外部と磁気的に結合する1又は複数の磁気結合素子の実効抵抗値、もしくはこの磁気結合素子を少なくとも含む回路の実効抵抗値を測定又は計算する。そして、この実効抵抗値の測定結果又は計算結果に基づいて磁気結合素子の近傍における異物の有無を判定する。

ただし、LCRメータやインピーダンスアナライザなどのような測定器と同様の測定原理を用いる場合、共振回路の共振周波数付近の周波数における、共振回路の実効抵抗値やQ値(Quality factor)などを正確に測定することは難しい。これらの測定器では、磁気結合素子に所定の高周波電力を印加して、その際に生じる電圧及び電流の振幅と位相とを測定し、磁気結合素子の実効抵抗値やQ値などを計算することが可能である。しかし、共振回路の共振周波数付近では、高周波電力の周波数の変化によって電圧及び電流の振幅と位相とが急激に変化するため、十分な測定精度を得ることができない。そこで、共振回路の電圧比(振幅比)や半値幅法などから共振回路のQ値を測定して、その測定結果から実効抵抗値を計算(概算)する例を用いて説明する。このQ値は、エネルギーの保持と損失の関係を表す指標であり、一般的に共振回路の共振のピークの鋭さ(共振の強さ)を表す値として用いられる。
なお、本明細書中の本開示の各実施形態における説明では、異物金属の検知を例に挙げて説明するが、他の異物(異物磁性体、異物磁石等)の検知でも同様である。

[2.Q値測定の原理]
以下、Q値測定の原理について、図面を参照して説明する。
図1は、本開示における異物金属の検知に利用するQ値測定の説明に供する概略回路図である。
この図1に示した回路は、Q値の測定原理を表した基本的な回路構成(磁気結合の場合)の一例である。例えば、交流信号(正弦波)を発生させる交流電源2及び抵抗素子3を含む信号源1と、コンデンサ(キャパシタとも呼ばれる)4と、コイル5を備える。抵抗素子3は、交流電源2の内部抵抗(出力インピーダンス)を図示化したものである。信号源1に対しコンデンサ4とコイル5が直列共振回路(共振回路の一例)を形成するように接続されている。そして、この共振回路は、コンデンサ4のキャパシタンスの値(C値、C)、及びコイル5のインダクタンスの値(L値、L)によって所定の共振周波数(fr)で共振している。

ここで、直列共振回路を構成するコイル5とコンデンサ4の両端間の電圧(振幅)をV1(共振回路に掛かる電圧の一例)、コイル5両端の電圧(振幅)をV2とすると、交流電源2の交流信号の周波数における、この直列共振回路のQ値は、式(1)で表される。さらに、電圧V2≫電圧V1のときには、式を近似して表すことができる。

例えば、図1に示す回路では、電圧V1が約Q倍されて電圧V2が得られる。また、交流電源2の交流信号の周波数を変化させた場合に、電圧V2と電圧V1との電圧比(V2/V1)が極大となる周波数が、コイル5とコンデンサ4とで構成されるLC共振回路の共振周波数(fr)となる。このように、電圧V2と電圧V1との電圧比(V2/V1)に着目すれば、共振回路の共振周波数(fr)と、その共振周波数における共振回路のQ値(Q)とを高い精度で測定することが可能となる。

また、共振回路の共振のピークの鋭さ(共振の強さ)の半値幅から共振回路のQ値を求める半値幅法でも、共振回路の共振周波数(fr)と、その共振周波数における共振回路のQ値(Q)を高い精度で測定することが可能である。この場合、共振回路のインピーダンス(Z)やアドミタンス(Y)などに関する周波数特性が極大(ピーク)となる周波数が共振周波数となる。

[3.R値測定の原理]
ところで、コイル5の近くに異物金属として例えば金属片があると、磁力線が金属片を通過して金属片に渦電流が発生する。これはコイル5からすると、金属片とコイル5が磁気的に結合して、コイル5に抵抗負荷がついたように見えるため、磁気結合素子のR値(実効抵抗値、R)が増加し、磁気結合素子(共振回路)のQ値(Q)が低下する。また、金属片とコイル5とが磁気的に結合するため、磁気結合素子のL値(L)が減少し、同様に磁気結合素子(共振回路)のQ値(Q)が低下する。
すなわち、磁気結合素子と異物金属とが磁気的に結合する場合、磁気結合素子のR値(R)が増加することと、磁気結合素子のL値(L)が減少することの2つの理由によって、磁気結合素子(共振回路)のQ値(Q)が低下する。このことは式(2)からも明らかである。なお、交流電源2の交流信号の周波数と、共振回路の共振周波数(fr)とが略同一な場合には、共振回路のQ値を式(2)で表現することができる。ただし、Rは共振周波数(fr)における共振回路の実効抵抗値であり、Lは共振周波数(fr)におけるコイル5のインダクタンス値であり、Cは共振周波数(fr)におけるコンデンサ4のキャパシタンス値である。

そのため、磁気結合素子のL値が何らかの要因によって大きく変化する場合には、磁気結合素子(共振回路)のQ値に着目するよりも、磁気結合素子(共振回路)のR値に着目する方が、異物金属の検出精度が高い。なお、磁気結合素子が異物金属と磁気的に結合した場合の磁気結合素子(共振回路)のR値の増加量と、異物金属の発熱度合いとには極めて密接な関係があるため、この磁気結合素子(共振回路)のR値の増加量に着目した異物検知システムは極めて理にかなっていると言える。

ただし、上述した通り、LCRメータやインピーダンスアナライザなどのような測定器と同様の原理を用いて、共振回路の共振周波数付近の周波数における、共振回路の実効抵抗値を測定するのは難しい。そこで、共振回路の電圧比や半値幅法などから共振回路のQ値を測定し、その測定結果からR値を計算(概算)することを提案する。

ここで、共振回路のR値(R)は、式(3)で表すことができる。これは、共振回路の共振周波数(fr)が式(4)で表せるため、磁気結合素子(共振回路)のL値(L)が式(5)で表せるからである。式(3)のLに、式(5)で表されるLを代入している。この式(3)より、共振周波数における共振回路のR値(R)は、共振回路を構成するコンデンサのC値(C)、共振回路の共振周波数(fr)、磁気結合素子(共振回路)のQ値(Q)の3つが分かれば計算できることが分かる。ただし、コンデンサのC値は、ほぼ既知の値と考えることができるので、共振回路のR値は実質、共振回路の共振周波数、共振回路のQ値の2つが分かれば計算(概算)することができる。すなわち、共振回路の共振周波数、共振回路のQ値の2つを、上述した共振回路の電圧比や半値幅法などを用いて測定すれば、共振回路の共振周波数におけるR値を計算(概算)することができる。

上述したように、金属片がコイル5の近くに存在すると、金属片に発生する渦電流の影響で磁気結合素子(共振回路)のR値が増加するとともに、渦電流によって金属片が発熱する。そのため、このR値の変化(増加)を検知することにより、コイル5の近くに存在する金属片を検知できる。換言すれば、上述したようなR値測定を、送電側(1次側)と受電側(2次側)の間に挿入された異物金属の検知に適用することができる。

そして、上述したR値の変化に着目して異物金属の検出処理を行うことにより、電磁誘導方式又は磁界共鳴方式によらず高精度に異物金属が検出され、ユーザがこれを取り除くことが可能である。

なお、共振回路の共振周波数と大きく異なる周波数では、LCRメータやインピーダンスアナライザなどのような測定器と同様の測定原理を用いて、共振回路のR値を高い精度で測定することができる。ただし、この場合には、共振回路の共振周波数と大きく異なる周波数で共振回路のR値を測定する都合上、異物金属の有無による共振回路のR値変化が小さくなるため、異物金属の検知精度が低下する可能性が高い。

一方、共振回路を構成するコンデンサ4とコイル5とをスイッチング等で電気的に切り離してコイル5のR値を直接測定する場合には、もちろん共振回路の共振周波数と略同一な周波数でも、LCRメータやインピーダンスアナライザなどのような測定器と同様の測定原理を用いて、コイル5のR値を高い精度で測定することが可能となる。すなわち、異物検知を行う時間のみスイッチングなどを用いて共振回路の構成を変える異物検知システムにすれば、共振回路の共振周波数と略同一な周波数でも、LCRメータやインピーダンスアナライザなどのような測定器と同様の測定原理を用いて、異物金属の有無を検知することが可能となる。ただし、このような場合には、スイッチング部分の抵抗値や、スイッチングによる損失などが課題になることが多い。

上述した通り、磁気結合素子(共振回路)のR値を測定(計算、概算)する手法は数多く存在する。本明細書において提案する異物検知システムでは、何らかの手段を用いて磁気結合素子(共振回路)のR値を測定(計算、概算)し、このR値の変化から異物金属の有無を判別すればよい。

[4.非接触給電システムの説明]
次に、本開示の技術が適用される非接触給電システムについて説明する。

(非接触給電システムの全体構成例)
図2は、本開示の一実施形態に係る磁気結合システムとしての非接触給電システムの概略構成例を表したものであり、図3は、本開示の一実施形態に係る非接触給電システムのブロック構成例を表したものである。

図2に示す非接触給電システム100は、磁界を用いて(本実施形態では磁界共鳴方式を利用)、非接触に電力伝送(電力供給)を行うシステムである。この非接触給電システム100は、給電装置10(1次側機器)と、1又は複数の給電対象機器としての電子機器(2次側機器)とを備えている。ここでは、給電対象機器として、例えば携帯電話端末装置が適用された電子機器20Aと電子スチルカメラが適用された電子機器20Bを備える。この例に限らず、給電対象機器は、給電装置10から非接触で電力を受電できる電子機器であればよい。

この非接触給電システム100では、例えば図2に示したように、給電装置10における給電面(送電面)S1上に電子機器20A,20Bが置かれる又は近接することにより、給電装置10から電子機器20A,20Bに対して電力伝送が行われる構成になっている。ここでは、複数の電子機器20A,20Bに対して同時もしくは時分割的(順次)に電力伝送を行う場合を考慮して、給電装置10は、給電面S1の面積が給電対象の電子機器20A,20B等よりも大きなマット形状(又はトレー状)となっている。

(給電装置の構成例)
給電装置10は、上記したように、磁界を用いて電子機器20A,20Bに対して電力伝送を行うもの(例えば充電トレー)である。この給電装置10は、例えば図3に示すように、給電装置10の外部の電力供給源9から供給される電力を用いて電力の伝送を行う送電装置11を備える。外部の電力供給源9は、一例としてプラグソケットいわゆるコンセントを介して供給される商用電源である。

送電装置11は、例えば送電部12、高周波電力生成回路13、検波回路14、インピーダンス整合回路15、制御回路16、及び共振用コンデンサC1(容量素子)を備えて構成される。本例の送電装置11は、検波回路14及び制御回路16を備えることにより、非接触給電システム100が負荷変調を利用して片方向通信を行うことができるブロック構成としている。ただし、負荷変調以外の手段での片方向通信、もしくは双方向通信を考える場合には、その限りではない。

送電部12は、後述する送電コイル(1次側コイル)L1等を含んで構成されている。送電部12は、この送電コイルL1及び共振用コンデンサC1を利用して、電子機器20A,20B(詳細には、後述する受電部22)に対して磁界を用いた電力伝送を行うものである。具体的には、送電部12は、給電面S1から電子機器20A,20Bへ向けて磁界(磁束)を放射する機能を有している。

高周波電力生成回路13は、例えば給電装置10の外部の電力供給源9から供給される電力を用いて、電力伝送を行うための所定の高周波電力(交流信号)を生成する回路である。

検波回路14は、後述する負荷変調回路29による変調信号を検波(復調)する機能を有し、検波結果を制御回路16に供給するための回路である。

インピーダンス整合回路15は、電力伝送を行う際のインピーダンス整合を行う回路である。これにより、電力伝送の際の効率(伝送効率)が向上するようになっている。なお、送電コイルL1や後述する受電コイルL2、共振用コンデンサC1,C2等の構成次第では、このインピーダンス整合回路15を設けないようにしてもよい。また、伝送効率が低下しても構わないのであれば、このインピーダンス整合回路15は設けないようにしてもよい。

共振用コンデンサC1は、送電部12の送電コイルL1とともにLC共振器(共振回路)を構成するための容量素子であり、送電コイルL1に対して、電気的に直接、並列、もしくは直列と並列とを組み合わせた接続となるように配置されている。この送電コイルL1と共振用コンデンサC1とからなるLC共振器により、高周波電力生成回路13において生成された高周波電力と略同一もしくは近傍の周波数からなる共振周波数f1(第1の共振周波数)による共振動作がなされるようになっている。また、そのような共振周波数f1となるように、共振用コンデンサC1の容量値が設定されている。

ただし、送電コイルL1内における線間容量や、送電コイルL1と後述する受電コイルL2との間の容量等から構成される寄生容量成分(浮遊容量成分)を用いた共振動作によって、上記の共振周波数f1が実現されるのであれば、この共振用コンデンサC1を設けないようにしてもよい。また、伝送効率が低下しても構わないのであれば、同様にこの共振用コンデンサC1を設けないようにしてもよい。

制御回路16は、検波回路14の検出結果を受けて、高周波電力生成回路13もしくはインピーダンス整合回路15、共振用コンデンサC1、送電部12などを制御するための回路である。
例えば、電子機器20A,20B内の後述する異物検知装置31によって、送電部12と受電部22との間に異物金属があることが検知された場合を想定する。このとき、電子機器20A,20B内の同じく後述する負荷変調回路29において負荷変調を行うことによって、検波回路14の検波結果が変化する。そのため、異物金属があることを送電装置11側の制御回路16で認識でき、制御回路16の制御により電力伝送を制限もしくは停止することが可能となる。一方、制御回路16では、検波回路14の検波結果を受けて、高周波電力生成回路13のパルス幅変調制御(PWM制御)や、インピーダンス整合回路15、共振用コンデンサC1及び送電部12などのスイッチング制御などを行う。制御回路16のこのような制御により高い伝送効率(給電効率)の維持を自動制御することも可能である。

(電子機器の構成例)
電子機器20A,20Bは、例えば、テレビジョン受像機に代表される据え置き型電子機器や、携帯電話機やデジタルカメラに代表される、充電池(バッテリ)を含む携帯型の電子機器等が適用される。電子機器20Aと電子機器20Bは、給電に関して同様の機能を備えており、以降の説明では、代表して電子機器20Aについて説明する。

この電子機器20Aは、例えば図3に示したように、受電装置21と、この受電装置21から供給される電力に基づいて所定の動作(電子機器としての機能を発揮させる動作)を行う負荷27とを備えている。また、電子機器20Aは、送電部12と受電部22との間(間隙内)での異物金属の有無を検知するための、異物検知装置31も備えている。

以下、受電装置21について説明する。
受電装置21は、例えば受電部22、共振用コンデンサ(容量素子)C2、インピーダンス整合回路23、整流回路24、電圧安定化回路25、制御回路26及びバッテリ28を有している。本例の受電装置21は、負荷変調回路29及び制御回路26を備えることにより、非接触給電システム100が負荷変調を利用して片方向通信を行うことができるブロック構成としている。ただし、負荷変調以外の手段での片方向通信、もしくは双方向通信を考える場合には、その限りではない。

受電部22は、後述する受電コイル(2次側コイル)L2を含んで構成されている。受電部22は、この受電コイルL2及び共振用コンデンサC2を利用して、給電装置10内の送電部12から伝送された電力を受け取る機能を有している。

共振用コンデンサC2は、受電部22の受電コイルL2とともにLC共振器(共振回路)を構成するための容量素子であり、受電コイルL2に対して、電気的に直接、並列、もしくは直列と並列とを組み合わせた接続となるように配置されている。この受電コイルL2と共振用コンデンサC2とからなるLC共振器により、送電装置11の高周波電力生成回路13において生成された高周波電力と略同一もしくは近傍の周波数からなる共振周波数f2による共振動作がなされるようになっている。すなわち、送電コイルL1と共振用コンデンサC1とからなる送電装置11内のLC共振器と、受電コイルL2と共振用コンデンサC2とからなる受電装置21内のLC共振器とは、互いに略同一の共振周波数(f1≒f2)で共振動作を行うようになっている。また、そのような共振周波数f2となるように、共振用コンデンサC2の容量値が設定されている。

ただし、受電コイルL2内における線間容量や、送電コイルL1と受電コイルL2との間の容量等から構成される寄生容量成分を用いた共振動作によって、上記の共振周波数f2が実現されるのであれば、この共振用コンデンサC2もまた設けないようにしてもよい。また、伝送効率が低下しても構わないのであれば、共振周波数f2と共振周波数f1とが互いに異なっていたり(f2≠f1)、この共振用コンデンサC2を設けないようにしていたりしてもよい。

インピーダンス整合回路23は、上記した送電装置11のインピーダンス整合回路15と同様に、電力伝送を行う際のインピーダンス整合を行う回路である。なお、送電コイルL1や後述する受電コイルL2、共振用コンデンサC1,C2等の構成次第では、このインピーダンス整合回路23も設けないようにしてもよい。また、伝送効率が低下しても構わないのであれば、同様にこのインピーダンス整合回路23も設けないようにしてもよい。

整流回路24は、受電部22から供給された電力(交流電力)を整流し、直流電力を生成する回路である。なお、整流後の電力を平滑化させるために平滑回路(図示せず)を、整流回路24と後述する電圧安定化回路25との間に設ける場合が多い。

電圧安定化回路25は、整流回路24から供給される直流電力に基づいて所定の電圧安定化動作を行い、バッテリ28や負荷27内のバッテリ(図示せず)に対して充電を行うための回路である。

バッテリ28は、電圧安定化回路25による充電に応じて電力を貯蔵するものであり、例えばリチウムイオン電池等の充電池(2次電池)を用いて構成されている。なお、負荷27内のバッテリのみを用いる場合等には、このバッテリ28は必ずしも設けられていなくともよい。

負荷変調回路29は、負荷変調をかけるための回路であり、この負荷変調による電力状態の変化は送電装置11内の検波回路14で検出することができる。すなわち、この負荷変調回路29や後述する制御回路26があれば、電子機器20A内に特別な通信装置を設けなくても、受電装置21側の情報を送電装置11側に伝達することが可能となる。

制御回路26は、バッテリ28や負荷27内のバッテリ(図示せず)に対する充電動作の制御を行うための回路である。また、負荷変調回路29での負荷変調を制御するための回路でもあり、この負荷変調による電力状態の変化が送電装置11内の検波回路14で検出されることによって、異物金属が検知されたことを送電装置11側で認識できるように制御を行う。さらに、制御回路26では、電子機器20A内の後述する異物検知装置31が、送電部12と受電部22との間に異物金属があることを検知した場合、充電制御を行うことで、その電子機器20A内の受電装置21への電力伝送を制限もしくは停止させることも可能である。

以下、異物検知装置31について説明する。
異物検知装置31は、例えば検知コイルL3、共振用コンデンサC3、異物検知回路32及び制御回路33を有している。一例として、異物検知回路32と制御回路33により検知部を構成する。

検知コイルL3は、送電コイルL1及び受電コイルL2とは別に設けた、異物金属を検出するための磁気結合素子の一例である。

共振用コンデンサC3は、検知コイルL3に対して電気的に直列となるような構成で接続されたコンデンサ(図4A参照)、もしくは、検知コイルL3に対して電気的に直列と並列を組み合わせたような構成となるように接続されたコンデンサ(共振用コンデンサC3−1,C3−2)(図4B,4C参照)である。検知コイルL3は、この共振用コンデンサC3を接続することで、所定の周波数f3で共振(LC共振)する。

なお、LC共振器(共振回路)のQ値を後述するように電圧比から算出する場合、共振用コンデンサC3は検知コイルL3に対して少なくとも1つ直列に接続する必要がある(図4A,4B,4C参照)。しかし、半値幅法など電圧比以外の手段でLC共振器のQ値を算出する場合、共振用コンデンサC3を検知コイルL3に対して電気的に並列となるような構成(図示せず)で接続していても構わない。

異物検知回路32は、検知コイルL3のQ値、もしくは検知コイルL3及び共振用コンデンサC3によって構成されるLC共振器のQ値を測定するための回路である。なお、検知コイルL3で生じる不要雑音を低減させるために、送電コイルL1及び受電コイルL2に流れる交流信号の周波数(f1,f2;f1≒f2)とは異なる周波数(f3;f3≠f1,f3≠f2)の交流信号を用いて、Q値を測定するのが望ましい場合もあるが、その限りではない。
検知コイルL3のQ値、もしくは検知コイルL3及び共振用コンデンサC3によって構成されるLC共振器のQ値は、例えば、既述したように図4A,4B,4Cに示す2箇所の電圧値(電圧値V1及び電圧値V2)を異物検知回路32で測定することで、その比(V2/V1)から算出できる。
また、インピーダンスやアドミタンスなどに関する周波数特性を異物検知回路32で測定できれば、周波数特性がピークとなるピーク周波数と、そのピーク値が半分になる周波数の幅(半値幅)の比(ピーク周波数/半値幅)からも、検知コイルL3やLC共振器のQ値が算出可能である。
さらに、共振回路のインピーダンスの実部成分と虚部成分との比からQ値を計算することもできる。インピーダンスの実部成分と虚部成分は、一例として、自動平衡ブリッジ回路及びベクトル比検出器を用いて求めることができる。
そして、異物検知回路32は、共振回路を構成するコンデンサのC値、共振回路の共振周波数、磁気結合素子(共振回路)のQ値から、磁気結合素子もしくは該磁気結合素子を少なくとも含む共振回路の共振周波数における実効抵抗値(R値)を計算により得る。

制御回路33は、異物検知回路32を制御するとともに、異物検知回路32での測定結果から、送電部12と受電部22との間(間隙内)での異物金属の有無を判別するための回路である。また、その判別結果を、受電装置21の制御回路26に伝えるための回路でもある。例えば、制御回路33は、測定したQ値に基づいて計算した共振回路のR値と予めメモリ(図示略)に保存された閾値とを比較し、R値と閾値が所定の関係にある場合に検知コイルの近くに異物金属が存在すると判定する。

なお、本実施の形態で用いられる送電部12は、少なくとも1つ(ここでは1つ)の送電コイルL1を有し、受電部22は、少なくとも1つ(ここでは1つ)の受電コイルL2を有している。これらの送電コイルL1と受電コイルL2とは、互いに磁気結合することが可能となっている。なお、送電部12や受電部22が、これらの送電コイルL1や受電コイルL2以外に、1つ又は複数のコイル、もしくはコイルとコンデンサとで構成される1つ又は複数のLC共振器を有しているようにしてもよい。

これらのコイル(送電コイルL1及び受電コイルL2等)としては、導電性の線材(材料)を複数回巻いたような形状の開放コイル(導電性コイル)には限られない。例えば、導電性の線材を1回巻いたような形状の開放ループ(導電性ループ)であってもよい。
なお、これらの導電性コイルや導電性ループには、導電性の線材を巻回したコイル(巻き線コイル)やループ(巻き線ループ)、プリント基板(プリント配線板)やフレキシブルプリント基板(フレキシブルプリント配線板)などに導電性のパターンで構成したコイル(パターンコイル)やループ(パターンループ)などが用いられる。また、これらのパターンコイル及びパターンループは、導電性材料を印刷もしくは蒸着したものや、導電性の板金やシート等を加工したものなどでも構成可能である。

(非接触給電システムの動作例)
この非接触給電システム100では、給電装置10において、高周波電力生成回路13が送電部12内の送電コイルL1及び共振用コンデンサC1(LC共振器)に対して、電力伝送を行うための所定の高周波電力(交流信号)を供給する。これにより、送電部12内の送電コイルL1において磁界(磁束)が発生する。このとき、給電装置10の上面(給電面S1)に、給電対象(充電対象)としての電子機器20Aが置かれる(又は近接する)と、給電装置10内の送電コイルL1と電子機器20A内の受電コイルL2とが、給電面S1付近にて近接する。

このように、磁界(磁束)を発生している送電コイルL1に近接して受電コイルL2が配置されると、送電コイルL1から発生されている磁束に誘起されて、受電コイルL2に起電力が生じる。換言すると、電磁誘導又は磁界共鳴により、送電コイルL1及び受電コイルL2のそれぞれに鎖交して磁界が発生する。これにより、送電コイルL1側(1次側、給電装置10側、送電部12側)から受電コイルL2側(2次側、電子機器20A側、受電部22側)に対して、電力伝送がなされる(図3中の非接触給電P1)。このとき、給電装置10側では、送電コイルL1と共振用コンデンサC1とを用いた共振動作(共振周波数f1)が行われると共に、電子機器20A側では、受電コイルL2と共振用コンデンサC2とを用いた共振動作(共振周波数f2≒f1)が行われる。

すると、電子機器20Aでは、受電コイルL2において受け取った交流電力が整流回路24及び電圧安定化回路25へ供給され、以下の充電動作がなされる。すなわち、この交流電力が整流回路24によって所定の直流電力に変換された後、電圧安定化回路25によってこの直流電力に基づく電圧安定化動作がなされ、バッテリ28又は負荷27内のバッテリ(図示せず)への充電がなされる。このようにして、電子機器20Aにおいて、受電部22において受け取った電力に基づく充電動作がなされる。

すなわち、本実施形態では、電子機器20Aの充電に際し、例えばACアダプタ等への端子接続が不要であり、給電装置10の給電面S1上に置く(近接させる)だけで、容易に充電を開始させることができる(非接触給電がなされる)。これは、ユーザにおける負担軽減に繋がる。

一方、電子機器20Aの異物検知装置31では、送電コイルL1及び受電コイルL2に流れる交流信号の周波数(f1,f2)とは異なる周波数(f3;f3≠f1,f3≠f2)の交流信号を用いて、検知コイルL3、もしくは検知コイルL3及び共振用コンデンサC3で構成されるLC共振器のQ値の測定及びR値の計算を行う。また、異物検知装置31は、このR値の変化から、送電部12と受電部22との間(間隙内)での異物金属の有無を判別できる。

そして、負荷変調などの通信手段によって、電子機器20A内の受電装置21から給電装置10内の送電装置11へ、異物検知装置31による異物金属の有無の判別結果を伝達する。

更に、送電部12と受電部22との間(間隙内)に異物金属があることを異物検知装置31が検知した場合、送電装置11内の制御回路16や受電装置21内の制御回路26などによって、電力伝送を制限もしくは停止するための制御を行う。その結果、異物金属の発熱もしくは発火や、非接触給電システムの誤動作や破損などを未然に防ぐことができる。

[5.測定データ(1)](検知コイルL3の場合)
異物金属の有無による検知コイルの電気特性(Q値、R値)の変化を測定した。以下、その測定結果について説明する。

図5A,図5Bは、送電コイルL1や受電コイルL2とは異なる磁気結合素子(検知コイルL3)を用いて異物検知を行う場合の、異物金属の有無による検知コイルL3の電気特性(Q値、R値)の変化に関する測定結果の一例を示している。図5Aは、上述した電気特性がQ値である場合の一例であり、図5Bは、上述した電気特性がR値である場合の一例である。
なお、図5A,図5Bでは、検知コイルL3と異物金属との距離を変えた場合の比較を行っている。また、2次側機器のみの場合の検知コイルL3の電気特性(破線で表示)、2次側機器を1次側機器上に配置した場合の検知コイルL3の電気特性(丸と実線で表示)、2次側機器と1次側機器との間に異物金属を配置した場合の検知コイルL3の電気特性(三角形と破線で表示)の比較も行っている。それぞれの横軸は検知コイルL3と異物金属との距離[mm]、縦軸は検知コイルL3のQ値変化[%]を表す。

図6に示すように、検知コイルL3と異物金属(異物金属43)との距離は、検知コイルL3と2次側機器の筐体とのy軸方向に沿う距離Yを変更することにより調整した。なお、図5A,図5BにおけるMim及びMaxはそれぞれ、距離Yにおいて、受電コイルL2に対する異物金属の配設位置を所定の範囲内でx軸方向に変化させた場合に得られた測定値の最小値および最大値を意味する。

図5A,図5Bに示すように、2次側機器のみの場合の検知コイルL3の電気特性(Q値、R値)を100%とすると、2次側機器を1次側機器上に配置する場合には、検知コイルL3のR値が100%以上に増大(悪化)し、検知コイルL3のQ値が100%以下に低下(悪化)する。これは、検知コイルL3が、1次側機器の内部や周辺に配設された金属や磁性材、磁石などの影響を受けるためである。
また、2次側機器と1次側機器との間に異物金属を配置する場合には、検知コイルL3のR値がさらに増大(悪化)し、検知コイルL3のQ値がさらに低下(悪化)する。これは、検知コイルL3が、1次側機器の内部や周辺に配設された金属や磁性材、磁石などに加えて、2次側機器と1次側機器との間に配置した異物金属の影響も受けるためである。

一方、2次側機器を1次側機器上に配置した場合の検知コイルL3の電気特性と、2次側機器と1次側機器との間に異物金属を配置した場合の検知コイルL3の電気特性との差分は、Q値よりもR値の方が大きいことが分かる。この差分が大きいほど、異物金属の検知精度が高まるが、Q値よりもR値の差分が大きいのは、上述の[R値測定の原理]で説明した通りである。
また、検知コイルL3と異物金属との距離が近いほど、さらにQ値よりもR値の差分が大きくなっていることが分かる。これは、検知コイルL3と異物金属との距離が近いと、検知コイルL3と1次側機器の内部や周辺に配設された金属や磁性材、磁石などとの距離も近くなるためである。すなわち、1次側機器の内部や周辺に配設された金属や磁性材、磁石などの影響を受けやすくなるため、検知コイルL3のL値が大きく変化することとなり、検知コイルL3のQ値が異物金属の有無によって変化しにくくなったからである。
上述の[R値測定の原理]でも説明した通り、検知コイルL3のL値が大きく変化するような構成の場合には、Q値よりもR値に着目する方が異物金属の検知精度が高まる。

[6.測定データ(2)](受電コイルL2の場合)
異物金属の有無による受電コイルのQ値の変化を測定した。以下、その測定結果について説明する。

図7A,図7Bは、受電コイルL2を用いて異物検知を行う場合の、異物金属の有無による受電コイルL2のQ値の変化に関する測定結果の一例を示している。すなわち、受電コイルL2を検知コイルL3として用いる場合の一例である。
ただし、この場合には、受電装置21内に異物検知回路32や制御回路33などの異物検知機能(異物検知装置31)を追加する必要がある。なお、この場合には、非接触給電や異物検知を行う受電装置21以外にも異物検知装置31を設けていても構わないし、設けていなくても構わない。

ここで、図7Aは、1次側機器の内部に寸法の小さい金属および磁性材が使われている場合(緩い測定条件)の一例であり、図7Bは、1次側機器の内部に寸法の大きい金属、磁性材および磁石が使われている場合(厳しい測定条件)の一例である。
なお、図7A,図7Bでは、受電コイルL2に対する異物金属の配設位置を変えた場合の比較を行っている。また、2次側機器(電子機器)のみの場合の受電コイルL2の電気特性(破線で表示)、2次側機器を1次側機器上に配置した場合の受電コイルL2の電気特性(丸と実線で表示)、2次側機器と1次側機器との間に異物金属を配置した場合の受電コイルL2の電気特性の最大値(三角形と破線で表示)、同最小値(菱形と一点鎖線で表示)の比較も行っている。それぞれの横軸は受電コイルL2に対する異物金属の配設位置、縦軸は受電コイルL2のQ値変化[%]を表している。ここでは、受電コイルL2に対する異物金属の配設位置を、数mm〜数cmオーダーでずらしている。

図8に示すように、受電コイルL2に対する異物金属(異物金属43)の配設位置は、受電コイルL2の所定位置(例えばx軸方向中心又は重心)と異物金属43とのx軸方向に沿う距離Xを変更することにより調整した。

図7A,図7Bに示すように、2次側機器のみの場合の受電コイルL2のQ値に対して、2次側機器を1次側機器上に配置した場合には受電コイルL2のQ値が小さくなっており、2次側機器と1次側機器との間に異物金属を配置した場合には受電コイルL2のQ値が更に小さくなっていることが分かる。
また、1次側機器の内部に寸法の小さい金属、磁性材および磁石が使われている場合(緩い測定条件)と、1次側機器の内部に寸法の大きい金属、磁性材および磁石が使われている場合(厳しい測定条件)とで、2次側機器を1次側機器上に配置した際の受電コイルL2の実線で示したQ値の変化量(低下量)が大きく異なっていることが分かる。例えば、ある2次側器機器内部に異物検知装置31を設けるとして、その2次側器機器に対して非接触給電が可能な1次側機器が複数種類存在し、それら複数種類の1次側機器の内部や周辺に配設された金属や磁性材、磁石などが各々で大きく異なる場合には、異物金属の有無の判定に使用するQ値の基準値(閾値)の設定が非常に困難になる。
また、複数の種類の1次側機器に対応した非接触給電および異物検知のシステムを構築する場合には、Q値の基準値(閾値)を甘く設定する必要があるため、異物金属の検知精度が著しく低下する可能性が高い。
さらに、Q値の基準値(閾値)設定の際に想定外としていた種類の1次側機器や、将来に登場する新たな種類の1次側機器などでは互換性がとれずに、非接触給電および異物検知のシステム自体が破綻してしまう可能性がある。

次に、異物金属の有無による受電コイルのR値の変化を測定した。以下、その測定結果について説明する。

図9A,図9Bは、受電コイルL2を用いて異物検知を行う場合の、異物金属の有無による受電コイルL2のR値の変化に関する測定結果の一例を示している。
ここで、図9Aは、1次側機器の内部に寸法の小さい金属および磁性材が使われている場合(緩い測定条件)の一例であり、図9Bは、1次側機器の内部に寸法の大きい金属、磁性材および磁石が使われている場合(厳しい測定条件)の一例である。

図9A,図9Bに示すように、2次側機器のみの場合の受電コイルL2のR値に対して、2次側機器を1次側機器上に配置した場合には受電コイルL2のR値が小さくなっており、2次側機器と1次側機器との間に異物金属を配置した場合には受電コイルL2のR値が極めて大きくなっていることが分かる。
また、1次側機器の内部に寸法の小さい金属、磁性材および磁石が使われている場合(緩い測定条件)と、1次側機器の内部に寸法の大きい金属、磁性材および磁石が使われている場合(厳しい測定条件)とで、2次側機器を1次側機器上に配置した際の受電コイルL2の実線で示したR値の変化量(低下量)が大きく異なっていないことが分かる。このように、R値の変化量に着目した異物検知システムを構築する場合には、異物金属の有無の判定に必要なR値の基準値(閾値)の設定が容易であることが分かる。例えば、2次側機器のみの場合(磁束により発熱しうる異物が周囲にない状態)の受電コイルL2(又は共振回路)のR値を、異物金属の有無の判定に必要な基準値(閾値)に設定すればよいだけなので、極めて容易である。

以上のように、R値の変化量に着目した異物検知システムでは、Q値の変化量に着目した異物検知システムよりも、異物金属の検知精度が高いことと、異物金属の有無の判定に必要な基準値(閾値)の設定が容易であることなどの利点が得られる。

なお、上述の[測定データ(2)]では、受電コイルL2を用いて異物検知を行う場合についてのみ説明したが、送電コイルL1を用いて異物検知を行う場合も当然想定される。

[7.変形例]
一般的に、非接触給電システムでは、異物金属の検知精度を上げるために、異物検知処理を実行中は給電装置からの給電を停止することが多い。この間、給電装置から電力が得られないので、受電側の電子機器に異物検知装置を搭載する場合、共振回路のQ値等を測定するための回路を稼働させる大型のバッテリを備えている。しかし、大型のバッテリを備えると、電子機器の製品寿命に影響を与える、電子機器の小型化が難しくなる、バッテリの充電容量が空になったときすぐに充電できず異物検知を行えない、などの不都合が考えられる。本変形例では、大型のバッテリを搭載しないバッテリレスの電子機器(受電装置)について説明する。

図10は、本開示の一実施形態に係る非接触給電システムの変形例を示すブロック図である。
図10に示す非接触給電システム100Aは、上述した非接触給電システム100と比較して、受電装置21Aにコンデンサ51(蓄電部の一例)とスイッチ52(切替部の一例)を備える点が異なる。図10に示す例では、コンデンサ51の一端が整流回路24と電圧安定化回路25との接続中点に接続され、その他端がスイッチ52を介して接地されている。なお、受電装置21Aがバッテリ28を備えているが、コンデンサ51を備えているのでバッテリ28は勿論なくてもよい。

スイッチ52は、例えば給電装置10からの給電が開始されるとオンし、給電が停止後も一定期間オンした後にオフする。スイッチ52のオン/オフの動作は、例えば制御回路26により制御される。このスイッチ52の動作により、給電開始後にコンデンサ51に電力が充電され、給電停止後は、コンデンサ51から放電される電力を利用して異物検知装置31の異物検知処理等が行われる。このスイッチ52には、例えばトランジスタやMOSFET等のスイッチング素子が適用される。本例ではMOSFETを用いている。

図11は、非接触給電システム100Aの給電時における処理を示すフローチャートである。
まず給電装置10(1次側)を起動し、電子機器20A(2次側)を給電装置10の近くに置くと、給電装置10と電子機器20Aの間でネゴシエーションを行う。給電装置10と電子機器20Aが相互に認識した後に給電を開始する。電子機器20Aの異物検知装置31は、給電開始に際してQ値測定及びR値計算を行うが、そのQ値測定の回数が初回であるか否かを判定する(ステップS1)。

一例として、給電装置10又は電子機器20Aの電源が入った直後であれば、各々の装置は、初回のQ値測定であると判定する。あるいは、ネゴシエーションの結果、給電装置10は、電子機器20AのID情報(識別情報)から当該電子機器20Aが初めての通信相手であるとき、初回のQ値測定であると判定する。または、給電装置10は、ネゴシエーション時に、電子機器20Aが計算したQ値測定回数の結果を当該電子機器20Aから受信し、Q値測定の回数を把握するようにしてもよい。

さらに他の例として、前回のQ値測定からの経過時間により判断するようにしてもよい。給電装置10(及び電子機器20A)は、図示しない時計部を有し、Q値測定を行ったとき、測定したQ値を測定時刻と対応づけて図示しないメモリへ記憶する。そして、前回のQ値測定時刻と今回のQ値測定時刻を比較して、所定値を超える時間差があれば初回のQ値測定であると判断する。Q値測定回数は、例えば周波数スイープを伴うQ値測定を初回とし、これを基準に回数を計算する。なお、前回のQ値測定時に時計部のタイマー機能を起動し、タイマーの経過時間を元に判断するようにしてもよい。

そして、初回のQ値測定である場合は、電子機器20Aの異物検知装置31は、内部で生成する測定用のテスト信号(正弦波)に複数の周波数を用い(スイープ測定)、得られた共振回路の複数のQ値のうち最も大きいQ値を得る(ステップS2)。Q値が最も大きいときのテスト信号の周波数をメモリに保存しておく。

Q値を測定するためには共振回路の共振周波数の正弦波を電子機器20Aの該当共振回路へ入力する必要がある。しかし、電子機器20Aの部品品質のばらつきや、実装時のコイルと装置内金属(例えば筐体)との位置関係のばらつき、検知コイルL3の周りの環境、異物金属の混入等によっても共振周波数は変化する。そのため共振周波数のずれを考慮し、ある程度の適切なレンジ(測定範囲)で異なる複数の周波数を用いて測定(周波数スイープ)することにより、共振周波数を探すことが望ましい。

この周波数スイープに関しては、非接触給電システム100A全体で考えると、初回のQ値測定では必ず必要であるが、2回目以降は省くことも可能である。2回目以降のQ値測定において周波数スイープを省略できる例としては、給電装置10と電子機器20Aの位置関係が、初回のQ値測定時と大きく変化していない場合がある。

一方、ステップS1の判定処理において初回のQ値測定ではない場合、電子機器20Aの異物検知装置31は、1回目のQ値測定で求められた周波数のテスト信号を用いてQ値を得る(ステップS3)。

電子機器20Aの異物検知装置31は、Q値に基づいて異物金属が存在する可能性があるか否かを判定する(ステップS4)。異物金属が存在する可能性がない場合はステップS6へ進む。

一方、ステップS4の判定処理で異物金属が存在する可能性がある場合は、ステップS2へ進み、電子機器20Aの異物検知装置31は、テスト信号の周波数スイープを行い、複数のQ値のうち最も大きなQ値を得る。

ステップS2の処理が終了後、電子機器20Aの異物検知装置31は、計算により得られたQ値に基づいて異物金属の有無を判定する(ステップS5)。異物金属がある場合は、終了処理ということで給電の強制終了やユーザへの警告を行う。給電の強制処理としては、給電装置10が送電を停止するか、あるいは給電装置10が送電を行ったとしても電子機器20Aが受電を停止する方法がある。

上述したステップS2〜S5におけるQ値測定は、蓄電部(キャパシタ35)に充電した電力を利用して行う。例えば周波数スイープの場合、一周波数のテスト信号についてQ値(すなわち電圧V1,V2)を測定できるだけの電荷をキャパシタ35に充電した後に、Q値測定を行い、再度充電を行い、次の周波数のテスト信号についてQ値を測定することを繰り返す。

そして、ステップS5において異物金属がない場合は、給電装置10から電子機器20Aへ所定の時間の給電を行う(ステップS6)。

最後に、電子機器20Aは、図示しないバッテリ等(負荷)が満充電されたか否かを判定し、その結果を給電装置10へ通信する(ステップS7)。満充電された場合は、充電処理を終了し、満充電されていない場合は、ステップS1へ移行して上記処理を繰り返す。なお、満充電か否かの判定及び通信は、給電中に行ってもよい。

このように、初回のQ値測定のみ周波数スイープを行い、2回目以降は初回で最適とされた周波数のテスト信号のみでQ値測定を行えばよい。ただし、2回目以降で異物金属が存在する可能性があるという判定がなされた場合に、1次側コイルと2次側コイルの位置関係が変化したことによる周波数ずれの可能性があるため、再度周波数をスイープして判定を行う。周波数をスイープしても異物金属があると判定された場合は、給電の強制終了やユーザへの警告を行う。この手法によりQ値測定の時間を大幅に減らすことができる。

異物検知装置31の消費電流がある程度小さい、かつQ値測定及びR値計算の時間が短ければ、給電装置10からの給電を止めている間にQ値を測定することは可能である。なお、給電装置10から出力する磁界(磁束)を止める際(Q値測定時)には、受電装置21Aから確実に負荷27を電気的に切り離すことが望ましい。例えば負荷27との間にスイッチを設け、受電装置21Aに磁界(磁束)が供給されるとオフするようにする。それ以外のコンデンサ51に充電しているときや、外部と通信を行っているときは、受電装置21Aから負荷を切り離さなくてもよい。

Q値測定の際には、異物検知装置31は、給電が停止したタイミングで、検知コイルL3と共振用コンデンサC3で構成される共振回路にテスト信号を供給し、共振用コンデンサC3の一端及び他端に検出される2つの電圧波形(電圧V1,V2)より共振回路のQ値を測定する。測定したQ値からR値を求め、予め設定した閾値と比較することにより、異物金属の検知を行う。

本例の受電装置21Aは、Q値を測定する都度、コンデンサ51を充電し、その電力で異物検知装置31を駆動することによって、1次側から2次側に給電が行われない場合に、2次側のバッテリを利用しなくても、Q値測定及びR値計算を行うことができる。したがって、2次側に異物金属検知のための大型のバッテリやその電力を制御するための複雑な回路を必要とせず、携帯機器等の電子機器の小型化や軽量化、コスト削減が期待できる。

[8.その他]
上述した実施形態では、検知コイルを含む異物検知装置が、2次側機器(給電対象機器)としての電子機器内に配設されている場合について説明した。ただし、この場合には限られず、検知コイルを含む異物検知装置が、1次側機器としての給電装置内に配設されているようにしてもよい。このような場合には、上記第1の実施形態で説明した受電コイルを送電コイルに、送電コイルを受電コイルに置き換えて考えればよい。また、検知コイルを含む異物検知装置は、1次側機器内および2次側機器内の両方に配設されていてもよい。

さらに、検知コイルを含む異物検知装置が、1次側機器および2次側機器とは別体である他の装置内に配設されているようにしてもよい。すなわち、上記各実施形態等で説明した検知コイルを含む異物検知装置は、1次側機器内、給電対象機器としての2次側機器内、及びこれらの1次側機器及び2次側機器とは別体である他の装置内のうちの少なくとも1つに設けられているようにすればよい。

また、上記各実施形態では、送電コイル及び受電コイルを1つずつ配設する場合についてのみ説明したが、そのような場合には限られず、例えば、送電コイルもしくは受電コイルを複数(2つ以上)配設するようにしてもよい。

加えて、上述したLC共振器(共振回路)以外にも、他のLC共振器(共振回路)が非接触給電システム(非接触給電機能や異物検知機能)で使われていてもよい。

また、上記各実施形態において、各コイル(送電コイル、受電コイル、検知コイル)にスパイラル形状(平面形状)もしくは厚み方向に巻線が巻回しているヘリカル形状のコイルを適用できるが、この例に限られない。例えばスパイラル形状のコイルを2層で折り返すように配置するα巻き形状や、更なる多層のスパイラル形状などによって、各コイルを構成してもよい。

また、送電コイルや受電コイルを、8の字形状、田の字形状、格子型形状などのような磁束漏れを小さくできる形状のコイルにより構成してもよい。

また、検知コイルを送電コイルもしくは受電コイルなどと一体化させて、送電コイルや受電コイルなどの非接触給電用コイルを検知コイルとして併用してもよい。加えて、誘導加熱用コイルや無線通信用コイルなどの、非接触給電以外の用途に使われるコイルを検知コイルとして併用してもよい。
すなわち、上記各実施形態では、磁気結合素子を検知コイルとした場合の例を用いて説明したが、この例に限られるものではない。例えば、この磁気結合素子が、非接触給電用のコイル(送電コイル,受電コイル)、誘導加熱用コイル、無線通信用コイルなどであり、これらのコイルが異物検知の用途も兼ねて使われている場合も想定される。

また、送電装置の送電部内、受電装置の受電部内及び検知コイル周辺には、不要な磁束(磁力線,磁界)漏れを防ぐことや伝送効率(給電効率)を向上させることなどを目的として、磁性材料や金属材料などを配設していてもよい。

また、各共振用コンデンサ(特に、異物検知装置内の共振用コンデンサ)としては、固定の静電容量値を用いる場合には限られず、静電容量値が可変にできるような構成(例えば、スイッチ等によって、複数の容量素子の接続経路を切り替える構成等)としてもよい。そのような構成とした場合、静電容量値の調整によって、共振周波数の制御(最適化)を行うことが可能となる。

加えて、上記各実施形態等では、給電装置及び電子機器等の各構成要素を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。例えば、給電装置(送電装置)や電子機器(受電装置)内に、通信機能や何かしらの検出機能、制御機能、表示機能、2次側機器を認証する機能、2次側機器が1次側機器上にあることを判別する機能、本開示とは別の手段で異物金属などの混入を検知する機能、などを搭載するようにしてもよい。

また、上記各実施形態等では、通信機能として負荷変調を用いる場合を例に挙げて説明したが、この場合には限られない。例えば、通信機能として負荷変調以外の変調方式を用いても構わないし、無線通信用アンテナや無線通信用コイルなどを設けて、変調方式以外の手法で通信を行っても構わない。一方、非接触給電機能(送電装置及び受電装置)及び異物検知機能(異物検知装置)の構成次第では、通信機能自体を設けないようにしてもよい。同様に、上記各実施形態等で説明に用いた、各種の構成要素(部位、部品、回路など)は、非接触給電機能(送電装置及び受電装置)及び異物検知機能(異物検知装置)の構成次第では、それらの一部を設けないようにしてもよい。

また、上記各実施形態等では、非接触給電システム内に複数(2つ)の電子機器が設けられている場合を例に挙げて説明したが、この例には限られず、非接触給電システム内に1つ又は3以上の電子機器が設けられていてもよい。

さらに、上記各実施形態等では、給電装置の一例として、携帯電話機等の小型の電子機器(CE機器)向けの充電トレーを例に挙げて説明したが、給電装置はそのような家庭用の充電トレーには限定されず、様々な電子機器の充電器として適用可能である。また、必ずしも給電装置は、トレー型である必要はなく、例えば、いわゆるクレードル等の電子機器用のスタンドであってもよい。

また、上記実施形態では、給電対象機器の一例として電子機器を挙げて説明したが、これには限られず、電子機器以外の給電対象機器(例えば、電気自動車等の車両など)であってもよい。例えば、給電対象機器を電気自動車とした場合、電気自動車に搭載の検知コイルと給電装置との間に存在する、泥等に混じって車体に付着した異物金属を検知できる。

なお、本開示は以下のような構成も取ることができる。
(1)
1又は複数のコイルで構成される1又は複数の磁気結合素子と、
前記磁気結合素子の実効抵抗値、もしくは前記磁気結合素子を少なくとも含む回路の実効抵抗値を測定又は計算し、前記実効抵抗値の変化から、異物の有無を判定する検知部と、を備える
検知装置。
(2)
前記磁気結合素子を少なくとも含む回路が、共振回路である
前記(1)に記載の検知装置。
(3)
前記実効抵抗値は、少なくとも前記共振回路の共振周波数付近における実効抵抗値である
前記(2)に記載の検知装置。
(4)
前記実効抵抗値が、前記共振回路のQ値と前記共振回路の共振周波数との少なくともいずれかの、測定結果又は計算結果を少なくとも利用して測定又は計算される
前記(3)に記載の検知装置。
(5)
前記1又は複数の磁気結合素子の周囲に前記異物がない状態の、前記磁気結合素子の実効抵抗値、もしくは前記磁気結合素子を少なくとも含む共振回路の実効抵抗値を、前記異物の有無の判定に用いられる閾値に設定する
前記(3)又は(4)に記載の検知装置。
(6)
前記Q値と前記共振周波数の少なくともいずれかが、前記磁気結合素子もしくは前記共振回路に流れる高周波電力の、電圧振幅の測定結果又は計算結果を少なくとも利用して測定又は計算される
前記(4)又は(5)に記載の検知装置。
(7)
前記実効抵抗値が、前記共振回路のQ値および前記共振回路の共振周波数の、測定結果又は計算結果を少なくとも利用して測定又は計算される
前記(6)に記載の検知装置。
(8)
前記実効抵抗値が、前記磁気結合素子に流れる高周波電力、もしくは前記磁気結合素子を少なくとも含む回路に流れる高周波電力の、電圧振幅の測定結果又は計算結果を少なくとも利用して測定又は計算される
前記(1)に記載の検知装置。
(9)
前記実効抵抗値が、前記磁気結合素子に流れる高周波電力、もしくは前記磁気結合素子を少なくとも含む回路に流れる高周波電力の、電圧振幅、電圧位相、電流振幅、電流位相のうちの少なくとも2つ以上の測定結果又は計算結果を少なくとも利用して測定又は計算される
前記(8)に記載の検知装置。
(10)
前記磁気結合素子が、給電元との非接触給電に用いられる受電コイルと、給電先との非接触給電に用いられる送電コイルと、前記受電コイルおよび前記送電コイルとは異なるコイルのうちの、少なくともいずれかである
前記(1)に記載の検知装置。
(11)
前記磁気結合素子が、給電元との非接触給電に用いられる受電コイルと、給電先との非接触給電に用いられる送電コイルの少なくともいずれかである
前記(10)に記載の検知装置。
(12)
給電元との非接触給電に用いられる受電コイルと、
1又は複数のコイルで構成される1又は複数の磁気結合素子と、
前記磁気結合素子の実効抵抗値、もしくは前記磁気結合素子を少なくとも含む回路の実効抵抗値を測定又は計算し、前記実効抵抗値の変化から、異物の有無を判定する検知部と、を備える
受電装置。
(13)
給電先との非接触給電に用いられる送電コイルと、
1又は複数のコイルで構成される1又は複数の磁気結合素子と、
前記磁気結合素子の実効抵抗値、もしくは前記磁気結合素子を少なくとも含む回路の実効抵抗値を測定又は計算し、前記実効抵抗値の変化から、異物の有無を判定する検知部と、を備える
送電装置。
(14)
給電先との非接触給電に用いられる送電装置と、該送電装置からの電力を非接触で受電する受電装置を含んで構成され、
前記送電装置又は前記受電装置の少なくともいずれかにおいて、
1又は複数のコイルで構成される1又は複数の磁気結合素子と、
前記磁気結合素子の実効抵抗値、もしくは前記磁気結合素子を少なくとも含む回路の実効抵抗値を測定又は計算し、前記実効抵抗値の変化から、異物の有無を判定する検知部と、を備える
非接触給電システム。

なお、上述した各実施形態例における一連の処理は、ハードウェアにより実行することができるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが専用のハードウェアに組み込まれているコンピュータ、又は、各種の機能を実行するためのプログラムをインストールしたコンピュータにより、実行可能である。例えば汎用のパーソナルコンピュータなどに所望のソフトウェアを構成するプログラムをインストールして実行させればよい。

また、上述した各実施形態の機能を実現するソフトウェアのプログラムコードを記録した記録媒体を、システムあるいは装置に供給してもよい。また、そのシステムあるいは装置のコンピュータ(又はCPU等の制御装置)が記録媒体に格納されたプログラムコードを読み出し実行することによっても、機能が実現されることは言うまでもない。

この場合のプログラムコードを供給するための記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

また、コンピュータが読み出したプログラムコードを実行することにより、上述した実施の形態の機能が実現される。加えて、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOSなどが実際の処理の一部又は全部を行う。その処理によって上述した実施の形態の機能が実現される場合も含まれる。

また、本明細書において、時系列的な処理を記述する処理ステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)をも含むものである。

以上、本開示は上述した各実施の形態に限定されるものではなく、特許請求の範囲に記載された要旨を逸脱しない限りにおいて、その他種々の変形例、応用例を取り得ることは勿論である。
すなわち、上述した各実施形態の例は、本開示の好適な具体例であるため、技術的に好ましい種々の限定が付されている。しかしながら、本開示の技術範囲は、各説明において特に本開示を限定する旨の記載がない限り、これらの形態に限られるものではない。例えば、以上の説明で挙げた使用材料とその使用量、処理時間、処理順序及び各パラメータの数値的条件等は好適例に過ぎず、また説明に用いた各図における寸法、形状及び配置関係も概略的なものである。

10…給電装置、 11…送電装置、 12…送電部、 20A,20B…電子機器、 21…受電装置、 22…受電部、 31…異物検知装置、 32…異物検知回路、 33…制御回路、 61…検知コイル部、 100…非接触給電システム、 L1…送電コイル、 L2…受電コイル、 L3…検知コイル、 C3…共振用コンデンサ

Claims (11)

  1. 1又は複数のコイルを有するように構成された1又は複数の磁気結合素子と、
    前記磁気結合素子を少なくとも含む回路の抵抗値を測定又は計算し、前記測定又は計算された値と閾値を比較することによって、磁気結合相手との間の異物の有無を判定する検知部と、を備え、
    前記閾値は、自装置に搭載された物質を除いて前記1又は複数の磁気結合素子の周囲に磁束により発熱し得る物質が存在しない状態における、前記磁気結合素子を少なくとも含む前記回路の抵抗値である
    検知装置。
  2. 前記磁気結合素子を少なくとも含む回路が、共振回路である
    請求項1に記載の検知装置。
  3. 前記回路の抵抗値は、少なくとも前記共振回路の共振周波数付近における抵抗値である
    請求項2に記載の検知装置。
  4. 前記回路の抵抗値は、実効抵抗値である
    請求項3に記載の検知装置。
  5. 前記実効抵抗値が、前記磁気結合素子のQ値の測定結果又は計算結果を少なくとも利用して測定又は計算される
    請求項4に記載の検知装置。
  6. 前記検知部は、給電開始に際して前記Q値の測定が初回であるか否かを判定し、
    初回のQ値測定でない場合には、初回のQ値測定で求められた周波数のテスト信号を用いて前記Q値を測定し、
    測定した前記Q値に基づく前記実効抵抗値により前記異物が存在する可能性があるか否かを判定し、
    前記異物が存在する可能性があると判定した場合には、前記テスト信号の周波数スイープを行って得られる複数の前記Q値のうち最も大きなQ値を取得し、その最も大きなQ値に基づく前記実効抵抗値により前記異物の有無を判定する
    請求項5に記載の検知装置。
  7. 前記実効抵抗値が、前記磁気結合素子に流れる高周波電力の、電圧振幅の測定結果又は計算結果を少なくとも利用して測定又は計算される
    請求項4に記載の検知装置。
  8. 前記検知部は、受電装置が備えるメモリに保存された閾値と、測定又は計算された前記実効抵抗値とを比較し、前記閾値と前記実効抵抗値とが所定の関係にある場合に、前記磁気結合素子の近くに異物が存在すると判定する
    請求項4に記載の検知装置。
  9. 前記磁気結合素子は、負荷変調を利用して通信を行う
    請求項1に記載の検知装置。
  10. 前記磁気結合素子を用いて、異物の有無の判別結果を受電装置へ伝達する
    請求項9に記載の検知装置。
  11. 受電装置へ非接触で電力を送る送電コイルと、
    前記送電コイルを少なくとも含む回路の抵抗値を測定又は計算し、前記測定又は計算された値と閾値を比較することによって、磁気結合相手との間の異物の有無を判定する検知部と、を備え、
    前記閾値は、自装置に搭載された物質を除いて前記送電コイルの周囲に磁束により発熱し得る物質が存在しない状態における、前記送電コイルを少なくとも含む前記回路の抵抗値である
    送電装置。
JP2017244128A 2017-12-20 2017-12-20 検知装置及び送電装置 Active JP6466557B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017244128A JP6466557B2 (ja) 2017-12-20 2017-12-20 検知装置及び送電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017244128A JP6466557B2 (ja) 2017-12-20 2017-12-20 検知装置及び送電装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016142301 Division 2016-07-20

Publications (2)

Publication Number Publication Date
JP2018046746A JP2018046746A (ja) 2018-03-22
JP6466557B2 true JP6466557B2 (ja) 2019-02-06

Family

ID=61695176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244128A Active JP6466557B2 (ja) 2017-12-20 2017-12-20 検知装置及び送電装置

Country Status (1)

Country Link
JP (1) JP6466557B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083744B2 (ja) * 2005-09-02 2012-11-28 独立行政法人物質・材料研究機構 超伝導量子干渉素子用電子回路及びそれを用いた装置
JP2011229265A (ja) * 2010-04-19 2011-11-10 Panasonic Corp 非接触電力伝送装置
JP2012016125A (ja) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd 非接触給電システム及び非接触給電システムの金属異物検出装置
JP5543881B2 (ja) * 2010-09-16 2014-07-09 株式会社東芝 無線電力伝送装置

Also Published As

Publication number Publication date
JP2018046746A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
US8629654B2 (en) System and method for inductive charging of portable devices
US9013141B2 (en) Parasitic devices for wireless power transfer
CN102684319B (zh) 非接触电力传送系统、受电装置和输电装置
US8928284B2 (en) Variable wireless power transmission
KR101749355B1 (ko) 무선 전력 송신 스케줄링
US9130394B2 (en) Wireless power for charging devices
ES2556269T3 (es) Sistema inalámbrico de transmisión de energía
US9099239B2 (en) Contactless power supplying system and metal foreign object detection device of contactless power supplying system
US8541974B2 (en) Movable magnetically resonant antenna for wireless charging
JP5667088B2 (ja) 充電可能および充電デバイスのためのワイヤレス電力
US9438067B2 (en) Wireless charging system having different charging modes
CN103308949B (zh) 检测装置、电力接收装置和电力发送装置
KR101385706B1 (ko) 무선 충전 시스템용 수신기
JP6065091B2 (ja) 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
US9583951B2 (en) Wireless power system with capacitive proximity sensing
JP5362453B2 (ja) 充電台
EP2411940B1 (en) Optimization of wireless power devices for charging batteries
CN100362725C (zh) 非接触式充电系统
US9608480B2 (en) Systems and methods for detecting and identifying a wireless power device
US7999417B2 (en) Electronic device
JP6030305B2 (ja) 可搬エンクロージャ用の無線電力伝達
US9559405B2 (en) Devices and methods related to a display assembly including an antenna
JP5393804B2 (ja) 平面螺旋形コア構造を備えた無接点電力充電ステーション、無接点電力受信装置及びその制御方法
JP6138733B2 (ja) 無線電力のための受信アンテナ配置
RU2530539C2 (ru) Способ и устройство для обнаружения устройства в системе беспроводной передачи энергии

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190109

R150 Certificate of patent or registration of utility model

Ref document number: 6466557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150