JP6460201B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6460201B2
JP6460201B2 JP2017203159A JP2017203159A JP6460201B2 JP 6460201 B2 JP6460201 B2 JP 6460201B2 JP 2017203159 A JP2017203159 A JP 2017203159A JP 2017203159 A JP2017203159 A JP 2017203159A JP 6460201 B2 JP6460201 B2 JP 6460201B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
light
wiring
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017203159A
Other languages
Japanese (ja)
Other versions
JP2019016766A (en
Inventor
拓也 中林
拓也 中林
知敬 丸山
知敬 丸山
石川 哲也
哲也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to CN201810389357.1A priority Critical patent/CN108807652B/en
Priority to CN202310207735.0A priority patent/CN116031350A/en
Priority to EP21160229.7A priority patent/EP3863070B1/en
Priority to KR1020180049472A priority patent/KR102161062B1/en
Priority to US15/965,415 priority patent/US11264542B2/en
Priority to EP18169776.4A priority patent/EP3396724B1/en
Priority to TW107114441A priority patent/TWI753156B/en
Publication of JP6460201B2 publication Critical patent/JP6460201B2/en
Application granted granted Critical
Publication of JP2019016766A publication Critical patent/JP2019016766A/en
Priority to US29/681,182 priority patent/USD930857S1/en
Priority to US17/022,933 priority patent/US11411144B2/en
Priority to KR1020200122194A priority patent/KR102246855B1/en
Priority to US17/179,881 priority patent/US11652192B2/en
Priority to US18/295,589 priority patent/US20230238490A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

支持体(基材)の実装面が凹部を備えており、凹部にろう材を充填することによって支持体(基材)と実装基板とが固定される発光装置が知られている(例えば、特許文献1参照)。   There is known a light emitting device in which a mounting surface of a support (base material) includes a recess, and the support (base material) and the mounting substrate are fixed by filling the recess with a brazing material (for example, a patent) Reference 1).

特開2013−041865号公報JP 2013-041865 A

本発明は、基材の強度低下を抑制しながら、実装基板との接合強度を向上させることができる発光装置を提供することを目的とする。   An object of this invention is to provide the light-emitting device which can improve the joint strength with a mounting board | substrate, suppressing the strength fall of a base material.

本発明の一態様に係る発光装置は、長手方向である第1方向と短手方向である第2方向に延長する正面と、前記正面の反対側に位置する背面と、前記正面と隣接し、前記正面と直交する底面と、前記底面の反対側に位置する上面と、を有する基材と、前記正面に配置される第1配線と、前記背面に配置される第2配線と、前記第1配線と前記第2配線を電気的に接続するビアホールと、を備える基板と、前記第1配線と電気的に接続され、前記第1配線上に載置される少なくとも1つの発光素子と、前記発光素子の側面及び前記基板の正面を被覆する光反射性の被覆部材と、を備える発光装置であって、前記基材は、正面視において前記ビアホールと離間し、且つ、前記背面と前記底面とに開口する複数の窪み、を有し、前記基板は、複数の前記窪みの内壁を被覆し、前記第2配線と電気的に接続される第3配線を備え、前記背面から前記正面方向における複数の前記窪みの深さのそれぞれは、前記上面側よりも前記底面側で深い。   The light-emitting device according to one embodiment of the present invention is adjacent to the front surface, the front surface extending in the first direction that is the longitudinal direction and the second direction that is the short direction, the back surface that is located on the opposite side of the front surface, A base material having a bottom surface orthogonal to the front surface and a top surface located on the opposite side of the bottom surface, a first wiring disposed on the front surface, a second wiring disposed on the back surface, and the first A substrate including a wiring and a via hole that electrically connects the second wiring; at least one light-emitting element that is electrically connected to the first wiring and placed on the first wiring; and the light emission A light-emitting device including a side surface of an element and a light-reflective coating member that covers a front surface of the substrate, wherein the base material is separated from the via hole in a front view, and is formed on the back surface and the bottom surface. A plurality of indentations, wherein the substrate has a plurality of indentations A third wiring that covers the inner wall of the depression and is electrically connected to the second wiring; and each of the depths of the plurality of depressions in the front direction from the back surface is lower than the upper surface side. Deep on the side.

本発明の発光装置によれば、基材の強度低下を抑制しながら、実装基板との接合強度を向上させることができる発光装置を提供することができる。   According to the light emitting device of the present invention, it is possible to provide a light emitting device capable of improving the bonding strength with the mounting substrate while suppressing the strength reduction of the base material.

図1Aは、実施形態1に係る発光装置の概略斜視図1である。1A is a schematic perspective view 1 of the light emitting device according to Embodiment 1. FIG. 図1Bは、実施形態1に係る発光装置の概略斜視図2である。1B is a schematic perspective view 2 of the light emitting device according to Embodiment 1. FIG. 図1Cは、実施形態1に係る発光装置の概略正面図である。1C is a schematic front view of the light emitting device according to Embodiment 1. FIG. 図2Aは、図1Cの2A−2A線における概略端面図である。2A is a schematic end view taken along line 2A-2A in FIG. 1C. 図2Bは、図1Cの2B−2B線における概略端面図である。2B is a schematic end view taken along line 2B-2B in FIG. 1C. 図3Aは、実施形態1に係る発光装置の概略底面図である。3A is a schematic bottom view of the light emitting device according to Embodiment 1. FIG. 図3Bは、実施形態1に係る発光装置の変形性の概略底面図である。3B is a schematic bottom view of the deformability of the light emitting device according to Embodiment 1. FIG. 図3Cは、実施形態1に係る基材の概略正面図である。3C is a schematic front view of the base material according to Embodiment 1. FIG. 図4Aは、実施形態1に係る発光装置の概略背面図である。4A is a schematic rear view of the light emitting device according to Embodiment 1. FIG. 図4Bは、実施形態1に係る発光装置の変形例について示す概略背面図である。4B is a schematic rear view illustrating a modification of the light emitting device according to Embodiment 1. FIG. 図4Cは、実施形態1に係る発光装置の変形例について示す概略背面図である。4C is a schematic rear view illustrating a modification of the light emitting device according to Embodiment 1. FIG. 図4Dは、実施形態1に係る発光装置の変形性の概略底面図である。FIG. 4D is a schematic bottom view of deformability of the light-emitting device according to Embodiment 1. 図4Eは、実施形態1に係る発光装置の変形性の概略底面図である。FIG. 4E is a schematic bottom view of deformability of the light-emitting device according to Embodiment 1. 図4Fは、実施形態1に係る発光装置の変形性の概略底面図である。FIG. 4F is a schematic bottom view of deformability of the light-emitting device according to Embodiment 1. 図5Aは、実施形態1に係る発光装置の概略右側面図である。FIG. 5A is a schematic right side view of the light-emitting device according to Embodiment 1. FIG. 図5Bは、実施形態1に係る発光装置の概略左側面図である。FIG. 5B is a schematic left side view of the light emitting device according to the first embodiment. 図6は、実施形態1に係る発光装置の概略上面図である。FIG. 6 is a schematic top view of the light emitting device according to the first embodiment. 図7は、実施形態2に係る発光装置の概略正面図である。FIG. 7 is a schematic front view of the light emitting device according to the second embodiment. 図8Aは、図7の8A−8A線における概略端面図である。FIG. 8A is a schematic end view taken along line 8A-8A in FIG. 図8Bは、図7の8B−8B線における概略端面図である。8B is a schematic end view taken along line 8B-8B of FIG. 図9Aは、実施形態2に係る発光装置の概略底面図である。FIG. 9A is a schematic bottom view of the light emitting device according to the second embodiment. 図9Bは、実施形態2に係る発光装置の概略背面図である。FIG. 9B is a schematic rear view of the light emitting device according to the second embodiment. 図10は、実施形態3に係る発光装置の概略正面図である。FIG. 10 is a schematic front view of the light emitting device according to the third embodiment. 図11は、図10の11A−11A線における概略端面図である。11 is a schematic end view taken along line 11A-11A in FIG. 図12は、実施形態3に係る発光装置の概略底面図である。FIG. 12 is a schematic bottom view of the light emitting device according to the third embodiment. 図13は、実施形態3に係る発光装置の概略背面図である。FIG. 13 is a schematic rear view of the light emitting device according to the third embodiment. 図14は、実施形態3に係る発光装置の概略右側面図である。FIG. 14 is a schematic right side view of the light emitting device according to the third embodiment. 図15は、実施形態3に係る発光装置の変形例について示す概略正面図である。FIG. 15 is a schematic front view illustrating a modification of the light emitting device according to the third embodiment. 図16は、図15の15A−15A線における概略端面図である。16 is a schematic end view taken along line 15A-15A in FIG. 図17は、実施形態4に係る発光装置の概略正面図である。FIG. 17 is a schematic front view of the light emitting device according to the fourth embodiment. 図18は、図17の18A−18A線における概略端面図である。18 is a schematic end view taken along line 18A-18A in FIG. 図19は、実施形態4に係る発光装置の概略底面図である。FIG. 19 is a schematic bottom view of the light emitting device according to the fourth embodiment. 図20は、実施形態4に係る発光装置の概略背面図である。FIG. 20 is a schematic rear view of the light emitting device according to the fourth embodiment. 図21は、実施形態4に係る発光装置の概略右側面図である。FIG. 21 is a schematic right side view of the light emitting device according to the fourth embodiment. 図22は、実施形態5に係る発光装置の概略背面図である。FIG. 22 is a schematic rear view of the light emitting device according to the fifth embodiment. 図23は、実施形態6に係る発光装置の概略背面図である。FIG. 23 is a schematic rear view of the light emitting device according to the sixth embodiment. 図24は、実施形態7に係る発光装置の概略背面図である。FIG. 24 is a schematic rear view of the light emitting device according to the seventh embodiment. 図25Aは、実施形態1に係る発光装置を点線で記載したランドパターンの概略底面図である。FIG. 25A is a schematic bottom view of a land pattern in which the light-emitting device according to Embodiment 1 is described with dotted lines. 図25Bは、実施形態1に係る発光装置を点線で記載したランドパターンの変形例について示す概略底面図である。FIG. 25B is a schematic bottom view illustrating a modification of the land pattern in which the light-emitting device according to Embodiment 1 is described by dotted lines. 図25Cは、実施形態1に係る発光装置を点線で記載したランドパターンの変形例について示す概略底面図である。FIG. 25C is a schematic bottom view illustrating a modification of the land pattern in which the light-emitting device according to Embodiment 1 is described by dotted lines. 図26Aは、実施形態4に係る発光装置を点線で記載したランドパターンの概略底面図である。FIG. 26A is a schematic bottom view of a land pattern in which the light-emitting device according to Embodiment 4 is described with dotted lines. 図26Bは、実施形態4に係る発光装置を点線で記載したランドパターンの変形例について示す概略底面図である。FIG. 26B is a schematic bottom view illustrating a modification of the land pattern in which the light-emitting device according to Embodiment 4 is described by dotted lines. 図27は、実施形態8に係る発光装置の概略正面図である。FIG. 27 is a schematic front view of the light emitting device according to the eighth embodiment. 図28Aは、図27の28A−28A線における概略端面図である。28A is a schematic end view taken along line 28A-28A in FIG. 図28Bは、図27の28B−28B線における概略端面図である。28B is a schematic end view taken along line 28B-28B of FIG. 図29は、実施形態8に係る発光装置の概略底面図である。FIG. 29 is a schematic bottom view of the light emitting device according to the eighth embodiment. 図30は、実施形態8に係る発光装置の概略背面図である。FIG. 30 is a schematic rear view of the light emitting device according to the eighth embodiment. 図31は、実施形態8に係る発光装置の変形例の概略端面図である。FIG. 31 is a schematic end view of a modification of the light emitting device according to the eighth embodiment.

以下、発明の実施形態について適宜図面を参照して説明する。但し、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。   Embodiments of the invention will be described below with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. In addition, the size, positional relationship, and the like of members illustrated in the drawings may be exaggerated for clarity of explanation.

<実施形態1>
本発明の実施形態に係る発光装置1000を図1Aから図6に基づいて説明する。発光装置1000は、基板10と、少なくとも1つの発光素子20と、被覆部材40と、を備える。基板10は、基材11と、第1配線12と、第2配線13と、第3配線14と、ビアホール15と、を備える。基材11は、長手方向である第1方向と短手方向である第2方向に延長する正面111と、正面の反対側に位置する背面112と、正面111と隣接し正面111と直交する底面113と、底面113の反対側に位置する上面114と、を有する。基材11は、更に複数の窪み16を有する。第1配線12は、基材11の正面111に配置される。第2配線13は、基材11の背面112に配置される。ビアホール15は、第1配線12と第2配線13を電気的に接続する。発光素子20は、第1配線12と電気的に接続され、第1配線12上に載置される。被覆部材40は、光反射性を有し、発光素子20の側面202及び基板の正面111を被覆する。複数の窪み16は、正面視においてビアホール15と離間し、且つ、背面112と底面113とに開口する。第3配線14は、複数の窪み16の内壁を被覆し、第2配線13と電気的に接続される。背面112から正面111方向における複数の窪み16の深さのそれぞれは、上面側の窪みの深さW2よりも底面側の窪みの深さW1が深い。尚、本明細書において直交とは、90±3°を意味する。
<Embodiment 1>
A light emitting device 1000 according to an embodiment of the present invention will be described with reference to FIGS. 1A to 6. The light emitting device 1000 includes a substrate 10, at least one light emitting element 20, and a covering member 40. The substrate 10 includes a base material 11, a first wiring 12, a second wiring 13, a third wiring 14, and a via hole 15. The base material 11 includes a front surface 111 extending in a first direction that is a longitudinal direction and a second direction that is a short direction, a back surface 112 positioned on the opposite side of the front surface, and a bottom surface that is adjacent to the front surface 111 and orthogonal to the front surface 111. 113 and a top surface 114 located on the opposite side of the bottom surface 113. The substrate 11 further has a plurality of depressions 16. The first wiring 12 is disposed on the front surface 111 of the base material 11. The second wiring 13 is disposed on the back surface 112 of the base material 11. The via hole 15 electrically connects the first wiring 12 and the second wiring 13. The light emitting element 20 is electrically connected to the first wiring 12 and placed on the first wiring 12. The covering member 40 has light reflectivity and covers the side surface 202 of the light emitting element 20 and the front surface 111 of the substrate. The plurality of depressions 16 are separated from the via holes 15 in front view and open to the back surface 112 and the bottom surface 113. The third wiring 14 covers the inner walls of the plurality of depressions 16 and is electrically connected to the second wiring 13. Each of the depths of the plurality of depressions 16 in the direction from the back surface 112 to the front surface 111 has a depth W1 of the depression on the bottom surface side deeper than the depth W2 of the depression on the upper surface side. In this specification, orthogonal means 90 ± 3 °.

発光装置1000は、複数の窪み16内に形成した半田等の接合部材によって実装基板に固定することができる。複数の窪み内に接合部材が位置することができるので、窪みが1つの場合よりも発光装置1000と実装基板との接合強度を向上させることができる。図2Aに示すように、背面から正面方向(Z方向)における複数の窪みの深さのそれぞれが上面側よりも底面側で深いことで、背面から正面方向(Z方向)において、窪みの上面側に位置する基材の厚みW5を窪みの底面側に位置する基材の厚みW6よりも厚くすることができる。これにより、基材の強度低下を抑制することができる。また、底面側の窪みの深さW1が深いことで、窪み内に形成される接合部材の体積が増加するので、発光装置1000と実装基板との接合強度を向上させることができる。発光装置1000が、基材11の背面112と、実装基板と、を対向させて実装する上面発光型(トップビュータイプ)でも、基材11の底面113と、実装基板と、を対向させて実装する側面発光型(サイドビュータイプ)でも、接合部材の体積が増加することで、実装基板との接合強度を向上させることができる。尚、本明細書において、背面から正面方向をZ方向とも言う。   The light emitting device 1000 can be fixed to the mounting substrate by a joining member such as solder formed in the plurality of depressions 16. Since the bonding member can be positioned in the plurality of depressions, the bonding strength between the light emitting device 1000 and the mounting substrate can be improved as compared with the case of one depression. As shown in FIG. 2A, the depths of the plurality of depressions in the front direction (Z direction) from the back are deeper on the bottom side than the top side, so that the upper surface side of the depressions in the front direction (Z direction) from the back side. It is possible to make the thickness W5 of the base material located at the thickness larger than the thickness W6 of the base material located on the bottom side of the recess. Thereby, the strength reduction of a base material can be suppressed. Moreover, since the depth W1 of the dent on the bottom side increases, the volume of the bonding member formed in the dent increases, so that the bonding strength between the light emitting device 1000 and the mounting substrate can be improved. Even if the light emitting device 1000 is a top emission type (top view type) in which the back surface 112 of the base material 11 and the mounting substrate are mounted to face each other, the bottom surface 113 of the base material 11 and the mounting substrate are mounted to face each other. Even in the side light emission type (side view type), the bonding strength with the mounting substrate can be improved by increasing the volume of the bonding member. In the present specification, the front direction from the back is also referred to as the Z direction.

発光装置1000と実装基板の接合強度は、特に側面発光型の場合に向上させることができる。Z方向における窪みの深さが上面側よりも底面側で深いことで、底面における窪みの開口部の面積を大きくすることができる。実装基板と対向する底面における窪みの開口部の面積が大きくなることで、底面に位置する接合部材の面積も大きくすることができる。これにより、実装基板と対向する面に位置する接合部材の面積を大きくすることができるので発光装置1000と実装基板の接合強度を向上させることができる。   The bonding strength between the light emitting device 1000 and the mounting substrate can be improved particularly in the case of the side light emitting type. Since the depth of the recess in the Z direction is deeper on the bottom surface side than the upper surface side, the area of the opening of the recess on the bottom surface can be increased. By increasing the area of the opening of the depression on the bottom surface facing the mounting substrate, the area of the bonding member located on the bottom surface can also be increased. Thereby, since the area of the bonding member positioned on the surface facing the mounting substrate can be increased, the bonding strength between the light emitting device 1000 and the mounting substrate can be improved.

図2Aに示すように、Z方向における窪み16の深さW1は、Z方向における基材の厚みW3よりも浅い。つまり、窪み16は基材を貫通していない。基材を貫通する孔を形成すると基材の強度が低下する。このため、基材を貫通しない窪みを設けることで基材の強度低下を抑制することができる。Z方向における複数の窪みの深さそれぞれの最大は、基材の厚みの0.4倍から0.8倍であることで好ましい。窪みの深さが基材の厚みの0.4倍よりも深いことで、窪み内に形成される接合部材の体積が増加するので発光装置と実装基板の接合強度を向上させることができる。窪みの深さが基材の厚みの0.8倍よりも浅いことで、基材の強度低下を抑制することができる。   As shown in FIG. 2A, the depth W1 of the recess 16 in the Z direction is shallower than the thickness W3 of the base material in the Z direction. That is, the depression 16 does not penetrate the substrate. When a hole penetrating the substrate is formed, the strength of the substrate is lowered. For this reason, the strength reduction of a base material can be suppressed by providing the hollow which does not penetrate a base material. The maximum depth of each of the plurality of depressions in the Z direction is preferably 0.4 to 0.8 times the thickness of the base material. When the depth of the recess is deeper than 0.4 times the thickness of the base material, the volume of the bonding member formed in the recess is increased, so that the bonding strength between the light emitting device and the mounting substrate can be improved. When the depth of the dent is shallower than 0.8 times the thickness of the base material, it is possible to suppress the strength reduction of the base material.

断面視において、窪み16は、背面112から底面113と平行方向(Z方向)に延びる平行部161を備えていることが好ましい。平行部161を備えることで、背面における窪みの開口部の面積が同じでも窪みの体積を大きくすることができる。窪みの体積を大きくすることで窪み内に形成できる半田等の接合部材の量を増やすことができるので、発光装置1000と実装基板との接合強度を向上させることができる。尚、本明細書において平行とは、±3°程度の傾斜を許容することを意味する。また、断面視において窪み16は、底面113から基材11の厚みが厚くなる方向に傾斜する傾斜部162を備える。傾斜部162は直線でも、湾曲していてもよい。傾斜部162が直線であることで、先端が尖ったドリルにより形成が容易になる。尚、傾斜部162における直線とは、3μm程度の曲りやズレ等の変動は許容されることを意味する。   In a cross-sectional view, the recess 16 preferably includes a parallel portion 161 extending from the back surface 112 in a direction parallel to the bottom surface 113 (Z direction). By providing the parallel part 161, even if the area of the opening part of the dent on the back surface is the same, the volume of the dent can be increased. By increasing the volume of the recess, the amount of bonding members such as solder that can be formed in the recess can be increased, so that the bonding strength between the light emitting device 1000 and the mounting substrate can be improved. In the present specification, “parallel” means that an inclination of about ± 3 ° is allowed. In addition, the recess 16 includes an inclined portion 162 that is inclined from the bottom surface 113 in a direction in which the thickness of the base material 11 is increased in a cross-sectional view. The inclined portion 162 may be straight or curved. Since the inclined portion 162 is a straight line, formation is facilitated by a drill having a sharp tip. In addition, the straight line in the inclined part 162 means that fluctuations such as bending and deviation of about 3 μm are allowed.

図3Aに示すように、底面において、複数の窪み16のそれぞれで中央の深さW1が、Z方向における窪みの深さの最大であることが好ましい。このようにすることで、底面において、X方向の窪みの端部で、Z方向における基材の厚みW8を厚くすることができるので基材の強度を向上させることができる。尚、本明細書で中央とは、5μm程度の変動は許容されることを意味する。尚、実施形態1の変形例である図3Bに示すように、底面において、Z方向における窪み16の深さW7は略一定でもよい。換言すると、窪み16の最深部が平坦な面でもよい。窪み16は、ドリルや、レーザー等の公知の方法で形成することができる。底面において、中央の深さが最大である窪みは、先端が尖ったドリルにより容易に形成することができる。また、ドリルを用いることで、最深部が略円錐形状であり、略円錐形状の底面の円形状から連続する略円柱形状を有する窪みを形成することができる。窪みの一部をダイシング等により切断することで、最深部が略半円柱形状であり、略半円形状から連続する略半円柱形状を有する窪みを形成することができる。   As shown in FIG. 3A, it is preferable that the center depth W1 of each of the plurality of depressions 16 is the maximum of the depression depth in the Z direction on the bottom surface. By doing in this way, in the bottom face, the base material thickness W8 in the Z direction can be increased at the end of the recess in the X direction, so that the strength of the base material can be improved. In the present specification, the center means that a fluctuation of about 5 μm is allowed. As shown in FIG. 3B, which is a modification of the first embodiment, the depth W7 of the recess 16 in the Z direction may be substantially constant on the bottom surface. In other words, the deepest portion of the recess 16 may be a flat surface. The depression 16 can be formed by a known method such as a drill or a laser. On the bottom surface, the recess having the maximum central depth can be easily formed by a drill having a sharp tip. Moreover, by using a drill, the deepest part is a substantially cone shape, and the hollow which has a substantially cylindrical shape continuous from the circular shape of the bottom face of a substantially cone shape can be formed. By cutting a part of the dent by dicing or the like, the deepest part has a substantially semi-cylindrical shape, and a dent having a substantially semi-cylindrical shape continuing from a substantially semi-circular shape can be formed.

図4Aに示すように、背面において、複数の窪み16のそれぞれの形状が同一であることが好ましい。複数の窪みのそれぞれの形状が同一であることで、窪みの形状がそれぞれ異なる場合よりも窪みの形成が容易になる。例えば、窪みをドリル工法により形成する場合では、複数の窪みのそれぞれの形状が同一であれば、1つのドリルにより窪みを形成することができる。尚、本明細書で同一とは、5μm程度の違いは許容されることを意味する。   As shown to FIG. 4A, it is preferable that each shape of the some hollow 16 is the same in a back surface. Since the shape of each of the plurality of dents is the same, the formation of the dent becomes easier than when the shapes of the dents are different from each other. For example, in the case where the dent is formed by a drilling method, the dent can be formed by one drill if the shapes of the plurality of dents are the same. Incidentally, the same in this specification means that a difference of about 5 μm is allowed.

また、背面視における複数の窪みの開口部の面積は同じでもよいし、異なっていてもよい。例えば、図4Bに示すように、背面視において基材の中央に位置する窪み16Cの開口部の面積が、X+側に位置する窪み16L及びX−側に位置する窪み16Rのそれぞれの開口部の面積より大きくてもよい。尚、図4B、図4C等に示す背面視においては、発光装置の中心からX軸上における右側をX+側とし、左側をX−側とする。基材の中央に位置する窪み16Cの開口部の面積を大きくすることで、発光装置と実装基板との接合強度を向上させることができる。また、X+側に位置する窪み16L及びX−側に位置する窪み16Rの開口部の面積が小さいことで、第2配線13の面積を大きくしやすくなる。第2配線13の面積が大きいことにより、発光装置の特性検査等でプローブ針を第2配線に接触させる場合には検査が容易になる。また、図4Cに示すように、背面視においてX+側に位置する窪み16L及びX−側に位置する窪み16Rのそれぞれの開口部の面積が基材の中央に位置する窪み16Cの開口部の面積よりも大きくてもよい。X+側に位置する窪み16L及びX−側に位置する窪み16Rのそれぞれの開口部の面積を大きくすることで、発光装置と実装基板との接合強度を向上させることができる。また、背面視においてX+側に位置する窪み16L及びX−側に位置する窪み16Rの開口部の面積は略同一のであることが好ましい。このようにすることで、X+側に位置する窪み16L内に形成した接合部材と、X−側に位置する窪み16R内に形成した接合部材との偏りを抑制しやすくなる。これにより、実装基板に発光装置が傾いて実装されることを抑制しやすくなる。   Moreover, the area of the opening part of several hollows in back view may be the same, and may differ. For example, as shown in FIG. 4B, the area of the opening of the recess 16C located in the center of the base material in the rear view is the same as that of each of the openings of the recess 16L located on the X + side and the recess 16R located on the X− side. It may be larger than the area. 4B, 4C, and the like, the right side on the X axis from the center of the light emitting device is the X + side, and the left side is the X− side. By increasing the area of the opening of the recess 16C located in the center of the base material, the bonding strength between the light emitting device and the mounting substrate can be improved. In addition, since the area of the opening of the recess 16L located on the X + side and the recess 16R located on the X− side is small, the area of the second wiring 13 can be easily increased. Since the area of the second wiring 13 is large, the inspection becomes easy when the probe needle is brought into contact with the second wiring in the characteristic inspection of the light emitting device. Further, as shown in FIG. 4C, the area of the opening of each of the depressions 16L located on the X + side and the depression 16R located on the X− side in the rear view is the area of the opening of the depression 16C located at the center of the substrate. May be larger. By increasing the area of each opening of the recess 16L located on the X + side and the recess 16R located on the X− side, the bonding strength between the light emitting device and the mounting substrate can be improved. Moreover, it is preferable that the area of the opening part of the dent 16L located in the X + side and the dent 16R located in the X− side in the rear view is substantially the same. By doing in this way, it becomes easy to suppress the bias | inclination of the joining member formed in the hollow 16L located in the X + side, and the joining member formed in the hollow 16R located in the X- side. Thereby, it becomes easy to suppress that the light emitting device is inclined and mounted on the mounting substrate.

図3A、図3Bに示すように、Z方向における複数の窪みの深さW1、W7は、同じでもよいし、図4Dに示すように、Z方向における複数の窪みの深さが異なっていてもよい。例えば、図4Dに示すように、底面視において基材の中央に位置する窪み16CのZ方向における深さW1Cが、X+側に位置する窪み16LのZ方向における深さW1L及びX−側に位置する窪み16RのZ方向における深さW1Rよりも深くてもよい。尚、図4D、4E、図4Fに示す底面視においては、発光装置の中心からX軸上における左側がX+側となり、右側がX−側となる。基材の中央に位置する窪み16Cの深さW1Cが深いことで、発光装置と実装基板との接合強度を向上させることができる。底面視においてX+側に位置する窪み16LのZ方向における深さW1L及びX−側に位置する窪み16RのZ方向における深さW1Rが、基材の中央に位置する窪み16Cの窪みW1Cよりも深くてもよい。また、X+側に位置する窪み16LのZ方向における深さW1Lと、X−側に位置する窪み16RのZ方向における深さW1Rは、略同一であることが好ましい。このようにすることで、X+側に位置する窪み内に形成した接合部材と、X−側に位置する窪み内に形成した接合部材との偏りが抑制しやすくなるので、実装基板に発光装置が傾いて実装されることを抑制しやすくなる。   As shown in FIGS. 3A and 3B, the depths W1 and W7 of the plurality of depressions in the Z direction may be the same, or the depths of the plurality of depressions in the Z direction may be different as shown in FIG. 4D. Good. For example, as shown in FIG. 4D, the depth W1C in the Z direction of the depression 16C located in the center of the base material in the bottom view is located on the depth W1L and the X− side in the Z direction of the depression 16L located on the X + side. It may be deeper than the depth W1R in the Z direction of the recess 16R. 4D, 4E, and 4F, the left side on the X axis from the center of the light emitting device is the X + side, and the right side is the X− side. Since the depth W1C of the recess 16C located at the center of the base material is deep, the bonding strength between the light emitting device and the mounting substrate can be improved. The depth W1L in the Z direction of the depression 16L located on the X + side and the depth W1R in the Z direction of the depression 16R located on the X− side in the bottom view are deeper than the depression W1C of the depression 16C located in the center of the substrate. May be. Moreover, it is preferable that the depth W1L in the Z direction of the recess 16L located on the X + side and the depth W1R in the Z direction of the recess 16R located on the X− side are substantially the same. By doing in this way, since it becomes easy to suppress the bias | inclination with the joining member formed in the hollow located in the X + side, and the joining member formed in the hollow located in the X- side, a light-emitting device is mounted on a mounting board. It becomes easy to suppress mounting with inclination.

図4Dに示すように、底面視において基材の中央に位置する窪み16CのX方向における幅D1C、X+側に位置する窪み16LのX方向における幅D1L及びX−側に位置する窪み16RのX方向における幅D1Rは略同一でもよいし、図4E、図4Fに示すように、底面視において基材の中央に位置する窪み16CのX方向における幅D1C、X+側に位置する窪み16LのX方向における幅D1L及び/又はX−側に位置する窪み16RのX方向における幅D1Rは異なっていてよい。底面視において基材の中央に位置する窪み16CのX方向における幅D1C、X+側に位置する窪み16LのX方向における幅D1L及び/又はX−側に位置する窪み16RのX方向における幅D1Rが異なっている場合でも、Z方向における複数の窪みの深さは、同じでもよいし、異なっていてもよい。また、底面視においてX+側に位置する窪み16LのX方向における幅D1L及びX−側に位置する窪み16RのX方向における幅D1Rは略同一のであることが好ましい。このようにすることで、X+側に位置する窪み16L内に形成した接合部材と、X−側に位置する窪み16R内に形成した接合部材との偏りを抑制しやすくなる。これにより、実装基板に発光装置が傾いて実装されることを抑制しやすくなる。   As shown in FIG. 4D, the width D1C in the X direction of the depression 16C located in the center of the base material in the bottom view, the width D1L in the X direction of the depression 16L located on the X + side, and the X of the depression 16R located on the X− side. The width D1R in the direction may be substantially the same, and as shown in FIGS. 4E and 4F, the width D1C in the X direction of the depression 16C located in the center of the base material in the bottom view, the X direction of the depression 16L located on the X + side The width D1L and / or the width D1R in the X direction of the recess 16R located on the X-side may be different. The width D1C in the X direction of the depression 16C located in the center of the base material in the bottom view, the width D1L in the X direction of the depression 16L located on the X + side, and / or the width D1R in the X direction of the depression 16R located on the X− side. Even when they are different, the depths of the plurality of depressions in the Z direction may be the same or different. Moreover, it is preferable that the width D1L in the X direction of the depression 16L located on the X + side in the bottom view and the width D1R in the X direction of the depression 16R located on the X− side are substantially the same. By doing in this way, it becomes easy to suppress the bias | inclination of the joining member formed in the hollow 16L located in the X + side, and the joining member formed in the hollow 16R located in the X- side. Thereby, it becomes easy to suppress that the light emitting device is inclined and mounted on the mounting substrate.

背面において、複数の窪み16が第2方向(Y方向)に平行な基材の中心線に対して左右対称に位置することが好ましい。このようにすることで、発光装置を実装基板に接合部材を介して実装される際にセルフアライメントが効果的に働き、発光装置を実装範囲内に精度よく実装することができる。   On the back surface, it is preferable that the plurality of depressions 16 be positioned symmetrically with respect to the center line of the base material parallel to the second direction (Y direction). By doing so, self-alignment effectively works when the light emitting device is mounted on the mounting substrate via the bonding member, and the light emitting device can be mounted with high accuracy within the mounting range.

背面において、複数の窪みのそれぞれの開口形状が略半円形状であることが好ましい。開口形状が円形状である窪みはドリル加工により形成することができ、円形状の窪みの一部をダイシング等により切断することで、背面において略半円形状の窪みを容易に形成することができる。また、背面において、窪みの開口形状が角部のない略半円形状であることで窪みに係る応力が集中することを抑制できるので、基材が割れることを抑制することができる。   On the back surface, it is preferable that the opening shape of each of the plurality of depressions is substantially semicircular. A recess having a circular opening shape can be formed by drilling, and a substantially semicircular recess can be easily formed on the back surface by cutting a part of the circular recess by dicing or the like. . Moreover, since it can suppress that the stress which concerns on a hollow concentrates because the opening shape of a hollow is a substantially semicircle shape without a corner | angular part in a back surface, it can suppress that a base material cracks.

図1A、図2A、図2Bに示すように、発光装置1000は、透光性部材30を備えていてもよい。透光性部材30は、発光素子20上に位置することが好ましい。発光素子上に透光性部材が位置することで、発光素子20を外部応力から保護することができる。被覆部材40は、透光性部材30の側面を被覆することが好ましい。このようにすることで、発光装置からの光を点光源に近づけることができる。発光装置を点光源に近づけることにより例えば、レンズ等の光学系による配光の調整が容易になる。   As shown in FIGS. 1A, 2A, and 2B, the light emitting device 1000 may include a translucent member 30. The translucent member 30 is preferably located on the light emitting element 20. Since the translucent member is located on the light emitting element, the light emitting element 20 can be protected from external stress. The covering member 40 preferably covers the side surface of the translucent member 30. By doing in this way, the light from a light-emitting device can be brought close to a point light source. By bringing the light emitting device closer to the point light source, for example, adjustment of light distribution by an optical system such as a lens becomes easy.

発光素子20は、基板10と対向する載置面と、載置面の反対側に位置する光取り出し面201を備える。図2Aに示すように、発光素子をフリップチップ実装する場合は、発光素子の正負電極が位置する面と、反対側の面を光取り出し面とする。透光性部材30は導光部材50を介して、発光素子20に接合されてもよい。導光部材50は発光素子の光取り出し面201と、透光性部材30の間のみに位置して発光素子20と被覆部材40を接着してもよいし、発光素子の光取り出し面201から発光素子の側面202まで被覆して発光素子20と被覆部材40を接着してもよい。導光部材50は、被覆部材40よりも発光素子20からの光の透過率が高い。このため、導光部材50が発光素子の側面202まで被覆することで、発光素子20の側面から出射される光が導光部材50を通して発光装置の外側に取り出しやすくなるので光取り出し効率を高めることができる。   The light emitting element 20 includes a mounting surface facing the substrate 10 and a light extraction surface 201 positioned on the opposite side of the mounting surface. As shown in FIG. 2A, when the light-emitting element is flip-chip mounted, the surface where the positive and negative electrodes of the light-emitting element are located and the opposite surface are used as the light extraction surface. The translucent member 30 may be bonded to the light emitting element 20 via the light guide member 50. The light guide member 50 may be positioned only between the light extraction surface 201 of the light emitting element and the translucent member 30 to bond the light emitting element 20 and the covering member 40, or emit light from the light extraction surface 201 of the light emitting element. The light emitting element 20 and the covering member 40 may be bonded by covering up to the side surface 202 of the element. The light guide member 50 has a higher light transmittance from the light emitting element 20 than the covering member 40. For this reason, the light guide member 50 covers the side surface 202 of the light emitting element, so that light emitted from the side surface of the light emitting element 20 can be easily extracted to the outside of the light emitting device through the light guide member 50, thereby increasing light extraction efficiency. Can do.

発光素子20が複数ある場合は、一方の発光素子と他方の発光素子のピーク波長が同じでも異なっていてもよい。一方の発光素子と他方の発光素子のピーク波長が異なる場合は、発光のピーク波長が430nm以上490nm未満の範囲(青色領域の波長範囲)にある発光素子と、発光のピーク波長が490nm以上570nm以下の範囲(緑色領域の波長範囲)にある発光素子と、であることが好ましい。このようにすることで発光装置の演色性を向上させることができる。   When there are a plurality of light emitting elements 20, the peak wavelengths of one light emitting element and the other light emitting element may be the same or different. When the peak wavelength of one light emitting element is different from that of the other light emitting element, the light emitting element has a light emission peak wavelength in a range of 430 nm to less than 490 nm (blue wavelength range) and the light emission peak wavelength of 490 nm to 570 nm. It is preferable that the light emitting element is in the range (wavelength range in the green region). In this way, the color rendering properties of the light emitting device can be improved.

図2A、図2Bに示すように、透光性部材30は波長変換物質32を含有させてもよい。波長変換物質32は、発光素子20が発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する部材である。透光性部材30に波長変換物質32を含有させることにより、発光素子20が発する一次光と、波長変換物質32が発する二次光とが混色された混色光を出力することができる。例えば、発光素子20に青色LEDを、波長変換物質32にYAG等の蛍光体を用いれば、青色LEDの青色光と、この青色光で励起されて蛍光体が発する黄色光とを混合させて得られる白色光を出力する発光装置を構成することができる。   As shown in FIGS. 2A and 2B, the translucent member 30 may contain a wavelength converting substance 32. The wavelength converting material 32 is a member that absorbs at least a part of the primary light emitted from the light emitting element 20 and emits secondary light having a wavelength different from that of the primary light. By including the wavelength conversion material 32 in the translucent member 30, it is possible to output mixed color light in which the primary light emitted from the light emitting element 20 and the secondary light emitted from the wavelength conversion material 32 are mixed. For example, when a blue LED is used for the light emitting element 20 and a phosphor such as YAG is used for the wavelength conversion material 32, the blue light of the blue LED and yellow light emitted from the phosphor when excited by the blue light are mixed. It is possible to configure a light emitting device that outputs white light.

波長変換物質は透光性部材中に均一に分散させてもよいし、透光性部材30の上面よりも発光素子の近傍に波長変換物質を偏在させてもよい。このようにすることで、水分に弱い波長変換物質32を使用しても透光性部材30の母材31が保護層としても機能を果たすので波長変換物質32の劣化を抑制できる。また、図2A、図2Bに示すように、透光性部材30が波長変換物質32を含有する層と、波長変換物質を実質的に含有しない層33と、を備えていてもよい。透光性部材30が波長変換物質32を含有する層上に、波長変換物質を実質的に含有しない層33が位置することで、波長変換物質を実質的に含有しない層33が保護層としても機能を果たすので波長変換物質32の劣化を抑制できる。水分に弱い波長変換物質32としては、例えばマンガン賦活フッ化物蛍光体が挙げられる。マンガン賦活フッ化物系蛍光体は、スペクトル線幅の比較的狭い発光が得られ色再現性の観点において好ましい部材である。   The wavelength conversion material may be uniformly dispersed in the light transmissive member, or the wavelength conversion material may be unevenly distributed near the light emitting element rather than the upper surface of the light transmissive member 30. By doing in this way, even if it uses the wavelength conversion substance 32 weak to a water | moisture content, since the base material 31 of the translucent member 30 functions as a protective layer, degradation of the wavelength conversion substance 32 can be suppressed. 2A and 2B, the translucent member 30 may include a layer containing the wavelength converting substance 32 and a layer 33 substantially not containing the wavelength converting substance. Since the layer 33 that does not substantially contain the wavelength converting substance is positioned on the layer in which the translucent member 30 contains the wavelength converting substance 32, the layer 33 that does not substantially contain the wavelength converting substance can be used as the protective layer. Since the function is fulfilled, the deterioration of the wavelength converting substance 32 can be suppressed. An example of the wavelength converting substance 32 that is weak against moisture is a manganese-activated fluoride phosphor. Manganese-activated fluoride phosphors are preferable members from the viewpoint of color reproducibility because they can emit light with a relatively narrow spectral line width.

図2Bに示すように、ビアホール15は基材11の正面111と背面112とを貫通する孔内に設けられる。ビアホール15は基材の貫通孔の表面を被覆する第4配線151と第4配線151内に充填された充填部材152とを備える。充填部材152は、導電性でも絶縁性でもよい。充填部材152には、樹脂材料を使用することが好ましい。一般的に硬化前の樹脂材料は、硬化前の金属材料よりも流動性が高いので第4配線151内に充填しやすい。このため、充填部材に樹脂材料を使用することで基板の製造が容易になる。充填しやすい樹脂材料としては、例えばエポキシ樹脂が挙げられる。充填部材として樹脂材料を用いる場合は、線膨張係数を下げるために添加部材を含有することが好ましい。このようにすることが、第4配線との線膨張係数の差が小さくなるので、発光素子からの熱によって第4配線と充填部材との間に隙間ができることを抑制できる。添加部材としては、例えば酸化ケイ素が挙げられる。また、充填部材152に金属材料を使用した場合には、放熱性を向上させることができる。   As shown in FIG. 2B, the via hole 15 is provided in a hole that penetrates the front surface 111 and the back surface 112 of the base material 11. The via hole 15 includes a fourth wiring 151 covering the surface of the through hole of the base material and a filling member 152 filled in the fourth wiring 151. The filling member 152 may be conductive or insulating. It is preferable to use a resin material for the filling member 152. In general, the resin material before curing has a higher fluidity than the metal material before curing, so that the fourth wiring 151 is easily filled. For this reason, manufacture of a board | substrate becomes easy by using a resin material for a filling member. Examples of the resin material that can be easily filled include an epoxy resin. When using a resin material as the filling member, it is preferable to contain an additive member in order to lower the linear expansion coefficient. By doing so, the difference in the coefficient of linear expansion with the fourth wiring is reduced, so that it is possible to suppress the formation of a gap between the fourth wiring and the filling member due to heat from the light emitting element. Examples of the additive member include silicon oxide. In addition, when a metal material is used for the filling member 152, heat dissipation can be improved.

図4Aに示すように、背面におけるビアホール15の面積は、背面における窪み16の開口部の面積よりも小さい。このため、ビアホール15は基材11を貫通しているが、背面における窪み16の開口部の面積よりも小さいので基材11の強度が低下することを抑制することができる。   As shown in FIG. 4A, the area of the via hole 15 on the back surface is smaller than the area of the opening of the recess 16 on the back surface. For this reason, although the via hole 15 has penetrated the base material 11, since it is smaller than the area of the opening part of the hollow 16 in a back surface, it can suppress that the intensity | strength of the base material 11 falls.

図4Aに示すように、背面視においてビアホール15と隣り合うビアホールとの間に窪み16が位置することが好ましい。換言すると、背面視においてビアホール15と隣り合うビアホールと結ぶ直線上に窪み16が位置することが好ましい。このようにすることで、発光素子からの熱がビアホール15から窪み16内に位置する第3配線14に効率的に伝わることができる。第3配線14に伝わった熱は、接合部材を介して実装基板に伝わるので発光装置の放熱性が向上する。   As shown in FIG. 4A, it is preferable that the recess 16 is located between the via hole 15 and the adjacent via hole in the rear view. In other words, the recess 16 is preferably located on a straight line connecting the via hole 15 and the adjacent via hole in the rear view. By doing so, heat from the light emitting element can be efficiently transmitted from the via hole 15 to the third wiring 14 located in the recess 16. Since the heat transmitted to the third wiring 14 is transmitted to the mounting substrate through the bonding member, the heat dissipation of the light emitting device is improved.

また、図4Aに示すように、背面視において窪み16と隣り合う窪みとの間にビアホール15が位置することが好ましい。換言すると、背面視において窪み16と隣り合う窪みを結ぶ直線上にビアホール15が位置することが好ましい。このようにすることで、発光素子からの熱がビアホール15から窪み内に位置する第3配線14に効率的に伝わることができる。これにより、発光装置の放熱性が向上する。   Moreover, as shown in FIG. 4A, it is preferable that the via hole 15 is located between the recess 16 and the adjacent recess in the rear view. In other words, it is preferable that the via hole 15 is located on a straight line connecting the recess 16 and the recess adjacent to the recess 16 in the rear view. By doing in this way, the heat from a light emitting element can be efficiently transmitted from the via hole 15 to the 3rd wiring 14 located in a hollow. Thereby, the heat dissipation of a light-emitting device improves.

図2Bに示すように、発光素子20は少なくとも半導体積層体23を含み、半導体積層体23には正負電極21、22が設けられている。正負電極21、22は発光素子20の同じ側の面に形成されており、発光素子20が基板10にフリップチップ実装されていることが好ましい。これにより、発光素子の正負電極に電気を供給するワイヤが不要になるので発光装置を小型化することができる。なお、本実施形態では発光素子20は素子基板24を有するが、素子基板24は除去されていてもよい。発光素子20が基板10にフリップチップ実装されている場合は、発光素子の正負電極21、22が導電性接着部材60を介して第1配線12に接続されている。   As shown in FIG. 2B, the light emitting element 20 includes at least a semiconductor stacked body 23, and positive and negative electrodes 21 and 22 are provided on the semiconductor stacked body 23. The positive and negative electrodes 21 and 22 are formed on the same surface of the light emitting element 20, and the light emitting element 20 is preferably flip-chip mounted on the substrate 10. This eliminates the need for a wire for supplying electricity to the positive and negative electrodes of the light emitting element, thereby reducing the size of the light emitting device. In the present embodiment, the light emitting element 20 includes the element substrate 24, but the element substrate 24 may be removed. When the light emitting element 20 is flip-chip mounted on the substrate 10, the positive and negative electrodes 21 and 22 of the light emitting element are connected to the first wiring 12 through the conductive adhesive member 60.

図2Bに示すように、発光装置1000が発光素子20を複数備えている場合は、複数の発光素子は第1方向(X方向)に並んで設けられることが好ましい。このようにすることで、発光装置1000の第2方向(Y方向)の幅を短くすることができるので発光装置を薄型化することができる。尚、発光素子の数は、3つ以上でも、1つでもよい。   As illustrated in FIG. 2B, when the light emitting device 1000 includes a plurality of light emitting elements 20, the plurality of light emitting elements are preferably provided side by side in the first direction (X direction). By doing so, the width of the light emitting device 1000 in the second direction (Y direction) can be shortened, so that the light emitting device can be thinned. The number of light emitting elements may be three or more or one.

図3C、図4Aに示すように、基板10は、基材11と、第1配線12と、第2配線13と、を備えている。基材11は、長手方向である第1方向と短手方向である第2方向に延長する正面111と、正面の反対側に位置する背面112と、正面111と隣接し正面111と直交する底面113と、底面113の反対側に位置する上面114と、を有している。   As shown in FIGS. 3C and 4A, the substrate 10 includes a base material 11, a first wiring 12, and a second wiring 13. The base material 11 includes a front surface 111 extending in a first direction that is a longitudinal direction and a second direction that is a short direction, a back surface 112 positioned on the opposite side of the front surface, and a bottom surface that is adjacent to the front surface 111 and orthogonal to the front surface 111. 113 and a top surface 114 located on the opposite side of the bottom surface 113.

図4Aに示すように、発光装置1000は、第2配線13の一部を被覆する絶縁膜18を備えてもよい。絶縁膜18を備えることで、背面における絶縁性の確保及び短絡の防止を図ることができる。また、基材から第2配線が剥がれることを防止することができる。   As illustrated in FIG. 4A, the light emitting device 1000 may include an insulating film 18 that covers a part of the second wiring 13. By providing the insulating film 18, it is possible to ensure insulation on the back surface and prevent a short circuit. Moreover, it can prevent that the 2nd wiring peels from a base material.

図5Aに示すように、底面113側に位置する被覆部材40の長手方向の側面403は、Z方向において発光装置1000の内側に傾斜していることが好ましい。このようにすることで、発光装置1000を実装基板に実装する時に、被覆部材40の側面403と実装基板との接触が抑えられ、発光装置1000の実装姿勢が安定しやすい。また、被覆部材40が熱膨張した際、実装基板との接触による応力を抑えることもできる。上面114側に位置する被覆部材40の長手方向の側面404は、Z方向において発光装置1000の内側に傾斜していることが好ましい。このようにすることで、被覆部材40の側面と吸着ノズル(コレット)との接触が抑えられ、発光装置1000の吸着時の被覆部材40の損傷を抑制することができる。また、発光装置1000が照明ユニットなどに組み込まれた際、被覆部材40の側面404よりも基材11の上面114が優先的に周辺部材と接触することで、被覆部材40に係る応力を抑制することができる。このように、底面113側に位置する被覆部材40の長手方向の側面403及び上面114側に位置する被覆部材40の長手方向の側面404は、背面から正面方向(Z方向)において発光装置1000の内側に傾斜していることが好ましい。被覆部材40の傾斜角度θは、適宜選択できるが、このような効果の奏しやすさ及び被覆部材40の強度の観点から、0.3°以上3°以下であることが好ましく、0.5°以上2°以下であることがより好ましく、0.7°以上1.5°以下であることがよりいっそう好ましい。   As shown in FIG. 5A, the side surface 403 in the longitudinal direction of the covering member 40 located on the bottom surface 113 side is preferably inclined inward of the light emitting device 1000 in the Z direction. Thus, when the light emitting device 1000 is mounted on the mounting substrate, the contact between the side surface 403 of the covering member 40 and the mounting substrate is suppressed, and the mounting posture of the light emitting device 1000 is easily stabilized. Further, when the covering member 40 is thermally expanded, stress due to contact with the mounting board can be suppressed. The side surface 404 in the longitudinal direction of the covering member 40 located on the upper surface 114 side is preferably inclined inward of the light emitting device 1000 in the Z direction. By doing so, the contact between the side surface of the covering member 40 and the suction nozzle (collet) can be suppressed, and damage to the covering member 40 during the suction of the light emitting device 1000 can be suppressed. Further, when the light emitting device 1000 is incorporated in a lighting unit or the like, the upper surface 114 of the base material 11 is preferentially in contact with the peripheral member over the side surface 404 of the covering member 40, thereby suppressing the stress related to the covering member 40. be able to. As described above, the longitudinal side surface 403 of the covering member 40 positioned on the bottom surface 113 side and the longitudinal side surface 404 of the covering member 40 positioned on the top surface 114 side of the light emitting device 1000 from the back surface to the front surface (Z direction). It is preferable to incline inward. The inclination angle θ of the covering member 40 can be selected as appropriate, but from the viewpoint of the ease of exhibiting such an effect and the strength of the covering member 40, it is preferably 0.3 ° or more and 3 ° or less, and 0.5 ° It is more preferably 2 ° or less and more preferably 0.7 ° or more and 1.5 ° or less.

図5A、図5Bに示すように、発光装置1000の右側面と左側面は略同一の形状をしていることが好ましい。このようにすることで発光装置1000を小型化することができる。   As shown in FIGS. 5A and 5B, the right side surface and the left side surface of the light emitting device 1000 preferably have substantially the same shape. By doing so, the light emitting device 1000 can be reduced in size.

図6に示すように、被覆部材40の短手方向の側面405と基板10の短手方向の側面105とが実質的に同一平面上にあることが好ましい。このようにすることで、長手方向(X方向)の幅を短くすることができるので発光装置を小型化することができる。   As shown in FIG. 6, it is preferable that the lateral side surface 405 of the covering member 40 and the lateral side surface 105 of the substrate 10 are substantially on the same plane. By doing so, the width in the longitudinal direction (X direction) can be shortened, so that the light emitting device can be downsized.

<実施形態2>
図7〜図9Bに示す本発明の実施形態2に係る発光装置2000は、実施形態1に係る発光装置1000と比較して、基板上に載置された発光素子の数、基材が備える窪み及びビアホールの数が相違する。窪み16の形状は実施形態1と同様である。
<Embodiment 2>
The light-emitting device 2000 according to Embodiment 2 of the present invention illustrated in FIGS. 7 to 9B is less than the light-emitting device 1000 according to Embodiment 1 in the number of light-emitting elements placed on the substrate and the depressions included in the base material. And the number of via holes is different. The shape of the recess 16 is the same as that of the first embodiment.

図8Aに示すように、発光装置2000は、実施形態1と同様に、背面から正面方向における窪みの深さが上面側よりも底面側で深いことで、窪みの上面側に位置する基材の厚みを窪みの底面側に位置する基材の厚みよりも厚くすることができる。これにより、基材の強度低下を抑制することができる。また、底面側の窪みが深いことで、窪み内に形成される接合部材の体積が増加するので、発光装置2000と実装基板との接合強度を向上させることができる。   As shown in FIG. 8A, in the light emitting device 2000, as in the first embodiment, the depth of the recess in the front direction from the back surface is deeper on the bottom surface side than the upper surface side, so that the base material located on the upper surface side of the recess is The thickness can be made larger than the thickness of the substrate located on the bottom side of the recess. Thereby, the strength reduction of a base material can be suppressed. Moreover, since the volume of the joining member formed in a dent increases because the dent on the bottom side is deep, the bonding strength between the light emitting device 2000 and the mounting substrate can be improved.

図8Bに示すように、発光素子の数は1つでもよい。発光素子が1つであることで、発光素子が複数ある場合よりも第1方向(X方向)の幅を短くすることができるので発光装置を小型化できる。発光装置の第1方向(X方向)の幅が短くなることにより、窪みの数も適宜変更してもよい。例えば、図9Aに示すように、窪み16の数を2つにしてもよい。尚、窪み16は1つでも、3つ以上でもよい。   As shown in FIG. 8B, the number of light emitting elements may be one. Since the number of light emitting elements is one, the width in the first direction (X direction) can be shortened compared to the case where there are a plurality of light emitting elements, and thus the light emitting device can be downsized. As the width of the light emitting device in the first direction (X direction) becomes shorter, the number of depressions may be changed as appropriate. For example, as shown in FIG. 9A, the number of depressions 16 may be two. The number of the recesses 16 may be one or three or more.

図9Bに示すように、背面視において窪み16と隣り合う窪みとの間に複数のビアホール15が位置することが好ましい。換言すると、背面視において窪み16と隣り合う窪みを結ぶ直線上に複数のビアホール15が位置することが好ましい。このようにすることで、発光素子からの熱がビアホール15から窪み内に位置する第3配線14に効率的に伝わることができる。これにより、発光装置の放熱性が向上する。   As shown in FIG. 9B, it is preferable that a plurality of via holes 15 are located between the depression 16 and the neighboring depression in the rear view. In other words, it is preferable that the plurality of via holes 15 be positioned on a straight line connecting the depressions 16 and the depressions adjacent to each other in the rear view. By doing in this way, the heat from a light emitting element can be efficiently transmitted from the via hole 15 to the 3rd wiring 14 located in a hollow. Thereby, the heat dissipation of a light-emitting device improves.

<実施形態3>
図10〜図14に示す本発明の実施形態3に係る発光装置3000は、実施形態1に係る発光装置1000と比較して、形状の異なる窪み16を備える点で相違する。
<Embodiment 3>
The light emitting device 3000 according to the third embodiment of the present invention shown in FIGS. 10 to 14 is different from the light emitting device 1000 according to the first embodiment in that it includes a recess 16 having a different shape.

発光装置3000は発光装置1000と同様に、基板10と、少なくとも1つの発光素子20と、被覆部材40と、を備える。基板10は、基材11と、第1配線12と、第2配線13と、第3配線14と、ビアホール15と、を備える。基材11は、長手方向である第1方向と短手方向である第2方向に延長する正面111と、正面の反対側に位置する背面112と、正面111と隣接し正面111と直交する底面113と、底面113の反対側に位置する上面114と、正面111と背面112の間に位置する側面115を備える。基材11は、更に複数の窪み16を有する。複数の窪み16は、背面112と底面113とに開口した中央窪み161と、背面112と底面113と側面115とに開口した端部窪み162とを備える。第3配線14は、窪み16の内壁を被覆し、第2配線13と電気的に接続される。   Similar to the light emitting device 1000, the light emitting device 3000 includes a substrate 10, at least one light emitting element 20, and a covering member 40. The substrate 10 includes a base material 11, a first wiring 12, a second wiring 13, a third wiring 14, and a via hole 15. The base material 11 includes a front surface 111 extending in a first direction that is a longitudinal direction and a second direction that is a short direction, a back surface 112 positioned on the opposite side of the front surface, and a bottom surface that is adjacent to the front surface 111 and orthogonal to the front surface 111. 113, a top surface 114 positioned on the opposite side of the bottom surface 113, and a side surface 115 positioned between the front surface 111 and the back surface 112. The substrate 11 further has a plurality of depressions 16. The plurality of depressions 16 include a central depression 161 that opens to the back surface 112 and the bottom surface 113, and an end depression 162 that opens to the back surface 112, the bottom surface 113, and the side surface 115. The third wiring 14 covers the inner wall of the recess 16 and is electrically connected to the second wiring 13.

図14に示すように、発光装置3000は、背面から正面方向における中央窪み161及び/又は端部窪み162の深さが上面側よりも底面側で深いことで、中央窪み161及び/又は端部窪み162の上面側に位置する基材の厚みを中央窪み161及び/又は端部窪み162の底面側に位置する基材の厚みよりも厚くすることができる。これにより、基材の強度低下を抑制することができる。また、底面側の中央窪み161及び/又は端部窪み162が深いことで、中央窪み161及び/又は端部窪み162内に形成される接合部材の体積が増加するので、発光装置3000と実装基板との接合強度を向上させることができる。尚、中央窪み161及び/又は端部窪み162は少なくとも1つあればよい。   As illustrated in FIG. 14, the light emitting device 3000 includes the central depression 161 and / or the end portion in which the depth of the central depression 161 and / or the end depression 162 in the front direction from the back is deeper on the bottom surface side than the upper surface side. The thickness of the base material located on the upper surface side of the depression 162 can be made thicker than the thickness of the base material located on the bottom surface side of the central depression 161 and / or the end depression 162. Thereby, the strength reduction of a base material can be suppressed. Moreover, since the volume of the joining member formed in the center dent 161 and / or the end dent 162 is increased because the central dent 161 and / or the end dent 162 on the bottom surface side is deep, the light emitting device 3000 and the mounting substrate. The joint strength can be improved. It should be noted that at least one central recess 161 and / or end recess 162 may be provided.

端部窪み162は、図11〜図14に示すように、基材の側面115にも開口している。これにより、基材の側面115側にも接合部材が位置するので、更に発光装置3000と実装基板との接合強度を向上させることができる。発光装置3000が基材11の底面113と、実装基板と、を対向させて実装する側面発光型の場合には、特に端部窪み162を備えていることが好ましい。端部窪み162を備えていることで、基材の側面115を固定することができるので、発光装置3000が実装基板上で傾斜したり、基材の背面が実装基板と対向して立ち上がったりするマンハッタン現象の発生を抑制することができる。端部窪み162は少なくとも1つあればよいが、複数あることが好ましい。端部窪み162が複数あることで、更に発光装置3000と実装基板との接合強度を向上させることができる。端部窪み162が複数ある場合には、背面視において端部窪みが基材の両端に位置していることが好ましい。このようにすることで、更にマンハッタン現象の発生を抑制することができる。   As shown in FIGS. 11 to 14, the end recess 162 is also opened on the side surface 115 of the base material. Thereby, since the joining member is located also on the side surface 115 side of the base material, the joining strength between the light emitting device 3000 and the mounting substrate can be further improved. In the case where the light emitting device 3000 is a side light emitting type in which the bottom surface 113 of the base material 11 and the mounting substrate are mounted to face each other, it is particularly preferable that the light emitting device 3000 includes an end recess 162. By providing the end recess 162, the side surface 115 of the base material can be fixed, so that the light emitting device 3000 is inclined on the mounting substrate, or the back surface of the base material is raised to face the mounting substrate. The occurrence of the Manhattan phenomenon can be suppressed. There may be at least one end recess 162, but a plurality of end recesses 162 are preferable. The presence of the plurality of end depressions 162 can further improve the bonding strength between the light emitting device 3000 and the mounting substrate. When there are a plurality of the end dents 162, it is preferable that the end dents are located at both ends of the substrate in the rear view. By doing in this way, generation | occurrence | production of the Manhattan phenomenon can be suppressed further.

背面視において、中央窪み161の形状が円形状の半分の略半円形状であり、端部窪み162の形状が円形状の略4分の1の形状である場合には、中央窪み161と端部窪み162の円形状の直径は異なっていても、略同一でもよい。中央窪み161と端部窪み162の円形状の直径が略同一であれば、1つのドリルにより中央窪み161及び端部窪み162を形成することができるので好ましい。また、断面視において中央窪み161及び端部窪み162が底面113から基材11の厚みが厚くなる方向に傾斜する傾斜部を備えている場合には、中央窪み161の傾斜部と端部窪み162の傾斜部の角度は異なっていても、略同一でもよい。中央窪み161の傾斜部と端部窪み162の傾斜部の角度が略同一であれば、1つのドリルにより中央窪み161及び端部窪み162を形成することができるので好ましい。   In the rear view, when the shape of the central depression 161 is a substantially semicircular shape that is a half of a circular shape, and the shape of the end depression 162 is a substantially quarter shape of a circular shape, The diameters of the circular shapes of the partial recesses 162 may be different or substantially the same. If the diameters of the circular shapes of the center recess 161 and the end recess 162 are substantially the same, it is preferable because the center recess 161 and the end recess 162 can be formed by one drill. Further, when the central depression 161 and the end depression 162 are provided with inclined portions that are inclined from the bottom surface 113 in the direction in which the thickness of the base material 11 is increased in cross-sectional view, the inclined portion and the end depression 162 of the central depression 161 are provided. The angles of the inclined portions may be different or substantially the same. If the angles of the inclined portion of the central recess 161 and the inclined portion of the end recess 162 are substantially the same, it is preferable because the central recess 161 and the end recess 162 can be formed by one drill.

図15、図16に示すように、1つの透光性部材30が、複数の発光素子上に位置していてもよい。このようにすることで、正面視における透光性部材の面積を大きくすることができるので発光装置の光取り出し効率が向上する。また、発光装置の発光面が1つになることで発光装置の輝度ムラを低減することができる。   As shown in FIGS. 15 and 16, one translucent member 30 may be positioned on a plurality of light emitting elements. By doing in this way, since the area of the translucent member in front view can be enlarged, the light extraction efficiency of a light-emitting device improves. In addition, since the light emitting surface of the light emitting device becomes one, uneven luminance of the light emitting device can be reduced.

1つの透光性部材30が、複数の発光素子上に位置している場合には、各発光素子20と透光性部材30とを接合する導光部材50は、繋がっていても、それぞれ離間していてもよい。図16に示すように、一方の発光素子と他方の発光素子の間を繋ぐように導光部材が位置することが好ましい。このようにすることで、一方の発光素子と他方の発光素子の間からも導光部材を介して発光素子の光を透光部材に導光することができるので、発光装置の輝度ムラを低減することができる。また、一方の発光素子と他方の発光素子の間に位置する被覆部材の部分が減少するので、被覆部材が発光素子からの光で劣化を抑制することができる。尚、導光部材としては被覆部材よりも発光素子からの光によって劣化しにくい材料を用いることが好ましい。   When one translucent member 30 is positioned on a plurality of light emitting elements, the light guide members 50 that join each light emitting element 20 and the translucent member 30 are separated from each other even if they are connected. You may do it. As shown in FIG. 16, it is preferable that the light guide member is positioned so as to connect one light emitting element and the other light emitting element. By doing so, light from the light emitting element can be guided to the light transmitting member through the light guiding member from between the one light emitting element and the other light emitting element, thereby reducing luminance unevenness of the light emitting device. can do. In addition, since the portion of the covering member positioned between one light emitting element and the other light emitting element is reduced, the covering member can be prevented from being deteriorated by light from the light emitting element. The light guide member is preferably made of a material that is less likely to be deteriorated by light from the light emitting element than the covering member.

<実施形態4>
図17〜図21に示す本発明の実施形態4に係る発光装置4000は、実施形態2に係る発光装置2000と比較して、形状の異なる窪み16を備える点で相違する。
<Embodiment 4>
The light-emitting device 4000 according to the fourth embodiment of the present invention illustrated in FIGS. 17 to 21 is different from the light-emitting device 2000 according to the second embodiment in that it includes a recess 16 having a different shape.

図21に示すように、発光装置4000は、端部窪み162を備えている。背面から正面方向における端部窪みの深さが上面側よりも底面側で深いことで、端部窪みの上面側に位置する基材の厚みを窪みの底面側に位置する基材の厚みよりも厚くすることができる。これにより、基材の強度低下を抑制することができる。また、底面側の端部窪みが深いことで、端部窪み内に形成される接合部材の体積が増加するので、発光装置4000と実装基板との接合強度を向上させることができる。   As shown in FIG. 21, the light emitting device 4000 includes an end recess 162. The depth of the end dent in the front direction from the back is deeper on the bottom side than the upper surface side, so that the thickness of the substrate located on the upper surface side of the end dent is larger than the thickness of the substrate located on the bottom side of the dent Can be thicker. Thereby, the strength reduction of a base material can be suppressed. Moreover, since the volume of the joining member formed in the end recess is increased due to the deep end recess on the bottom surface side, the bonding strength between the light emitting device 4000 and the mounting substrate can be improved.

端部窪み162は、図18〜図21に示すように、基材の側面115にも開口している。これにより、基材の側面115側にも接合部材が位置するので、更に発光装置4000と実装基板との接合強度を向上させることができる。   As shown in FIGS. 18 to 21, the end recess 162 is also opened on the side surface 115 of the base material. Thereby, since the joining member is located also on the side surface 115 side of the base material, the joining strength between the light emitting device 4000 and the mounting substrate can be further improved.

<実施形態5>
図22に示す本発明の実施形態5に係る発光装置5000は、実施形態4に係る発光装置4000と比較して、中央窪み161を備える点で相違する。
<Embodiment 5>
The light emitting device 5000 according to the fifth embodiment of the present invention illustrated in FIG. 22 is different from the light emitting device 4000 according to the fourth embodiment in that a central depression 161 is provided.

発光装置5000は、中央窪み161及び端部窪み162を備えていることで接合部材により固定できる箇所が増えるので発光装置と実装基板の接合強度を向上させることができる。尚、背面から正面方向における中央窪み161及び/又は端部窪み162の深さが上面側よりも底面側で深い。これにより、発光装置5000と実装基板との接合強度を向上させることができる。   Since the light emitting device 5000 includes the central recess 161 and the end recess 162, the number of places that can be fixed by the bonding member increases, and thus the bonding strength between the light emitting device and the mounting substrate can be improved. Note that the depth of the central depression 161 and / or the end depression 162 in the front direction from the back is deeper on the bottom side than on the top side. Thereby, the joint strength between the light emitting device 5000 and the mounting substrate can be improved.

<実施形態6>
図23に示す本発明の実施形態6に係る発光装置6000は、実施形態1に係る発光装置1000と比較して、第2配線及び絶縁膜の形状と、発光装置の中央に窪み(中央窪み)を備えていない点で相違する。
<Embodiment 6>
The light-emitting device 6000 according to Embodiment 6 of the present invention illustrated in FIG. 23 has a second wiring and an insulating film shape and a depression (center depression) in the center of the light-emitting device, as compared with the light-emitting device 1000 according to Embodiment 1. It is different in that it does not have.

発光装置6000の第2配線13は、背面視において2つの端部窪みの間に位置し、絶縁膜18から露出する露出部131を備えている。露出部131は、底面113側を除いて絶縁膜18に囲まれている。露出部131に接合部材を配置することで発光装置と実装基板の接合強度を向上させることができる。背面視における露出部131の形状は四角形状でも半球形状でも任意の形状でよい。背面視における露出部131の形状は絶縁膜の形状を変更することにより容易に変更することができる。背面視における露出部131の形状は、底面側に幅狭部132を備え、第2方向(Y方向)に延長した位置に幅広部133を備えることが好ましい。幅狭となる部位を配置することにより、発光装置を実装する場合に、接合部材に含まれるフラックスなどが、露出部131の表面に沿って、発光素子下にまで浸入することを抑制することができる。また、絶縁膜18から露出した第2配線13の形状は第2方向(Y方向)に平行な基材の中心線に対して左右対称に位置することが好ましい。このようにすることで、発光装置を実装基板に接合部材を介して実装される際にセルフアライメントが効果的に働き、発光装置を実装範囲内に精度よく実装することができる。   The second wiring 13 of the light emitting device 6000 includes an exposed portion 131 that is located between the two end dents in the rear view and is exposed from the insulating film 18. The exposed portion 131 is surrounded by the insulating film 18 except for the bottom surface 113 side. By arranging the bonding member in the exposed portion 131, the bonding strength between the light emitting device and the mounting substrate can be improved. The shape of the exposed portion 131 in the rear view may be a rectangular shape, a hemispherical shape, or an arbitrary shape. The shape of the exposed portion 131 in the rear view can be easily changed by changing the shape of the insulating film. The shape of the exposed portion 131 in the rear view is preferably provided with the narrow portion 132 on the bottom surface side and the wide portion 133 at a position extended in the second direction (Y direction). By arranging the narrow portion, it is possible to suppress the flux contained in the bonding member from entering the light emitting element along the surface of the exposed portion 131 when the light emitting device is mounted. it can. The shape of the second wiring 13 exposed from the insulating film 18 is preferably positioned symmetrically with respect to the center line of the base material parallel to the second direction (Y direction). By doing so, self-alignment effectively works when the light emitting device is mounted on the mounting substrate via the bonding member, and the light emitting device can be mounted with high accuracy within the mounting range.

<実施形態7>
図24に示す本発明の実施形態7に係る発光装置7000は、実施形態4に係る発光装置4000と比較して、第2配線及び絶縁膜の形状が相違する。
<Embodiment 7>
The light emitting device 7000 according to the seventh embodiment of the present invention illustrated in FIG. 24 differs from the light emitting device 4000 according to the fourth embodiment in the shapes of the second wiring and the insulating film.

発光装置7000の第2配線13は、発光装置6000と同様に背面視において2つの端部窪みの間に位置し、絶縁膜18から露出する露出部131を備えている。露出部131は、底面113側を除いて絶縁膜18に囲まれている。露出部131に接合部材を配置することで発光装置7000と実装基板の接合強度を向上させることができる。   Similar to the light emitting device 6000, the second wiring 13 of the light emitting device 7000 includes an exposed portion 131 that is located between two end dents when viewed from the back and is exposed from the insulating film 18. The exposed portion 131 is surrounded by the insulating film 18 except for the bottom surface 113 side. By arranging the bonding member in the exposed portion 131, the bonding strength between the light emitting device 7000 and the mounting substrate can be improved.

発光装置を実装する実装基板のランドパターンの形状は、特に限定されるものではなく、略四角形状でも略円形状でもよい。例えば、図25Aに示すように、実施形態1に係る発光装置を実装する実装基板のランドパターンは、X方向において幅の広い幅広部W10と幅の狭い幅狭部W9とを備えていてもよい。底面視において、窪みと重なる位置に幅狭部W9が位置することで、発光装置を実装基板に実装する時のセルフアライメント性を高めることができる。また、ランドパターンが幅広部W10を備えることで、底面視におけるランドパターンの面積を大きくすることができる。これにより、接合部材の厚みのバラつきを抑制することができる。また、実施形態1に係る発光装置のように、窪みの中央の深さが、Z方向における窪みの深さの最大である発光装置を実装する実装基板のランドパターンは、図25Bに示すように、ランドパターンの中央におけるZ方向の長さW12が、ランドパターンの端部におけるZ方向の長さW11よりも長いことが好ましい。このようにすることで、発光装置を実装基板に実装する時のセルフアライメント性を高めることができる。また、図25Cに示すように、ランドパターンは、幅広部W10と幅狭部W9とを備え、且つ、ランドパターンの幅狭部において中央のZ方向における長さW14が、ランドパターンの幅狭部の端部のZ方向における長さW13よりも長くしてもよい。このようにすることで、実施形態1に係る発光装置を実装基板に実装する時のセルフアライメント性を高めることと、接合部材の厚みのバラつきを抑制することができる。   The shape of the land pattern of the mounting substrate on which the light emitting device is mounted is not particularly limited, and may be a substantially square shape or a substantially circular shape. For example, as illustrated in FIG. 25A, the land pattern of the mounting board on which the light emitting device according to Embodiment 1 is mounted may include a wide portion W10 that is wide in the X direction and a narrow portion W9 that is narrow in width. . When the narrow portion W9 is positioned at a position overlapping with the recess in the bottom view, the self-alignment property when the light emitting device is mounted on the mounting substrate can be enhanced. In addition, since the land pattern includes the wide portion W10, the area of the land pattern in the bottom view can be increased. Thereby, the variation in the thickness of a joining member can be suppressed. Further, as in the light emitting device according to the first embodiment, the land pattern of the mounting substrate on which the light emitting device in which the depth of the center of the recess is the maximum in the Z direction is as shown in FIG. 25B. The length W12 in the Z direction at the center of the land pattern is preferably longer than the length W11 in the Z direction at the end of the land pattern. By doing in this way, the self-alignment property when mounting a light-emitting device on a mounting substrate can be improved. As shown in FIG. 25C, the land pattern includes a wide portion W10 and a narrow portion W9, and the length W14 in the center Z direction in the narrow portion of the land pattern is the narrow portion of the land pattern. You may make it longer than length W13 in the Z direction of the edge part. By doing in this way, the self-alignment property at the time of mounting the light-emitting device which concerns on Embodiment 1 on a mounting board | substrate can be improved, and the variation in the thickness of a joining member can be suppressed.

また、実施形態4に係る発光装置のように発光装置の中心から離れるほどZ方向における窪みの深さが深くなる発光装置を実装する実装基板のランドパターンは、図26Aに示すように、発光装置の中心から遠い側のランドパターンのZ方向における長さW15が、発光装置の中心から近い側のランドパターンのZ方向における長さW16よりも長いことが好ましい。このようにすることで、発光装置を実装基板に実装する時のセルフアライメント性を高めることができる。また、図26Bに示すように、ランドパターンは、X方向において幅の広い幅広部W10と幅の狭い幅狭部W9とを備え、且つ、発光装置の中心から遠い側のランドパターンの幅狭部の端部のZ方向の長さW17が、発光装置の中心から近い側のランドパターンの幅狭部の端部のZ方向の長さW18よりも長いことが好ましい。底面視において、端部窪みと重なる位置に幅狭部が位置することで、発光装置を実装基板に実装する時のセルフアライメント性を高めることができる。また、ランドパターンが幅広部を備えることで、底面視におけるランドパターンの面積を大きくすることができる。これにより、接合部材の厚みのバラつきを抑制することができる。また、発光装置の中心から遠い側のランドパターンの幅狭部の端部のZ方向の長さW17が、発光装置の中心から近い側のランドパターンの幅狭部の端部のZ方向の長さW18よりも長いことで、発光装置を実装基板に実装する時のセルフアライメント性を高めることができる。   Further, as shown in FIG. 26A, the land pattern of the mounting board on which the light emitting device in which the depth of the depression in the Z direction becomes deeper as the distance from the center of the light emitting device is increased. The length W15 in the Z direction of the land pattern far from the center of the light emitting device is preferably longer than the length W16 in the Z direction of the land pattern near the center of the light emitting device. By doing in this way, the self-alignment property when mounting a light-emitting device on a mounting substrate can be improved. As shown in FIG. 26B, the land pattern includes a wide portion W10 that is wide in the X direction and a narrow portion W9 that is narrow in the X direction, and the narrow portion of the land pattern that is far from the center of the light emitting device. It is preferable that the length W17 in the Z direction of the end of the light source is longer than the length W18 in the Z direction of the end of the narrow portion of the land pattern closer to the center of the light emitting device. When the narrow portion is located at a position overlapping the end depression when viewed from the bottom, the self-alignment property when the light-emitting device is mounted on the mounting substrate can be enhanced. Further, since the land pattern includes the wide portion, the area of the land pattern in the bottom view can be increased. Thereby, the variation in the thickness of a joining member can be suppressed. Further, the length W17 in the Z direction of the end of the narrow portion of the land pattern far from the center of the light emitting device is the length in the Z direction of the end of the narrow portion of the land pattern near to the center of the light emitting device. By being longer than W18, the self-alignment property when the light emitting device is mounted on the mounting substrate can be improved.

<実施形態8>
図27〜図30に示す本発明の実施形態8に係る発光装置8000は、実施形態1に係る発光装置1000と比較して、基板上に載置された発光素子の数、基材が備える窪み及びビアホールの数、透光性部材の形状が相違する。窪み16の形状は実施形態1と同様である。
<Embodiment 8>
The light emitting device 8000 according to the eighth embodiment of the present invention illustrated in FIGS. 27 to 30 is more than the light emitting device 1000 according to the first embodiment. And the number of via holes and the shape of the translucent member are different. The shape of the recess 16 is the same as that of the first embodiment.

図28Aに示すように、発光装置8000は、実施形態1と同様に、背面から正面方向における窪みの深さが上面側よりも底面側で深いことで、窪みの上面側に位置する基材の厚みを窪みの底面側に位置する基材の厚みよりも厚くすることができる。これにより、基材の強度低下を抑制することができる。また、底面側の窪みが深いことで、窪み内に形成される接合部材の体積が増加するので、発光装置8000と実装基板との接合強度を向上させることができる。   As shown in FIG. 28A, in the light emitting device 8000, as in the first embodiment, the depth of the recess in the front direction from the back surface is deeper on the bottom surface side than the upper surface side, so that the base material positioned on the upper surface side of the recess is The thickness can be made larger than the thickness of the substrate located on the bottom side of the recess. Thereby, the strength reduction of a base material can be suppressed. Moreover, since the volume of the bonding member formed in the depression increases because the depression on the bottom surface side is deep, the bonding strength between the light emitting device 8000 and the mounting substrate can be improved.

図28Bに示すように、発光素子の数は3つでもよい。3つの発光素子のピーク波長は同じでもよく、3つの発光素子のピーク波長がそれぞれ異なっていてもよく、2つの発光素子のピーク波長が同じで1つの発光素子のピーク波長が2つの発光素子のピーク波長と異なっていてもよい。尚、本明細書において発光素子のピーク波長が同じとは、5nm程度の変動は許容することを意味する。発光素子のピーク波長が異なる場合には、図28Bに示すように、発光のピーク波長が430nm以上490nm未満の範囲(青色領域の波長範囲)にある第1発光素子20Bと、発光のピーク波長が490nm以上570nm以下の範囲(緑色領域の波長範囲)にある第2発光素子20Gと、を備えていることが好ましい。特に、第2発光素子20Gは、半値幅が40nm以下の発光素子を用いることが好ましく、半値幅が30nm以下である発光素子を用いることがより好ましい。これにより、緑色蛍光体を用いて緑色光を得る場合と比べ、緑色光が容易に鋭いピークを持つことができる。この結果、発光装置8000を備えた液晶表示装置は、高い色再現性を達成することができる。   As shown in FIG. 28B, the number of light emitting elements may be three. The peak wavelengths of the three light emitting elements may be the same, the peak wavelengths of the three light emitting elements may be different from each other, the peak wavelengths of the two light emitting elements are the same, and the peak wavelength of one light emitting element is the same as that of the two light emitting elements. It may be different from the peak wavelength. In the present specification, the same peak wavelength of the light emitting element means that a variation of about 5 nm is allowed. When the peak wavelengths of the light emitting elements are different, as shown in FIG. 28B, the first light emitting element 20B in which the peak wavelength of light emission is in the range of 430 nm to less than 490 nm (the wavelength range of the blue region) and the peak wavelength of light emission are It is preferable to include the second light emitting element 20G in the range of 490 nm or more and 570 nm or less (the wavelength range of the green region). In particular, the second light emitting element 20G is preferably a light emitting element having a half width of 40 nm or less, and more preferably a light emitting element having a half width of 30 nm or less. Thereby, compared with the case where green light is obtained using a green phosphor, green light can easily have a sharp peak. As a result, the liquid crystal display device including the light emitting device 8000 can achieve high color reproducibility.

第1発光素子20Bと第2発光素子20Gの配置は特に限定されないが、図28Bに示すように、左から順に青色発光素子である第1発光素子20Bと、緑色発光素子である第2発光素子20Gと、青色発光素子である第1発光素子20Bと、が並んで配置されていることが好ましい。第1発光素子20Bと第2発光素子20Gが交互に並んで配置されることで発光装置の混色性を向上させることができる。尚、左から順に第2発光素子と、第1発光素子と、第2発光素子と、が並んで配置されてもよい。また、得ようとする発光特性に応じて、第1発光素子20Bの個数の方が第2発光素子20Gの個数よりも多くてもよく、第2発光素子20Gの個数の方が第1発光素子20Bの個数よりも多くてもよく、また第1発光素子20Bと第2発光素子20Gの個数が同じであってよい。発光素子の個数を調整することで、任意の色調や光量を有する発光装置とすることができる。   The arrangement of the first light emitting element 20B and the second light emitting element 20G is not particularly limited, but as shown in FIG. 28B, the first light emitting element 20B that is a blue light emitting element and the second light emitting element that is a green light emitting element in order from the left. 20G and the first light emitting element 20B which is a blue light emitting element are preferably arranged side by side. By arranging the first light emitting elements 20B and the second light emitting elements 20G alternately, the color mixing property of the light emitting device can be improved. Note that the second light emitting element, the first light emitting element, and the second light emitting element may be arranged in order from the left. Further, depending on the light emission characteristics to be obtained, the number of the first light emitting elements 20B may be larger than the number of the second light emitting elements 20G, and the number of the second light emitting elements 20G is the first light emitting element. The number of first light emitting elements 20B and the number of second light emitting elements 20G may be the same. By adjusting the number of light-emitting elements, a light-emitting device having an arbitrary color tone and light amount can be obtained.

図28Bに示すように、1つの透光性部材30が第1発光素子20Bと第2発光素子20G上に位置する場合には、波長変換物質32は、第2発光素子20Gの緑色光を吸収して赤色光を発光することがほとんどないことが好ましい。すなわち、波長変換物質32は緑色光を赤色光に実質的に変換しないことが好ましい。そして、波長変換物質32の緑色光に対する反射率は、緑色光の波長の範囲で平均して70%以上であることが好ましい。波長変換物質32を緑色光に対する反射率が高い、すなわち、緑色光を吸収することが少ない蛍光体、すなわち緑色光を波長変換することが少ない蛍光体とすることにより、発光装置の設計を容易にすることができる。
緑色光の吸収が大きい赤色蛍光体を使うと、第1発光素子20Bだけでなく、第2発光素子20Gについても波長変換物質32による波長変換を考慮して発光装置の出力バランスを検討しなければない。一方、緑色光をほとんど波長変換しない波長変換物質32を用いると、第1発光素子20Bの発光する青色の波長変換のみを考慮するだけで発光装置の出力バランスを設計することができる。
As shown in FIG. 28B, when one translucent member 30 is positioned on the first light emitting element 20B and the second light emitting element 20G, the wavelength conversion material 32 absorbs the green light of the second light emitting element 20G. Thus, it is preferable that red light is hardly emitted. That is, it is preferable that the wavelength conversion material 32 does not substantially convert green light into red light. And it is preferable that the reflectance with respect to the green light of the wavelength conversion substance 32 is 70% or more on the average in the wavelength range of green light. By making the wavelength conversion material 32 a phosphor that has a high reflectance with respect to green light, that is, a phosphor that hardly absorbs green light, that is, a phosphor that hardly converts the wavelength of green light, the design of the light emitting device is facilitated. can do.
If a red phosphor having a large green light absorption is used, not only the first light emitting element 20B but also the second light emitting element 20G must consider the output balance of the light emitting device in consideration of the wavelength conversion by the wavelength converting material 32. Absent. On the other hand, when the wavelength converting material 32 that hardly converts the wavelength of green light is used, the output balance of the light emitting device can be designed only by considering the wavelength conversion of the blue light emitted by the first light emitting element 20B.

このような好ましい波長変換物質32として以下の赤色蛍光体を挙げることができる。波長変換物質32はこれらの少なくとも1つ以上である。
第1の種類は、その組成が以下の一般式(I)で示される赤色蛍光体である。

2MF6:Mn4+ (I)

ただし、上記一般式(I)中、Aは、K、Li、Na、Rb、Cs及びNH4+からなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素である。
Examples of such a preferable wavelength conversion substance 32 include the following red phosphors. The wavelength converting material 32 is at least one of these.
The first type is a red phosphor whose composition is represented by the following general formula (I).

A 2 MF 6 : Mn 4+ (I)

However, in the said general formula (I), A is at least 1 sort (s) chosen from the group which consists of K, Li, Na, Rb, Cs, and NH4 + , M is from a group 4 element and a group 14 element. And at least one element selected from the group consisting of

第4族元素はチタン(Ti)、ジルコニウム(Zr)及びハフニウム(Hf)である。第14族元素は、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)及び鉛(Pb)である。
第1の種類の赤色蛍光体の具体例として、KSiF:Mn4+、K(Si,Ge)F:Mn4+、KTiF:Mn4+を挙げることができる。
Group 4 elements are titanium (Ti), zirconium (Zr), and hafnium (Hf). Group 14 elements are silicon (Si), germanium (Ge), tin (Sn), and lead (Pb).
Specific examples of the first type of red phosphor include K 2 SiF 6 : Mn 4+ , K 2 (Si, Ge) F 6 : Mn 4+ , and K 2 TiF 6 : Mn 4+ .

第2の種類は、その組成が3.5MgO・0.5MgF・GeO:Mn4+で表される赤色蛍光体または、その組成が以下の一般式(II)で示される赤色蛍光体である。

(x−a)MgO・a(Ma)O・b/2(Mb)・yMgF・c(Mc)X・(1−d−e)GeO・d(Md)O・e(Me):Mn4+ (II)

ただし、上記一般式(II)中、Maは、Ca,Sr,Ba,Znから選択された少なくとも1種であり、Mbは、Sc,La,Luから選択された少なくとも1種であり、Mcは、Ca,Sr,Ba,Znから選択された少なくとも1種であり、Xは、F,Clから選択された少なくとも1種であり、Mdは、Ti,Sn,Zrから選択された少なくとも1種であり、Meは、B,Al,Ga,Inから選択された少なくとも1種である。また、x、y、a、b、c、d、eについて、2≦x≦4、0<y≦2、0≦a≦1.5、0≦b<1、0≦c≦2、0≦d≦0.5、0≦e<1である。
The second type is a red phosphor whose composition is represented by 3.5MgO.0.5MgF 2 .GeO 2 : Mn 4+ or a red phosphor whose composition is represented by the following general formula (II) .

(X-a) MgO.a (Ma) O.b / 2 (Mb) 2 O 3 .yMgF 2 .c (Mc) X 2. (1-de) GeO 2 .d (Md) O 2. e (Me) 2 O 3 : Mn 4+ (II)

However, in the general formula (II), Ma is at least one selected from Ca, Sr, Ba, and Zn, Mb is at least one selected from Sc, La, and Lu, and Mc is , Ca, Sr, Ba, Zn, X is at least one selected from F, Cl, and Md is at least one selected from Ti, Sn, Zr And Me is at least one selected from B, Al, Ga, and In. For x, y, a, b, c, d, and e, 2 ≦ x ≦ 4, 0 <y ≦ 2, 0 ≦ a ≦ 1.5, 0 ≦ b <1, 0 ≦ c ≦ 2, 0 ≦ d ≦ 0.5 and 0 ≦ e <1.

発光装置8000は、発光素子が3つであることで、発光素子が1つである場合よりも第1方向(X方向)の幅が長くなりやすい。このため、窪み及びビアホールの数を適宜変更してもよい。例えば、図30に示すように、窪み16及びビアホールの数を4つにしてもよい。   Since the light emitting device 8000 has three light emitting elements, the width in the first direction (X direction) tends to be longer than that in the case where there is one light emitting element. For this reason, you may change suitably the number of a hollow and a via hole. For example, as shown in FIG. 30, the number of recesses 16 and via holes may be four.

図31に示すように、第1発光素子と、第2発光素子の上にそれぞれ1つの透光性部材30が位置していてもよく、図28Bに示すように、1つの透光性部材30が、複数の発光素子上に位置していてもよい。図31のように第1発光素子と、第2発光素子の上にそれぞれ1つの透光性部材30が位置している場合には、第1発光素子20B上に位置する透光性部材30と、第2発光素子20G上に位置する透光性部材30に含有する波長変換物質32の材料は同じでもよく、異なっていてもよい。例えば、波長変換物質32が、第2発光素子20Gの緑色光を吸収して赤色光を発光することがほとんどない場合は、第1発光素子20B上に位置する透光性部材30には赤色蛍光体である波長変換物質32を含有し、第2発光素子20G上に位置する透光性部材30には赤色蛍光体である波長変換物質32を含有しなくてもよい。このようにすることで、第1発光素子20Bの発光する青色の波長変換のみを考慮するだけで発光装置の出力バランスを設計することができる。第1発光素子と、第2発光素子の上にそれぞれ1つの透光性部材30が位置する場合には、第1発光素子20B上に位置する透光性部材30と、第2発光素子20G上に位置する透光性部材30との間には被覆部材が形成されている。図28Bに示すように、1つの透光性部材30が、複数の発光素子上に位置している場合は、正面視における透光性部材30の面積を大きくすることができるので発光装置の光取り出し効率が向上する。また、発光装置の発光面が1つになることで発光装置の輝度ムラを低減することができる。   As shown in FIG. 31, one translucent member 30 may be positioned on each of the first light emitting element and the second light emitting element. As shown in FIG. 28B, one translucent member 30 is provided. However, it may be located on a plurality of light emitting elements. When one translucent member 30 is positioned on each of the first light emitting element and the second light emitting element as shown in FIG. 31, the translucent member 30 positioned on the first light emitting element 20B and The material of the wavelength conversion substance 32 contained in the translucent member 30 located on the second light emitting element 20G may be the same or different. For example, when the wavelength converting material 32 hardly absorbs the green light of the second light emitting element 20G and emits red light, the translucent member 30 positioned on the first light emitting element 20B has red fluorescence. The translucent member 30 that contains the wavelength conversion substance 32 that is a body and is located on the second light emitting element 20G may not contain the wavelength conversion substance 32 that is a red phosphor. By doing so, it is possible to design the output balance of the light emitting device only by considering only the wavelength conversion of the blue light emitted by the first light emitting element 20B. When one translucent member 30 is positioned on each of the first light emitting element and the second light emitting element, the translucent member 30 positioned on the first light emitting element 20B and the second light emitting element 20G A covering member is formed between the translucent member 30 located at the position. As shown in FIG. 28B, when one translucent member 30 is positioned on a plurality of light emitting elements, the area of the translucent member 30 in the front view can be increased, so that the light of the light emitting device Extraction efficiency is improved. In addition, since the light emitting surface of the light emitting device becomes one, uneven luminance of the light emitting device can be reduced.

1つの透光性部材30が、複数の発光素子上に位置している場合には、各発光素子20と透光性部材30とを接合する導光部材50は、繋がっていても、それぞれ離間していてもよい。図28Bに示すように、一方の発光素子と他方の発光素子の間を繋ぐように導光部材50が位置することが好ましい。このようにすることで、一方の発光素子と他方の発光素子の間からも導光部材を介して発光素子の光を透光部材に導光することができるので、発光装置の輝度ムラを低減することができる。   When one translucent member 30 is positioned on a plurality of light emitting elements, the light guide members 50 that join each light emitting element 20 and the translucent member 30 are separated from each other even if they are connected. You may do it. As shown in FIG. 28B, the light guide member 50 is preferably positioned so as to connect one light emitting element and the other light emitting element. By doing so, light from the light emitting element can be guided to the light transmitting member through the light guiding member from between the one light emitting element and the other light emitting element, thereby reducing luminance unevenness of the light emitting device. can do.

図28B、図31に示すように、透光性部材30が波長変換物質32を含有する層と、波長変換物質を実質的に含有しない層33と、を備えていてもよい。透光性部材30が波長変換物質32を含有する層上に、波長変換物質を実質的に含有しない層33が位置することで、波長変換物質を実質的に含有しない層33が保護層としても機能を果たすので波長変換物質32の劣化を抑制できる。図31に示すように第1発光素子と、第2発光素子の上にそれぞれ1つの透光性部材30が位置している場合には、第1発光素子20B上に位置する透光性部材30の波長変換物質を実質的に含有しない層33の厚みと、第2発光素子20G上に位置する透光性部材30波長変換物質を実質的に含有しない層33の厚みはそれぞれ同じでも異なっていてもよい。また、第1発光素子と、第2発光素子の上にそれぞれ1つの透光性部材30が位置している場合には、第1発光素子20B上に位置する透光性部材30の波長変換物質32を含有する層の厚みと、第2発光素子20G上に位置する透光性部材30波長変換物質32を含有する層の厚みはそれぞれ同じでも異なっていてもよい。尚、本明細書において厚みが同じとは、5μm程度の違いは許容されることを意味する。   As shown in FIGS. 28B and 31, the translucent member 30 may include a layer containing the wavelength converting substance 32 and a layer 33 substantially not containing the wavelength converting substance. Since the layer 33 that does not substantially contain the wavelength converting substance is positioned on the layer in which the translucent member 30 contains the wavelength converting substance 32, the layer 33 that does not substantially contain the wavelength converting substance can be used as the protective layer. Since the function is fulfilled, the deterioration of the wavelength converting substance 32 can be suppressed. When one translucent member 30 is positioned on each of the first light emitting element and the second light emitting element as shown in FIG. 31, the translucent member 30 positioned on the first light emitting element 20B. The thickness of the layer 33 that does not substantially contain the wavelength converting material of the light transmitting member 30 is different from the thickness of the layer 33 that does not substantially contain the wavelength converting material of the translucent member 30 positioned on the second light emitting element 20G. Also good. In addition, when one translucent member 30 is positioned on each of the first light emitting element and the second light emitting element, the wavelength converting substance of the translucent member 30 positioned on the first light emitting element 20B. The thickness of the layer containing 32 and the thickness of the layer containing the translucent member 30 wavelength conversion substance 32 located on the second light emitting element 20G may be the same or different. In the present specification, the same thickness means that a difference of about 5 μm is allowed.

以下、本発明の一実施形態に係る発光装置における各構成要素について説明する。   Hereinafter, each component in the light-emitting device which concerns on one Embodiment of this invention is demonstrated.

(基板10)
基板10は、発光素子を載置する部材である。基板10は、少なくとも、基材11と、第1配線12と、第2配線13と、第3配線14と、ビアホール15と、により構成される。
(Substrate 10)
The substrate 10 is a member on which the light emitting element is placed. The substrate 10 includes at least a base material 11, a first wiring 12, a second wiring 13, a third wiring 14, and a via hole 15.

(基材11)
基材11は、樹脂若しくは繊維強化樹脂、セラミックス、ガラスなどの絶縁性部材を用いて構成することができる。樹脂若しくは繊維強化樹脂としては、エポキシ、ガラスエポキシ、ビスマレイミドトリアジン(BT)、ポリイミドなどが挙げられる。セラミックスとしては、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、窒化ジルコニウム、酸化チタン、窒化チタン、若しくはこれらの混合物などが挙げられる。これらの基材のうち、特に発光素子の線膨張係数に近い物性を有する基材を使用することが好ましい。基材の厚さの下限値は、適宜選択できるが、基材の強度の観点から、0.05mm以上であることが好ましく、0.2mm以上であることがより好ましい。また、基材の厚さの上限値は、発光装置の厚さ(奥行き)の観点から、0.5mm以下であることが好ましく、0.4mm以下であることがより好ましい。
(Substrate 11)
The base material 11 can be comprised using insulating members, such as resin or fiber reinforced resin, ceramics, and glass. Examples of the resin or fiber reinforced resin include epoxy, glass epoxy, bismaleimide triazine (BT), and polyimide. Examples of the ceramic include aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, or a mixture thereof. Of these substrates, it is particularly preferable to use a substrate having physical properties close to the linear expansion coefficient of the light emitting element. The lower limit of the thickness of the substrate can be selected as appropriate, but is preferably 0.05 mm or more and more preferably 0.2 mm or more from the viewpoint of the strength of the substrate. The upper limit value of the thickness of the base material is preferably 0.5 mm or less, and more preferably 0.4 mm or less, from the viewpoint of the thickness (depth) of the light emitting device.

(第1配線12、第2配線13、第3配線14)
第1配線は、基板の正面に配置され、発光素子と電気的に接続される。第2配線は、基板の背面に配置され、ビアホールを介して第1配線と電気的に接続される。第3配線は、窪みの内壁を被覆し、第2配線と電気的に接続される。第1配線、第2配線及び第3配線は、銅、鉄、ニッケル、タングステン、クロム、アルミニウム、銀、金、チタン、パラジウム、ロジウム、又はこれらの合金で形成することができる。これらの金属又は合金の単層でも多層でもよい。特に、放熱性の観点においては銅又は銅合金が好ましい。また、第1配線及び/又は第2配線の表層には、導電性接着部材の濡れ性及び/若しくは光反射性などの観点から、銀、白金、アルミニウム、ロジウム、金若しくはこれらの合金などの層が設けられていてもよい。
(First wiring 12, second wiring 13, third wiring 14)
The first wiring is disposed on the front surface of the substrate and is electrically connected to the light emitting element. The second wiring is disposed on the back surface of the substrate and is electrically connected to the first wiring through the via hole. The third wiring covers the inner wall of the recess and is electrically connected to the second wiring. The first wiring, the second wiring, and the third wiring can be formed of copper, iron, nickel, tungsten, chromium, aluminum, silver, gold, titanium, palladium, rhodium, or an alloy thereof. A single layer or a multilayer of these metals or alloys may be used. In particular, copper or a copper alloy is preferable from the viewpoint of heat dissipation. Further, the surface layer of the first wiring and / or the second wiring is a layer of silver, platinum, aluminum, rhodium, gold, or an alloy thereof from the viewpoint of wettability and / or light reflectivity of the conductive adhesive member. May be provided.

(ビアホール15)
ビアホール15は基材11の正面と背面とを貫通する孔内に設けられ、第1配線と前記第2配線を電気的に接続する部材である。ビアホール15は基材の貫通孔の表面を被覆する第4配線151と、第4配線内151に充填された充填部材152と、によって構成される。第4配線151には、第1配線、第2配線及び第3配線と同様の導電性部材を用いることができる。充填部材152には、導電性の部材を用いても絶縁性の部材を用いてもよい。
(Via hole 15)
The via hole 15 is a member that is provided in a hole penetrating the front surface and the back surface of the substrate 11 and electrically connects the first wiring and the second wiring. The via hole 15 includes a fourth wiring 151 that covers the surface of the through hole of the base material, and a filling member 152 that fills the fourth wiring 151. For the fourth wiring 151, a conductive member similar to the first wiring, the second wiring, and the third wiring can be used. As the filling member 152, a conductive member or an insulating member may be used.

(絶縁膜18)
絶縁膜18は、背面における絶縁性の確保及び短絡の防止を図る部材である。絶縁膜は、当該分野で使用されるもののいずれで形成されていてもよい。例えば、熱硬化性樹脂又は熱可塑性樹脂等が挙げられる。
(Insulating film 18)
The insulating film 18 is a member that ensures insulation on the back surface and prevents a short circuit. The insulating film may be formed of any of those used in the field. For example, a thermosetting resin or a thermoplastic resin can be used.

(発光素子20)
発光素子20は、電圧を印加することで自ら発光する半導体素子であり、窒化物半導体等から構成される既知の半導体素子を適用できる。発光素子20としては、例えばLEDチップが挙げられる。発光素子20は、少なくとも半導体積層体23を備え、多くの場合に素子基板24をさらに備える。発光素子の上面視形状は、矩形、特に正方形状又は一方向に長い長方形状であることが好ましいが、その他の形状であってもよく、例えば六角形状であれば発光効率を高めることもできる。発光素子の側面は、上面に対して、垂直であってもよいし、内側又は外側に傾斜していてもよい。また、発光素子は、正負電極を有する。正負電極は、金、銀、錫、白金、ロジウム、チタン、アルミニウム、タングステン、パラジウム、ニッケル又はこれらの合金で構成することができる。発光素子の発光ピーク波長は、半導体材料やその混晶比によって、紫外域から赤外域まで選択することができる。半導体材料としては、波長変換物質を効率良く励起できる短波長の光を発光可能な材料である、窒化物半導体を用いることが好ましい。窒化物半導体は、主として一般式InAlGa1−x−yN(0≦x、0≦y、x+y≦1)で表される。発光素子の発光ピーク波長は、発光効率、並びに波長変換物質の励起及びその発光との混色関係等の観点から、400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましく、450nm以上475nm以下がよりいっそう好ましい。このほか、InAlGaAs系半導体、InAlGaP系半導体、硫化亜鉛、セレン化亜鉛、炭化珪素などを用いることもできる。発光素子の素子基板は、主として半導体積層体を構成する半導体の結晶を成長可能な結晶成長用基板であるが、結晶成長用基板から分離した半導体素子構造に接合させる接合用基板であってもよい。素子基板が透光性を有することで、フリップチップ実装を採用しやすく、また光の取り出し効率を高めやすい。素子基板の母材としては、サファイア、窒化ガリウム、窒化アルミニウム、シリコン、炭化珪素、ガリウム砒素、ガリウム燐、インジウム燐、硫化亜鉛、酸化亜鉛、セレン化亜鉛、ダイヤモンドなどが挙げられる。なかでも、サファイアが好ましい。素子基板の厚さは、適宜選択でき、例えば0.02mm以上1mm以下であり、素子基板の強度及び/若しくは発光装置の厚さの観点において、0.05mm以上0.3mm以下であることが好ましい。
(Light emitting element 20)
The light emitting element 20 is a semiconductor element that emits light by applying a voltage, and a known semiconductor element composed of a nitride semiconductor or the like can be applied. Examples of the light emitting element 20 include an LED chip. The light emitting element 20 includes at least a semiconductor laminate 23, and in many cases further includes an element substrate 24. The top view shape of the light emitting element is preferably a rectangle, particularly a square shape or a rectangular shape that is long in one direction, but may be other shapes. For example, if it is a hexagonal shape, the light emission efficiency can be increased. The side surface of the light emitting element may be perpendicular to the upper surface, or may be inclined inward or outward. The light emitting element has positive and negative electrodes. The positive and negative electrodes can be composed of gold, silver, tin, platinum, rhodium, titanium, aluminum, tungsten, palladium, nickel, or an alloy thereof. The emission peak wavelength of the light-emitting element can be selected from the ultraviolet region to the infrared region depending on the semiconductor material and its mixed crystal ratio. As the semiconductor material, it is preferable to use a nitride semiconductor, which is a material capable of emitting light with a short wavelength that can efficiently excite the wavelength conversion substance. The nitride semiconductor is mainly represented by a general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1). The emission peak wavelength of the light-emitting element is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm or less, and more preferably 450 nm or more and 475 nm or less, from the viewpoints of light emission efficiency, excitation of the wavelength converting substance and color mixing relationship with the emission. Even more preferable. In addition, an InAlGaAs-based semiconductor, an InAlGaP-based semiconductor, zinc sulfide, zinc selenide, silicon carbide, or the like can also be used. The element substrate of the light emitting element is a crystal growth substrate capable of mainly growing a semiconductor crystal constituting the semiconductor stacked body, but may be a bonding substrate bonded to a semiconductor element structure separated from the crystal growth substrate. . Since the element substrate has a light-transmitting property, it is easy to adopt flip chip mounting, and it is easy to increase the light extraction efficiency. Examples of the base material of the element substrate include sapphire, gallium nitride, aluminum nitride, silicon, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, zinc sulfide, zinc oxide, zinc selenide, diamond and the like. Of these, sapphire is preferable. The thickness of the element substrate can be appropriately selected, and is, for example, 0.02 mm or more and 1 mm or less. From the viewpoint of the strength of the element substrate and / or the thickness of the light emitting device, it is preferably 0.05 mm or more and 0.3 mm or less. .

(透光性部材30)
透光性部材は発光素子上に設けられ、発光素子を保護する部材である。透光性部材は、少なくとも以下のような母材により構成される。また、透光性部材は、以下のような波長変換物質32を母材中に含有することで、波長変換物質として機能させることができる。透光性部材が、波長変換物質を含有する層と、波長変換物質を実質的に含有しない層を備えている場合も、各層の母材が以下のように構成される。尚、各層の母材は同じでも異なっていてもよい。但し、透光性部材が波長変換物質を有することは必須ではない。また、透光性部材は、波長変換物質と例えばアルミナなどの無機物との焼結体、又は波長変換物質の板状結晶などを用いることもできる。
(Translucent member 30)
The translucent member is a member that is provided on the light emitting element and protects the light emitting element. The translucent member is composed of at least the following base material. Moreover, the translucent member can function as a wavelength conversion substance by containing the following wavelength conversion substance 32 in a base material. Even when the translucent member includes a layer containing a wavelength converting substance and a layer substantially not containing the wavelength converting substance, the base material of each layer is configured as follows. The base material of each layer may be the same or different. However, it is not essential that the translucent member has a wavelength converting substance. The translucent member may be a sintered body of a wavelength conversion material and an inorganic material such as alumina, or a plate crystal of the wavelength conversion material.

(透光性部材の母材31)
透光性部材の母材31は、発光素子から発せられる光に対して透光性を有するものであればよい。なお、「透光性」とは、発光素子の発光ピーク波長における光透過率が、好ましくは60%以上であること、より好ましくは70%以上であること、よりいっそう好ましくは80%以上であることを言う。透光性部材の母材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、又はこれらの変性樹脂を用いることができる。ガラスでもよい。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。透光性部材は、これらの母材のうちの1種を単層で、若しくはこれらの母材のうちの2種以上を積層して構成することができる。なお、本明細書における「変性樹脂」は、ハイブリッド樹脂を含むものとする。
(Base material 31 of translucent member)
The base material 31 of the translucent member may be any material that has translucency with respect to light emitted from the light emitting element. The “translucency” means that the light transmittance at the emission peak wavelength of the light emitting element is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more. Say that. As the base material of the translucent member, a silicone resin, an epoxy resin, a phenol resin, a polycarbonate resin, an acrylic resin, or a modified resin thereof can be used. Glass may be used. Of these, silicone resins and modified silicone resins are preferred because they are excellent in heat resistance and light resistance. Specific examples of the silicone resin include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin. The translucent member can be constituted by laminating one of these base materials as a single layer or by laminating two or more of these base materials. The “modified resin” in this specification includes a hybrid resin.

透光性部材の母材は、上記樹脂若しくはガラス中に各種のフィラーを含有してもよい。このフィラーとしては、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛などが挙げられる。フィラーは、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。特に、熱膨張係数の小さい酸化珪素が好ましい。また、フィラーとして、ナノ粒子を用いることで、発光素子が発する光の散乱を増大させ、波長変換物質の使用量を低減することもできる。なお、ナノ粒子とは、粒径が1nm以上100nm以下の粒子とする。また、本明細書における「粒径」は、例えば、D50で定義される。 The base material of the translucent member may contain various fillers in the resin or glass. Examples of the filler include silicon oxide, aluminum oxide, zirconium oxide, and zinc oxide. A filler can be used individually by 1 type of these or in combination of 2 or more types of these. In particular, silicon oxide having a small thermal expansion coefficient is preferable. Further, by using nanoparticles as the filler, scattering of light emitted from the light emitting element can be increased, and the amount of the wavelength converting substance used can be reduced. Nanoparticles are particles having a particle size of 1 nm to 100 nm. Further, "particle size" herein, for example, it is defined by the D 50.

(波長変換物質32)
波長変換物質は、発光素子が発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する。波長変換物質は、以下に示す具体例のうちの1種を単独で、又は2種以上を組み合わせて用いることができる。
(Wavelength converting material 32)
The wavelength converting material absorbs at least a part of the primary light emitted from the light emitting element and emits secondary light having a wavelength different from that of the primary light. The wavelength converting substance can be used alone or in combination of two or more of the specific examples shown below.

緑色発光する波長変換物質としては、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb(Al,Ga)12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)、βサイアロン系蛍光体(例えばSi6−zAl8−z:Eu(0<z<4.2))、SGS系蛍光体(例えばSrGa:Eu)などが挙げられる。黄色発光の波長変換物質としては、αサイアロン系蛍光体(例えばM(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)などが挙げられる。このほか、上記緑色発光する波長変換物質の中には黄色発光の波長変換物質もある。また例えば、イットリウム・アルミニウム・ガーネット系蛍光体は、Yの一部をGdで置換することで発光ピーク波長を長波長側にシフトさせることができ、黄色発光が可能である。また、これらの中には、橙色発光が可能な波長変換物質もある。赤色発光する波長変換物質としては、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。このほか、マンガン賦活フッ化物系蛍光体(一般式(I)A[M1−aMn]で表される蛍光体である(但し、上記一般式(I)中、Aは、K、Li、Na、Rb、Cs及びNHからなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))が挙げられる。このマンガン賦活フッ化物系蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)がある。 Examples of wavelength converting substances that emit green light include yttrium / aluminum / garnet phosphors (for example, Y 3 (Al, Ga) 5 O 12 : Ce) and lutetium / aluminum / garnet phosphors (for example, Lu 3 (Al, Ga)). 5 O 12 : Ce), terbium / aluminum / garnet phosphor (for example, Tb 3 (Al, Ga) 5 O 12 : Ce) phosphor, silicate phosphor (for example (Ba, Sr) 2 SiO 4 : Eu) ), Chlorosilicate phosphor (for example, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu), β sialon phosphor (for example, Si 6-z Al z O z N 8-z : Eu (0 <z <4 .2)), SGS-based phosphors (for example, SrGa 2 S 4 : Eu) and the like. As a wavelength conversion substance for yellow light emission, an α sialon-based phosphor (for example, M z (Si, Al) 12 (O, N) 16 (where 0 <z ≦ 2 and M is Li, Mg, Ca, Y) In addition, among the wavelength conversion materials emitting green light, there are also wavelength conversion materials emitting yellow light, such as yttrium, aluminum, and garnet phosphors. The emission peak wavelength can be shifted to the longer wavelength side by substituting a part of Y with Gd, and yellow light emission is possible, and among these, wavelength conversion substances capable of orange light emission are also included. Examples of wavelength converting substances that emit red light include nitrogen-containing calcium aluminosilicate (CASN or SCASN) phosphors (for example, (Sr, Ca) AlSiN 3 : Eu). In addition, a manganese-activated fluoride-based phosphor (general formula (I) A 2 [M 1-a Mn a F 6 ] is a phosphor represented by the formula (I) wherein A is K , Li, Na, Rb, Cs and NH 4 , M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a As a typical example of this manganese-activated fluoride phosphor, there is a manganese-activated potassium fluorosilicate phosphor (for example, K 2 SiF 6 : Mn). .

(被覆部材40)
光反射性の被覆部材は、上方への光取り出し効率の観点から、発光素子の発光ピーク波長における光反射率が、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりいっそう好ましい。さらに、被覆部材は、白色であることが好ましい。よって、被覆部材は、母材中に白色顔料を含有してなることが好ましい。被覆部材は、硬化前には液状の状態を経る。被覆部材は、トランスファ成形、射出成形、圧縮成形、ポッティングなどにより形成することができる。
(Coating member 40)
From the viewpoint of upward light extraction efficiency, the light-reflecting coating member preferably has a light reflectance at the emission peak wavelength of the light-emitting element of 70% or more, more preferably 80% or more, and 90 % Or more is even more preferable. Furthermore, the covering member is preferably white. Therefore, the covering member preferably contains a white pigment in the base material. The covering member is in a liquid state before being cured. The covering member can be formed by transfer molding, injection molding, compression molding, potting, or the like.

(被覆部材の母材)
被覆部材の母材は、樹脂を用いることができ、例えばシリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、又はこれらの変性樹脂が挙げられる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。また、被覆部材の母材は、上述の透光性部材と同様のフィラーを含有してもよい。
(Base material for covering member)
Resin can be used for the base material of a covering member, for example, a silicone resin, an epoxy resin, a phenol resin, a polycarbonate resin, an acrylic resin, or these modified resins are mentioned. Of these, silicone resins and modified silicone resins are preferred because they are excellent in heat resistance and light resistance. Specific examples of the silicone resin include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin. Moreover, the base material of the covering member may contain the same filler as the above-described translucent member.

(白色顔料)
白色顔料は、酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、チタン酸バリウム、硫酸バリウム、水酸化アルミニウム、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素のうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。白色顔料の形状は、適宜選択でき、不定形若しくは破砕状でもよいが、流動性の観点では球状が好ましい。また、白色顔料の粒径は、例えば0.1μm以上0.5μm以下程度が挙げられるが、光反射や被覆の効果を高めるためには小さい程好ましい。光反射性の被覆部材中の白色顔料の含有量は、適宜選択できるが、光反射性及び液状時における粘度などの観点から、例えば10wt%以上80wt%以下が好ましく、20wt%以上70wt%以下がより好ましく、30wt%以上60wt%以下がよりいっそう好ましい。なお、「wt%」は、重量パーセントであり、光反射性の被覆部材の全重量に対する当該材料の重量の比率を表す。
(White pigment)
White pigments include titanium oxide, zinc oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, magnesium silicate, barium titanate, barium sulfate, aluminum hydroxide, aluminum oxide, zirconium oxide, One of silicon oxides can be used alone, or two or more of these can be used in combination. The shape of the white pigment can be appropriately selected and may be indefinite or crushed, but is preferably spherical from the viewpoint of fluidity. The particle size of the white pigment is, for example, about 0.1 μm or more and 0.5 μm or less, but it is preferable that the white pigment is smaller in order to enhance the effect of light reflection and coating. The content of the white pigment in the light-reflective coating member can be selected as appropriate. However, from the viewpoint of light reflectivity and viscosity in a liquid state, for example, it is preferably 10 wt% or more and 80 wt% or less, and 20 wt% or more and 70 wt% or less. More preferably, it is 30 wt% or more and 60 wt% or less. Note that “wt%” is weight percent and represents the ratio of the weight of the material to the total weight of the light-reflective coating member.

(導光部材50)
導光部材は、発光素子と透光性部材を接着し、発光素子からの光を透光性部材に導光する部材である。導光部材の母材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、又はこれらの変性樹脂が挙げられる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。また、導光部材の母材は、上述の透光性部材と同様のフィラーを含有してもよい。また、導光部材は、省略することができる。
(Light guide member 50)
The light guide member is a member that bonds the light emitting element and the translucent member and guides light from the light emitting element to the translucent member. Examples of the base material of the light guide member include silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, and modified resins thereof. Of these, silicone resins and modified silicone resins are preferred because they are excellent in heat resistance and light resistance. Specific examples of the silicone resin include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin. Moreover, the base material of the light guide member may contain the same filler as the above-described translucent member. Further, the light guide member can be omitted.

(導電性接着部材60)
導電性接着部材とは、発光素子の電極と第1配線とを電気的に接続する部材である。導電性接着部材としては、金、銀、銅などのバンプ、銀、金、銅、プラチナ、アルミニウム、パラジウムなどの金属粉末と樹脂バインダを含む金属ペースト、錫−ビスマス系、錫−銅系、錫−銀系、金−錫系などの半田、低融点金属などのろう材のうちのいずれか1つを用いることができる。
(Conductive adhesive member 60)
The conductive adhesive member is a member that electrically connects the electrode of the light emitting element and the first wiring. Examples of conductive adhesive members include gold, silver, copper and other bumps, silver, gold, copper, platinum, aluminum, metal paste including resin binder, tin-bismuth, tin-copper, tin -Any one of solders such as silver-based, gold-tin-based solders, and low melting point metals can be used.

本発明の一実施形態に係る発光装置は、液晶ディスプレイのバックライト装置、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、プロジェクタ装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置などに利用することができる。   A light emitting device according to an embodiment of the present invention includes a backlight device for a liquid crystal display, various lighting fixtures, a large display, various display devices such as advertisements and destination guides, a projector device, a digital video camera, a facsimile machine, and a copier. It can be used for an image reading device in a scanner or the like.

1000、2000 発光装置
10 基板
11 基材
12 第1配線
13 第2配線
14 第3配線
15 ビアホール
151 第4配線
152 充填部材
16 窪み
18 絶縁膜
20 発光素子
30 透光性部材
40 被覆部材
50 導光部材
60 導電性接着部材
1000, 2000 Light emitting device 10 Substrate 11 Base material 12 First wiring 13 Second wiring 14 Third wiring 15 Via hole
151 4th wiring
152 Filling member 16 Dimple 18 Insulating film 20 Light emitting element 30 Translucent member 40 Cover member 50 Light guide member 60 Conductive adhesive member

Claims (13)

長手方向である第1方向と短手方向である第2方向に延長する正面と、前記正面の反対側に位置する背面と、前記正面と隣接し、前記正面と直交する底面と、前記底面の反対側に位置する上面と、を有する基材と、前記正面に配置される第1配線と、前記背面に配置される第2配線と、前記第1配線と前記第2配線を電気的に接続するビアホールと、を備える基板と、
前記第1配線と電気的に接続され、前記第1配線上に載置される少なくとも1つの発光素子と、
前記発光素子の側面及び前記基板の正面を被覆する光反射性の被覆部材と、を備える発光装置であって、
前記基材は、前記背面と前記底面とに開口する複数の窪みを有し、
前記複数の窪みは、正面視において前記ビアホールと離間しており、
前記基板は、複数の前記窪みの内壁を被覆し、前記第2配線と電気的に接続される第3配線を備え、
前記背面から前記正面方向における複数の前記窪みの深さのそれぞれは、前記上面側よりも前記底面側で深い発光装置。
A front surface extending in a first direction that is a longitudinal direction and a second direction that is a short direction; a back surface that is located on the opposite side of the front surface; a bottom surface that is adjacent to the front surface and that is orthogonal to the front surface; A base material having an upper surface located on the opposite side; a first wiring disposed on the front; a second wiring disposed on the back; and electrically connecting the first wiring and the second wiring. A via hole, and a substrate comprising:
At least one light-emitting element electrically connected to the first wiring and placed on the first wiring;
A light-reflective coating member that covers a side surface of the light-emitting element and a front surface of the substrate,
It said substrate has a plurality of recesses opening into said bottom surface and said rear surface,
The plurality of depressions are separated from the via hole in a front view,
The substrate includes a third wiring that covers inner walls of the plurality of depressions and is electrically connected to the second wiring;
Each of the depths of the plurality of depressions in the front direction from the back surface is a light emitting device that is deeper on the bottom surface side than the top surface side.
前記底面において、複数の前記窪みのそれぞれで中央の深さが最大である請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein a central depth of each of the plurality of depressions is maximum on the bottom surface. 前記背面において、複数の前記窪みのそれぞれが半円形状である請求項1又は2に記載の発光装置。   3. The light emitting device according to claim 1, wherein each of the plurality of depressions has a semicircular shape on the back surface. 複数の前記窪みの深さのそれぞれの最大が前記基材の厚みの0.4倍から0.8倍である請求項1から3のいずれか1項に記載の発光装置。   4. The light-emitting device according to claim 1, wherein the maximum depth of each of the plurality of recesses is 0.4 to 0.8 times the thickness of the base material. 5. 前記背面において、複数の前記窪みのそれぞれの形状が同一である請求項1から4のいずれか1項に記載の発光装置。   5. The light-emitting device according to claim 1, wherein each of the plurality of depressions has the same shape on the back surface. 前記背面において、複数の前記窪みが第2方向に平行な基材の中心線に対して左右対称に位置する請求項1から5のいずれか1項に記載の発光装置。   6. The light emitting device according to claim 1, wherein, on the back surface, the plurality of depressions are positioned symmetrically with respect to a center line of the base material parallel to the second direction. 前記発光素子上に透光性部材が位置する請求項1から6のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein a translucent member is positioned on the light emitting element. 前記被覆部材が、前記透光性部材の側面を被覆する請求項7に記載の発光装置。   The light emitting device according to claim 7, wherein the covering member covers a side surface of the translucent member. 前記被覆部材の短手方向の側面と前記基板の短手方向の側面とが実質的に同一平面上にある請求項1から8のいずれか1項に記載の発光装置。   9. The light-emitting device according to claim 1, wherein a side surface in the short direction of the covering member and a side surface in the short direction of the substrate are substantially on the same plane. 前記発光素子を複数備え、複数の前記発光素子は第1方向に並んで設けられる請求項1から9のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, comprising a plurality of the light emitting elements, wherein the plurality of light emitting elements are provided side by side in the first direction. 前記ビアホールは、第4配線と充填部材とを備え、前記充填部材が樹脂材料である請求項1から10のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the via hole includes a fourth wiring and a filling member, and the filling member is a resin material. 前記基材は前記正面と前記背面の間に位置する側面を備え、複数の前記窪みの少なくとも1つは前記背面と前記底面と前記側面とに開口する端部窪みである請求項1から11のいずれか1項に記載の発光装置。   The said base material is provided with the side surface located between the said front surface and the said back surface, At least 1 of the said several hollow is an edge part hollow opened to the said back surface, the said bottom surface, and the said side surface. The light-emitting device of any one of Claims. 前記端部窪みを複数備え、背面視において前記端部窪みが基材の両端に位置する請求項12に記載の発光装置。   The light-emitting device according to claim 12, comprising a plurality of the end dents, wherein the end dents are located at both ends of the substrate in a rear view.
JP2017203159A 2017-04-28 2017-10-20 Light emitting device Active JP6460201B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN202310207735.0A CN116031350A (en) 2017-04-28 2018-04-26 Light emitting device
CN201810389357.1A CN108807652B (en) 2017-04-28 2018-04-26 Light emitting device
TW107114441A TWI753156B (en) 2017-04-28 2018-04-27 Light-emitting device
KR1020180049472A KR102161062B1 (en) 2017-04-28 2018-04-27 Light-emitting device
US15/965,415 US11264542B2 (en) 2017-04-28 2018-04-27 Light-emitting device
EP18169776.4A EP3396724B1 (en) 2017-04-28 2018-04-27 Light-emitting device
EP21160229.7A EP3863070B1 (en) 2017-04-28 2018-04-27 Light-emitting module
US29/681,182 USD930857S1 (en) 2017-04-28 2019-02-22 Light-emitting unit
US17/022,933 US11411144B2 (en) 2017-04-28 2020-09-16 Light-emitting device
KR1020200122194A KR102246855B1 (en) 2017-04-28 2020-09-22 Light-emitting module
US17/179,881 US11652192B2 (en) 2017-04-28 2021-02-19 Light-emitting device
US18/295,589 US20230238490A1 (en) 2017-04-28 2023-04-04 Light-emitting device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017089996 2017-04-28
JP2017089996 2017-04-28
JP2017098438 2017-05-17
JP2017098438 2017-05-17
JP2017123949 2017-06-26
JP2017123949 2017-06-26
JP2017138720 2017-07-18
JP2017138720 2017-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018244228A Division JP6690698B2 (en) 2017-04-28 2018-12-27 Light emitting device

Publications (2)

Publication Number Publication Date
JP6460201B2 true JP6460201B2 (en) 2019-01-30
JP2019016766A JP2019016766A (en) 2019-01-31

Family

ID=65228997

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017203159A Active JP6460201B2 (en) 2017-04-28 2017-10-20 Light emitting device
JP2018244228A Active JP6690698B2 (en) 2017-04-28 2018-12-27 Light emitting device
JP2020068428A Active JP6928286B2 (en) 2017-04-28 2020-04-06 Luminous module

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018244228A Active JP6690698B2 (en) 2017-04-28 2018-12-27 Light emitting device
JP2020068428A Active JP6928286B2 (en) 2017-04-28 2020-04-06 Luminous module

Country Status (2)

Country Link
JP (3) JP6460201B2 (en)
KR (1) KR102246855B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186358B2 (en) 2018-11-15 2022-12-09 日亜化学工業株式会社 Method for manufacturing light emitting device, light emitting device and light source device
US11594662B2 (en) 2019-07-31 2023-02-28 Nichia Corporation Light-emitting device
US11664355B2 (en) * 2019-12-02 2023-05-30 Seoul Semiconductor Co., Ltd. Display apparatus
US11664356B2 (en) 2020-03-26 2023-05-30 Nichia Corporation Light emitting device
JP7121309B2 (en) 2020-03-26 2022-08-18 日亜化学工業株式会社 light emitting device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265293A (en) * 1988-08-31 1990-03-05 Toyo Commun Equip Co Ltd Pattern on printed board for surface mounting
JPH0236074U (en) * 1988-09-01 1990-03-08
JPH0537144A (en) * 1991-07-29 1993-02-12 Ibiden Co Ltd Pad of printed wiring board
JP2001257465A (en) * 2000-03-13 2001-09-21 Ibiden Co Ltd Printed wiring board and its manufacturing method
JP2002344030A (en) * 2001-05-18 2002-11-29 Stanley Electric Co Ltd Lateral emission surface-mounted led and its manufacturing method
JP4818536B2 (en) * 2001-06-26 2011-11-16 ローム株式会社 Mounting method of infrared data communication module
JP2004031475A (en) * 2002-06-24 2004-01-29 Sharp Corp Infrared data communication module and electronic equipment mounted therewith
JP2004281994A (en) * 2003-01-24 2004-10-07 Kyocera Corp Package for storing light emitting element and light emitting device
JP4698259B2 (en) * 2005-03-16 2011-06-08 三洋電機株式会社 Electronic component mounting package and package assembly board
JP2007134602A (en) * 2005-11-11 2007-05-31 Stanley Electric Co Ltd Surface mount semiconductor light emitting device
JP5060172B2 (en) * 2007-05-29 2012-10-31 岩谷産業株式会社 Semiconductor light emitting device
KR100957411B1 (en) * 2008-02-05 2010-05-11 엘지이노텍 주식회사 Light emitting apparatus
JP2011054736A (en) 2009-09-01 2011-03-17 Sharp Corp Light-emitting device, plane light source, and liquid crystal display device
JP2012074478A (en) * 2010-09-28 2012-04-12 Asahi Glass Co Ltd Substrate for light emitting element, and light emitting device
JP2012124191A (en) * 2010-12-06 2012-06-28 Citizen Electronics Co Ltd Light emitting device and manufacturing method of the same
JP5937315B2 (en) 2011-08-11 2016-06-22 シチズン電子株式会社 Light emitting diode
JP2013045842A (en) * 2011-08-23 2013-03-04 Sharp Corp Light-emitting device
JP5933959B2 (en) * 2011-11-18 2016-06-15 スタンレー電気株式会社 Semiconductor optical device
JP5825212B2 (en) * 2012-07-12 2015-12-02 豊田合成株式会社 Method for manufacturing light emitting device
JP5708766B2 (en) * 2013-11-20 2015-04-30 日亜化学工業株式会社 Light emitting device
WO2016047417A1 (en) * 2014-09-24 2016-03-31 京セラ株式会社 Electronic module
JP6191667B2 (en) * 2015-08-31 2017-09-06 日亜化学工業株式会社 Light emitting device
KR20170045544A (en) * 2015-10-19 2017-04-27 서울반도체 주식회사 Light emitting diode package and manufacturing method of the same
JP6693369B2 (en) * 2016-09-21 2020-05-13 豊田合成株式会社 Light source and light emitting device mounting method

Also Published As

Publication number Publication date
JP6690698B2 (en) 2020-04-28
JP2019068100A (en) 2019-04-25
KR20200112782A (en) 2020-10-05
JP6928286B2 (en) 2021-09-01
KR102246855B1 (en) 2021-04-29
JP2020150265A (en) 2020-09-17
JP2019016766A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
KR102161062B1 (en) Light-emitting device
JP6460201B2 (en) Light emitting device
JP7064129B2 (en) Light emitting device
US10727387B2 (en) Light emitting device
TWI819093B (en) Method of producing light source device
KR102553755B1 (en) Light-emitting device
JP2018129434A (en) Light-emitting device
JP2019041094A (en) Light-emitting device
JP6900979B2 (en) Light emitting device
JP2019134150A (en) Light emitting device
JP2019169557A (en) Light-emitting device
US20240136477A1 (en) Light-emitting device
JP2020129690A (en) Manufacturing method of light source device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180822

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6460201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250