JP7121309B2 - light emitting device - Google Patents

light emitting device Download PDF

Info

Publication number
JP7121309B2
JP7121309B2 JP2020152787A JP2020152787A JP7121309B2 JP 7121309 B2 JP7121309 B2 JP 7121309B2 JP 2020152787 A JP2020152787 A JP 2020152787A JP 2020152787 A JP2020152787 A JP 2020152787A JP 7121309 B2 JP7121309 B2 JP 7121309B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
light
convex portion
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020152787A
Other languages
Japanese (ja)
Other versions
JP2021158333A (en
Inventor
忠昭 池田
由樹 蔭山
哲也 石川
俊文 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to KR1020210032008A priority Critical patent/KR102579394B1/en
Priority to US17/209,015 priority patent/US11664356B2/en
Publication of JP2021158333A publication Critical patent/JP2021158333A/en
Application granted granted Critical
Publication of JP7121309B2 publication Critical patent/JP7121309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Description

本開示は発光装置に関する。 The present disclosure relates to light emitting devices.

LEDを用いた発光装置は様々な製品に利用されている。例えば特許文献1には、液晶ディスプレイのバックライト装置や各種照明器具等に利用することができる薄型の発光装置が開示されている。 Light-emitting devices using LEDs are used in various products. For example, Patent Literature 1 discloses a thin light-emitting device that can be used for a backlight device of a liquid crystal display, various lighting fixtures, and the like.

特開2019-016766号公報JP 2019-016766 A

本開示は、薄型の発光装置を提供することを課題とする。 An object of the present disclosure is to provide a thin light-emitting device.

本開示に係る発光装置は、第1方向に並んで配置される複数の発光素子と、前記発光素子の上面にそれぞれ配置される複数の透光性部材と、前記複数の透光性部材の間に配置される第1被覆部と、前記第1方向において前記複数の透光性部材を挟んで配置される第2被覆部と、を含む被覆部材と、前記第1被覆部の上面に位置し、前記透光性部材から離隔する第1凸部と、前記第2被覆部の上面に位置する第2凸部と、を備える。 A light-emitting device according to the present disclosure includes a plurality of light-emitting elements arranged side by side in a first direction, a plurality of translucent members respectively arranged on upper surfaces of the light-emitting elements, and between the plurality of translucent members. and a second covering portion arranged on both sides of the plurality of translucent members in the first direction; and a covering member positioned on the upper surface of the first covering portion , a first protrusion separated from the translucent member, and a second protrusion located on the upper surface of the second cover.

本開示に係る発光装置によれば、薄型の発光装置を得ることができる。 According to the light emitting device according to the present disclosure, a thin light emitting device can be obtained.

第1実施形態の発光装置を上面側から見た概略斜視図である。It is the schematic perspective view which looked at the light-emitting device of 1st Embodiment from the upper surface side. 第1実施形態の発光装置を下面側から見た概略斜視図である。It is the schematic perspective view which looked at the light-emitting device of 1st Embodiment from the lower surface side. 第1実施形態の発光装置を示す概略断面図である。1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment; FIG. 第1実施形態に係る製造方法の一例を示す概略平面図である。It is a schematic plan view which shows an example of the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法の一例を示す概略平面図である。It is a schematic plan view which shows an example of the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法の一例を示す概略平面図である。It is a schematic plan view which shows an example of the manufacturing method which concerns on 1st Embodiment. 第1実施形態に係る製造方法の一例を示す概略平面図である。It is a schematic plan view which shows an example of the manufacturing method which concerns on 1st Embodiment. 第2実施形態の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device of 2nd Embodiment. 第2実施形態の発光装置において、第1凸部、第2凸部及び被覆部材を取り除いた状態を示す概略斜視図である。FIG. 10 is a schematic perspective view showing a state in which the first convex portion, the second convex portion, and the covering member are removed in the light emitting device of the second embodiment; 第2実施形態に係る製造方法の一例を示す概略側面図である。It is a schematic side view which shows an example of the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造方法の一例を示す概略側面図である。It is a schematic side view which shows an example of the manufacturing method which concerns on 2nd Embodiment. 本開示に係る発光装置の基板の配線形状の例を示す概略上面図である。FIG. 4A is a schematic top view showing an example of a wiring shape of a substrate of a light-emitting device according to the present disclosure; 本開示に係る発光装置の基板の配線形状の例を示す概略下面図である。FIG. 4 is a schematic bottom view showing an example of wiring shape of a substrate of a light emitting device according to the present disclosure; 図6A及び図6Bの配線形状を有する発光装置の例を示す概略斜視図である。FIG. 6C is a schematic perspective view showing an example of a light emitting device having the wiring shape of FIGS. 6A and 6B; 本開示に係る発光装置の基板の配線形状の例を示す概略上面図である。FIG. 4A is a schematic top view showing an example of a wiring shape of a substrate of a light-emitting device according to the present disclosure; 本開示に係る発光装置の基板の配線形状の例を示す概略下面図である。FIG. 4 is a schematic bottom view showing an example of wiring shape of a substrate of a light emitting device according to the present disclosure; 図7A及び図7Bの配線形状を有する発光装置の例を示す概略斜視図である。7B is a schematic perspective view showing an example of a light emitting device having the wiring shape of FIGS. 7A and 7B; FIG. 本開示に係る発光装置の基板の配線形状の例を示す概略上面図である。FIG. 4A is a schematic top view showing an example of a wiring shape of a substrate of a light-emitting device according to the present disclosure; 本開示に係る発光装置の基板の配線形状の例を示す概略下面図である。FIG. 4 is a schematic bottom view showing an example of wiring shape of a substrate of a light emitting device according to the present disclosure; 図8A及び図8Bの配線形状を有する発光装置の例を示す概略斜視図である。FIG. 8B is a schematic perspective view showing an example of a light emitting device having the wiring shape of FIGS. 8A and 8B; 本開示に係る発光装置の第1凸部の第1変形例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a first modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第2変形例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a second modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第3変形例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a third modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第4変形例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a fourth modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第5変形例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a fifth modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第6変形例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a sixth modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第7変形例を示す概略斜視図である。FIG. 14 is a schematic perspective view showing a seventh modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第8変形例を示す概略斜視図である。FIG. 20 is a schematic perspective view showing an eighth modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の第1凸部の第9変形例を示す概略斜視図である。FIG. 20 is a schematic perspective view showing a ninth modified example of the first convex portion of the light emitting device according to the present disclosure; 本開示に係る発光装置の基板を備えない例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a light-emitting device according to the present disclosure that does not include a substrate; 本開示に係る発光装置の製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a light emitting device according to the present disclosure; 第1実施形態の発光装置の一部の拡大断面図である。2 is an enlarged cross-sectional view of part of the light emitting device of the first embodiment; FIG.

以下、本開示に係る実施形態について図面を参照しながら説明する。ただし、以下に説明する実施形態は、本開示に係る技術的思想を具体化するためのものであって、特定的な記載がない限り、発明を以下のものに限定しない。一つの実施形態において説明する内容は、他の実施形態及び変形例にも適用可能である。また、図面は実施形態を概略的に示すものであり、説明を明確にするため、各部材のスケールや間隔、位置関係等が誇張、あるいは、部材の一部の図示が省略されている場合がある。各図において示す方向は、構成要素間の相対的な位置を示し、絶対的な位置を示すことを意図したものではない。なお、同一の名称、符号については、原則として、同一もしくは同質の部材を示しており、詳細説明を適宜省略する。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. However, the embodiments described below are for embodying the technical idea of the present disclosure, and unless there is a specific description, the invention is not limited to the following. Contents described in one embodiment can also be applied to other embodiments and modifications. In addition, the drawings schematically show the embodiments, and in order to clarify the description, the scale, spacing, positional relationship, etc. of each member may be exaggerated, or the illustration of a part of the member may be omitted. be. The directions shown in the figures indicate relative positions between components and are not intended to indicate absolute positions. In principle, the same names and symbols indicate the same or homogeneous members, and detailed explanations thereof will be omitted as appropriate.

[第1実施形態]
第1実施形態の発光装置100を図1A、図1B、図2を参照しながら説明する。
発光装置100は、第1方向D1に並んで配置される複数の発光素子20と、発光素子20の上面にそれぞれ配置される複数の透光性部材30と、複数の透光性部材30の間に配置される第1被覆部41と、第1方向D1において複数の透光性部材30を挟んで配置される第2被覆部42と、を含む被覆部材40と、第1被覆部41の上面に位置し、透光性部材30から離隔する第1凸部51と、第2被覆部42の上面に位置する第2凸部52と、を備える。
以下、発光装置100の各構成について説明する。なお、発光装置100の平面視において、第1方向D1は長手方向であり、第1方向D1に直交する第2方向D2は短手方向である。
[First embodiment]
A light emitting device 100 of the first embodiment will be described with reference to FIGS. 1A, 1B, and 2. FIG.
The light emitting device 100 includes a plurality of light emitting elements 20 arranged side by side in a first direction D1, a plurality of translucent members 30 respectively arranged on the upper surfaces of the light emitting elements 20, and a plurality of light transmissive members 30. a covering member 40 including a first covering portion 41 arranged in the first direction D1 and a second covering portion 42 arranged across a plurality of translucent members 30 in the first direction D1; and an upper surface of the first covering portion 41 and is separated from the translucent member 30 ;
Each configuration of the light emitting device 100 will be described below. In addition, in a plan view of the light emitting device 100, the first direction D1 is the longitudinal direction, and the second direction D2 orthogonal to the first direction D1 is the lateral direction.

(基板)
基板10は、発光素子20を載置する部材である。発光素子20は、基板10上に長手方向D1に並んで配置されている。基板10は、少なくとも、基材11と、配線12と、ビアホール15とを含んで構成される。なお、ビアホール15は、貫通孔内に配置された導電性部材を含んで構成され、この導電性部材の材料としては、例えば後述する配線12と同様の金属材料を用いることができる。
基材11の材料は、エポキシ、ガラスエポキシ、ビスマレイミドトリアジン若しくはポリイミドなどの樹脂、又はセラミックス若しくはガラスなどの絶縁性部材を用いることができ、特に発光素子の線膨張係数に近い物性を有する材料を用いることが好ましい。なお、基材の厚さの下限値は、基材の強度の観点から、0.05mm以上であることが好ましく、0.2mm以上であることがより好ましい。また、基材の厚さの上限値は、発光装置の厚さの観点から、0.6mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.4mm以下であることがさらにより好ましい。配線12は、基板10の上面及び下面に配置され、発光素子20に電力を供給する経路となる。基板10の上面の配線と下面の配線とはビアホール15を介して接続される。配線12は、銅、鉄、ニッケル、タングステン、クロム、アルミニウム、チタン、パラジウム、ロジウム、銀、白金、金などの金属又はこれらの合金で形成することができる。また、配線12は、これらの金属又は合金の単層でも多層でも形成することができる。
基板10の下面には、絶縁性の確保及び短絡の防止を図るために、絶縁膜70が配置されてもよい。絶縁膜の材料は、公知の樹脂材料を用いることができ、例えば熱硬化性樹脂又は熱可塑性樹脂等が挙げられる。また、図2Bに一例を示すように、基板10の下面に外部の実装基板に固定するための窪み14を設け、配線12である電極を窪み14に沿って形成することができる。窪み14内の配線と外部の実装基板とは、例えば半田などの接合部材を介して電気的に接続することができる。なお、配線12は、一例として、絶縁膜70の一端に配線端部12a~12dが露出するようにここでは形成されている。
(substrate)
The substrate 10 is a member on which the light emitting element 20 is placed. The light emitting elements 20 are arranged side by side on the substrate 10 in the longitudinal direction D1. The substrate 10 includes at least a base material 11 , wiring 12 and via holes 15 . The via hole 15 includes a conductive member arranged in the through hole, and as the material of this conductive member, for example, the same metal material as that of the wiring 12 to be described later can be used.
The material of the base material 11 can be a resin such as epoxy, glass epoxy, bismaleimide triazine, or polyimide, or an insulating member such as ceramics or glass. It is preferable to use From the viewpoint of the strength of the substrate, the lower limit of the thickness of the substrate is preferably 0.05 mm or more, more preferably 0.2 mm or more. In addition, the upper limit of the thickness of the base material is preferably 0.6 mm or less, more preferably 0.5 mm or less, and 0.4 mm or less from the viewpoint of the thickness of the light-emitting device. Even more preferred. The wiring 12 is arranged on the upper and lower surfaces of the substrate 10 and serves as a path for supplying power to the light emitting element 20 . The wiring on the upper surface of the substrate 10 and the wiring on the lower surface are connected through the via holes 15 . The wiring 12 can be made of metals such as copper, iron, nickel, tungsten, chromium, aluminum, titanium, palladium, rhodium, silver, platinum, gold, or alloys thereof. Also, the wiring 12 can be formed of a single layer or multiple layers of these metals or alloys.
An insulating film 70 may be disposed on the lower surface of the substrate 10 to ensure insulation and prevent short circuits. A known resin material can be used as the material of the insulating film, and examples thereof include thermosetting resins and thermoplastic resins. Further, as shown in an example in FIG. 2B, a depression 14 for fixing to an external mounting substrate can be provided on the bottom surface of the substrate 10, and the electrode, which is the wiring 12, can be formed along the depression 14. FIG. The wiring in the recess 14 and the external mounting substrate can be electrically connected via a bonding member such as solder. Here, the wiring 12 is formed so that the wiring ends 12a to 12d are exposed at one end of the insulating film 70, as an example.

(発光素子)
発光素子20は、電圧を印加することで自ら発光する半導体素子であり、例えばLEDチップである。発光素子20は、少なくとも半導体積層体22を備え、正負一対の電極21を有する。半導体の材料としては、波長変換物質を効率良く励起できる短波長の光を発光可能な材料である、窒化物半導体を用いることが好ましい。窒化物半導体は、主として一般式InAlGa1-x-yN(0≦x、0≦y、x+y≦1)で表される。発光素子20の発光ピーク波長は、発光効率、並びに波長変換物質の励起及びその発光との混色関係等の観点から、400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましく、450nm以上475nm以下がよりいっそう好ましい。また、半導体の材料は、InAlGaAs系半導体、InAlGaP系半導体などを用いることもできる。
(light emitting element)
The light emitting element 20 is a semiconductor element that emits light by itself when a voltage is applied, such as an LED chip. The light emitting element 20 includes at least a semiconductor laminate 22 and has a pair of positive and negative electrodes 21 . As the semiconductor material, it is preferable to use a nitride semiconductor, which is a material capable of emitting short-wavelength light that can efficiently excite the wavelength conversion substance. Nitride semiconductors are mainly represented by the general formula InxAlyGa1 -xyN (0≤x, 0≤y , x +y≤1). The emission peak wavelength of the light-emitting element 20 is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm or less, and 450 nm or more and 475 nm or less, from the viewpoints of luminous efficiency, excitation of the wavelength conversion substance, color mixing relationship with light emission, and the like. much more preferable. InAlGaAs-based semiconductors, InAlGaP-based semiconductors, and the like can also be used as semiconductor materials.

(透光性部材)
透光性部材30は、発光素子20それぞれの上に配置され、発光素子20を保護する部材である。また、透光性部材30は、透光性の母材31に波長変換物質32を含有させることができる。透光性部材の母材31の材料は、例えばシリコーン、エポキシ、フェノール、ポリカーボネート、アクリルなどの樹脂、又はガラスである。透光性部材の母材31は、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛などのフィラーを含んでいてもよい。透光性部材は、これらの母材のうちの1種を単層で、又はこれらの母材のうちの2種以上を積層して構成することができる。
透光性部材30は、導光性接着部材60を介して配置されてもよい。導光性接着部材60は、発光素子20と透光性部材30とを接着し、発光素子20からの光を透光性部材30に導光する部材である。導光性接着部材60の材料は、例えばシリコーン樹脂であり、透光性部材の母材31と同様のフィラーを含んでもよい。なお、導光性接着部材60のフィラーは、上記の無機物でもよいし、有機物でもよい。また、フィラーは1種でもよいし、2種以上の組み合わせでもよい。有機物のフィラーとしては、例えばエポキシ樹脂、シリコーン樹脂、アモルファスフッ素樹脂などの樹脂を用いることができる。
(translucent member)
The translucent member 30 is a member that is arranged on each of the light emitting elements 20 and protects the light emitting elements 20 . Moreover, the translucent member 30 can contain the wavelength conversion substance 32 in the translucent base material 31 . The material of the base material 31 of the translucent member is, for example, resin such as silicone, epoxy, phenol, polycarbonate, or acrylic, or glass. The base material 31 of the translucent member may contain filler such as silicon oxide, aluminum oxide, zirconium oxide, and zinc oxide. The light-transmitting member can be composed of a single layer of one of these base materials, or a laminate of two or more of these base materials.
The translucent member 30 may be arranged via the light-guiding adhesive member 60 . The light-guiding adhesive member 60 is a member that adheres the light-emitting element 20 and the translucent member 30 together and guides the light from the light-emitting element 20 to the translucent member 30 . The material of the light-guiding adhesive member 60 is, for example, silicone resin, and may contain the same filler as the base material 31 of the light-transmitting member. It should be noted that the filler of the light-guiding adhesive member 60 may be the above-described inorganic substance or organic substance. Moreover, one type of filler may be used, or a combination of two or more types may be used. Examples of organic fillers that can be used include resins such as epoxy resins, silicone resins, and amorphous fluororesins.

波長変換物質32は、発光素子20が発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する部材である。波長変換物質32としては、例えば、イットリウム・アルミニウム・ガーネット系蛍光体(例えば、Y(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えば、Lu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えば、Tb(Al,Ga)12:Ce)、βサイアロン蛍光体(例えば、(Si,Al)(O,N):Eu)、αサイアロン蛍光体(例えば、M(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素))、CASN系蛍光体(例えば、CaAlSiN:Eu)若しくはSCASN系蛍光体(例えば、(Sr,Ca)AlSiN:Eu)等の窒化物系蛍光体、KSF系蛍光体(例えば、KSiF:Mn)若しくはMGF系蛍光体(例えば、3.5MgO・0.5MgF・GeO:Mn)等のフッ化物系蛍光体、CCA系蛍光体(例えば、(Ca,Sr)10(POCl:Eu)、又は、量子ドット蛍光体等を用いることができる。また、波長変換物質32は、これらの蛍光体のうちの1種を単体で、又はこれらの蛍光体のうち2種以上を組み合わせて用いることができる。 The wavelength conversion substance 32 is a member that absorbs at least part of the primary light emitted by the light emitting element 20 and emits secondary light with a wavelength different from that of the primary light. As the wavelength conversion substance 32, for example, yttrium-aluminum-garnet-based phosphor (eg, Y3 ( Al, Ga) 5O12 :Ce), lutetium-aluminum-garnet-based phosphor (eg, Lu3 ( Al, Ga) 5 O 12 :Ce), terbium-aluminum-garnet-based phosphors (e.g., Tb 3 (Al, Ga) 5 O 12 :Ce), β-sialon phosphors (e.g., (Si, Al) 3 (O, N) 4 :Eu), an α-sialon phosphor (for example, M z (Si, Al) 12 (O, N) 16 (where 0<z≦2, M is Li, Mg, Ca, Y, and Lanthanide elements excluding La and Ce)), nitride phosphors such as CASN phosphors (e.g. CaAlSiN 3 :Eu) or SCASN phosphors (e.g. (Sr, Ca)AlSiN 3 :Eu), KSF phosphors Fluoride-based phosphors such as phosphors (eg, K 2 SiF 6 :Mn) or MGF-based phosphors (eg, 3.5MgO·0.5MgF 2 ·GeO 2 :Mn), CCA-based phosphors (eg, ( Ca, Sr) 10 (PO 4 ) 6 Cl 2 :Eu), or a quantum dot phosphor or the like can be used. Also, the wavelength conversion substance 32 can use one of these phosphors alone or a combination of two or more of these phosphors.

(被覆部材)
被覆部材40は、基板10の上面と、発光素子20及び透光性部材30の側面とを覆い保護する部材である。被覆部材40のうち、第1被覆部41は、長手方向D1において、隣り合う透光性部材30の間に位置する部分を示す。第2被覆部42は、長手方向D1において、透光性部材30の外側(第1被覆部41が位置する側の側面とは反対の側面側)に位置する部分を示す。短手方向D2において、第1被覆部41及び第2被覆部42の幅は、発光装置100の幅と同じである。第1被覆部41には第1凸部51が配置され、第2被覆部42には第2凸部52が配置されている。
(coating member)
The covering member 40 is a member that covers and protects the upper surface of the substrate 10 and the side surfaces of the light emitting elements 20 and the translucent member 30 . A first covering portion 41 of the covering member 40 indicates a portion located between adjacent translucent members 30 in the longitudinal direction D1. The second covering portion 42 indicates a portion located outside the translucent member 30 (on the side opposite to the side on which the first covering portion 41 is located) in the longitudinal direction D1. The width of the first covering portion 41 and the second covering portion 42 in the lateral direction D2 is the same as the width of the light emitting device 100 . A first convex portion 51 is arranged on the first covering portion 41 , and a second convex portion 52 is arranged on the second covering portion 42 .

被覆部材40は、発光素子20からの光を上面側に取り出すために光反射性を有することが好ましく、例えば、発光素子20の発光ピーク波長に対する光反射率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらにより好ましい。また、被覆部材40は、白色であることが好ましく、被覆部材40の母材中に、例えば酸化チタン、酸化マグネシウムなどの白色顔料を含有してなることが好ましい。被覆部材40の母材は、例えばシリコーン、エポキシ、フェノール、ポリカーボネート、アクリルなどの樹脂又はこれらの変性樹脂が挙げられる。また、被覆部材40の母材は、透光性部材の母材31と同様のフィラーを含んでもよい。 The covering member 40 preferably has light reflectivity in order to extract the light from the light emitting element 20 to the upper surface side. It is more preferably 80% or more, and even more preferably 90% or more. Moreover, the covering member 40 is preferably white, and the base material of the covering member 40 preferably contains a white pigment such as titanium oxide or magnesium oxide. Examples of the base material of the covering member 40 include resins such as silicone, epoxy, phenol, polycarbonate, and acrylic, or modified resins thereof. Also, the base material of the covering member 40 may contain the same filler as the base material 31 of the translucent member.

(第1凸部及び第2凸部)
第1凸部51及び第2凸部52は、被覆部材40の上面に配置され、透光性部材30の上面と外部の他の部品等との接触を抑える部材である。外部の他の部品等とは、例えばバックライト用の導光板である。第1凸部51は、第1被覆部41の上面に配置され、透光性部材30から間隔G1で離隔している。第2凸部52は、第2被覆部42の上面に配置されている。第2凸部52は、第1凸部51と同様に透光性部材30から間隔G1で離隔してもよく、間隔G1とは異なる間隔で離隔してもよい。また、第2凸部52は、透光性部材30の上面と接していてもよく、透光性部材30が外部の他の部品等と接触して破損するのをさらに抑えることができる。
(First convex portion and second convex portion)
The first projecting portion 51 and the second projecting portion 52 are members arranged on the upper surface of the covering member 40 to prevent contact between the upper surface of the translucent member 30 and other external components. The other external parts and the like are, for example, a light guide plate for backlight. The first convex portion 51 is arranged on the upper surface of the first covering portion 41 and is separated from the translucent member 30 by a gap G1. The second convex portion 52 is arranged on the upper surface of the second covering portion 42 . The second convex portion 52 may be separated from the translucent member 30 by a gap G1, like the first convex portion 51, or may be separated by a gap different from the gap G1. In addition, the second convex portion 52 may be in contact with the upper surface of the translucent member 30, which can further prevent the translucent member 30 from coming into contact with other external parts and the like and being damaged.

第1凸部51及び第2凸部52の大きさは、発光装置100の大きさや発光装置100の上面にかかる圧力、外部の他の部品等の材質等によって調整することができる。一例として、第1凸部51及び第2凸部52の第1被覆部41上面からの高さH1、H2は、それぞれ10μmから100μmとしている。発光装置100は、第1凸部51及び第2凸部52を備えることにより、透光性部材30が直接外部の他の部品、特に導光板と接触する事を防止して透光性部材30の破損を防止する。そして更に、透光性部材30と導光板との間に少なくとも10μmの空気層を確保することにより導光板入光部での光の分散効果が得られる。前記空気層が数百μmと大きくなりすぎるとバックライトの出力が低下する。このため、高さH1、H2は、10μmから100μmが好ましく、20μmから50μmがより好ましい。なお、発光装置100の長手方向D1において、例えば、第1被覆部41上面の幅を470μmから530μmとし、第2被覆部42上面の幅を70μmから130μmとし、透光性部材30上面の幅をそれぞれ1.2mmから1.26mmとしている。この場合、間隔G1は、10μmから125μmとするのが好ましく、50μmから100μmとするのがより好ましい。これにより、透光性部材30の上面から外部に取り出される光への第1凸部51の影響を抑え、発光装置100の配光特性を良好に保つことができる。 The sizes of the first convex portion 51 and the second convex portion 52 can be adjusted according to the size of the light emitting device 100, the pressure applied to the upper surface of the light emitting device 100, the material of other external parts, and the like. As an example, the heights H1 and H2 of the first convex portion 51 and the second convex portion 52 from the upper surface of the first covering portion 41 are set to 10 μm to 100 μm, respectively. The light-emitting device 100 includes the first convex portion 51 and the second convex portion 52 to prevent the translucent member 30 from directly contacting other external components, particularly the light guide plate. to prevent damage to the Furthermore, by securing an air layer of at least 10 μm between the translucent member 30 and the light guide plate, a light dispersion effect can be obtained at the light entrance portion of the light guide plate. If the air layer is too large, such as several hundreds of micrometers, the output of the backlight decreases. Therefore, the heights H1 and H2 are preferably 10 μm to 100 μm, more preferably 20 μm to 50 μm. In the longitudinal direction D1 of the light emitting device 100, for example, the width of the upper surface of the first covering portion 41 is set to 470 μm to 530 μm, the width of the upper surface of the second covering portion 42 is set to 70 μm to 130 μm, and the width of the upper surface of the translucent member 30 is set to They are 1.2 mm to 1.26 mm, respectively. In this case, the interval G1 is preferably 10 μm to 125 μm, more preferably 50 μm to 100 μm. As a result, the influence of the first projections 51 on the light extracted from the upper surface of the translucent member 30 can be suppressed, and the light distribution characteristics of the light emitting device 100 can be maintained well.

第1凸部51の長手方向D1の断面は、半円状に形成されている。このため、第1凸部51は、その上面に曲面を有する、つまり断面視における上面が円弧状であって尖った部分がないため、外部の他の部品等と接触したときに第1凸部51が破損しにくい。半円状とは、上部が凸曲線状で下部が直線状である形状のことであり、例えば上部が円弧や楕円、放物線等の一部であるもの等を含んでいる。また、第1凸部51は、平面視で矩形状であり、短手方向D2において第1被覆部41の上面の端部まで延在して形成されている。このため、発光装置100の発光面(透光性部材30の上面)が、導光板の光入射面に対して傾いて配置されることを軽減することができる。なお、第1凸部51及び第2凸部52は、被覆部材40と同じ材料からなることで被覆部材40との密着力を高めることができるため、外部の他の部品等と接触したときに被覆部材40から剥離するのを抑制することができる。ただし、第1凸部51及び第2凸部52は、外部の他の部品等との接触耐性を強化するために、被覆部材40よりもより高い剛性を有するのが好ましい。例えば、酸化チタンなどを補強材として第1凸部51及び第2凸部52に含有させることで剛性を高めることができる。補強材の含有量としては、10wt%から60wt%とするのが好ましく、さらに好ましくは30wt%から40wt%である。なお、信頼性を考慮して被覆部材40にフェニルシリコーン樹脂を用いる場合、第1凸部51及び第2凸部52には被覆部材40と同系統であるシリコーン樹脂、例えば、被覆部材40との密着性も良好な高強度の変性シリコーン樹脂を用いることが好ましい。これにより、第1凸部51及び第2凸部52に用いられる樹脂の強度は、被覆部材40に用いられる樹脂の強度の2倍から3倍の強度を得ることができるため、第1凸部51及び第2凸部52は、被覆部材40よりもより高い剛性を有することができる。なお、剛性は、引張試験によって測定することができる。また、第1凸部51及び第2凸部52は、本実施形態においては被覆部材40と別体に形成されているが、被覆部材40と一体的に形成された同一部材であってもよい。 A cross section of the first convex portion 51 in the longitudinal direction D1 is formed in a semicircular shape. For this reason, the first convex portion 51 has a curved upper surface, that is, the upper surface in a cross-sectional view is arcuate and has no sharp portion. 51 is hard to be damaged. The term "semicircular" refers to a shape in which the upper portion is a convex curve and the lower portion is a straight line, and includes, for example, those whose upper portion is a part of an arc, an ellipse, a parabola, or the like. The first convex portion 51 has a rectangular shape in a plan view, and is formed to extend to the edge of the upper surface of the first covering portion 41 in the lateral direction D2. Therefore, it is possible to reduce the inclination of the light emitting surface of the light emitting device 100 (the upper surface of the translucent member 30) with respect to the light incident surface of the light guide plate. In addition, since the first convex portion 51 and the second convex portion 52 are made of the same material as the covering member 40, it is possible to increase the adhesion force with the covering member 40. Detachment from the covering member 40 can be suppressed. However, the first convex portion 51 and the second convex portion 52 preferably have higher rigidity than the covering member 40 in order to strengthen contact resistance with other external components. For example, the rigidity can be increased by including titanium oxide or the like as a reinforcing material in the first protrusions 51 and the second protrusions 52 . The content of the reinforcing material is preferably 10 wt % to 60 wt %, more preferably 30 wt % to 40 wt %. When phenylsilicone resin is used for the coating member 40 in consideration of reliability, the first protrusions 51 and the second protrusions 52 are made of the same type of silicone resin as the coating member 40, for example, It is preferable to use a high-strength modified silicone resin with good adhesion. As a result, the strength of the resin used for the first convex portion 51 and the second convex portion 52 can be two to three times the strength of the resin used for the covering member 40. The 51 and the second protrusion 52 can have higher rigidity than the covering member 40 . In addition, stiffness can be measured by a tensile test. Further, although the first convex portion 51 and the second convex portion 52 are formed separately from the covering member 40 in this embodiment, they may be the same member integrally formed with the covering member 40. .

発光装置100は、第1凸部51及び第2凸部52を備えることにより、発光面と外部の他の部品等との接触を抑えながら、第1凸部51が透光性部材30から離隔することによって光の取り出しへの影響を抑え、配光特性を良好に保つことができる、薄型狭額縁の発光装置を実現することができる。 The light-emitting device 100 includes the first convex portion 51 and the second convex portion 52, so that the first convex portion 51 is separated from the translucent member 30 while suppressing contact between the light-emitting surface and other external components. By doing so, it is possible to realize a light-emitting device with a thin and narrow frame that can suppress the influence on light extraction and maintain good light distribution characteristics.

[第1実施形態の発光装置の製造方法]
次に、発光装置100の製造方法について、図2~図3D、図11を参照しながら説明する。
発光装置100の製造方法は、個片化前の基板1000の上面に、行方向D3及び行方向D3に直交する列方向D4に複数の発光素子20を並べて配置する工程S11と、発光素子20それぞれの上面に透光性部材30を配置する工程S12と、基板1000の上面と発光素子20及び透光性部材30の側面とを覆う被覆部材400を形成する工程S13と、被覆部材400の上面に凸部500を形成する工程S14と、基板1000と被覆部材400と凸部500とを予め設定される発光素子20及び透光性部材30の区画の単位P1ごとに行方向D3又は列方向D4の切断面で切断する個片化工程S15と、を含む。凸部500を形成する工程S14においては、列方向D4の切断面で切断しない第1凸部510と、列方向D4の切断面で切断する第2凸部520と、を形成し、第1凸部510は透光性部材30から離隔させて形成される。
以下、発光装置100の製造方法の各工程について説明する。なお、ここでは、第1凸部510及び第2凸部520は、個片化前のものを指している。また、行方向D3は、個片化後の発光装置100において長手方向D1となり、列方向D4は、個片化後の発光装置100において短手方向D2となる。
[Manufacturing Method of Light Emitting Device of First Embodiment]
Next, a method for manufacturing the light emitting device 100 will be described with reference to FIGS. 2 to 3D and 11. FIG.
The method for manufacturing the light-emitting device 100 includes a step S11 of arranging a plurality of light-emitting elements 20 on the upper surface of the substrate 1000 before singulation in a row direction D3 and a column direction D4 orthogonal to the row direction D3; step S12 of placing the translucent member 30 on the upper surface of the substrate 1000; step S13 of forming the covering member 400 covering the upper surface of the substrate 1000 and the side surfaces of the light emitting element 20 and the translucent member 30; step S14 of forming the convex portion 500, and the substrate 1000, the covering member 400, and the convex portion 500 are arranged in the row direction D3 or the column direction D4 for each division unit P1 of the predetermined light emitting elements 20 and the translucent member 30. and a singulation step S15 of cutting along the cutting surface. In the step S14 of forming the projections 500, the first projections 510 that are not cut along the line direction D4 and the second projections 520 that are cut along the line direction D4 are formed. The portion 510 is formed apart from the translucent member 30 .
Each step of the method for manufacturing the light emitting device 100 will be described below. Here, the first convex portion 510 and the second convex portion 520 refer to those before singulation. Further, the row direction D3 is the longitudinal direction D1 of the light emitting device 100 after singulation, and the column direction D4 is the width direction D2 of the light emitting device 100 after singulation.

(発光素子を並べて配置する工程)
はじめに、図3Aに示すように、個片化前の基板1000の上面に、行方向D3及び列方向D4に複数の発光素子20を並べて配置する。基板1000の上面及び下面には、個片化後の図2に示す配線12となる配線が配置されている。図3Aは、基板1000の一部を示しており、配線については記載を省略している。発光素子20の正負一対の電極21は、導電性接着部材により、基板1000上面の配線と電気的に接続される。導電性接着部材とは、例えば金、銀、銅などのバンプや、金、銀、銅、白金、アルミニウムなどの金属粉末と樹脂バインダを含む導電性ペーストや、錫-銀-銅(SAC)系や錫-ビスマス(SnBi)系の半田などである。
(Process of arranging light-emitting elements side by side)
First, as shown in FIG. 3A, a plurality of light emitting elements 20 are arranged side by side in the row direction D3 and the column direction D4 on the upper surface of the substrate 1000 before singulation. Wirings that become the wirings 12 shown in FIG. FIG. 3A shows a portion of the substrate 1000 and omits the wiring. A pair of positive and negative electrodes 21 of the light emitting element 20 are electrically connected to wiring on the upper surface of the substrate 1000 by a conductive adhesive member. The conductive adhesive member includes, for example, bumps of gold, silver, copper, etc., conductive pastes containing metal powders of gold, silver, copper, platinum, aluminum, etc. and resin binders, tin-silver-copper (SAC)-based and tin-bismuth (SnBi) solder.

(透光性部材を配置する工程)
続いて、発光素子20それぞれの上面に透光性部材30を配置する。透光性部材30の配置は、例えば、1個の発光素子20の上面を覆う大きさに予め形成した透光性部材30を発光素子20それぞれの上面に接着して行う。透光性部材30は、導光性接着部材60を介して発光素子20に接着することができる。
(Step of Arranging Translucent Member)
Subsequently, the translucent member 30 is arranged on the upper surface of each of the light emitting elements 20 . The light-transmitting member 30 is arranged, for example, by bonding a light-transmitting member 30 formed in advance to a size that covers the top surface of one light emitting element 20 to the top surface of each light emitting element 20 . The translucent member 30 can be adhered to the light-emitting element 20 via the light-guiding adhesive member 60 .

(被覆部材を形成する工程)
続いて、基板1000の上面と、発光素子20及び透光性部材30の側面とを覆う被覆部材400を形成する。図3Bは、基板1000の上面に、発光素子20及び透光性部材30が配置され、被覆部材400が形成された中間体を示す。被覆部材400は、透光性部材30全体を覆う高さまで形成し、透光性部材30の上面を研削等により露出させてもよい。なお、後記する凸部を形成する工程S14の前に、透光性部材30及び被覆部材400の上面を平坦化する研磨工程を含むのが好ましい。
(Step of forming covering member)
Subsequently, a covering member 400 covering the upper surface of the substrate 1000 and the side surfaces of the light emitting elements 20 and the translucent member 30 is formed. FIG. 3B shows an intermediate body in which the light emitting element 20 and the translucent member 30 are arranged on the upper surface of the substrate 1000 and the covering member 400 is formed. The covering member 400 may be formed to a height that covers the entire translucent member 30, and the upper surface of the translucent member 30 may be exposed by grinding or the like. In addition, it is preferable to include a polishing step for flattening the upper surfaces of the translucent member 30 and the covering member 400 before the step S14 of forming convex portions, which will be described later.

(凸部を形成する工程)
続いて、図3Cに示すように、被覆部材400の上面に凸部500を形成する。凸部500は、隣り合う透光性部材30の間ごとに、凸部500の平面視形状の開口を有するマスクを使用して形成している。凸部500の形成は、マスクを使用して、例えば未硬化の樹脂材料を印刷、又はインクジェット若しくはスプレーにより吹き付けて行う。開口F1を有するマスクM1の例を図3Dに示す。
凸部500を形成する工程S14は、個片化前の第1凸部510及び第2凸部520を形成する。個片化後の発光装置100において第1被覆部41となる領域41Aに形成する第1凸部510は、個片化工程S15において列方向D4の切断面では切断されない。個片化後の発光装置100において第2被覆部42となる領域42Aに形成する第2凸部520は、個片化工程S15において列方向D4の切断面で切断される。
(Step of forming convex portion)
Subsequently, as shown in FIG. 3C, a convex portion 500 is formed on the top surface of the covering member 400 . The convex portions 500 are formed using a mask having openings of the shape of the convex portions 500 in plan view between the adjacent translucent members 30 . The projections 500 are formed by using a mask, for example, by printing an uncured resin material, or by jetting or spraying an uncured resin material. An example of a mask M1 with openings F1 is shown in FIG. 3D.
In the step S14 of forming the convex portions 500, the first convex portions 510 and the second convex portions 520 before singulation are formed. In the singulated light emitting device 100, the first convex portion 510 formed in the region 41A to be the first covering portion 41 is not cut along the column direction D4 in the singulation step S15. The second convex portion 520 formed in the region 42A to be the second covering portion 42 in the singulated light emitting device 100 is cut along the column direction D4 in the singulation step S15.

第1凸部510は、透光性部材30から離隔させて形成する。第2凸部520は、列方向D4の切断面に関して対称な形状に形成している。また、図3Cに示すように、第2凸部520及び第1凸部510は、頂点が列方向D4に沿う直線状に形成している。
このように形成することで、個片化後の発光装置100において、第1凸部51は、透光性部材30を覆うことなく離隔させることができる。また、個片化後の発光装置100において、第2凸部52は、形状を揃えることができる。
凸部500の形成は、例えば、未硬化の樹脂材料を配置した後に硬化させることによって行うことができる。
The first protrusion 510 is formed apart from the translucent member 30 . The second convex portion 520 is formed in a symmetrical shape with respect to the cross section in the column direction D4. In addition, as shown in FIG. 3C, the apexes of the second protrusions 520 and the first protrusions 510 are formed linearly along the column direction D4.
By forming in this way, in the light-emitting device 100 after singulation, the first protrusions 51 can be separated from each other without covering the translucent member 30 . In addition, in the light emitting device 100 after singulation, the second convex portions 52 can have the same shape.
The convex portion 500 can be formed, for example, by placing an uncured resin material and then curing it.

(個片化工程)
続いて、個片化前の基板1000と被覆部材400と凸部500とを予め設定された発光素子20及び透光性部材30の区画の単位P1ごとに行方向D3又は列方向D4の切断面で切断して個片化する。切断は、例えば回転刃やレーザにより行うことができる。
なお、被覆部材を形成する工程の前に、透光性部材30の側面を研削する工程を設けてもよい。透光性部材30の側面を研削して、予め設定される区画の単位P1に対する側面の位置や角度を調整し、また平坦化することによって、被覆部材の厚みを確保することができる。
(Singulation process)
Subsequently, the substrate 1000, the covering member 400, and the convex portion 500 before singulation are cut in the row direction D3 or the column direction D4 for each division unit P1 of the predetermined light emitting elements 20 and the translucent members 30. Cut into individual pieces. Cutting can be performed, for example, by a rotary blade or laser.
A step of grinding the side surface of the translucent member 30 may be provided before the step of forming the covering member. The thickness of the covering member can be ensured by grinding the side surface of the translucent member 30 to adjust the position and angle of the side surface with respect to the unit P1 of the division set in advance, and by flattening the side surface.

[第2実施形態]
次に、第2実施形態の発光装置200について、図4、図5A~5Cを参照しながら説明する。図4に示すように、発光装置200は、透光性部材及び被覆部材の形状が第1実施形態の発光装置100と異なる。
発光装置200の透光性部材30Aは、少なくとも長手方向D1の断面において、両端に段差部301を有している。段差部301は、透光性部材30Aの厚みが薄く形成されている部分である。段差部301を有することで、透光性部材30Aの長手方向D1の断面において、上面側は幅が狭く、下面側は幅が広い形状となる。なお、透光性部材30Aは、短手方向D2の断面においても、同様に段差部を有してもよい。すなわち、透光性部材30Aは、側面全周に連続する段差部を有してもよい。また、透光性部材30Aの長手方向D1の両端の側面は、下面側の幅が広い部分における側面の表面粗さが上面側の幅が狭い部分における側面の表面粗さよりも大きいのが好ましい。
[Second embodiment]
Next, the light emitting device 200 of the second embodiment will be described with reference to FIGS. 4 and 5A to 5C. As shown in FIG. 4, the light emitting device 200 differs from the light emitting device 100 of the first embodiment in the shapes of the translucent member and the covering member.
The translucent member 30A of the light-emitting device 200 has stepped portions 301 at both ends thereof at least in the cross section in the longitudinal direction D1. The stepped portion 301 is a portion formed with a thin thickness of the translucent member 30A. By having the stepped portion 301, in the cross section of the translucent member 30A in the longitudinal direction D1, the upper surface side has a narrower width and the lower surface side has a wider width. Note that the translucent member 30A may also have a stepped portion in the cross section in the lateral direction D2 as well. In other words, the translucent member 30A may have a stepped portion that continues along the entire circumference of the side surface. In addition, it is preferable that the surface roughness of the side surfaces at the wide width portion on the lower surface side of the side surfaces at both ends in the longitudinal direction D1 of the translucent member 30A is larger than the surface roughness of the side surface at the narrow width portion on the upper surface side.

第1凸部51及び第2凸部52は、透光性部材30Aから離隔して配置されている。第1凸部51と透光性部材30Aとの離隔幅は、第2凸部52と透光性部材30Aとの離隔幅と異なっていてもよい。また、第1凸部51のみが透光性部材30Aから離隔していてもよい。また、第1凸部51及び第2凸部52は、少なくとも一部が平面視において段差部301に重なる位置にあるのが好ましい。 The first convex portion 51 and the second convex portion 52 are arranged apart from the translucent member 30A. The separation width between the first convex portion 51 and the translucent member 30A may be different from the separation width between the second convex portion 52 and the translucent member 30A. Alternatively, only the first convex portion 51 may be separated from the translucent member 30A. Moreover, it is preferable that at least a part of the first convex portion 51 and the second convex portion 52 overlaps the stepped portion 301 in plan view.

透光性部材30Aは、短手方向D2の端部よりも熱による応力が生じやすい長手方向D1の端部に段差部301を有することで、被覆部材40からの剥離を効果的に抑制できる。また、透光性部材30Aは、段差部301側面の表面粗さが大きいことで、被覆部材40からの剥離をより抑制できる。そして、第1凸部51及び第2凸部52は、平面視において段差部301に重なる位置にあることで、被覆部材40を補強して、透光性部材30Aの剥離をさらに抑制できる。 The translucent member 30A has the stepped portion 301 at the end portion in the longitudinal direction D1 where thermal stress is more likely to occur than at the end portion in the lateral direction D2, so that separation from the covering member 40 can be effectively suppressed. Moreover, since the translucent member 30</b>A has a large surface roughness on the side surface of the stepped portion 301 , peeling from the covering member 40 can be further suppressed. Since the first convex portion 51 and the second convex portion 52 overlap the stepped portion 301 in plan view, the covering member 40 is reinforced, and peeling of the translucent member 30A can be further suppressed.

透光性部材30Aの段差部301は、発光素子20の上面に透光性部材を配置する前に形成してもよく、発光素子20の上面に透光性部材を配置した後に形成してもよい。
段差部301は、透光性部材の側面を研削することにより形成することができる。研削は、例えば円盤状の回転刃を用いることができる。例えば図5Bに示すように、円盤状の回転刃B1を用いて、透光性部材の両端の側面それぞれの上面側の一部を削ることにより、段差部を形成してもよい。また、図5Cに一例を示すように、シート状の透光性部材30Bを厚さの異なる2種類の円盤状の回転刃B2、B3を用いて研削又は切断してもよい。図5Cに示す例では、厚い回転刃B2はシート状の透光性部材30Bに凹部を形成し、薄い回転刃B3は形成した凹部の底面で透光性部材を切り離すことで、列方向D4の断面において、透光性部材30Bの端部に段差部を形成している。
The stepped portion 301 of the translucent member 30A may be formed before placing the translucent member on the upper surface of the light emitting element 20, or may be formed after placing the translucent member on the upper surface of the light emitting element 20. good.
The stepped portion 301 can be formed by grinding the side surface of the translucent member. For grinding, for example, a disk-shaped rotary blade can be used. For example, as shown in FIG. 5B, the stepped portion may be formed by cutting a portion of the upper surface side of each of the side surfaces at both ends of the translucent member using a disk-shaped rotary blade B1. Further, as an example is shown in FIG. 5C, the sheet-like translucent member 30B may be ground or cut using two types of disk-like rotary blades B2 and B3 having different thicknesses. In the example shown in FIG. 5C, the thick rotary blade B2 forms a recess in the sheet-like translucent member 30B, and the thin rotary blade B3 separates the translucent member at the bottom surface of the formed recess, thereby forming a line direction D4. In cross section, a stepped portion is formed at the end of the translucent member 30B.

(配線形状の例)
基板10の上面及び下面に配置される配線12の形状は、発光装置の用途や製造方法に合わせて様々な形状とすることができる。次にいくつかの例を示す。
発光装置101は、図6A~図6Cに示すように、側面に6つの配線が露出している。すなわち、一方の短尺側面に、基板10上面の被覆部材40から配線121aが露出し、基板10下面の絶縁膜70から配線121cが露出している。なお、配線121a、121cは、ビアホール151aにより導通している。他方の短尺側面についても同様である。また、一方の長尺側面に、基板10下面の絶縁膜70のうちの1つから配線121bが露出している。他方の長尺側面についても同様である。
発光装置102は、図7A~図7Cに示すように、側面に6つの配線が露出している。すなわち、一方の短尺側面に、基板10上面の被覆部材40から配線122aが露出し、基板10下面の絶縁膜70から配線122dが露出している。配線122a、122dは、ビアホール152aにより導通している。他方の短尺側面についても同様である。また、一方の長尺側面に、基板10下面の絶縁膜70のうちの2つから配線122b、122cが露出している。配線122b、122cは、基板10下面の配線12により導通している。
発光装置103は、図8A~図8Cに示すように、側面に6つの配線が露出している。すなわち、一方の短尺側面に、基板10上面の被覆部材40から配線123bが露出し、基板10下面の絶縁膜70から配線123cが露出している。配線123b、123cは、ビアホール153aにより導通している。他方の短尺側面についても同様である。また、一方の長尺側面に、基板10上面の被覆部材40から配線123aが露出している。他方の長尺側面についても同様である。
図6A~図8Cの配線形状の例は、各実施形態及び第1凸部の形状を変形する各変形例の何れにも適用できる。発光装置の側面は、外部の金属等の導電性部品と対面する場合がある。このような場合に、発光素子20の正極に至る配線12の部分と負極に至る配線12の部分とが発光装置の同じ側面に露出しないことで、さらに短絡のリスクを回避することができる。
(Example of wiring shape)
The wiring 12 arranged on the upper and lower surfaces of the substrate 10 can have various shapes according to the application and manufacturing method of the light emitting device. Here are some examples:
As shown in FIGS. 6A to 6C, the light emitting device 101 has six wirings exposed on its side surface. That is, on one short side surface, the wiring 121a is exposed from the covering member 40 on the upper surface of the substrate 10, and the wiring 121c is exposed from the insulating film 70 on the lower surface of the substrate 10. FIG. The wirings 121a and 121c are electrically connected through the via hole 151a. The same applies to the other short side surface. Also, the wiring 121b is exposed from one of the insulating films 70 on the bottom surface of the substrate 10 on one long side surface. The same applies to the other long side surface.
As shown in FIGS. 7A to 7C, the light emitting device 102 has six wirings exposed on its side surface. That is, on one short side surface, the wiring 122a is exposed from the covering member 40 on the upper surface of the substrate 10, and the wiring 122d is exposed from the insulating film 70 on the lower surface of the substrate 10. FIG. The wirings 122a and 122d are electrically connected through the via hole 152a. The same applies to the other short side surface. Also, wirings 122b and 122c are exposed from two of the insulating film 70 on the bottom surface of the substrate 10 on one long side surface. The wirings 122b and 122c are conducted by the wiring 12 on the bottom surface of the substrate 10. FIG.
As shown in FIGS. 8A to 8C, the light emitting device 103 has six wirings exposed on its side surface. That is, the wiring 123b is exposed from the covering member 40 on the upper surface of the substrate 10, and the wiring 123c is exposed from the insulating film 70 on the lower surface of the substrate 10, on one short side surface. The wirings 123b and 123c are electrically connected through the via hole 153a. The same applies to the other short side surface. Also, the wiring 123a is exposed from the covering member 40 on the upper surface of the substrate 10 on one long side surface. The same applies to the other long side surface.
The examples of wiring shapes in FIGS. 6A to 8C can be applied to each embodiment and each modified example in which the shape of the first convex portion is modified. A side surface of the light emitting device may face an external conductive component such as metal. In such a case, the wiring 12 portion leading to the positive electrode and the wiring 12 portion leading to the negative electrode of the light emitting element 20 are not exposed on the same side surface of the light emitting device, thereby further avoiding the risk of short circuit.

[変形例]
(基板を備えない例)
発光装置は、図10に示す発光装置300のように、基板を備えなくてもよい。発光装置300は、基板を備えないため小型化されている。基板を備えない場合の発光素子20への配線は、例えば発光素子20の素子電極21に対面する導電膜16を形成して行うことができる。発光装置300は、例えば導電膜16が配置された面を実装面として、外部の実装基板に安定して固定することができる。
[Modification]
(Example without substrate)
The light-emitting device may not have a substrate like the light-emitting device 300 shown in FIG. Light emitting device 300 is miniaturized because it does not include a substrate. Wiring to the light emitting element 20 without a substrate can be performed by forming a conductive film 16 facing the element electrode 21 of the light emitting element 20, for example. The light-emitting device 300 can be stably fixed to an external mounting substrate using, for example, the surface on which the conductive film 16 is arranged as a mounting surface.

(第1凸部形状の変形例)
発光装置が対面する外部の他の部品等の形状や性質によって、第1凸部51の形状を調整することができる。第1凸部51の形状の変形例について図9A~図9Iを参照しながら説明する。
(Modified example of first convex shape)
The shape of the first convex portion 51 can be adjusted according to the shape and properties of other external components that the light emitting device faces. Modified examples of the shape of the first projection 51 will be described with reference to FIGS. 9A to 9I.

(第1変形例)
図9Aに示すように、発光装置100Aは、第1凸部51の第2方向D2の断面は半円状に形成されていてもよい。また、第2凸部52は、既に説明したものと同じ形状であってもよい。発光装置100Aの第1凸部51は、断面が半円状のため、その上面に曲面を有することとなり、外部の他の部品等と接触したときに第1凸部51が破損しにくい。
(First modification)
As shown in FIG. 9A, in the light emitting device 100A, the cross section of the first projection 51 in the second direction D2 may be formed in a semicircular shape. Also, the second convex portion 52 may have the same shape as that already described. Since the first convex portion 51 of the light emitting device 100A has a semicircular cross section, the upper surface thereof has a curved surface, so that the first convex portion 51 is less likely to be damaged when it comes into contact with other external components or the like.

(第2変形例)
図9Bに示すように、発光装置100Bは、第1凸部51の第1方向D1の断面は台形状に形成されていてもよい。第1凸部51の上面が平面であれば、外部の他の部品等と面で対面することができる。第2凸部52も、第1方向D1の断面が台形状に形成されていてもよい。そして、第1凸部51及び第2凸部52の上面が同一の高さの平面上にあるようにしてもよい。
(Second modification)
As shown in FIG. 9B, in the light emitting device 100B, the cross section of the first projection 51 in the first direction D1 may be trapezoidal. If the upper surface of the first convex portion 51 is flat, it can face other external parts or the like. The second convex portion 52 may also have a trapezoidal cross section in the first direction D1. Further, the upper surfaces of the first convex portion 51 and the second convex portion 52 may be on the same plane.

(第3変形例)
図9Cに示すように、発光装置100Cは、第1凸部51は、平面視で円形状であり、球の一部となるような形状であってもよい。平面視で円形状であることで、第1凸部51は平面視における外縁に凹凸がなく破損しにくい。第2凸部52は、既に説明したものと同じ形状であってもよい。発光装置100Cの第1凸部51は、球の一部となるような形状のため、その上面に曲面を有することとなり、外部の他の部品等と接触したときに第1凸部51が破損しにくい。
(Third modification)
As shown in FIG. 9C, in the light emitting device 100C, the first convex portion 51 may have a circular shape in plan view, and may have a shape that forms part of a sphere. Since the first convex portion 51 has a circular shape in a plan view, the outer edge of the first convex portion 51 does not have unevenness in a plan view and is less likely to be damaged. The second protrusion 52 may have the same shape as already described. Since the first convex portion 51 of the light emitting device 100C is shaped like a part of a sphere, the upper surface of the first convex portion 51 has a curved surface, and the first convex portion 51 is damaged when it comes into contact with other external components. hard to do.

なお、第2方向(短手方向)D2において、第1凸部51の幅は、透光性部材30の幅よりも広いことが好ましい。第1凸部51の短手方向D2における幅が透光性部材30の幅より広いことにより、外部の他の部品等が第1凸部51に及ぼす力が広い範囲で分散される。このため、被覆部材40は、透光性部材30近傍での変形を抑えることができる。 The width of the first convex portion 51 is preferably wider than the width of the translucent member 30 in the second direction (transverse direction) D2. Since the width of the first convex portion 51 in the lateral direction D2 is wider than the width of the translucent member 30, the force exerted on the first convex portion 51 by other external components or the like is dispersed over a wide range. Therefore, the covering member 40 can suppress deformation in the vicinity of the translucent member 30 .

(第1凸部が第1部分及び第2部分を含む変形例)
発光装置が対面する外部の他の部品等の形状や性質によっては、第1凸部は、第1部分と第2部分とを含むようにしてもよい。次に、第1部分と第2部分とを含む第1凸部のいくつかの例を示す。既に説明した構成は、同じ符号を付して説明を省略する。なお、各変形例で示す溝は、溝を形成する開口形状を設けたマスクを使用して形成してもよい。また、各変形例で示す形状の溝は、溝を設けていない第1凸部を形成した後に、研削により形成してもよい。
(Modified example in which the first protrusion includes the first portion and the second portion)
The first convex portion may include a first portion and a second portion, depending on the shape and properties of other external components that the light emitting device faces. Next, some examples of the first protrusions including the first portion and the second portion are shown. The configurations that have already been described are given the same reference numerals, and the description thereof is omitted. Note that the grooves shown in each modification may be formed using a mask provided with an opening shape for forming the grooves. Further, the grooves having the shape shown in each modified example may be formed by grinding after forming the first convex portion having no groove.

(第4変形例)
図9Dに示すように、発光装置100Dでは、第1凸部51Dは、溝Mdを介して、第1方向D1に並ぶ第1部分と第2部分とを備えている。第1部分と第2部分との間隔(溝Mdの幅)は、好ましくは15μm以上100μm以下であり、さらに好ましくは30μm以上50μm以下である。第1部分及び第2部分は、第1方向D1の断面が扁平した四分円形状に形成され、垂直面が対面している。
(Fourth modification)
As shown in FIG. 9D, in the light emitting device 100D, the first convex portion 51D includes a first portion and a second portion arranged in the first direction D1 via the groove Md. The distance between the first portion and the second portion (the width of the groove Md) is preferably 15 μm or more and 100 μm or less, more preferably 30 μm or more and 50 μm or less. The first portion and the second portion are formed in a flattened quadrant shape in cross section in the first direction D1, and the vertical surfaces face each other.

(第5変形例)
図9Eに示すように、発光装置100Eでは、第1凸部51Eは、溝Meを介して、第1方向D1に並ぶ第1部分と第2部分とを備えており、第1部分及び第2部分の第1方向D1の断面が、それぞれ半円状に形成されている。なお、第1部分と第2部分との間隔(溝Meの幅)は、好ましくは30μm以上100μm以下であり、さらに好ましくは50μm以上80μm以下である。
(Fifth modification)
As shown in FIG. 9E, in the light emitting device 100E, the first convex portion 51E includes a first portion and a second portion arranged in the first direction D1 with the groove Me therebetween. Sections of the portions in the first direction D1 are each formed in a semicircular shape. The distance between the first portion and the second portion (the width of the groove Me) is preferably 30 μm or more and 100 μm or less, more preferably 50 μm or more and 80 μm or less.

(第6変形例)
図9Fに示すように、発光装置100Fでは、第1凸部51Fは、溝Mfを介して、第1方向D1に並ぶ第1部分と第2部分とを備えており、第1部分及び第2部分は、第1方向D1の断面が矩形で、第2方向D2の断面がそれぞれ半円状に形成されている。なお、第1部分と第2部分との間隔(溝Mfの幅)は、好ましくは15μm以上100μm以下であり、さらに好ましくは30μm以上50μm以下である。
(Sixth modification)
As shown in FIG. 9F, in the light emitting device 100F, the first convex portion 51F includes a first portion and a second portion arranged in the first direction D1 via the groove Mf. Each portion has a rectangular cross section in the first direction D1 and a semicircular cross section in the second direction D2. The distance between the first portion and the second portion (the width of the groove Mf) is preferably 15 μm or more and 100 μm or less, more preferably 30 μm or more and 50 μm or less.

(第7~第9変形例)
図9G~図9Iに示すように、発光装置100G~100Iでは、第4~第6変形例で説明した第1凸部51D~51Fの設置方向を、90度向きを変えてそれぞれ第1凸部51G~51Iとしている。したがって、第1凸部51Gの第1部分及び第2部分は、第2方向D2の断面が扁平した四分円形状に形成され、垂直面が対面している。また、第1凸部51Hの第1部分及び第2部分は、第2方向D2の断面がそれぞれ半円状に形成されている。また、第1凸部51Iの第1部分及び第2部分は、第1方向D1の断面がそれぞれ半円状に形成されている。
(7th to 9th Modifications)
As shown in FIGS. 9G to 9I, in the light emitting devices 100G to 100I, the installation directions of the first projections 51D to 51F described in the fourth to sixth modifications are changed by 90 degrees, and the first projections 51G to 51I. Therefore, the first portion and the second portion of the first convex portion 51G are formed in a quadrant shape with a flattened cross section in the second direction D2, and the vertical surfaces face each other. In addition, the first portion and the second portion of the first convex portion 51H are each formed to have a semicircular cross section in the second direction D2. In addition, the first portion and the second portion of the first convex portion 51I are each formed to have a semicircular cross section in the first direction D1.

発光装置100D~100Iでは、第1凸部が溝により第1部分及び第2部分に離隔されているが、溝は第1凸部を完全に離隔しない深さでもよい。なお、溝は被覆部材40の上面よりも深く形成されてもよく、被覆部材40を貫通し、基板10の上面が露出する深さでもよい。
第1凸部を第1部分及び第2部分に離隔することにより、第1部分及び第2部分それぞれの体積を第2凸部52の体積に近づけることができる。このため、熱膨張時の高さの均一性が向上する。また、予め溝を設けることにより、高温時の第1凸部の樹脂割れリスクを低減することができる。そして、第1凸部が第1部分と第2部分とを含むことにより、第1凸部が外部の他の部品等と接する範囲及び位置を調整することができる。なお、第1部分と第2部分とは、第1方向D1又は第2方向D2以外の方向に並んでもよい。
In the light emitting devices 100D to 100I, the first protrusion is separated from the first portion and the second portion by the groove, but the groove may have a depth that does not completely separate the first protrusion. The groove may be formed deeper than the upper surface of the covering member 40, or may have a depth that penetrates the covering member 40 and exposes the upper surface of the substrate 10. FIG.
By separating the first convex portion into the first portion and the second portion, the volume of each of the first portion and the second portion can be made close to the volume of the second convex portion 52 . Therefore, the height uniformity during thermal expansion is improved. Further, by providing grooves in advance, it is possible to reduce the risk of resin cracking in the first convex portion at high temperatures. Since the first protrusion includes the first portion and the second portion, it is possible to adjust the range and position in which the first protrusion is in contact with other external components or the like. Note that the first portion and the second portion may be arranged in a direction other than the first direction D1 or the second direction D2.

第2方向D2に並ぶ第1部分及び第2部分が、第2方向D2において、それぞれ透光性部材30の上面よりも外側に配置されるようにしてもよい。これにより、第1凸部は、光の取り出しへの影響をさらに抑えることができる。また、第1部分の稜線と第2部分の稜線との間隔を広くすることで、第1凸部は、外部の他の部品等をより安定して支えることができる。 The first portion and the second portion aligned in the second direction D2 may be arranged outside the upper surface of the translucent member 30 in the second direction D2. Thereby, the first convex portion can further suppress the influence on light extraction. Further, by widening the distance between the ridgeline of the first portion and the ridgeline of the second portion, the first convex portion can more stably support other external components.

(導光性接着部材の変形例)
なお、導光性接着部材60を介して透光性部材30を発光素子20に配置する場合、粒径及び屈折率を調整したフィラー62を導光性接着部材60に含有させることによって、上記の実施形態及び変形例に係る発光装置は、薄さを維持しつつ、さらに大きい光束を得ることができる。導光性接着部材60にフィラー62を含有させる変形例について以下に説明する。
(Modified example of light-guiding adhesive member)
When the light-transmitting member 30 is arranged on the light-emitting element 20 via the light-guiding adhesive member 60, the above-described The light emitting devices according to the embodiments and modifications can obtain a larger luminous flux while maintaining thinness. A modification in which the light-guiding adhesive member 60 contains the filler 62 will be described below.

導光性接着部材60は、図2に示すように、発光素子20の側面に設けられ、透光性部材30に接して被覆部材40が配置されている。発光素子20の側面付近を拡大した断面図を図12に示す。発光素子20の側面26から出射される光の一部は、光L1のように被覆部材40によって反射される。しかし、被覆部材40によって反射されず、光L3のように進み被覆部材40を透過する光は、発光装置の上面側から取り出される光束に寄与しない。光L2のように、導光性接着部材60に含有させるフィラー62によって光を散乱させて、被覆部材40を透過する光を減らし、発光装置の上面側から取り出される光束に寄与する光を増やすことができる。 As shown in FIG. 2 , the light-guiding adhesive member 60 is provided on the side surface of the light-emitting element 20 , and the covering member 40 is arranged in contact with the light-transmitting member 30 . FIG. 12 shows an enlarged cross-sectional view of the vicinity of the side surface of the light emitting element 20. As shown in FIG. A part of the light emitted from the side surface 26 of the light emitting element 20 is reflected by the covering member 40 like the light L1. However, the light that is not reflected by the covering member 40 and passes through the covering member 40 like the light L3 does not contribute to the luminous flux extracted from the upper surface side of the light emitting device. Like the light L2, light is scattered by the filler 62 contained in the light-guiding adhesive member 60 to reduce the light that passes through the covering member 40 and increase the light that contributes to the luminous flux extracted from the upper surface side of the light emitting device. can be done.

発光素子20の側面26に設けられる導光性接着部材60は、図12に示すように、透光性部材30の下面35の周縁から発光素子20の側面26に亘って延在しているのが好ましい。このとき、被覆部材40の導光性接着部材60と接する面45は、透光性部材30の下面35と鋭角をなしている。このため、被覆部材40は、発光素子20の側面26から出射される光を透光性部材30の方向に効率よく反射させることができる。このような導光性接着部材60の形状を断面でみると、図2及び図12に示すように、略逆三角形状となっている。 The light-guiding adhesive member 60 provided on the side surface 26 of the light emitting element 20 extends from the periphery of the lower surface 35 of the translucent member 30 to the side surface 26 of the light emitting element 20, as shown in FIG. is preferred. At this time, the surface 45 of the covering member 40 in contact with the light-guiding adhesive member 60 forms an acute angle with the lower surface 35 of the translucent member 30 . Therefore, the covering member 40 can efficiently reflect the light emitted from the side surface 26 of the light emitting element 20 toward the translucent member 30 . When viewed in cross-section, the shape of the light-guiding adhesive member 60 has a substantially inverted triangular shape, as shown in FIGS. 2 and 12 .

導光性接着部材60は、ここでは母材61中に分散される有機物粒子のフィラー62を含有している。有機物粒子のフィラー62としては、耐熱性及び耐光性の観点から、屈折率が1.35以上1.55以下のシリコーン樹脂が好ましい。さらに、粘度調整剤として、例えば粒径が100nm未満のナノシリカや酸化ジルコニウムが添加されていてもよい。
母材61としては、エポキシ樹脂、シリコーン樹脂又はこれらの変性樹脂やハイブリッド樹脂が透光性に優れており好ましい。特に、屈折率が1.45以上1.60以下のシリコーン樹脂であることが好ましい。
導光性接着部材60の屈折率と被覆部材40の屈折率との差を大きくすると、導光性接着部材60と被覆部材40との界面でも光を効率的に反射させることができる。
The light-guiding adhesive member 60 contains a filler 62 of organic particles dispersed in a base material 61 here. From the viewpoint of heat resistance and light resistance, the organic particle filler 62 is preferably a silicone resin having a refractive index of 1.35 or more and 1.55 or less. Further, as a viscosity modifier, for example, nanosilica having a particle size of less than 100 nm or zirconium oxide may be added.
As the base material 61, an epoxy resin, a silicone resin, a modified resin thereof, or a hybrid resin thereof is preferable because of its excellent translucency. In particular, a silicone resin having a refractive index of 1.45 or more and 1.60 or less is preferable.
By increasing the difference between the refractive index of the light-guiding adhesive member 60 and the refractive index of the covering member 40 , light can be efficiently reflected even at the interface between the light-guiding adhesive member 60 and the covering member 40 .

フィラー62は、粒径が小さいと毛管力による凝集が生じやすくなる傾向があり、粒径が大きいと発光素子20と透光性部材30との間の導光性接着部材60の層が厚くなってしまう。このため、有機物粒子のフィラー62は、平均粒径が0.5μm以上1.2μm以下であることが好ましい。有機物粒子のフィラー62は、その粒径が上記粘度調整剤の粒径と比べて大きいため、導光性接着部材60に含有させても粘度の上昇が起こりにくい。また、上記粘度調整剤のように粒径が小さい粒子の場合はレイリー散乱が生じるが、有機物粒子のフィラー62ではミー散乱が生じ、発光素子20からの光が効率的に拡散される。また、フィラー62の分散性を均一にするため、フィラー62の粒径は、できるだけ揃っているのが好ましく、粒径が0.3μm以上2.0μm以下のものが80体積%以上であることが好ましく、粒径が0.3μm以上2.0μm以下のものが85体積%以上であることがより好ましい。特に、粒径の大きいフィラー62の個数は少ないのが好ましく、粒径が2.5μm以上のものが4体積%以下であることが好ましい。なお、ここでの体積%は、フィラー全体の体積に対するその粒径のフィラーの体積の割合である。また、フィラー62の粒径は、例えば電気抵抗法により求めることができる。 If the particle size of the filler 62 is small, it tends to aggregate due to capillary force. end up For this reason, the filler 62 of organic particles preferably has an average particle size of 0.5 μm or more and 1.2 μm or less. Since the particle size of the organic particle filler 62 is larger than that of the viscosity modifier, even if the filler 62 is contained in the light-guiding adhesive member 60, the viscosity does not easily increase. In addition, Rayleigh scattering occurs in the case of particles having a small particle diameter such as the viscosity modifier, but Mie scattering occurs in the filler 62 of organic particles, and the light from the light emitting element 20 is diffused efficiently. Further, in order to make the dispersibility of the filler 62 uniform, it is preferable that the particle size of the filler 62 is uniform as much as possible. More preferably, particles having a particle size of 0.3 μm or more and 2.0 μm or less account for 85% by volume or more. In particular, it is preferable that the number of fillers 62 having a large particle size is small, and that the number of fillers 62 having a particle size of 2.5 μm or more is preferably 4% by volume or less. In addition, volume % here is a ratio of the volume of the filler of the particle size with respect to the volume of the whole filler. Also, the particle size of the filler 62 can be obtained by, for example, an electrical resistance method.

また、フィラー62の屈折率と、母材61の屈折率との差の絶対値が小さいと、フィラー62による散乱光が弱くなる。このため、有機物粒子のフィラー62の屈折率は、母材61の屈折率との差の絶対値が0.05以上であることが好ましい。母材61の屈折率とフィラー62の屈折率とが離れていることで、光を効率的に散乱することができる。 Further, when the absolute value of the difference between the refractive index of the filler 62 and the refractive index of the base material 61 is small, the light scattered by the filler 62 becomes weak. Therefore, it is preferable that the absolute value of the difference between the refractive index of the filler 62 of organic particles and the refractive index of the base material 61 is 0.05 or more. Since the refractive index of the base material 61 and the refractive index of the filler 62 are separated, light can be efficiently scattered.

発光素子20の側面26に設けられる導光性接着部材60にフィラー62を含有させることによって、発光素子20の個数によらず、発光素子20の側面26から出射される光を散乱させて、被覆部材40を透過する光を減らし、発光装置の上面側から取り出される光束を大きくすることができる。導光性接着部材60にフィラー62を含有させることは、発光装置の薄さには影響しない。このため、発光装置は薄さを維持しつつ、さらに大きい光束を得ることができる。 By including the filler 62 in the light-guiding adhesive member 60 provided on the side surface 26 of the light emitting element 20, the light emitted from the side surface 26 of the light emitting element 20 can be scattered and coated regardless of the number of the light emitting elements 20. It is possible to reduce the amount of light transmitted through the member 40 and increase the luminous flux extracted from the upper surface side of the light emitting device. Including the filler 62 in the light-guiding adhesive member 60 does not affect the thinness of the light-emitting device. Therefore, the light emitting device can obtain a larger luminous flux while maintaining its thinness.

導光性接着部材60にフィラー62を含有させる発光装置の製造方法は、すでに説明した実施形態及び変形例それぞれの製造方法と同じである。ここでは、導光性接着部材60に関係する点について説明する。
導光性接着部材60は、母材61にフィラー62を加えて撹拌して製造する。撹拌することによって、フィラー62を母材61中に分散させることができる。光を効率的に散乱するために、フィラー62は母材61中に分散されているのが好ましい。母材61に比重が近いフィラー62を使用すれば、母材61中にフィラー62が分散された状態を保持することができる。
そして、透光性部材を配置する工程S12において、導光性接着部材60を介して透光性部材30を発光素子20に押し付けることによって、導光性接着部材60が透光性部材30の下面35の周縁から発光素子20の側面26にぬれ広がって、略逆三角形状の断面を呈する導光性接着部材60を形成することができる。なお、断面における略逆三角形の斜辺は、湾曲するように形成されることや、略直線に形成されることとしてもよい。
The manufacturing method of the light-emitting device in which the filler 62 is contained in the light-guiding adhesive member 60 is the same as the manufacturing method of each of the already described embodiments and modifications. Here, points related to the light-guiding adhesive member 60 will be described.
The light-guiding adhesive member 60 is manufactured by adding a filler 62 to a base material 61 and stirring the mixture. The filler 62 can be dispersed in the base material 61 by stirring. The fillers 62 are preferably dispersed in the base material 61 in order to scatter light efficiently. If the filler 62 having a specific gravity close to that of the base material 61 is used, the dispersed state of the filler 62 in the base material 61 can be maintained.
Then, in step S<b>12 of arranging the light-transmitting member, the light-transmitting member 30 is pressed against the light emitting element 20 via the light-guiding adhesive member 60 , so that the light-transmitting member 60 adheres to the lower surface of the light-transmitting member 30 . It is possible to form a light-guiding adhesive member 60 that wets and spreads from the peripheral edge of 35 to the side surface 26 of the light emitting element 20 and presents a substantially inverted triangular cross section. Incidentally, the oblique side of the substantially inverted triangle in the cross section may be formed so as to be curved or formed substantially straight.

[実施例]
以下、導光性接着部材60にフィラー62を含有させる発光装置の実施例を説明する。
導光性接着部材60の母材61として、屈折率が1.54のフェニルシリコーン樹脂、フィラー62として、屈折率が1.43のシリコーン樹脂粒子を使用し、導光性接着部材60のシリコーン樹脂粒子の含有量を変更した実施例1~3を作製した。母材61の屈折率とフィラー62の屈折率との差の絶対値は0.11である。
また、フィラー62の平均粒径は0.8μmであり、粒径が2.5μm以上のものが4体積%以下、粒径が0.3μm以上2.0μm以下のものが80体積%以上という条件を満たしている。なお、粒径は電気抵抗法で測定することができ、平均粒径はその平均値である。
なお、シリコーン樹脂粒子を含まない以外は実施例1と同様に作製した発光装置を比較例とした。
[Example]
An example of a light-emitting device in which a filler 62 is contained in the light-guiding adhesive member 60 will be described below.
Phenyl silicone resin with a refractive index of 1.54 is used as the base material 61 of the light-guiding adhesive member 60, silicone resin particles with a refractive index of 1.43 are used as the filler 62, and the silicone resin of the light-guiding adhesive member 60 is used. Examples 1 to 3 were prepared with different particle contents. The absolute value of the difference between the refractive index of the base material 61 and the refractive index of the filler 62 is 0.11.
In addition, the average particle diameter of the filler 62 is 0.8 μm, and the filler 62 has a particle diameter of 2.5 μm or more at 4 vol % or less, and a particle diameter of 0.3 μm or more and 2.0 μm or less at 80 vol % or more. meets The particle size can be measured by an electrical resistance method, and the average particle size is the average value.
A light-emitting device manufactured in the same manner as in Example 1, except that it did not contain silicone resin particles, was used as a comparative example.

これらの評価結果を表1に示す。なお、散乱光の値は、100-(直線透過率÷全光線透過率×100)によって計算した値である。 These evaluation results are shown in Table 1. The scattered light value is a value calculated by 100−(linear transmittance/total light transmittance×100).

Figure 0007121309000001
Figure 0007121309000001

表1より、シリコーン樹脂粒子の含有量を増やすと、散乱光が強くなり、発光装置の光束は大きくなる傾向があった。また、シリコーン樹脂粒子を母材61に含有させても、全光線透過率は大きく低下していなかった。有機物粒子のフィラー62の含有量を大きくすると、導光性接着部材60の粘度が大きくなって扱いにくく、また、導光性接着部材60の全光線透過率が減少する傾向がある。そこで、有機物粒子(シリコーン樹脂粒子)の含有量は、0.01重量%以上2.0重量%以下であることが好ましく、0.05重量%以上0.5重量%以下であることがより好ましい。なお、重量%は、母材の質量に対するフィラーの質量の割合である。 From Table 1, there was a tendency that when the content of the silicone resin particles was increased, the scattered light became stronger and the luminous flux of the light emitting device increased. Moreover, even if the base material 61 contained silicone resin particles, the total light transmittance did not decrease significantly. When the content of the organic particle filler 62 is increased, the viscosity of the light-guiding adhesive member 60 increases, making it difficult to handle, and the total light transmittance of the light-guiding adhesive member 60 tends to decrease. Therefore, the content of the organic particles (silicone resin particles) is preferably 0.01% by weight or more and 2.0% by weight or less, and more preferably 0.05% by weight or more and 0.5% by weight or less. . The weight percentage is the ratio of the mass of the filler to the mass of the base material.

発光装置は、粒径及び屈折率を調整したフィラー62を導光性接着部材60に含有させることによって、薄さを維持しつつ、光束を大きくできることを確認できた。なお、フィラー62として無機フィラーを使用する場合でも、粒径及び屈折率が上記のシリコーン樹脂粒子と同程度であれば、同様に光束を大きくする効果があると考えられる。 It was confirmed that the luminous flux can be increased while maintaining the thinness of the light-emitting device by including the filler 62 whose particle size and refractive index are adjusted in the light-guiding adhesive member 60 . Even when an inorganic filler is used as the filler 62, if the particle size and refractive index are approximately the same as those of the silicone resin particles, it is considered to have the same effect of increasing the luminous flux.

10 基板
11 基板の基材
12 基板の配線
16 導電膜
20 発光素子
21 発光素子の電極
22 発光素子の半導体積層体
30、30A 透光性部材
31 透光性部材の母材
32 波長変換物質
40 被覆部材
41 第1被覆部
42 第2被覆部
51 第1凸部
52 第2凸部
60 導光性接着部材
62 フィラー
70 絶縁膜
100 第1実施形態の発光装置
200 第2実施形態の発光装置
301 透光性部材の段差部
400 個片化前の被覆部材
500 個片化前の凸部
1000 個片化前の基板
B1、B2、B3 円盤状の回転刃
D1、D2 発光装置における方向
D3、D4 個片化前の基板における方向
G1 発光装置上面における透光性部材と第1凸部との間隔
M1 マスク
F1 マスク開口の例
P1 予め設定される区画の単位
REFERENCE SIGNS LIST 10 substrate 11 base material of substrate 12 wiring of substrate 16 conductive film 20 light emitting element 21 electrode of light emitting element 22 semiconductor laminate of light emitting element 30, 30A translucent member 31 base material of translucent member 32 wavelength conversion substance 40 coating Member 41 First Covering Part 42 Second Covering Part 51 First Projection 52 Second Projection 60 Light Guide Adhesive Member 62 Filler 70 Insulating Film 100 Light Emitting Device According to First Embodiment 200 Light Emitting Device According to Second Embodiment 301 Transparent Stepped portion of optical member 400 Coating member before singulation 500 Convex portion before singulation 1000 Substrate before singulation B1, B2, B3 Disk-shaped rotary blades D1, D2 Direction in light emitting device D3, D4 Direction on the substrate before separation G1 Distance between the translucent member and the first convex portion on the upper surface of the light emitting device M1 Mask F1 Example of mask opening P1 Unit of division set in advance

Claims (21)

第1方向に並んで配置される複数の発光素子と、
前記発光素子の上面にそれぞれ配置される複数の透光性部材と、
前記複数の透光性部材の間に配置される第1被覆部と、前記第1方向において前記複数の透光性部材を挟んで配置される第2被覆部と、を含む被覆部材と、
前記第1被覆部の上面に位置し、前記透光性部材から離隔する第1凸部と、
前記第2被覆部の上面に位置する第2凸部と、を備え
前記第1凸部及び前記第2凸部は、前記被覆部材よりも高い剛性を有する発光装置。
a plurality of light emitting elements arranged side by side in a first direction;
a plurality of translucent members respectively arranged on the upper surface of the light emitting element;
a covering member including a first covering portion arranged between the plurality of translucent members and a second covering portion arranged with the plurality of translucent members interposed in the first direction;
a first convex portion located on the upper surface of the first covering portion and separated from the translucent member;
A second convex portion located on the upper surface of the second covering portion ,
The light emitting device , wherein the first convex portion and the second convex portion have higher rigidity than the covering member .
第1方向に並んで配置される複数の発光素子と、 a plurality of light emitting elements arranged side by side in a first direction;
前記発光素子の上面にそれぞれ配置される複数の透光性部材と、 a plurality of translucent members respectively arranged on the upper surface of the light emitting element;
前記複数の透光性部材の間に配置される第1被覆部と、前記第1方向において前記複数の透光性部材を挟んで配置される第2被覆部と、を含む被覆部材と、 a covering member including a first covering portion arranged between the plurality of translucent members and a second covering portion arranged with the plurality of translucent members interposed in the first direction;
前記第1被覆部の上面に位置し、前記透光性部材から離隔する第1凸部と、 a first convex portion located on the upper surface of the first covering portion and separated from the translucent member;
前記第2被覆部の上面に位置する第2凸部と、を備え、 A second convex portion located on the upper surface of the second covering portion,
前記第1凸部は、第1部分と第2部分とを含み、 The first convex portion includes a first portion and a second portion,
前記第1部分と前記第2部分とは、前記第1方向に並び、 The first portion and the second portion are arranged in the first direction,
前記第1部分及び前記第2部分は、前記第1方向の断面が扁平した四分円形状に形成され、垂直面が対面している発光装置。 The light emitting device, wherein the first portion and the second portion are formed in a flattened quadrant shape in cross section in the first direction, and have vertical surfaces facing each other.
第1方向に並んで配置される複数の発光素子と、 a plurality of light emitting elements arranged side by side in a first direction;
前記発光素子の上面にそれぞれ配置される複数の透光性部材と、 a plurality of translucent members respectively arranged on the upper surface of the light emitting element;
前記複数の透光性部材の間に配置される第1被覆部と、前記第1方向において前記複数の透光性部材を挟んで配置される第2被覆部と、を含む被覆部材と、 a covering member including a first covering portion arranged between the plurality of translucent members and a second covering portion arranged with the plurality of translucent members interposed in the first direction;
前記第1被覆部の上面に位置し、前記透光性部材から離隔する第1凸部と、 a first convex portion located on the upper surface of the first covering portion and separated from the translucent member;
前記第2被覆部の上面に位置する第2凸部と、を備え、 A second convex portion located on the upper surface of the second covering portion,
前記第1凸部は、第1部分と第2部分とを含み、 The first convex portion includes a first portion and a second portion,
前記第1部分と前記第2部分とは、前記第1方向に並び、 The first portion and the second portion are arranged in the first direction,
前記第1部分及び前記第2部分の前記第1方向の断面は、それぞれ半円状に形成されている発光装置。 The light-emitting device, wherein cross sections of the first portion and the second portion in the first direction are each formed in a semicircular shape.
前記第1凸部及び前記第2凸部は、前記被覆部材と同じ材料からなる請求項2又は請求項3に記載の発光装置。 4. The light emitting device according to claim 2 , wherein the first protrusion and the second protrusion are made of the same material as the covering member. 前記第1凸部及び前記第2凸部は、前記被覆部材よりも高い剛性を有する請求項2又は請求項3に記載の発光装置。 4. The light-emitting device according to claim 2 , wherein the first convex portion and the second convex portion have higher rigidity than the covering member. 前記第1凸部は、平面視で矩形状である請求項1乃至請求項3の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the first convex portion has a rectangular shape in plan view. 前記第1凸部は、平面視で円形状である請求項1乃至請求項3の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the first convex portion has a circular shape in plan view. 前記第1凸部の前記第1方向の断面は、半円状に形成されている請求項1に記載の発光装置。 2. The light emitting device according to claim 1 , wherein the first projection has a semicircular cross section in the first direction. 前記第1凸部の前記第1方向に直交する第2方向の断面は、半円状に形成されている請求項1に記載の発光装置。 2. The light-emitting device according to claim 1 , wherein a cross section of said first protrusion in a second direction perpendicular to said first direction is formed in a semicircular shape. 前記第1凸部の前記第1方向の断面は、台形状である請求項1に記載の発光装置。 2. The light emitting device according to claim 1 , wherein a cross section of said first projection in said first direction is trapezoidal. 前記第1方向に直交する第2方向において、前記第1凸部の幅は、前記透光性部材の幅よりも広い請求項1乃至請求項8の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 8, wherein the width of the first protrusion is wider than the width of the translucent member in a second direction orthogonal to the first direction. 前記第1凸部は、前記第1方向に直交する第2方向において前記第1被覆部の上面の端部まで延在する請求項1乃至請求項9の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 9, wherein the first convex portion extends to an edge of the upper surface of the first covering portion in a second direction orthogonal to the first direction. 前記第1凸部は、第1部分と第2部分とを含み、
前記第1部分と前記第2部分とは、前記第1方向に並ぶ請求項1に記載の発光装置。
The first convex portion includes a first portion and a second portion,
The light emitting device according to claim 1 , wherein the first portion and the second portion are arranged in the first direction.
前記第1凸部は、第1部分と第2部分とを含み、
前記第1部分と前記第2部分とは、前記第1方向に直交する第2方向に並ぶ請求項1に記載の発光装置。
The first convex portion includes a first portion and a second portion,
The light emitting device according to claim 1 , wherein the first portion and the second portion are arranged in a second direction orthogonal to the first direction.
前記第1部分及び前記第2部分は、前記第1方向の断面が扁平した四分円形状に形成され、垂直面が対面している請求項13に記載の発光装置。 14. The light emitting device according to claim 13 , wherein the first portion and the second portion are formed in a flattened quadrant shape in cross section in the first direction, and the vertical surfaces face each other. 前記第1部分及び前記第2部分の前記第1方向の断面は、それぞれ半円状に形成されている請求項13に記載の発光装置。 14. The light emitting device according to claim 13 , wherein each of the first portion and the second portion has a semicircular cross-section in the first direction. 前記第1部分及び前記第2部分の前記第1方向に直交する第2方向の断面は、それぞれ半円状に形成されている請求項13に記載の発光装置。 14. The light-emitting device according to claim 13 , wherein cross sections of said first portion and said second portion in a second direction orthogonal to said first direction are each formed in a semicircular shape. 前記第1部分及び前記第2部分は、前記第2方向の断面が扁平した四分円形状に形成され、垂直面が対面している請求項14に記載の発光装置。 15. The light emitting device according to claim 14 , wherein the first portion and the second portion are formed in a flattened quadrant shape in cross section in the second direction, and the vertical surfaces face each other. 前記第1部分及び前記第2部分の前記第2方向の断面は、それぞれ半円状に形成されている請求項14に記載の発光装置。 15. The light emitting device according to claim 14 , wherein the first portion and the second portion each have a semicircular cross section in the second direction. 前記第1部分及び前記第2部分の前記第1方向の断面は、それぞれ半円状に形成されている請求項14に記載の発光装置。 15. The light emitting device according to claim 14 , wherein each of the first portion and the second portion has a semicircular cross-section in the first direction. 前記第1部分と前記第2部分とは、前記第2方向において、それぞれ前記透光性部材の上面よりも外側に配置される請求項14に記載の発光装置。 15. The light emitting device according to claim 14 , wherein the first portion and the second portion are arranged outside an upper surface of the translucent member in the second direction.
JP2020152787A 2020-03-26 2020-09-11 light emitting device Active JP7121309B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210032008A KR102579394B1 (en) 2020-03-26 2021-03-11 Light emitting device
US17/209,015 US11664356B2 (en) 2020-03-26 2021-03-22 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056911 2020-03-26
JP2020056911 2020-03-26

Publications (2)

Publication Number Publication Date
JP2021158333A JP2021158333A (en) 2021-10-07
JP7121309B2 true JP7121309B2 (en) 2022-08-18

Family

ID=77918420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152787A Active JP7121309B2 (en) 2020-03-26 2020-09-11 light emitting device

Country Status (2)

Country Link
JP (1) JP7121309B2 (en)
KR (1) KR102579394B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168824A (en) 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Led display and its manufacturing method
JP2010093226A (en) 2008-10-08 2010-04-22 Samsung Electro-Mechanics Co Ltd Side-view type light emitting device, and optical device including the same
US20110242840A1 (en) 2010-03-30 2011-10-06 Tae Ho Kim Light emitting device and light unit having the same
WO2013121834A1 (en) 2012-02-17 2013-08-22 シャープ株式会社 Light source substrate and light source module
WO2015001681A1 (en) 2013-07-05 2015-01-08 古河電気工業株式会社 Optical module, optical module mounting method, optical module-mounted circuit substrate, optical module evaluation kit system, circuit substrate and communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460201B2 (en) 2017-04-28 2019-01-30 日亜化学工業株式会社 Light emitting device
CN108807652B (en) * 2017-04-28 2023-03-21 日亚化学工业株式会社 Light emitting device
JP7014948B2 (en) * 2017-06-13 2022-02-02 日亜化学工業株式会社 Manufacturing method of light emitting device and light emitting device
JP6848997B2 (en) * 2018-04-11 2021-03-24 日亜化学工業株式会社 Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168824A (en) 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Led display and its manufacturing method
JP2010093226A (en) 2008-10-08 2010-04-22 Samsung Electro-Mechanics Co Ltd Side-view type light emitting device, and optical device including the same
US20110242840A1 (en) 2010-03-30 2011-10-06 Tae Ho Kim Light emitting device and light unit having the same
WO2013121834A1 (en) 2012-02-17 2013-08-22 シャープ株式会社 Light source substrate and light source module
WO2015001681A1 (en) 2013-07-05 2015-01-08 古河電気工業株式会社 Optical module, optical module mounting method, optical module-mounted circuit substrate, optical module evaluation kit system, circuit substrate and communication system

Also Published As

Publication number Publication date
KR20210120841A (en) 2021-10-07
JP2021158333A (en) 2021-10-07
KR102579394B1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP5703997B2 (en) Light emitting device
JP6520736B2 (en) Lighting device
US11069843B2 (en) Light-emitting device
US11990560B2 (en) Method of manufacturing light-emitting device, light-emitting device, and light source device
JP2019212699A (en) Light-emitting device
US11201258B2 (en) Method for manufacturing light emitting device
JP2018190771A (en) Light-emitting device and method for manufacturing the same
US20210305218A1 (en) Light emitting device
JP7121309B2 (en) light emitting device
JP6897640B2 (en) Manufacturing method of light emitting device
JP7144693B2 (en) light emitting device
JP7448805B2 (en) Manufacturing method of light emitting device
JP7389333B2 (en) light emitting device
US10957834B2 (en) Light-emitting device
JP7223938B2 (en) Method for manufacturing light emitting device
US11409029B2 (en) Light-emitting device
TW202329489A (en) Light emitting device
JP7545038B2 (en) Method for manufacturing a light emitting device
JP7381903B2 (en) light emitting device
WO2024071218A1 (en) Light emitting device and method for manufacturing light emitting device
JP7158647B2 (en) Method for manufacturing light emitting device
JP2024049355A (en) Light-emitting device and method for manufacturing light-emitting device
JP2023064944A (en) Light-emitting module
CN111192944A (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7121309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151