JP6438219B2 - ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法 - Google Patents

ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法 Download PDF

Info

Publication number
JP6438219B2
JP6438219B2 JP2014124684A JP2014124684A JP6438219B2 JP 6438219 B2 JP6438219 B2 JP 6438219B2 JP 2014124684 A JP2014124684 A JP 2014124684A JP 2014124684 A JP2014124684 A JP 2014124684A JP 6438219 B2 JP6438219 B2 JP 6438219B2
Authority
JP
Japan
Prior art keywords
stage
signal
control unit
vibration
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014124684A
Other languages
English (en)
Other versions
JP2016004440A5 (ja
JP2016004440A (ja
Inventor
智史 圓山
智史 圓山
光男 平田
光男 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014124684A priority Critical patent/JP6438219B2/ja
Priority to KR1020150083121A priority patent/KR101862053B1/ko
Priority to US14/740,705 priority patent/US9720334B2/en
Priority to CN201510336733.7A priority patent/CN105319863B/zh
Publication of JP2016004440A publication Critical patent/JP2016004440A/ja
Publication of JP2016004440A5 publication Critical patent/JP2016004440A5/ja
Application granted granted Critical
Publication of JP6438219B2 publication Critical patent/JP6438219B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Linear Motors (AREA)

Description

本発明は、ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法に関する。
半導体デバイスなどの製造において用いられるリソグラフィ装置では、基板やマスクを保持するステージを高精度に位置決めすることが求められている。リソグラフィ装置では、一般に、ステージに推力を与えることによりステージを駆動する駆動部が設けられ、ステージの現在位置と目標位置との偏差を低減するための信号(第1信号)を駆動部に供給することによりステージの位置が制御される。
このように構成されたリソグラフィ装置では、駆動部がステージに与える推力にリップル(推力リップル)が含まれるため、当該推力リップルによってステージが振動してしまうことが知られている。特許文献1および2には、推力リップルに起因して生じるステージの振動を低減するための信号(第2信号)を第1信号とともに駆動部に供給して、ステージの位置を制御する方法が提案されている。特許文献1には、駆動部(例えばリニアモータ)の設計データを用いたモデル式から推力リップルを求め、求めた推力リップルを相殺させるように第2信号を決定する方法が記載されている。また、特許文献2には、推力リップルの周波数が駆動部に含まれるモータの電気角周波数の整数倍であることに着目して第2信号を決定する方法が記載されている。
特開2001−175332号公報 特開2003−88159号公報
特許文献1に記載された方法のように、駆動部の設計データを用いたモデル式から求められた推力リップルに基づいて第2信号を決定するだけでは、推力リップルによるステージの振動を低減することが不十分になりうる。また、特許文献2には、推力リップルによるステージの振動が低減されるように第2信号の振幅および位相を決定することについては記載されていない。
そこで、本発明は、ステージを高精度に位置決めするために有利な技術を提供することを目的とする。
上記目的を達成するために、本発明の一側面としてのステージ装置は、移動可能なステージを含むステージ装置であって、前記ステージに推力を与えることにより前記ステージを所定方向に駆動する駆動部と、前記ステージの前記所定方向の位置を計測する計測部と、前記計測部により計測された前記ステージの位置と目標位置との偏差を低減するための第1信号と、前記推力に含まれる推力リップルによる前記ステージの前記所定方向の振動を低減するための第2信号とから得られる合成信号を前記駆動部に供給することにより、前記ステージの前記所定方向の位置を制御する制御部と、を含み、前記制御部は、振幅及び位相の少なくとも1つが互いに異なる複数の任意信号を設定する設定工程と、前記複数の任意信号のうちの1つを用い、時刻に対する前記ステージの目標位置を示す目標位置プロファイルに従って前記駆動部に前記ステージを駆動させたときに前記計測部によって計測される前記ステージの位置を、前記複数の任意信号の各々について、共通の目標位置プロファイルを用いて取得する取得工程と、前記取得工程で前記複数の任意信号の各々について取得された前記ステージの位置に基づいて、前記推力リップルによる前記ステージの振動の振幅が許容範囲に収まるように前記第2信号を決定する決定工程と、を行うことにより前記第2信号を生成することを特徴とする。
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、例えば、ステージを高精度に位置決めするための有利な技術を提供することができる。
第1実施形態のステージ装置を示す概略図である。 第1実施形態における制御システムを示すブロック線図である。 第2信号を生成する方法を示すフローチャートである。 第1実施形態における制御システムを示すブロック線図である。 ステージを駆動させている間におけるステージの位置と目標位置との偏差を示す図である。 第2信号を駆動部に供給した場合と供給しない場合とにおけるステージの振動の実験結果を示す図である。 第2実施形態のステージ装置を示す概略図である。 第2実施形態における制御システムを示すブロック線図である。 第2実施形態における制御システムを示すブロック線図である。 ステージ装置を適用した露光装置300を示す概略図である。 露光装置が複数の基板の各々を露光する工程を示すフローチャートである。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略する。
<第1実施形態>
本発明の第1実施形態のステージ装置100について、図1を参照しながら説明する。図1は、第1実施形態のステージ装置100を示す概略図である。第1実施形態のステージ装置100は、移動可能なステージ11と、ステージ11を駆動する駆動部12と、ステージ11の位置を計測する計測部13と、制御部15とを含みうる。制御部15は、例えばCPUやメモリなどを含み、ステージ装置100の各部を制御する。ここで、第1実施形態では、説明を簡単にするため、Y方向におけるステージ11の位置を制御する方法について説明するが、X方向においても同様の構成でステージ11の位置を制御することができる。
駆動部12は、ステージ11に推力を与えることによりステージ11を駆動する。第1実施形態では、駆動部12は、固定子12a11および可動子12a12を有するリニアモータ12aと、制御部15から供給された信号に応じてリニアモータ12a(例えば可動子12a12)に電流を供給するドライバ12aとを含みうる。リニアモータ12aの固定子12a12は定盤14に固定され、可動子12a12はステージ11に固定されている。そして、ドライバ12aは、制御部15から供給された信号に応じてリニアモータ12aに電流を供給することにより、ステージ11をY方向に沿って駆動することができる。ここで、ステージ11の位置は、定盤14に設けられた計測部13によって計測されうる。計測部13は、例えばレーザ干渉計を含み、ステージ11の側面に設けられたミラー(不図示)にレーザ光を照射し、ミラーで反射されたレーザ光を用いてステージ11の基準位置からの変位を求め、その変位からステージ11の現在位置を得ることができる。そして、制御部15は、計測部13によって計測されたステージ11の現在位置と目標位置との偏差が零に近づくように駆動部12を制御することで、ステージ11の位置決めを行う。
図2は、第1実施形態における制御システムを示すブロック線図である。図2において、制御部15は、第1供給器15a、減算器15b、補償器15c、加算器15d、生成器15eおよび第2供給器15fを含むものとする。第1供給器15aは、ステージ11の目標位置REFについての指令値を減算器15bに供給する。減算器15bは、第1供給部15aから供給された指令値に基づいて、計測部13によって計測されたステージ11の現在位置POSと目標位置REFとの偏差ERRを算出する。補償器15cは、例えばPID補償器であり、減算器15bによって算出された偏差ERRを低減するための信号(第1信号)を生成する。補償器15cは、減算器15bによって算出された偏差ERRが零に近づくように第1信号を生成するとよい。補償器15cにおいて生成された第1信号は、駆動部12のドライバ12aに供給される。ドライバ12aは、供給された信号に応じてリニアモータ12aに電流を供給する。このような制御により、ステージ装置100は、ステージ11の現在位置POSと目標位置REFとの偏差ERRが零に近づくようにステージ11の位置決めを行うことができる。
一方で、このように構成されたステージ装置100では、駆動部12(リニアモータ12a)がステージ11に与える推力にリップル(推力リップルd)が含まれるため、その推力リップルdによってステージ11が振動してしまうことが知られている。そのため、第1実施形態の制御部15は、推力リップルによるステージ11の振動を低減するための信号(第2信号)を生成する生成器15eと、生成器15eで生成された第2信号を加算器15dに供給する第2供給器15fとを含みうる。生成器15eによって生成された第2信号は、第2供給器15fに設定され、第2供給部15fによって加算器15dに供給される。加算器15dに供給された第2信号は、第1信号に加算されて駆動部12のドライバ12aに供給される。駆動部12のドライバ12aは、第1信号と第2信号とを合わせた信号(合成信号u)に応じてリニアモータ12aに電流を供給する。このような制御により、ステージ装置100は、ステージ11の現在位置POSと目標位置REFとの偏差ERRが低減されるように、且つ推力リップルによるステージ11の振動が低減されるようにステージ11の位置決めを行うことができる。ここで、制御部15は、図2に示すように、第1供給部15aからフィードフォワード信号FFを加算器15dに供給し、第1信号、第2信号およびフィードフォワード信号FFを合わせた信号をドライバ12aに供給するように構成されてもよい。
ここで、制御部15(生成器15e)において第2信号を生成する方法について、図3を参照しながら説明する。図3は、制御部15において第2信号を生成する方法を示すフローチャートである。S101では、制御部15は、第2信号の代わりに加算器15dに供給する任意の信号(以下、任意信号)を決定する。第2信号としては、例えば式(1)によって表される正弦波信号Sが用いられうる。式(1)において、Aは振幅を、αは位相を、θはリニアモータ12aの電気角を示す。そのため、第2信号の代わりに用いられる任意信号としても、式(1)によって表される正弦波信号Sが用いられうる。第1実施形態では、任意信号における振幅Aおよび位相αが、波形を特定するパラメータとして設定される。パラメータの値は、例えば、推力リップルによるステージ11の振動に対して、2〜5倍程度の振動が発生するように設定されることが好ましい。また、式(1)は、加法定理を用いて式(2)のように表される。ここで、第1実施形態では、任意信号における振幅Aおよび位相αの両方がパラメータとして設定されているが、振幅Aおよび位相αのうち少なくとも1つがパラメータとして設定されていてもよい。
Figure 0006438219
Figure 0006438219
S102では、制御部15は、S101において決定された任意信号と第1信号とを合わせた信号を駆動部12に供給し、駆動部12にステージ11を駆動させる。このとき、制御部15は、計測部13による計測結果から、任意信号を第2信号の代わりに用いたときのステージ11の応答に関する情報を取得する。ステージの応答に関する情報とは、例えば、時刻に対するステージ11の位置を示す位置プロファイルに関する情報を含みうる。S103では、制御部15は、S102において取得したステージ11の応答に関する情報を記憶する。また、制御部15は、S102においてステージ11を駆動させる際に使用した目標位置プロファイルを記憶しておくとよい。目標位置プロファイルとは、時刻に対するステージ11の目標位置REFを示すプロファイルのことであり、第1供給部15aから出力される指令値(目標位置REF)のデータ列のことである。
S104では、制御部15は、S102において取得し且つS103において記憶した情報の数が規定数に達したか否かを判断する。情報の数が規定数に達した場合はS105に進む。一方で、情報の数が規定数に達していない場合はS101に進み、制御部15は、任意信号におけるパラメータ(振幅Aおよび位相α)の値を変える。そして、制御部15は、パラメータの値を変えた任意信号を第2信号の代わりに用いたときのステージ11の応答に関する情報を新たに取得し(S102)、新たに取得した情報を記憶する(S103)。このように、制御部15は、パラメータの値が互いに異なる複数の任意信号の各々を第2信号の代わりに駆動部12に供給することによって、ステージ11の位置プロファイルに関する複数の情報を取得することができる。ここで、任意信号を用いてステージ11を駆動することによって取得される情報の数は、第2信号において決定すべきパラメータの種類の数より多いことが好ましい。そのため、制御部15は、規定数を、第2信号において決定すべきパラメータの種類の数より1つ多い数に設定するとよい。例えば、式(1)によって表される第2信号では、決定すべきパラメータは振幅Aおよび位相αであるため、パラメータの種類の数は「2」である。この場合、制御部15は、規定数を「3」に設定するとよい。
S105では、制御部15は、S101〜S103を繰り返すことにより取得された複数の情報に基づいて、推力リップルによるステージ11の振動の振幅が許容範囲に収まるように第2信号を決定する。S106では、制御部15は、S105で決定した第2信号を第2供給部15fに設定する。
次に、S105において第2信号を決定する方法について説明する。以下の説明では、定式化のため、図2に示すブロック線図を、図4に示すブロック線図に置き換えて説明する。図2のブロック線図における推力リップルdは、図4のブロック線図では、定式化のために等価変換され、加算器15dの後に推力リップルのデータ列Dとして記載されている。また、図2に示すフィードフォワード信号FFは、第2信号を決定する上で不要であるため、図4に示すブロック線図ではフィードフォワード信号FFの図示を省略する。このとき、第1実施形態におけるステージ装置100が線形で時不変なシステム(LTIシステム)であると仮定すると、図4のブロック線図では式(3)が成り立つ。
Figure 0006438219
式(3)において、Yは、ステージ11の位置の時刻0〜N−1におけるデータ列を表し、Uは、第1信号と第2信号とを合わせた合成信号uの時刻0〜N−1におけるデータ列を表す。また、Dは、推力リップルdを加算器15dの位置に加算するように等価変換した信号の時刻0〜N−1におけるデータ列を表す。Gは、データ列Uおよびデータ列Dを入力とし、データ列Yを出力とする関数(例えば伝達関数)を表し、式(3)が成り立つように定義される。ここで、合成信号uのデータ列Uは、式(4)によって表されうる。式(4)において、Uは、第1信号の時刻0〜N−1におけるデータ列を表す。また、Usinは、第2信号を示す式(2)の第1項の時刻0〜N−1におけるデータ列を表し、Ucosは、第2信号を示す式(2)の第2項の時刻0〜N−1におけるデータ列を表す。
Figure 0006438219
式(3)および式(4)により、ステージ11の位置のデータ列Yは式(5)によって表される。また、パラメータAおよびAについて式(5)をまとめると、データ列Yは式(6)によって表される。
Figure 0006438219
Figure 0006438219
上述のS101〜S103の工程をi回目に実行したときのパラメータをAi1およびAi2とし、そのときに取得された情報(位置プロファイル)におけるステージ11の位置のデータ列をYとすると、データ列Yは式(7)によって表されうる。したがって、S101〜S103の工程をn回実行することによって取得されたn個の情報におけるデータ列Yをまとめると、式(8)を得ることができる。式(8)においてYexは、n個の情報によって得られたステージ11の位置のデータ列Yによる行列を表し、Xは、n個の情報を取得する際に用いられたパラメータAi1およびAi2による行列を表す。
Figure 0006438219
Figure 0006438219
ここで、式(8)は、行列による線形方程式であるため、Xの疑似逆行列をX(XX−1とすることでΣを決定することができる。S101〜S103の工程において用いられるパラメータは、XXがフルランクになることで式(9)が成り立つため、Xが行フルランクになるように設定されることが好ましい。このように複数の情報を用いて決定されたΣは、第2信号を入力とし、ステージの位置を出力とする関数であり、式(8)においてΣ=[GUsin GUcos GU+GD]と定義されていることから、式(10)を得ることができる。式(10)において、Ythは、第2信号のパラメータAおよびAとしてAth1およびAth2を設定したときに推定されるステージ11の位置(ステージ11の推定位置)のデータ列を表す。
Figure 0006438219
Figure 0006438219
S102においてステージ11を駆動させる際に使用した目標位置REFの時刻0〜N−1におけるデータ列をYrefとすると、データ列Yrefは式(11)によって表される。これにより、データ列Ythとデータ列Yrefとの差Yerrが式(12)によって表される。式(10)よりデータ列YthがパラメータAth1およびAth2の関数であることから、差YerrについてもパラメータAth1およびAth2の関数である。即ち、差Yerrは式(13)によって表される。
Figure 0006438219
Figure 0006438219
Figure 0006438219
ここで、データ列Ythは、上述したようにステージ11の推定位置のデータ列を示しており、推力リップルによるステージ11の振動が含まれる。一方で、データ列Yrefは、ステージ11の目標位置のデータ列を示しており、推力リップルに起因したステージ11の振動が含まれない。つまり、差Yerrは、推力リップルによるステージ11の振動を表す。そのため、制御部15は、この差Yerrが許容範囲に収まるようにパラメータAth1およびAth2を求めることにより、ステージ11の振動の振幅が許容範囲に収まるように第2信号を決定することができる。特に、制御部15は、差Yerrが小さくなる(例えば最小になる)ようにパラメータAth1およびAth2を求めることが好ましい。
式(13)のような多変数関数について、評価関数(目的関数)を最小化するような問題は、一般に、最適化問題と呼ばれ、最小二乗法やNelderとMeadによる滑降シンプレックス法などによって解を求めることができる。シンプレックス法については、数値解析ソフトとして知られているMATLABにおいてはfminsearchコマンドのような形で実装されているので、そのようなツールを利用すると解を求めることができる。例えば、評価関数を式(14)によって表した場合、差Yerrを最小化するパラメータ(Ath1およびAth2)の解(Aopt1およびAopt2)は、最小二乗法を用いることにより、式(15)のように求められうる。また、評価関数を式(16)のように表して振幅の絶対値を最小化する場合や、評価関数を式(17)のように表して振幅の最大値と最小値との差を最小化する場合には、シンプレックス法により解を得ることもできる。さらに、ステージ11の位置と目標位置との偏差の値を周波数解析し、推力リップルに相当する周波数スペクトルを最小化するように評価関数を表してもよい。
Figure 0006438219
Figure 0006438219
Figure 0006438219
Figure 0006438219
ここで、ステージ11を加速している期間および減速している期間では、推力リップル以外の外乱によってステージ11が振動することがある。図5は、ステージ11を駆動させている間におけるステージ11の位置と目標位置との偏差ERRを示す図である。図5における縦軸はステージ11の位置と目標位置との偏差ERRを示し、横軸は時刻を示す。図5に示すように、ステージ11を加速している期間および減速している期間では、ステージ11を等速で移動させている期間に比べ、偏差ERRが大きくなっていることがわかる。そのため、第2信号を決定するために用いられる各情報の位置プロファイルに、このように偏差ERRが大きくなる期間が含まれてしまうと、推力リップルによるステージ11の振動を低減するための第2信号を精度よく決定することが困難になりうる。したがって、制御部15は、S101〜S103の工程において、ステージ11が等速で移動している期間におけるステージ11の位置プロファイルが各情報に含まれるようにステージの位置を制御するとよい。この場合、制御部15は、ステージ11が等速で移動している期間におけるステージ11の位置プロファイルを用いて第2信号を決定するとよい。
また、ステージ11を等速で移動させている期間であっても、ステージ11の加速を終了した直後では、ステージ11の振動が安定している(一定となっている)期間に比べて偏差ERRが大きい。したがって、制御部15は、S101〜S103の工程において、ステージ11が等速で移動し且つステージ11の振動が一定になっている期間におけるステージ11の位置プロファイルが各情報に含まれるようにステージの位置を制御するとよい。この場合、制御部15は、ステージ11が等速で移動し且つステージ11の振動が一定になっている期間におけるステージ11の位置プロファイルを用いて第2信号を決定するとよい。
例えば、図5に示すように、時刻t〜tの期間においてステージ11の振動が一定になっているとすると、制御部15は、時刻t〜tの期間におけるステージ11の位置プロファイルが含まれるように各情報を取得する。そして、制御部15は、各情報を用いてS104の工程を行うことにより第2信号を決定するとよい。このとき、式(3)で表されるデータ列Y、および式(11)で表されるデータ列Yrefは、式(18)によってそれぞれ表されうる。これにより、制御部15は、推力リップルによるステージ11の振動を低減するための第2信号を精度よく決定することができる。
Figure 0006438219
さらに、推力リップルは複数の周波数成分を含む場合がある。この場合、S101〜S103の工程において第2信号の代わりに用いられる任意信号として、式(19)によって表される正弦波信号Sを用いるとよい。このとき、式(8)におけるXは、式(20)によって表されうる。
Figure 0006438219
Figure 0006438219
このようにS104で決定した第2信号を第2供給部15dに設定することにより、駆動部12(ドライバ12a)には、S104で決定した第2信号と第1信号とを合わせた合成信号uが供給される。これにより、推力リップルによるステージ11の振動の振幅を許容範囲に収めることができる。即ち、推力リップルによるステージ11の振動を抑制することができる。図6は、S104で決定した第2信号を駆動部12に供給した場合と供給しない場合とにおけるステージ11の振動の実験結果を示す図である。図6において縦軸はステージ11の位置と目標位置との偏差ERRを示し、横軸は時刻を示す。また、図6において実線は、S104で決定した第2信号を駆動部12に供給した場合におけるステージ11の振動を示し、破線は、当該第2信号を駆動部12に供給しない場合におけるステージ11の振動を示す。図6に示すように、S104で決定した第2信号を駆動部12に供給することにより、推力リップルによるステージ11の振動が抑制されていることがわかる。
上述したように、第1実施形態のステージ装置100では、制御部15は、複数の任意信号の各々を第2信号の代わりに用いたときのステージ11の応答を示す複数の情報を取得する。そして、制御部15は、取得した複数の情報に基づいて、ステージ11の振動の振幅が許容範囲に収まるように、推力リップルによるステージ11の振動を低減するための第2信号を決定する。このように決定した第2信号を用いることにより、第1実施形態のステージ装置100は、推力リップルによるステージ11の振動を低減することができる。
<第2実施形態>
本発明の第2実施形態のステージ装置200について、図7を参照しながら説明する。図7は、第2実施形態のステージ装置200を示す概略図である。第2実施形態のステージ装置200は、Y方向におけるステージの位置だけでなく、θ方向(Z軸周りの回転方向)におけるステージの位置(回転)も制御するように構成されている。第2実施形態のステージ装置200は、定盤24上を移動可能なステージ21と、ステージ21を駆動する駆動部22と、ステージ21の位置を計測する計測部23と、制御部25とを含みうる。制御部25は、第1実施形態の制御部15と同様に、例えばCPUやメモリなどを含み、ステージ装置200の各部を制御する。ここで、第2実施形態では、説明を簡単にするため、Y方向およびθ方向におけるステージ21の位置を制御する方法について説明するが、X方向においても同様の方法でステージ21の位置を制御することができる。
駆動部22は、ステージ21における−X方向側の部分に推力を与える第1駆動部22aと、ステージ21における+X方向側の部分に推力を与える第2駆動部22bとを含みうる。第2実施形態では、第1駆動部22aは、固定子22a11および可動子22a12を有するリニアモータ22aと、制御部25から供給された信号に応じてリニアモータ22a(例えば可動子22a12)に電流を供給するドライバ22aとを含みうる。リニアモータ22aの固定子22a11は定盤24に固定され、可動子22a12はステージ21に固定されている。そして、ドライバ22aは、制御部25から供給された信号に応じてリニアモータ22aに電流を供給することにより、ステージ21における−X方向側の部分をY方向に沿って駆動することができる。また、第2駆動部22bは、固定子22b11および可動子22b12を有するリニアモータ22bと、制御部25から供給された信号に応じてリニアモータ22b(例えば可動子22b12)に電流を供給するドライバ22bとを含みうる。リニアモータ22bの固定子22b11は定盤24に固定され、可動子22b12はステージ21に固定されている。そして、ドライバ22bは、制御部25から供給された信号に応じてリニアモータ22bに電流を供給することにより、ステージ21における+X方向側の部分をY方向に沿って駆動することができる。
Y方向におけるステージ21の位置は、定盤24に設けられた計測部23によって計測されうる。計測部23は、ステージ21における−X方向側の部分の位置を計測する第1計測部23aと、ステージ21における+X方向側の部分の位置を計測する第2計測部23bとを含みうる。第1計測部23aおよび第2計測部23bの各々は、例えばレーザ干渉計を含みうる。そして、各計測部23aおよび23bは、ステージ21の側面(ミラー)にレーザ光を照射し、当該側面で反射されたレーザ光を用いてステージ21の基準位置からの変位を求め、その変位からステージ21の各部分における現在位置を得ることができる。制御部25は、第1計測部23aによる計測結果および第2計測部23bによる計測結果に対して座標変換を行うことにより、Y方向およびθ方向におけるステージ21の現在位置を求めることができる。そして、制御部25は、ステージ21の現在位置(Y方向およびθ方向)と目標位置との偏差が零に近づくように第1駆動部22aおよび第2駆動部22bを制御することで、ステージ21の位置決めを行う。
このように構成されたステージ装置200では、第1駆動部22aおよび第2駆動部22bの間においてリニアモータやドライバの特性が異なることにより、第1駆動部22aおよび第2駆動部22bの間において推力リップルが互いに異なることがある。この場合、Y方向だけでなく、θ方向においてもステージ21の振動が生じうる。そこで、第2実施形態のステージ装置200は、推力リップルによるステージ21の振動を低減するための第2信号を、Y方向だけでなく、θ方向についても生成する。
図8は、第2実施形態における制御システムを示すブロック線図である。第2実施形態における制御システムは、Y方向におけるステージ21の位置を制御するための制御システムに加えて、θ方向におけるステージ21の位置を制御するための制御システムを含みうる。図2において、制御部25は、第1供給器25a、第1減算器25b、第2減算器25b、第1補償器25c、第2補償器25c、第1加算器25d、第2加算器25d、生成器25e、第2供給器25fおよび処理器25gを含むものとする。
Y方向におけるステージ21の位置を制御するための制御システムでは、ステージ21のY方向における目標位置REFについての指令値が第1供給部25aから第1減算器25bに供給される。第1減算器25bは、第1供給部25aから供給された指令値に基づいて、ステージ21のY方向における現在位置POSと目標位置REFとの偏差ERRを算出する。第1補償器25cは、例えばPID補償器であり、第1減算器25bによって算出された偏差ERRを低減するための信号(Y方向における第1信号)を生成する。第1補償器25cは、第1減算器25bによって算出された偏差ERRが零に近づくようにY方向における第1信号を生成するとよい。第1補償器25cにおいて生成されたY方向における第1信号は、第1加算器25dに供給される。一方で、生成部25eは、推力リップルによって生じるY方向におけるステージ21の振動を低減するための信号(Y方向における第2信号)を生成する。生成部25eによって生成されたY方向における第2信号は、第2供給部25fによって第1加算器25dに供給される。第1加算器25dは、Y方向における第1信号とY方向における第2信号とを合わせた合成信号uを処理器25gに供給する。
また、θ方向におけるステージ21の位置を制御するための制御システムでは、ステージ21のθ方向における目標位置REFθについての指令値が第1供給部25aから第2減算器25bに供給される。第2減算器25bは、第1供給部25aから供給された指令値に基づいて、ステージ21のθ方向における現在位置POSθと目標位置REFθとの偏差ERRθを算出する。第2補償器25cは、例えばPID補償器であり、第2減算器25bによって算出された偏差ERRθを低減するための信号(θ方向における第1信号)を生成する。第2補償器25cは、第2減算器25bによって算出された偏差ERRθが零に近づくようにθ方向における第1信号を生成するとよい。第2補償器25cにおいて生成されたθ方向における第1信号は、第2加算器25dに供給される。一方で、生成部25eは、Y方向における第2信号に加えて、推力リップルによって生じるθ方向におけるステージ21の振動を低減するための信号(θ方向における第2信号)も生成する。生成部25eによって生成されたθ方向における第2信号は、第2供給部25fによって第2加算器25dに供給される。第2加算器25dは、θ方向における第1信号と第2信号とを合わせた合成信号uθを処理器25gに供給する。
処理器25gは、供給された合成信号uおよびuθに基づいて、第1駆動部22aのドライバ22aに供給する信号および第2駆動部22bのドライバ22bに供給する信号を生成する処理を行う。第1駆動部22aのドライバ22aは、処理器25gから供給された信号に応じてリニアモータ22aに電流を供給する。また、第2駆動部22bは、処理器25gから供給された信号に応じてリニアモータ22bに電流を供給する。このような制御により、ステージ装置200は、Y方向およびθ方向の双方において、ステージ21の現在位置と目標位置との偏差が低減されるように、且つ推力リップルによるステージ21の振動が低減されるようにステージ21の位置決めを行うことができる。
ここで、制御部25(生成部25e)においてY方向における第2信号と、θ方向における第2信号とを生成する方法について説明する。制御部25は、Y方向における第2信号とθ方向における第2信号とを、図3に示すフローチャートに従って生成するものとする。第2実施形態のステージ装置200では、第1実施形態のステージ装置100と比べて図3のS105の工程が異なるため、以下では、S105の工程について説明する。
S105では、制御部25は、S101〜S103を繰り返すことにより取得された複数の情報に基づいて、推力リップルによるステージ21の振動の振幅が許容範囲に収まるようにY方向における第2信号とθ方向における第2信号とを決定する。以下の説明では、定式化のため、図8に示すブロック線図を、図9に示すブロック線図に置き換えて説明する。ここで、ステージ21に与えられる推力の推力リップルは、図8のブロック線図では、第1駆動部22aにおける推力リップルdおよび第2駆動部22bにおける推力リップルdとして記載されている。一方で、図9のブロック線図では、定式化のため、Y方向における推力リップルのデータ列Dおよびθ方向における推力リップルのデータ列Dθとして記載されている。このとき、第2実施形態におけるステージ装置200がLTIシステムであると仮定すると、図9のブロック線図では式(21)が成り立つ。
Figure 0006438219
式(21)において、Yは、Y方向におけるステージの位置の時刻0〜N−1におけるデータ列を表し、Θは、θ方向におけるステージの位置の時刻0〜N−1におけるデータ列を表す。Uは、Y方向における第1信号と第2信号とを合わせた合成信号uの時刻0〜N−1におけるデータ列を表し、Uθは、θ方向における第1信号と第2信号とを合わせた合成信号uθの時刻0〜N−1におけるデータ列を表す。Dは、Y方向における推力リップルの時刻0〜N−1におけるデータ列を表し、Dθは、θ方向における推力リップルの時刻0〜N−1におけるデータ列を表す。GYθは、データ列Uθおよびデータ列Dθを入力とし、Y方向におけるステージ21の位置を出力とする関数を表し、GθYは、データ列Uおよびデータ列Dを入力としてθ方向におけるステージ21の位置を出力とする関数を表す。GYθおよびGθYは、式(21)が成り立つように定義される。ここで、データ列Uおよびデータ列Uθは、式(22)によって表されうる。式(22)において、Uは、Y方向における第1信号の時刻0〜N−1におけるデータ列を表し、Udθは、θ方向における第1信号の時刻0〜N−1におけるデータ列を表す。また、第1実施形態と同様に、Usinは、第2信号を示す式(2)の第1項の時刻0〜N−1におけるデータ列を表し、Ucosは、第2信号を示す式(2)の第2項の時刻0〜N−1におけるデータ列を表す。
Figure 0006438219
式(21)および式(22)により、Y方向におけるステージ21の位置のデータ列Y、およびθ方向におけるステージ21の位置のデータ列Θは、式(23)によって表される。また、パラメータA、A、AおよびAについて式(22)をまとめると、データ列Yおよびデータ列Θは式(24)によって表される。
Figure 0006438219
Figure 0006438219
上述のS101〜S103の工程をi回目に実行したときのパラメータをAi1、Ai2、Ai3およびAi4とし、そのときに取得された情報におけるY方向およびθ方向におけるステージ21の位置のデータ列をYおよびΘとする。このとき、データ列Yおよびデータ列Θは式(25)によって表されうる。したがって、S101〜S103の工程をn回実行することによって取得されたn個の情報におけるデータ列Yをまとめると、式(26)を得ることができる。式(26)においてYexは、n個の情報によって得られたステージ21の位置のデータ列Yによる行列を表し、Xは、n個の情報を取得する際に用いられたパラメータAi1、Ai2、Ai3およびAi4による行列を表す。また、S101〜S103の工程をn回実行することによって取得されたn個の情報におけるデータ列Θをまとめると、式(27)を得ることができる。式(27)においてΘexは、n個の情報によって得られたステージ21の位置のデータ列Θによる行列を表し、Xθは、n個の情報を取得する際に用いられたパラメータAi1、Ai2、Ai3およびAi4による行列を表す。
Figure 0006438219
Figure 0006438219
Figure 0006438219
ここで、S101〜S103の工程で用いられる任意信号のパラメータを、XおよびXθがそれぞれフルランクになるように選択しておけば、XおよびXθの疑似逆行列からΣおよびΣθを決定することができる。式(28)は、ΣおよびΣθを示す。このように複数の情報を用いて決定されたΣおよびΣθは、第2信号を入力とし、ステージの位置を出力とする関数である。そのため、Y方向におけるステージ21の推定位置のデータ列Ythおよびθ方向におけるステージ21の推定位置のデータ列Θthは、式(29)によって表すことができる。式(29)において、Ythは、第2信号のパラメータA〜AとしてAth1〜Ath4を設定したときにおけるステージ21の推定位置のデータ列を表す。また、Θthは、第2信号のパラメータA〜AとしてAth1〜Ath4を設定したときにおけるステージ21の推定位置のデータ列を表す。
Figure 0006438219
Figure 0006438219
S102においてステージ21を駆動させる際に使用した目標位置の時刻0〜N−1におけるデータ列Yrefおよびデータ列Θrefは式(30)によって表される。そして、データ列Ythとデータ列Yrefとの差Yerr、およびデータ列Θthとデータ列Θrefとの差Θerrが式(31)によって表される。制御部25は、この差Yerrおよび差Θerrがそれぞれ許容範囲に収まるようにパラメータAth1〜Ath4を求める。特に、制御部25は、差Yerrおよび差Θerrがそれぞれ小さくなる(例えば最小になる)ようにパラメータAth1〜Ath4を求めることが好ましい。これにより、制御部25は、推力リップルによるステージ21の振動の振幅が許容範囲に収まるようにY方向における第2信号およびθ方向における第2信号を決定することができる。
Figure 0006438219
Figure 0006438219
式(31)のような多変数関数について最適化問題を解く際には、重み付き評価関数を用いることで、複数の多変数関数の最適値を求めることができる。重み付き評価関数の一例としては、例えば、式(32)が挙げられる。制御部25は、差Yerrおよび差Θerrの単位系により、データ列Yおよびデータ列Θの評価値が等価になるようにqおよびqθによって重みづけを行う。これにより、制御部25は、推力リップルによるステージ21の振動の振幅が最小になるようにY方向における第2信号およびθ方向における第2信号を決定することができる。ここで、上述の計算例は一例であり、評価関数の定義や、最適化問題の解を得る方法としては、上述の方法に限られるものではない。
Figure 0006438219
<リソグラフィ装置の実施形態>
基板にパターンを形成するリソグラフィ装置において、上述のステージ装置を適用する例について説明する。リソグラフィ装置は、例えば、基板を露光してマスクのパターンを基板に転写する露光装置や、基板上のインプリント材をモールドを用いて成形するインプリント装置、荷電粒子線を基板に照射して基板にパターンを形成する描画装置を含みうる。露光装置においては、マスクおよび基板の少なくとも一方を保持するステージの位置を制御するために上述のステージ装置が用いられうる。インプリント装置においては、モールドおよび基板の少なくとも一方を保持するステージの位置を制御するために上述のステージ装置が用いられうる。また、描画装置においては、基板を保持するステージの位置を制御するために上述のステージ装置が用いられうる。以下では、露光装置において上述のステージ装置を用いる例について説明する。
図10は、本発明のステージ装置を適用した露光装置300を示す概略図である。露光装置300は、照明光学系30と、投影光学系50と、マスク45を保持するマスクステージ41の位置を制御するための第1ステージ装置40と、基板65を保持する基板ステージ61の位置を制御するための第2ステージ装置60とを含みうる。また、露光装置300は、露光装置300の各部を制御する制御部70を含みうる。ここで、第1ステージ装置40および第2ステージ装置60はそれぞれ、第1実施形態のステージ装置100または第2実施形態のステージ装置200と同様の構成であるため、ここでは説明を省略する。また、本実施形態における制御部70は、第1ステージ装置40における制御部と第2ステージ装置60における制御部とを含みうる。
マスク45および基板65は、マスクステージ41および基板ステージ61によってそれぞれ保持されており、投影光学系50を介して光学的にほぼ共役な位置(投影光学系50の物体面および像面の位置)に配置される。投影光学系50は、所定の投影倍率(例えば1/2倍)を有し、照明光学系30から射出された露光光31を用いて、マスク45に形成されたパターンを基板65に投影する。その際、第1ステージ装置40および第2ステージ装置60は、投影光学系50の投影倍率に応じた速度比で、マスクステージ41および基板ステージ61を例えばY方向に相対的に移動させる。これにより、マスク45に形成されたパターンを基板65に転写することができる。
第1ステージ装置40は、真空吸着などによってマスク45を保持するマスクステージ41と、マスクステージ41を駆動する駆動部42と、マスクステージ41の位置を計測する計測部43とを含みうる。駆動部42は、例えば、固定子42a11および可動子42a12を有するリニアモータ42aと、制御部70から供給された信号に応じてリニアモータ42aに電流を供給するドライバ42aとを含みうる。そして、制御部70は、計測部43によって計測されたマスクステージ41の現在位置と目標位置との偏差を低減するための第1信号と、推力リップルによるマスクステージ41の振動を低減するための第2信号とに基づいて駆動部42を制御する。また、第2ステージ装置60は、真空吸着などによって基板65を保持する基板ステージ61と、基板ステージ61を駆動する駆動部62と、基板ステージ61の位置を計測する計測部63とを含みうる。駆動部62は、例えば、固定子62a11および可動子62a12を有するリニアモータ62aと、制御部70から供給された信号に応じてリニアモータ62aに電流を供給するドライバ62aとを含みうる。そして、制御部70は、上述したように、計測部63によって計測された基板ステージ61の現在位置と目標位置との偏差を低減するための第1信号と、推力リップルによる基板ステージ61の振動を低減するための第2信号とに基づいて駆動部62を制御する。
次に、露光装置300が複数の基板65の各々を露光している間において、第2信号を更新する方法について説明する。図11は、露光装置300が複数の基板65の各々を露光する工程を示すフローチャートである。図11のフローチャートにおける各工程は、制御部70によって実行されうる。
S301では、制御部70は、基板を基板ステージ61上に搭載するように基板搬送部(不図示)を制御し、露光処理を行う位置(露光位置)に基板ステージ61を移動させる。S302では、制御部70は、基板ステージ61に搭載された基板にマスク45のパターンを転写する露光処理を行う。S303では、制御部70は、基板ステージ61に搭載された基板を他の基板に変更する位置(変更位置)に基板ステージ61を移動させ、このときの基板ステージ61の位置プロファイルを取得する。S304では、制御部70は、第2信号を更新するか否かを判断する。第2信号を更新すると判断した場合はS306に進み、第2信号を更新しないと判断した場合はS318に進む。推力リップルは、リニアモータの磁極ピッチに応じて発生することが知られているため、制御部70は、基板ステージ61の移動速度から推力リップルの周波数を求めることができる。これにより、制御部70は、基板ステージ61の位置の偏差データに対して周波数解析を行い、推力リップルに対応する周波数スペクトルの大きさが規定値を超えていた場合、第2信号の更新が必要であると判断することができる。S305では、制御部70は、基板ステージ61に搭載された基板を他の基板に変更するように基板搬送部を制御する。
S306では、制御部70は、露光処理を行う位置に基板ステージ61を移動させる。S307では、制御部70は、基板ステージ61に搭載された基板に露光処理を行う。S308では、制御部70は、任意信号を第2信号の代わりに設定する。S309では、制御部70は、変更位置に基板ステージ61を移動させ、このときの基板ステージ61の応答(位置プロファイル)に関する情報を取得する。S310では、制御部70は、基板ステージ61に搭載された基板を他の基板に変更するように基板搬送部を制御する。S311では、制御部70は、S302(またはS307)の工程で用いられた第2信号を再び設定する。S312では、制御部70は、取得した情報の数が規定数に達したか否かを判断する。情報の数が規定数に達した場合はS313に進む。一方で、情報の数が規定数に達していない場合はS306に進み、S306〜S307の工程を行った後、S308において任意信号におけるパラメータ(振幅Aおよび位相α)の値を変えて、当該任意信号を第2信号の代わりに設定する。そして、S309において、制御部70は、変更位置に基板ステージ61を移動させ、このときの基板ステージ61の応答に関する情報を新たに取得する。このように、本実施形態の露光装置300は、複数の露光処理の間において基板ステージ61の応答に関する情報を取得するため、スループットが低下することを抑制することができる。また、本実施形態の露光装置300は、S302で用いられた第2信号をS311において再び設定しているため、複数の情報を取得している場合であったとしても、露光処理を安定して行うことができる。
S313では、制御部70は、露光処理を行う位置に基板ステージ61を移動させる。S314では、制御部70は、基板ステージ61に搭載された基板に露光処理を行う。S315では、制御部70は、図3に示すフローチャートにおけるS105の工程と同様に、複数の情報に基づいて第2信号を決定し、決定した第2信号を設定することにより、第2信号の更新を行う。S316では、制御部70は、変更位置に基板ステージ61を移動させ、このときの基板ステージ61の位置プロファイルを取得する。
S317では、制御部70は、S316で取得した基板ステージ61の位置プロファイルにおいて、推力リップルによる基板ステージ61の振動の振幅が許容範囲に収まっているか否かを確認する。当該振幅が許容範囲に収まっていない場合はS318に進み、制御部70は、基板の変更を行い、S302で用いられた第2信号を再び設定した後、S306〜S317の工程を再び行う。一方で、当該振幅が許容範囲に収まっている場合はS319に進み、制御部70は、次に露光処理を行う基板(次の基板)があるか否かを判断する。次の基板がある場合は、S320において基板の変更を行い、露光処理を行う位置に基板ステージ61を移動させた後、S302に戻る。一方で、次の基板がない場合は、S321において基板を回収した後、終了する。このように、本実施形態の露光装置300は、複数の露光処理の間において取得した基板ステージ61の位置プロファイルに基づいて、S315で決定した第2信号の良否を確認しているため、スループットが低下することを抑制することができる。また、本実施形態の露光装置300は、S302で用いられた第2信号をS318において再び設定しているため、S315で決定した第2信号が否であったとしても、露光処理を安定して行うことができる。
<物品の製造方法の実施形態>
本発明の実施形態における物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、上記のリソグラフィ装置(露光装置)を用いて基板にパターンを形成する工程(基板を露光する工程)と、かかる工程でパターンが形成された基板を加工(例えば現像)する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。
12,22:駆動部、13,23:計測部、15,25:制御部、100,200:ステージ装置、300:露光装置

Claims (13)

  1. 移動可能なステージを含むステージ装置であって、
    前記ステージに推力を与えることにより前記ステージを所定方向に駆動する駆動部と、
    前記ステージの前記所定方向の位置を計測する計測部と、
    前記計測部により計測された前記ステージの位置と目標位置との偏差を低減するための第1信号と、前記推力に含まれる推力リップルによる前記ステージの前記所定方向の振動を低減するための第2信号とから得られる合成信号を前記駆動部に供給することにより、前記ステージの前記所定方向の位置を制御する制御部と、
    を含み、
    前記制御部は、
    振幅及び位相の少なくとも1つが互いに異なる複数の任意信号を設定する設定工程と、
    前記複数の任意信号のうちの1つを用い、時刻に対する前記ステージの目標位置を示す目標位置プロファイルに従って前記駆動部に前記ステージを駆動させたときに前記計測部によって計測される前記ステージの位置を、前記複数の任意信号の各々について、共通の目標位置プロファイルを用いて取得する取得工程と、
    前記取得工程で前記複数の任意信号の各々について取得された前記ステージの位置に基づいて、前記推力リップルによる前記ステージの振動の振幅が許容範囲に収まるように前記第2信号を決定する決定工程と、
    を行うことにより前記第2信号を生成することを特徴とするステージ装置。
  2. 前記取得工程で取得される前記ステージの位置は、前記ステージが前記所定方向に等速で移動している期間における前記ステージの位置プロファイルを含み、
    前記制御部は、当該期間の前記位置プロファイルを用いて前記第2信号を決定する、ことを特徴とする請求項1に記載のステージ装置。
  3. 前記取得工程で取得される前記ステージの位置は、前記ステージが前記所定方向に等速で移動し且つ前記振動が一定になっている期間における前記ステージの位置プロファイルを含み、
    前記制御部は、当該期間の前記位置プロファイルを用いて前記第2信号を決定する、ことを特徴とする請求項1に記載のステージ装置。
  4. 前記制御部は、
    前記取得工程で前記複数の任意信号の各々について取得された前記ステージの位置に基づいて、前記第2信号を入力とし前記ステージの位置を出力とする関数を決定し、
    前記関数を用いて求められる前記ステージの振動の振幅が許容範囲に収まるように前記第2信号を決定する、ことを特徴とする請求項1乃至3のうちいずれか1項に記載のステージ装置。
  5. 前記制御部は、前記関数を用いて求められる前記ステージの振動の振幅が前記関数を用いずに前記ステージを駆動する場合に比べて小さくなるように前記第2信号を決定する、ことを特徴とする請求項4に記載のステージ装置。
  6. 前記制御部は、前記推力リップルによる前記ステージの振動の振幅が許容範囲に収まるように前記第2信号の振幅および位相を求めることにより前記第2信号を決定する、ことを特徴とする請求項1乃至5のうちいずれか1項に記載のステージ装置。
  7. 前記複数の任意信号の各々は、正弦波信号であることを特徴とする請求項1乃至6のうちいずれか1項に記載のステージ装置。
  8. 前記制御部は、前記設定工程において、前記複数の任意信号の各々を前記第2信号の代わりに用いて前記ステージを駆動させたときの前記ステージの振動が、前記推力リップルによる前記ステージの振動より大きくなるように、前記複数の任意信号を設定する、ことを特徴とする請求項1乃至7のうちいずれか1項に記載のステージ装置。
  9. 前記設定工程で設定される任意信号の数は、前記第2信号において決定すべきパラメータの数より多い、ことを特徴とする請求項1乃至8のいずれか1項に記載のステージ装置。
  10. 基板上にパターンを形成するリソグラフィ装置であって、
    前記基板を移動させるための請求項1乃至9のうちいずれか1項に記載のステージ装置を含む、ことを特徴とするリソグラフィ装置。
  11. 前記制御部は、複数の基板の各々にパターンを形成する複数の処理の間において前記ステージを移動させるときに前記取得工程を行う、ことを特徴とする請求項10に記載のリソグラフィ装置。
  12. 請求項10又は11に記載のリソグラフィ装置を用いて基板にパターンを形成する工程と、
    前記工程でパターンを形成された前記基板を加工する工程と、を含み、
    前記加工した基板を用いて物品を製造することを特徴とする物品の製造方法。
  13. 移動可能なステージと、前記ステージの所定方向の位置を計測する計測部と、前記ステージに推力を与えることにより前記ステージを前記所定方向に駆動する駆動部とを含み、前記計測部により計測された前記ステージの位置と目標位置との偏差を低減するための第1信号と、前記推力に含まれる推力リップルによる前記ステージの前記所定方向の振動を低減するための第2信号とから得られる合成信号を前記駆動部に供給することにより、前記ステージの前記所定方向の位置を制御するステージ装置において、前記第2信号を決定する決定方法であって、
    振幅及び位相の少なくとも1つが互いに異なる複数の任意信号を設定する設定工程と、
    前記複数の任意信号のうちの1つを用い、時刻に対する前記ステージの目標位置を示す目標位置プロファイルに従って前記駆動部に前記ステージを駆動させたときに前記計測部によって計測される前記ステージの位置を、前記複数の任意信号の各々について、共通の目標位置プロファイルを用いて取得する取得工程と、
    前記取得工程で前記複数の任意信号の各々について取得された前記ステージの位置に基づいて、前記推力リップルによる前記ステージの振動の振幅が許容範囲に収まるように前記第2信号を決定する決定工程と、
    を含むことを特徴とする決定方法。
JP2014124684A 2014-06-17 2014-06-17 ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法 Active JP6438219B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014124684A JP6438219B2 (ja) 2014-06-17 2014-06-17 ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法
KR1020150083121A KR101862053B1 (ko) 2014-06-17 2015-06-12 스테이지 장치, 리소그래피 장치, 물품의 제조방법, 및 결정방법
US14/740,705 US9720334B2 (en) 2014-06-17 2015-06-16 Stage apparatus, lithography apparatus, method of manufacturing an article, and determination method
CN201510336733.7A CN105319863B (zh) 2014-06-17 2015-06-17 台架装置、光刻装置、物品的制造方法和确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124684A JP6438219B2 (ja) 2014-06-17 2014-06-17 ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法

Publications (3)

Publication Number Publication Date
JP2016004440A JP2016004440A (ja) 2016-01-12
JP2016004440A5 JP2016004440A5 (ja) 2017-07-06
JP6438219B2 true JP6438219B2 (ja) 2018-12-12

Family

ID=54836067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124684A Active JP6438219B2 (ja) 2014-06-17 2014-06-17 ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法

Country Status (4)

Country Link
US (1) US9720334B2 (ja)
JP (1) JP6438219B2 (ja)
KR (1) KR101862053B1 (ja)
CN (1) CN105319863B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064308A (ja) * 2019-10-17 2021-04-22 株式会社Subaru 最適制御システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06202736A (ja) * 1992-12-28 1994-07-22 Yaskawa Electric Corp トルクリップル補償機能付制御装置
DE69412719T2 (de) * 1993-06-24 1999-02-18 Canon Kk Steuerung für einen mehrphasigen Motor
JPH07299778A (ja) * 1994-05-10 1995-11-14 Daikin Ind Ltd ロボット制御装置
JP2001075611A (ja) * 1999-09-02 2001-03-23 Kawasaki Steel Corp セットアップモデルの自動構築方法及び装置
JP2001175332A (ja) 1999-12-22 2001-06-29 Nikon Corp ステージの駆動方法、ステージ装置及び露光装置
JP2001297960A (ja) * 2000-04-11 2001-10-26 Nikon Corp ステージ装置および露光装置
JP2002198285A (ja) * 2000-12-25 2002-07-12 Nikon Corp ステージ装置およびその制振方法並びに露光装置
JP2003088159A (ja) 2001-09-05 2003-03-20 Yaskawa Electric Corp トルクリップル補正方法および装置
JP4473088B2 (ja) * 2004-10-07 2010-06-02 オークマ株式会社 リニアモータ
JP2006211873A (ja) * 2005-01-31 2006-08-10 Canon Inc 移動体制御装置及び移動体制御方法
JP4678204B2 (ja) 2005-02-18 2011-04-27 横河電機株式会社 Xyステージ
CN1658075A (zh) 2005-03-25 2005-08-24 上海微电子装备有限公司 一种曝光装置
JP2007142093A (ja) * 2005-11-17 2007-06-07 Hitachi High-Technologies Corp ステージ装置、電子線照射装置及び露光装置
JP5007924B2 (ja) * 2006-09-25 2012-08-22 株式会社安川電機 電動機制御装置とその振動抑制方法
TW200915019A (en) 2007-09-07 2009-04-01 Nat University Corp Yokohama Nat University Drive control method, drive control apparatus, stage control method, stage control apparatus, exposure method, exposure apparatus and measuring apparatus
JP5034917B2 (ja) 2007-12-10 2012-09-26 株式会社ニコン ステージ装置、露光装置、およびステージ装置の制御方法
JP2010207038A (ja) * 2009-03-05 2010-09-16 Yokogawa Electric Corp 推力リップル解析方法及び補正方法
JP5540667B2 (ja) * 2009-11-26 2014-07-02 シンフォニアテクノロジー株式会社 制振装置及びこれを備えた車両
US8488106B2 (en) * 2009-12-28 2013-07-16 Nikon Corporation Movable body drive method, movable body apparatus, exposure method, exposure apparatus, and device manufacturing method
KR20110108756A (ko) 2010-03-29 2011-10-06 윤경원 다모드 시스템에서 잔류진동 제거 방법
JP6066592B2 (ja) 2012-06-12 2017-01-25 キヤノン株式会社 露光装置及びデバイス製造方法
US9331624B2 (en) * 2013-02-25 2016-05-03 National Taiwan University Thrust ripple mapping system in a precision stage and method thereof

Also Published As

Publication number Publication date
KR101862053B1 (ko) 2018-05-29
CN105319863A (zh) 2016-02-10
KR20150144705A (ko) 2015-12-28
US9720334B2 (en) 2017-08-01
US20150362846A1 (en) 2015-12-17
JP2016004440A (ja) 2016-01-12
CN105319863B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
JP5235707B2 (ja) 制御装置
JP2005183966A (ja) リソグラフィ装置およびデバイス製造方法
JP2017051089A (ja) 駆動装置、位置決め装置、リソグラフィー装置、および、物品製造方法
JP4729065B2 (ja) 座標変換を伴う駆動システムを有するリソグラフィ装置および方法
JP6438219B2 (ja) ステージ装置、リソグラフィ装置、物品の製造方法、および決定方法
US20240004314A1 (en) Positioning apparatus, lithography apparatus and article manufacturing method
JP7005344B2 (ja) 制御方法、制御装置、リソグラフィ装置、および物品の製造方法
JP6333081B2 (ja) 振動制御装置、リソグラフィ装置、および物品の製造方法
KR102622405B1 (ko) 리소그래피 프로세스의 서브-필드 제어 및 연관된 장치
JP5943557B2 (ja) 位置決め装置、露光装置およびデバイス製造方法
JP7389597B2 (ja) ステージ装置、リソグラフィ装置、および物品製造方法
TWI739319B (zh) 檢測裝置及微影裝置
US9762167B2 (en) Computer-readable storage medium, generating method, generating apparatus, driving apparatus, processing apparatus, lithography apparatus, and method of manufacturing article
JP2016099736A (ja) ステージ装置、リソグラフィ装置、物品の製造方法、および制御方法
EP4116772A1 (en) Electromagnetic motor system, postion control system, stage apparatus, lithographic apparatus, method of determining a motor-dependent commutation model for an electromagnetic motor
JP2022172907A (ja) ステージ装置、リソグラフィ装置、および物品の製造方法
JP2022059871A (ja) フィードバック制御装置、リソグラフィ装置、測定装置、加工装置、平坦化装置、物品の製造方法、コンピュータプログラム、およびフィードバック制御方法
CN115685692A (zh) 控制设备、光刻装置和物品制造方法
KR20230068293A (ko) 정보처리장치, 리소그래피 장치, 정보처리방법, 물품의 제조 방법, 및 기억 매체
TW202217467A (zh) 使用人工神經網路之運動控制
JP2023157729A (ja) 管理装置、処理システム、管理方法、および物品製造方法
JP2006287106A (ja) ステージ位置補正方法及び装置
JP2005327195A (ja) Xyステージ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181116

R151 Written notification of patent or utility model registration

Ref document number: 6438219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151