JP6434882B2 - 地中連続壁掘削機及び地中連続壁掘削工法 - Google Patents

地中連続壁掘削機及び地中連続壁掘削工法 Download PDF

Info

Publication number
JP6434882B2
JP6434882B2 JP2015193081A JP2015193081A JP6434882B2 JP 6434882 B2 JP6434882 B2 JP 6434882B2 JP 2015193081 A JP2015193081 A JP 2015193081A JP 2015193081 A JP2015193081 A JP 2015193081A JP 6434882 B2 JP6434882 B2 JP 6434882B2
Authority
JP
Japan
Prior art keywords
hydraulic cylinder
bucket
continuous wall
underground continuous
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015193081A
Other languages
English (en)
Other versions
JP2017066709A (ja
Inventor
郁夫 西内
郁夫 西内
Original Assignee
大容基功工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大容基功工業株式会社 filed Critical 大容基功工業株式会社
Priority to JP2015193081A priority Critical patent/JP6434882B2/ja
Publication of JP2017066709A publication Critical patent/JP2017066709A/ja
Application granted granted Critical
Publication of JP6434882B2 publication Critical patent/JP6434882B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Earth Drilling (AREA)

Description

本発明は、地中連続壁を構築するための掘削溝(エレメント)を掘削するために、ベースマシンのジブに吊支して使用する地中連続壁掘削機及び地中連続壁掘削工法に関し、特には掘削作業におけるサイクルタイムを短縮させ、併せて掘削ピッチの改善を図ることによって、作業効率を向上させるとともに、大深度域の掘削にも効率よく対応するものである。
地中連続壁とは、安定液を使用して溝壁の崩壊を防ぎながら、左右一対のシェルを有するバケットの開閉操作を行うことによって掘削したエレメントと呼ばれる所定深さの掘削溝に、あらかじめ製作しておいた鉄筋籠を挿入し、トレミ管を使用して生コンクリートを打設することによって地中に構築する連続した鉄筋コンクリート壁である。その用途は、耐震地下壁,地下本体壁,基礎,円形立坑,地下タンク,土留め止水壁,ダム止水壁等々多用途に亘っている。
地中連続壁掘削機は、クローラクレーン等のベースマシンのジブに装備したケリーバに取り付けたり(特許文献1)、ケリーバに代えてジブにワイヤを介して吊支して使用されている(特許文献2,3)。これらの地中連続壁掘削機はいずれも油圧シリンダによってバケットを開閉動作させることによって、土砂を掴み取って地上に排出することにより、所定深さの掘削溝を掘削している。また、土留壁や隣接構造物に近接して掘削することを目的とした特殊な地中連続壁掘削機も提供されている(特許文献3)。
特許文献1に示すケリーバに取り付けた地中連続壁掘削機は、ケリーバの下端に固定的に設けた掘削機本体に対して開閉可能に取り付けた一対のシェルを、ヘッド側端部を掘削機本体に固定し、ロッド側端部をシェルにそれぞれ固定した一対の油圧シリンダによって、シェルを個別に開閉動作している。即ち、一対のシェルの左右方向の外端部に一対の油圧シリンダを並列配置しており、油圧シリンダのロッドが伸長動作することによってシェルを閉じ、ロッドが縮小動作することによってシェルを開いている(特許文献1の図3参照)。
特許文献2,3に示すようなワイヤを介して吊支する地中連続壁掘削機においても、ワイヤに吊支した掘削機本体に対し開閉自在に取り付けられた一対のシェルを、ヘッド側端部を掘削機本体に固定し、ロッド側端部をシェルにそれぞれ固定した一対の油圧シリンダによって、シェルを個別に開閉動作している。即ち、一対のシェルの左右方向の外端部に一対の油圧シリンダを並列配置しており、油圧シリンダのロッドが伸長動作することによってシェルを閉じ、ロッドが縮小動作することによってシェルを開いている(特許文献2の図1,特許文献3の図3参照)。
また、特許文献3に示すように、土留壁や隣接構造物に近接した場所を掘削するために、地中連続壁掘削機を支持するためのベースマシンのブームを幅方向に移動可能とすることによって、ベースマシンの位置から掘削可能な領域を拡大する手段も提供されている。
特開平5−255932号公報 特開平8−284200号公報 特開平7−3831号公報
地中連続壁は、地上から地下の壁をあらかじめ構築することができるため、従来の土留め壁や止水壁に留まらず、多方面において用途開発が試みられており、その重要性が高まっている。また、地下構造物の大深度化,必要な耐震強度の増大等により、これまで主体となっていた30m〜60m程度の深度を超えて、より大深度、具体的には60mを超えて100mに達するような深度、更には100m以深の深度を有するような大深度の地中連続壁の構築が求められるようになっている。同時に掘削に際しては、掘削精度を維持した上で、掘削作業におけるサイクルタイムを短縮させ、併せて掘削ピッチの改善を図ることにより単位時間内における掘削回数や掘削土量を増加させて作業効率を向上させることが求められている。この作業効率向上の要求は、掘削溝の深度が深くなればなるほど強くなる。
特許文献1に示すようなケリーバに固定した地中連続壁掘削機は、ケリーバを使用することによって、掘削時におけるバケットの傾斜を固定することができるため、地中連続壁掘削機の姿勢が安定して鉛直方向における掘削精度を高く維持することができる利点はあるものの、地中における障害物等に起因して掘削溝が曲がったりすると修正が困難である。何より、ケリーバは多重管からなる重量物であり、ベースマシンの直巻能力との関係からも使用可能な長さに制約があり、又ケリーバの長さを超えて掘削することはできないため、掘削深度は40m程度が限界となっている。そのため、近時の大深度の掘削溝の要求に応えることができない。
一方、特許文献2,3に示すようなベースマシンのジブにワイヤを介して吊支する地中連続壁掘削機は、ベースマシンのウインチドラムに巻き取り可能な長さであればワイヤの繰出量に制約がなく、重量もケリーバに比べて軽量であるため、大深度の掘削溝を掘削することが可能である。そのため、大深度の掘削溝を掘削するためには、地中連続壁掘削機を長さ制約のないワイヤによって吊支することを前提とする必要がある。一方、地中連続壁掘削機をワイヤによって吊支する場合は、掘削する地盤の土質や障害物等によって掘削溝が曲がる可能性があるため、地中連続壁掘削機の姿勢を掘削溝に合わせて修正する手段を講じることが新たな課題となる。
地中連続壁掘削機のバケットは油圧シリンダによって開閉動作するため、油圧ポンプや油圧タンク等を装備した油圧ユニットから地中連続壁掘削機に油圧及び必要とする電源を供給する必要がある。従来、油圧ユニットを掘削機本体に搭載した地中連続壁掘削機も提供されているが、地中連続壁掘削機に搭載できる油圧ユニットの油圧タンク等の容量には制約があり、制約されたスペースの中では冷却のための熱交換に必要な充分な外部冷媒を確保することができず、発熱に起因して種々の問題が生じている。即ち、油圧の作動油が温度上昇すると粘性降下、成分変化が起こり、掘削時における冷却を充分に行うことができなくなることが多い。そのため、油温の上昇に起因して掘削を休止する必要が生じるため、掘削作業が停止することとなり、作業効率に直接的に影響する。
そのため、油圧ユニットと掘削機本体を分離し、油圧ユニットを地上に設置して、ベースマシンのリールに巻き取り装備した油圧ホースを地上から、ベースマシンのジブを介して掘削溝内の地中連続壁掘削機に延伸させて油圧を供給すれば、十分な容量の油圧タンクや種々の冷却手段を採用することが可能となり、油圧タンクの冷却のために掘削を休止したりする必要がない。一方、提供されているリール巻取用の油圧ホースの長さには制約があり、現況では最大長で65m程度である。そのため、100mに達するような深度、更には100m以深の深度を有するような大深度域を掘削するには、複数の油圧ホースを連結して使用する必要がある。油圧ホースを連結すると連結部分が150mm程度の直線となることが避けられず、この直線部分をジブを介してスムースに繰り出し・巻き取ることが新たな課題となる。
更に、油圧ホースや電源を供給するためのキャブタイヤケーブルには、地中連続壁掘削機の作動や繰り出し・巻き取り動作のタイムラグ等によって、急激な負荷がかかることが予想される。掘削溝が深くなればなるほど、そのリスクは高まり負荷も大きくなる。そのため、これらの負荷によっても油圧ホースやキャブタイヤケーブル等が損傷することがないような適切な緩衝手段を講じることが新たな課題として求められる。
特許文献1,2,3に示すとおり、地中連続壁掘削機のバケットを開閉動作するための一対の油圧シリンダは、一対のシェルの左右方向の外端部に並列配置しており、油圧シリンダのロッドが伸長動作することによってシェルを閉じ、ロッドが縮小動作することによってシェルを開いている。掘削のサイクルタイムを短縮させ、併せて掘削ピッチの改善を図ることによって作業効率を向上させる観点に立てば、掘削溝へのバケットの昇降速度の向上,バケットの開閉速度の向上,バケット内に土砂を確実に掴むこと等が求められる。この中でバケットの昇降速度は専らベースマシンの能力に起因するため、地中連続壁掘削機のバケットには、掴み物である土砂を確実に掴むことと、開閉速度を早くすることの双方を達成することが求められる。
即ち、バケットの掴み作業は、土砂、特に硬質地盤を掘削する等の負荷の大きい場合には大きな開閉力(掴み力)が何より求められ、一方、軟弱地盤を掘削したり、掴んだ土砂を排出する等の負荷が小さい場合には大きな開閉力(掴み力)は必要としないため、開閉速度の向上を優先すべきである。しかしながら、従来の地中連続壁掘削機のバケットは、このような観点に立っていないため、バケットにかかる負荷の大小によって、開閉力(掴み力)と開閉速度を調節することは行われていない。従来の地中連続壁掘削機は、バケットにかかる負荷の大小にかかわらず、必要な開閉力(掴み力)を前提として一定速度で開閉動作を行っており、大きな開閉力(掴み力)を必要としない負荷の小さい場合のバケットの開閉時間の積み重ねによってサイクルタイムが長くなっている。そのため、サイクルタイムを短縮するためには、バケットにかかる負荷の大小によって、開閉力(掴み力)と開閉速度を油圧シリンダの作動油量によって調節することが新たな課題となる。
更に、従来の地中連続壁掘削機はバケットを構成する左右一対のシェルをそれぞれ独立した油圧シリンダで個別に開閉操作しているため、地中の岩や礫等の障害物等によって左右のシェルの開閉動作が一致せず、開閉動作がスムースに行われないおそれがある。また、一対の油圧シリンダはシェルの左右方向の外端部に並列配置しているため、地中の障害物等によって損傷するリスクを内在している。
また、掘削溝の掘削は、地中連続壁掘削機を吊支したベースマシンを掘削溝に対して直交する方向に設置することによって、水平方向におけるバケットの開閉方向と掘削溝の幅方向を一致させて掘削を行うことが基本である。しかしながら、多様な掘削現場において、土留壁や隣接構造物に近接した場所を掘削する場合や、障害物の存在によって、ベースマシンを掘削溝(掘削位置)に対して位置決め可能に配置できるとは限らない。そのため、特許文献3に示すようにベースマシンの地中連続壁掘削機を支持するためのブームをベースマシンの幅方向に移動可能とする手段も提供されているが、調節可能な範囲が狭く、又ベースマシンに横方向への移動手段を付設する必要があるとともに、横方向への移動時間も必要となる。
掘削溝に対してベースマシンの位置決めができない場合には、現位置でバケットを水平方向に回動させることができれば、掘削溝の上空にバケットを吊支することさえできれば、ベースマシンの位置に制限されることなく、容易にバケットの位置決めを行うことができる。そのため、サイクルタイムを短縮するためには、バケットの水平方向における姿勢を正確、かつ、容易に制御することが新たな課題となる。
そこで、本発明は、上記した従来の地中連続壁掘削機及び地中連続壁掘削工法が解決を求められている新たな課題を解決することによって、掘削精度を維持した上で、掘削のサイクルタイムを短縮させ、併せて掘削ピッチの改善を図ることによって大深度域においても作業効率を向上させる地中連続壁掘削機及び地中連続壁掘削工法を提供することを目的としている。
本発明はその目的を達成するために、左右一対のシェルからなるバケットを油圧シリンダによって開閉動作させて掘削溝を掘削する地中連続壁掘削機において、バケットの上方に配置した本体フレームと、本体フレーム内に摺動可能に設置した摺動ボックスを有し、前記油圧シリンダとして、第1油圧シリンダと第2油圧シリンダからなる2基の油圧シリンダを、相互にロッド側端部を対面させて上下方向に直列配置し、第1油圧シリンダ及び第2油圧シリンダのロッド側端部を、それぞれ摺動ボックスに固定するとともに、一端をシェルに回動自在に軸支したタイロッドの他端を摺動ボックスに回動自在に軸支した地中連続壁掘削機を基本として提供する。
そして、2基の油圧シリンダをバケットのセンター線上に配置し、第1油圧シリンダを上段に、第2油圧シリンダを下段に配置し、第1油圧シリンダが伸長するとともに、第2油圧シリンダが縮小することによってバケットを閉じ、第1油圧シリンダが縮小するとともに、第2油圧シリンダが伸長することによってバケットを開く。
更に、本体フレームの上端部に連結フレームを固定し、連結フレームに第1油圧シリンダのヘッド側端部を固定するとともに、本体フレームの下端部に左右一対のシェルを回動自在に軸支したシェル取付フレームを固定し、シェル取付フレームに第2油圧シリンダのヘッド側端部を固定し、連結フレームの上端部に固定した旋回フレームを支持体に旋回可能に連結した。また、第1油圧シリンダ及び第2油圧シリンダの伸縮動作によって、本体フレーム内で摺動ボックスを摺動させて、バケットを開閉し、本体フレームと摺動ボックスの摺動面に、それぞれ摺動板を着脱自在に装着した。
そして、第1油圧シリンダ及び第2油圧シリンダのロッドの伸長動作を差動回路にて動作可能とし、第1油圧シリンダのロッドの伸長時において、差動回路によって第1油圧シリンダのヘッド側及びロッド側の双方に油圧を供給可能とするとともに、第2油圧シリンダの伸長時において、差動回路によって第2油圧シリンダのヘッド側及びロッド側の双方に油圧を供給可能とした。
上記構成の地中連続壁掘削機をベースマシンに支持索を介して吊支し、バケットの開閉操作を行うことによって、地中連続壁を構築するための所定深さの掘削溝を、安定液を掘削溝内に満たして掘削溝壁の崩壊を防ぎながら、掘削する地中連続壁掘削工法を提供する。そして、バケットにかかる負荷によって、低負荷時は開閉速度を優先し、高負荷時は開閉力を優先するようにバケットの開閉力と開閉速度を制御して、具体的には低負荷時は、第1油圧シリンダ及び第2油圧シリンダのロッドの伸長動作を差動回路にて動作させることによって掘削溝を掘削する。
以上記載した本発明によれば、地中連続壁掘削機をワイヤ等の支持索によってベースマシンのジブから吊支するため、ベースマシンのウインチドラムに巻き取り可能な長さであれば支持索の繰出量に制約がないため、これまで主体となっていた30m〜60m程度の深度を超えて、より大深度、具体的には60mを超えて100mに達するような深度、更には100m以深の深度を有するような大深度の掘削溝を掘削することが可能である。
バケットの開閉動作を行う第1油圧シリンダと第2油圧シリンダをバケットのセンター線上に配置して、地中連続壁掘削機の中心部に設けられているため、地中の障害物等によって損傷するリスクが少ない。また、上段に配置した第1油圧シリンダと下段に配置した第2油圧シリンダを相互にロッド側端部を対面させて上下方向に直列配置しているため、第1油圧シリンダが伸長するとともに、第2油圧シリンダが縮小することによってバケットを閉じ、第1油圧シリンダが縮小するとともに、第2油圧シリンダが伸長することによってバケットを開くこととなり、バケットの開閉動作を同じ推力で行うことができる。また、第1油圧シリンダ、第2油圧シリンダともにシェルの開閉動作を左右連動して行うため、一致した開閉動作となる。
更に、バケットの閉動作時には第1油圧シリンダのロッドが伸長し、バケットの開動作時には第2油圧シリンダのロッドが伸長する。そのため、第1油圧シリンダのロッド及び第2油圧シリンダのロッドの伸長動作をするための油圧を、掘削状況に応じて、即ち、バケットにかかる負荷の程度に応じて、通常回路による油圧の供給と差動回路による油圧の供給を選択することができる。
即ち、掘削溝内で負荷の小さい状態でバケットを開いたり、収納した土砂を排出するためにバケットを開く場合等、即ち掴み力を必要とせず、開閉速度が優先される場合には、差動回路を選択してバケットを開く。同様に、掘削抵抗の少ない軟質地盤を掘削したり、掘削抵抗の少ない土砂を掴む場合や、開いたバケットを土砂を掴むことなく閉じる場合等、即ち掴み力を必要とせず、開閉速度が優先される場合には、差動回路を選択してバケットを閉じる。
地中連続壁掘削機のバケットを閉じた状態の正面図。 図1の側面図。 図1のバケットを開いた状態の正面図。 地中連続壁掘削機をベースマシンに吊支した全体側面図。 油圧シリンダの取付状態を示す要部説明図。 摺動ボックスを収納した本体フレームの正面図。 図6のA−A拡大断面図。 シェル取付フレームの正面図。 連結フレームの正面図。 地中連続壁掘削機の要部正面図。 バケット動作説明図。 バケット動作説明図。 バケットを閉じる際の通常回路の説明図。 バケットを閉じる際の差動回路の説明図。 バケットを開く際の通常回路の説明図。 バケットを開く際の差動回路の説明図。 バケットの旋回機構の説明図。 バケットの旋回機構の説明図。 ベースマシンのジブ先端の構造説明図。 ベースマシンのジブ先端の構造説明図。 緩衝機構の説明図。 緩衝機構の説明図。 姿勢修正装置の説明図。 姿勢修正装置の説明図。 掘削現場の全体配置図。
以下図面に基づいて本発明にかかる地中連続壁掘削機及び地中連続壁掘削工法の実施形態を説明する。図1は本発明にかかる地中連続壁掘削機1のバケット10を閉じた状態の正面図、図2はその側面図、図3はバケット10を開いた状態の正面図、図4はベースマシン2に吊支した全体側面図である。地中連続壁掘削機1は、クローラクレーン等の自走可能なベースマシン2に起立させたジブ3からワイヤロープ等の支持索4で吊支し、左右一対のシェル11,12からなるバケット10を、第1油圧シリンダ20及び第2油圧シリンダ30からなる2基の油圧シリンダによって開閉動作させて掘削溝を掘削する装置である。
左右一対のシェル11,12は、シェル取付フレーム41の下端部に連結ピン15によって回動自在に軸支されるとともに、タイロッド13,14の一端をシェル11,12の上面に回動自在に連結ピン16によって軸支し、タイロッド13,14の他端を、シェル取付フレーム41を固定した本体フレーム40内に摺動可能に設置した摺動ボックス50に連結ピン49によって回動自在に軸支してある。よって、左右一対のシェル11,12からなるバケット10は、連結ピン15を回動中心として開閉可能であり、開閉動作により土砂を掘削して掬い取り、或いは掬い取った土砂を排出することができる。
図5は第1油圧シリンダ20及び第2油圧シリンダ30からなる2基の油圧シリンダの取付状態を示す要部説明図、図6は摺動ボックス50を収納した本体フレーム40の正面図、図7は図6のA−A拡大断面図、図8はシェル取付フレーム41の正面図、図9は後述の連結フレーム42の正面図である。なお、図5は説明のため、本体フレーム40を抜き出した状態の透視図として図示してある。第1油圧シリンダ20のヘッド側端部22を本体フレーム40の上端部に固定した連結フレーム42に固定ピン25で固定し、第2油圧シリンダ30のヘッド側端部32を本体フレーム40の下端部に固定したシェル取付フレーム41に固定ピン35で固定するとともに、第1油圧シリンダ20のロッド側端部21及び第2油圧シリンダ30のロッド側端部31を上下方向に対向させて、それぞれ摺動ボックス50に固定ピン26,36で固定する。よって、第1油圧シリンダ20のロッド23及び第2油圧シリンダ30のロッド33の伸縮動作によって、摺動ボックス50は本体フレーム40内を上下方向に摺動する。
本体フレーム40は断面矩形状で上下両面が開口した中空角筒状体であり、表裏両面には摺動ボックス50の摺動範囲の略全域に及ぶ窓部40aが開口形成されている。摺動ボックス50は直方体状のブロック体であり、両外側面の全域が本体フレーム40の両内側面に当接するとともに、表裏両外面の一部が本体フレーム40の表裏両内面に当接しており、本体フレーム40内において上下方向に摺動可能である。本体フレーム40及び摺動ボックス50の摺動面は摺動動作によって摩耗することを避けられない。そのため、本体フレーム40の摺動面には、上下方向において2分割した摺動板44を、摺動ボックス50の摺動面には摺動板51をそれぞれ着脱自在に装着し、摩耗の程度に応じて交換するようにしている(図7参照)。なお、図示例では、摺動ボックス50に装着した摺動板51の材質として、本体フレーム40に装着した摺動板44より硬度の低い材質を使用し、摺動板51の摩耗を促すようにしている。そのため、摩耗の早い摺動板51は部分的に交換できるように複数に、図示例では8つに分割して装着している(図7参照)。
摺動ボックス50には、第1油圧シリンダ20のロッド側端部21及び第2油圧シリンダ30のロッド側端部31を固定するためのピン孔52,53が上下方向に対向して穿設形成されている。またシェル11,12に一端を軸支したタイロッド13,14の他端を軸支するためのピン孔54,55が左右方向に対向して穿設形成されている。そのため、タイロッド13,14は本体フレーム40の外側から、窓部40aを介して摺動ボックス50及びシェル11,12に軸着されることとなる。
本体フレーム40の上下両端の外周には複数の補強用のリブ46aを立設した連結用のフランジ45aが突設されている。同様に図9に示す連結フレーム42の上下両端の外周にも複数の補強用のリブ46bを立設した連結用のフランジ45bが突設されており、両者のフランジ45a,45bを介して、本体フレーム40の上部に連結フレーム42をボルトで連結して固定している。連結フレーム42は断面矩形状で下面が開口した中空角筒状体であり、上部のフランジ46bを介して旋回フレーム60に連結されている。なお、図9において、47はピン孔であって、第1油圧シリンダ20のヘッド側端部22を連結フレーム42に固定するための固定ピン25を挿通するものであり、42aは連結フレーム42の表裏両面に形成された窓部である。
図8に示すシェル取付フレーム41の上端の外周にも複数の補強用のリブ46cを立設した連結用のフランジ45cが突設されており、このフランジ45cと本体フレーム40の下端に形成したフランジ45aを介して、本体フレーム40の下部にシェル取付フレーム41をボルトで連結して固定している。シェル取付フレーム41は断面矩形状で下面が開口した中空角筒状体であり、48はピン孔であって、第2油圧シリンダ30のヘッド側端部32をシェル取付フレーム41に固定するための固定ピン35を挿通するものである。49は左右一対のピン孔であり、シェル11,12をシェル取付フレーム41に軸支するための連結ピン15を挿通するものであり、41aはシェル取付フレーム41に形成された窓部である。
上記構成の第1油圧シリンダ20,第2油圧シリンダ30及びバケット10によれば、第1油圧シリンダ20のロッド23が伸長するとともに、第2油圧シリンダ30のロッド33が縮小することによってバケット10が閉じ(図11参照)、逆に第1油圧シリンダ20のロッド23が縮小するとともに、第2油圧シリンダ30のロッド33が伸長することによってバケット10が開く(図12参照)。このように本発明にかかる地中連続壁掘削機1は、第1油圧シリンダ20と第2油圧シリンダ30からなる2基の油圧シリンダを、相互にロッド側端部21,31を対面させて上下方向に直列配置して、第1油圧シリンダ20のロッド23と第2油圧シリンダ30のロッド33の伸縮動作を相互に逆方向に動作させることによって、本体フレーム40内において摺動ボックス50を摺動させてバケット10を開閉動作させることが特徴の1つである。
本発明にかかる地中連続壁掘削機1は、バケット10の閉動作時には第1油圧シリンダ20のロッド23が伸長動作し、バケット10の開動作時には第2油圧シリンダ30のロッド33が伸長動作する。そのため、第1油圧シリンダ20のロッド23及び第2油圧シリンダ30のロッド33の伸長動作をするための油圧を、掘削状況に応じて、即ち、バケット10にかかる負荷の程度に応じて、通常回路による油圧の供給と差動回路による油圧の供給を選択可能としている。
差動回路とはアクチュエータの両端に流体を送り込みシリンダの面積差によってロッド側の流体が負けて押し出された流体が次に油圧ポンプ流量と合算しヘッド側に流れてアクチュエータが高速に前進できる油圧回路である。ただし、このときの推力はロッド側にも同じ圧力が発生するためシリンダロッド径と同じ推力に制限されることとなる。そのため、推力よりもロッドの速度を必要とする場合に有効な油圧回路である。
バケット10には掘削効率の向上を図るために、掴み物である土砂を確実に掴むことと、開閉速度を早くすることの双方を達成することが求められる。即ち、バケット10にかかる負荷が大きいときには必要な開閉力を保持することが求められ、一方負荷が小さい場合には開閉速度を早くすることが求められる。本発明では、バケット10の開閉操作の双方において、第1油圧シリンダ20のロッド23又は第2油圧シリンダ30のロッド33のどちらか一方が伸長動作するため、バケット10の開閉操作の双方において差動回路を組み込むことが可能である。
図13は開閉力を優先した通常回路によってバケット10を閉じる際の説明図であり、油圧ポンプ56によって油圧を第1油圧シリンダ20のシリンダ24のヘッド側と、第2油圧シリンダ30のシリンダ34のロッド側に供給して、第1油圧シリンダ20のロッド23を伸長させるとともに、第2油圧シリンダ30のロッド33を縮小させる。ロッド23の伸長及びロッド33の縮小によって第1油圧シリンダ20のロッド側及び第2油圧シリンダ30のヘッド側から排出された油圧をタンク57に戻すようにしている。
この油圧の供給による推力は、バケット10を閉じる方向(第1油圧シリンダ20のヘッド側及び第2油圧シリンダ30のロッド側)にのみ供給されるため、バケット10は供給する油圧力に応じた力で閉じられる。よって、土砂を掘削したり、掘削した土砂を掴む場合等バケット10にかかる負荷が大きい場合、即ち開閉速度よりも掴み力が優先される場合には、上記した通常回路によってバケット10を閉じる。
図14は開閉速度を優先した差動回路によってバケット10を閉じる際の説明図であり、油圧ポンプ56によって油圧を第1油圧シリンダ20のシリンダ24のヘッド側とロッド側の双方に供給することによって、ロッド側の油圧はシリンダ24の面積差によってヘッド側の油圧に負けて押し出され、ヘッド側に供給されるため、ロッド23はヘッド側に供給した油圧にロッド側に供給した油圧を合算した油圧によって伸長するため、伸長速度が早くなる。第2油圧シリンダ30の油圧は、第1油圧シリンダ20のロッド23が伸長することによって、ロッド33が縮小するため、ヘッド側から流失した油圧をタンク57に戻すとともに、ロッド側に供給する。
この油圧の供給によるロッド23の推力は、第1油圧シリンダ20のロッド側にも同じ圧力が発生するため、ロッド23の径と同じ推力に制限されることとなる。よって、掘削抵抗の少ない軟質地盤を掘削したり、掘削抵抗の少ない土砂を掴む場合や、開いたバケット10を土砂を掴むことなく閉じる場合等、即ち掴み力を必要とせず、開閉速度が優先される場合には、上記した差動回路によってバケット10を閉じる。
図15は開閉力を優先した通常回路によってバケット10を開く際の説明図であり、油圧ポンプ56によって油圧を第2油圧シリンダ30のシリンダ34のヘッド側と、第1油圧シリンダ20のシリンダ24のロッド側に供給して、第2油圧シリンダ30のロッド33を伸長させるとともに、第1油圧シリンダ20のロッド23を縮小させる。ロッド33の伸長及びロッド23の縮小によって第2油圧シリンダ30のロッド側及び第1油圧シリンダ20のヘッド側から排出された油圧をタンク57に戻すようにしている。
この油圧の供給による推力は、バケット10を開く方向(第2油圧シリンダ30のヘッド側及び第1油圧シリンダ20のロッド側)にのみ供給されるため、バケット10は供給する油圧力に応じた力で開かれる。よって、掘削溝内で負荷の大きい状態でバケット10を開いたり、収納した土砂の重量が大きい場合等バケット10を開く場合に大きい負荷がかかる場合、即ち開閉速度よりも掴み力が優先される場合には、上記した通常回路によってバケット10を開く。
図16は開閉速度を優先した差動回路によってバケット10を開く際の説明図であり、油圧ポンプ56によって油圧を第2油圧シリンダ30のシリンダ34のヘッド側とロッド側の双方に供給することによって、ロッド側の油圧はシリンダ34の面積差によってヘッド側の油圧に負けて押し出され、ヘッド側に供給されるため、ロッド33はヘッド側に供給した油圧にロッド側に供給した油圧を合算した油圧によって伸長するため、伸長速度が早くなる。第1油圧シリンダ20の油圧は、第2油圧シリンダ30のロッド33が伸長することによって、ロッド23が縮小するため、ヘッド側から流失した油圧をタンク57に戻すとともに、ロッド側に供給する。
この油圧の供給によるロッド33の推力は、第2油圧シリンダ30のロッド側にも同じ圧力が発生するため、ロッド33の径と同じ推力に制限されることとなる。よって、掘削溝内で負荷の小さい状態でバケット10を開いたり、収納した土砂を排出するためにバケット10を開く場合の負荷が小さい場合等、即ち掴み力を必要とせず、開閉速度が優先される場合には、上記した差動回路によってバケット10を開く。
実施例としては、図13,図15に示すバケット10の開閉力を優先した通常回路においてシェル11,12の開閉速度が42秒かかった場合に、図14,図16に示すバケット10の開閉速度を優先した差動回路を採用すると、シェル11,12の開閉速度は6秒に短縮された。このように、バケット10にかかる負荷が小さい場合に、バケット10の開閉の双方において差動回路を採用して開閉速度を早くすることが本発明の特徴の1つである。具体的には、差動回路を採用することによって、掘削した土砂の排出時にバケット10を早く開いて排土時間のサイクルタイムを短縮でき、負荷の小さい場合にバケット10を早く閉じて掘削時間のサイクルタイムを短縮することができる。なお、通常回路と差動回路の切り替えは、油圧回路の油圧マニホールドに組み込んだ圧力センサに、掘削現場に応じて設定した圧力を基準として行う。
バケット10はベースマシン2のジブ3から支持索4を介して吊支した状態において、現位置で水平方向に旋回可能である。即ち、地中連続壁掘削機1の連結フレーム42は、旋回フレーム60に固定されるとともに、旋回フレーム60は支持体70に旋回可能に軸支されている。この旋回機構について図17,図18に示すバケット10の旋回機構の説明図に基づいて説明する。なお、支持体70にはシーブ機構77が装備されており、ジブ3から繰り出された支持索4をシーブ機構77に掛け回すことによって、地中連続壁掘削機1を吊支している。なお、図17,図18において、旋回機構の要部となる構成以外は省略してある。
旋回軸71は、その周囲に突設した旋回軸取付フランジ72を介して支持体70の下面にボルト73によって固定されて、支持体70から垂下するとともに、旋回フレーム60内に挿入している。旋回フレーム60内には旋回軸ケーシング65が収納されるとともに、旋回フレーム60に旋回軸ケーシング取付フランジ66にボルト67で固定されている。旋回フレーム60内に挿入した旋回軸71は旋回軸ケーシング取付フランジ66に上下両端部近傍における複数のベアリング68を介して旋回可能に収納されている。
旋回軸71の先端は旋回軸ケーシング65から突出するとともにピニオンギア61を連結している。このピニオンギア61にラックギア62が噛合するとともに、ラックギア62に旋回用油圧シリンダ63のロッド64をラックギア62の端部に連結している。なお、図例ではラックギア62として、丸ラックギアを使用した。よって、旋回用油圧シリンダ63のロッド64を伸縮動作によって、ラックギア62を矢印Y方向に進退させてピニオンギア61を回転させることができる。よって、ラックギア62の進退によって、ピニオンギア61を連結した旋回軸71を旋回させ、支持体70に対して旋回フレーム60を相対的に旋回させることができる。
具体的には、ピニオンギア61がラックギア62の中央に噛合している状態から、ピニオンギア61がラックギア62の一端に噛合している状態又は図17に示す他端に噛合する状態までラックギア62を進退させることによって、バケット10をそれぞれの方向に90度回動させること、即ち、ピニオンギア61がラックギア62の一端に噛合している状態から他端に噛合する状態(図17参照)までラックギア62を進退させることによって、バケット10を180度回動させることができる。
このバケット10の旋回機構により、掘削溝の上空にバケット10を吊支することさえできれば、ベースマシン2の位置に制限されることなく、容易にバケットの位置決めを行うことが可能となる。
図25は掘削現場の全体配置図であり、掘削域5に地中連続壁掘削機1a,1b,1cを使用して掘削溝を掘削する状態を示している。ベースマシン2aはジブ3aを掘削域5に対して、直交する方向に設置し、地中連続壁掘削機1aのバケット10aの開閉方向と掘削域5の幅方向を一致させて掘削を行っている。この位置が掘削作業の基本姿勢である。しかしながら、ベースマシン2bのように掘削域5のコーナー部を掘削する作業では、ジブ3bを基本姿勢に位置させることができない。同様にベースマシン2cでも、ベースマシン2d(障害物)の存在によって、ジブ3cを基本姿勢に位置させることができない。そのため、ジブ3b,3cに吊支した地中連続壁掘削機1b,1cのバケット10b,10cは、そのままでは開閉方向と掘削域5の幅方向が一致しない。
そこで、前記した旋回機構によって、ジブ3b,3cに吊支した地中連続壁掘削機1b,1cのバケット10b,10cを現位置で水平方向に旋回させることによって、図に示すようにバケット10b,10cの開閉方向と掘削域5の幅方向を一致させることにより、ジブ3b,3cを基本姿勢に位置させた場合と同様に掘削を行うことができる。
本発明では、第1油圧シリンダ20及び第2油圧シリンダ30に駆動源である油圧を供給する油圧ユニットを地中連続壁掘削機1から分離して地上に設置し、油圧ホース7a,油圧制御用の電磁弁用電源,傾斜計用電源等の必要とする電源を供給するためのキャブタイヤケーブル7b及び通信ケーブル7cからなる複数の管体7を、それぞれベースマシン2のリール6a,6b,6cからなるリール6(図4参照)に繰り出し・巻き取り自在に巻装し、地上からジブ3を介して掘削溝内の地中連続壁掘削機1に延伸させて油圧や電源を供給して制御している。
本発明では、これまで主体となっていた30m〜60m程度の深度を超えて、より大深度、具体的には60mを超えて100mに達するような深度、更には100m以深の深度を有するような大深度の掘削溝の掘削も対象としているため、提供されている油圧ホース7aの最大長が65m程度の現況では、複数の油圧ホース7aを連結して使用する必要があり、この連結部分が150mm程度の直線となることが避けられない。また、油圧ホース7aやキャブタイヤケーブル7b,通信ケーブル7c等の管体7には、地中連続壁掘削機1の作動や、管体7の繰り出し・巻き取り動作のタイムラグ等によって、急激な負荷がかかることが予想され、掘削溝が深くなればなるほど、そのリスクは高まり負荷が大きくなる。
そこで、本発明では、直線状の連結部分を有する油圧ホース7a等の管体7を、ジブ3を介してスムースに繰り出し・巻き取るためのガイド機構80とともに、管体7に対して急激な負荷がかかっても油圧ホース7a,キャブタイヤケーブル7b,通信ケーブル7c等の管体7が損傷することがないように、ジブ3に管体7への負荷を吸収して緩和するための緩衝装置90を装備している。
図19,図20は、ベースマシン2におけるジブ3の先端の構造説明図であり、ジブ3の先端には先端フレーム81が付設され、この先端フレーム81には地中連続壁掘削機1を吊支するためのワイヤ等の支持索4を支持するための先端シーブ82が回動自在に軸支され、この先端シーブ82を介して支持索4が繰り出し・巻き取りされる。83は同様に先端フレーム81に軸支された補助シーブである。
先端フレーム81の開放端部には、油圧ホース7a等の管体7を支持してスムースに繰り出し・巻き取るためのガイド機構80として、円弧状に曲成したガイドフレーム84と、ガイドフレーム84に回転可能に装備した複数のガイドローラ85を装備している。図示例では、ガイドフレーム84の曲率をR=1000とし、複数のガイドローラ85をガイドフレーム84の全域に密接して自転可能に配置した。油圧ホース7aの直線状の連結部分の曲率はR=350程度であるため、油圧ホース7a等の管体7は上記構成のガイド機構80によって緩やかな円弧状に支持されて地中連続壁掘削機1まで、連結のための連結を含めてスムースに延伸される。
ガイドフレーム84は、その一端がジブ3の先端フレーム81から横方向に張り出して架設したベースフレーム86に固定軸87によって固定されるとともに、他端は他の部材に固定されることなく、開放されている。更に、ガイド機構80には、管体7への負荷を吸収して緩和するための緩衝用油圧シリンダ91と、緩衝用油圧シリンダ91からの油圧を貯留するアキュムレータ92からなる緩衝装置90を装備してある。即ち、円弧状のガイドフレーム84の下面中央部に緩衝用油圧シリンダ91のロッド側端部を固定し、ヘッド側端部をベースフレーム86に固定するとともに、ベースフレーム86にアキュムレータ92を固定している。アキュムレータ92内にはゴム製の隔膜であるプラダ94によって2室に画成され、一方には緩衝用油圧シリンダ91に連結されて、緩衝用油圧シリンダ91からの油圧を貯留可能であり、他方には高圧ガスが封入されている。
管体7に一定以上の負荷が生じていない常時は、図19に示すように、アキュムレータ92の油圧と高圧ガスがバランスして緩衝用油圧シリンダ91のロッド93が伸長状態にある。地中連続壁掘削機1の作動による衝撃によって、管体7に一定以上の負荷が生じると、図21に示すように、負荷によってロッド93が縮小し、緩衝用油圧シリンダ91内の油圧をアキュムレータ92内に流入させ、その油圧を高圧ガスが収縮して吸収し負荷を緩和する。
そして、負荷が消滅すると、図22に示すように、アキュムレータ92内の油圧を高圧ガスの膨脹によって緩衝用油圧シリンダ91に排出して、緩衝用油圧シリンダ91のロッド93を伸長させて常体に復帰させる。
本発明では、地中連続壁掘削機1をジブ3から支持索4を介して吊支しているため、掘削作業中に掘削方向の地盤の土壌成分の違いや障害物等によって掘削溝が曲がる危険性を内在している。そのため、掘削溝の曲がりを防いで鉛直方向に掘削できるように地中連続壁掘削機1の姿勢を掘削溝に合わせて修正する手段を必要とする場合がある。そこで、地中連続壁掘削機1には、図1等に示す姿勢修正装置100を連結フレーム42及び本体フレーム40に装備してある。
この姿勢修正装置100は、図23,図24に示すように、直方体状のブロック体からなる姿勢修正ボックス101内に姿勢修正用油圧シリンダ102のヘッド側端部を固定し、ロッド103を姿勢修正ボックス101から外部に伸縮可能である。ロッド103は、所定面積を有する矩形状の姿勢修正板104を回動自在に回動軸105で軸着している。また、姿勢修正板104には、姿勢修正ボックス101内に伸縮可能に軸支された一対の自由ロッド106がロッド103を挟んで固定されている。
そのため、姿勢修正用油圧シリンダ102を作動させて、ロッド103を伸長させることにより、図24に示すように姿勢修正板104及び自由ロッド106が伸長する。また、姿勢修正板104は回動軸105を中心として回動可能である。よって、地中連続壁掘削機1の姿勢を修正する必要が生じた場合は、掘削溝内において、必要箇所の姿勢修正板104を伸縮させて溝壁を押圧することによって、掘削溝内における地中連続壁掘削機1の位置を最適の位置に修正して保持することができる。なお、図示例では、姿勢修正装置100を連結フレーム42の上端部及び本体フレーム40の下端部の両側面(バケット10の開閉方向)にそれぞれ設置した例を示しているが、バケット10の開閉方向に直交する方向の連結フレーム42及び本体フレーム40にも姿勢修正装置100を装備している。更には、姿勢修正ボックス101の設置場所は任意の箇所でよい。
地中連続壁掘削機1を使用して地中連続壁を構築するための掘削溝を掘削する工法は次の通りである。地中連続壁掘削機1をベースマシン2にワイヤからなる支持索4を介して吊支し、左右一対のシェル11,12からなるバケット10の開閉操作を、第1油圧シリンダ20と第2油圧シリンダ30を交互に伸長,縮小させることによって、地中連続壁を構築するための所定深さ、例えば60mを超えて100mに達するような深度、更には100m以深の深度を有するような大深度の掘削溝を、安定液を掘削溝内に満たして掘削溝壁の崩壊を防ぎながら掘削する。そして、バケット10にかかる負荷によって、低負荷時は開閉速度を優先して第1油圧シリンダ20のロッド23及び第2油圧シリンダ30のロッド33の伸長動作を差動回路を使用して行う。一方、高負荷時は開閉力を優先して通常回路を使用してバケット10の開閉動作を行う。即ち、バケット10の開閉力と開閉速度を制御して掘削溝を掘削する。
そして、旋回用油圧シリンダ63を駆動させてラックギア62を摺動させ、ピニオンギア61を回転させることによって、旋回軸71を旋回させることにより、支持体70に対してバケット10を相対的に旋回させることによって、掘削溝に対してベースマシン2を移動させることなく、掘削溝に対するバケット10の位置を調節する。
掘削に際しては地上に設置した油圧ユニットからガイド機構80に支持された油圧ホース7aを地中連続壁掘削機1に接続することによって油圧を供給してバケット10の開閉操作を行うこととし、又地上に設置した電源ユニットからガイド機構に支持されたキャブタイヤケーブル7bを地中連続壁掘削機1に接続する。
以上記載した本発明によれば、地中連続壁掘削機をワイヤ等の支持索によってベースマシンのジブから吊支するため、ベースマシンのウインチドラムに巻き取り可能な長さであれば支持索の繰出量に制約がないため、これまで主体となっていた30m〜60m程度の深度を超えて、より大深度、具体的には60mを超えて100mに達するような深度、更には100m以深の深度を有するような大深度の掘削溝を掘削することが可能である。
バケットの開閉動作を行う第1油圧シリンダと第2油圧シリンダをバケットのセンター線上に配置して、地中連続壁掘削機の中心部に設けられているため、地中の障害物等によって損傷するリスクが少ない。また、上段に配置した第1油圧シリンダと下段に配置した第2油圧シリンダを相互にロッド側端部を対面させて上下方向に直列配置しているため、第1油圧シリンダが伸長するとともに、第2油圧シリンダが縮小することによってバケットを閉じ、第1油圧シリンダが縮小するとともに、第2油圧シリンダが伸長することによってバケットを開くこととなり、バケットの開閉動作を同じ推力で行うことができる。また、第1油圧シリンダ、第2油圧シリンダともにシェルの開閉動作を左右連動して行うため、一致した開閉動作となる。
更に、バケットの閉動作時には第1油圧シリンダのロッドが伸長し、バケットの開動作時には第2油圧シリンダのロッドが伸長する。そのため、第1油圧シリンダのロッド及び第2油圧シリンダのロッドの伸長動作をするための油圧を、掘削状況に応じて、即ち、バケットにかかる負荷の程度に応じて、通常回路による油圧の供給と差動回路による油圧の供給を選択することができる。即ち、掘削溝内で負荷の小さい状態でバケットを開いたり、収納した土砂を排出するためにバケットを開く場合等、即ち掴み力を必要とせず、開閉速度が優先される場合には、差動回路を選択してバケットを開く。同様に、掘削抵抗の少ない軟質地盤を掘削したり、掘削抵抗の少ない土砂を掴む場合や、開いたバケットを土砂を掴むことなく閉じる場合等、即ち掴み力を必要とせず、開閉速度が優先される場合には、差動回路を選択してバケットを閉じる。
また、バケットを装備した旋回フレームを支持体に旋回可能に軸支することによって、バケットを現位置で水平方向に旋回可能に構成したので、掘削溝に対してベースマシンの位置決めができない場合には、現位置でバケットを水平方向に回動させることによって、掘削溝の上空にバケットを吊支することさえできれば、ベースマシンの位置に制限されることなく、容易にバケットの位置決めを行うことができる。この旋回機構は、旋回軸にピニオンギアを連結し、ピニオンギアにラックギアを噛合させるとともに、旋回用油圧シリンダによってラックギアを進退させる構成のため、無段階で正確な位置に旋回させることが可能である。
この地中連続壁掘削機を支持索で吊支するベースマシンのジブにおいて、地中連続壁掘削機に接続する油圧ホースやキャブタイヤケーブル等の管体を支持するガイド機構に、緩衝用油圧シリンダと緩衝用油圧シリンダからの油圧を貯留するアキュムレータからなり、管体への負荷を吸収して緩和するための緩衝装置を装備したので、地中連続壁掘削機の作動や繰り出し・巻き取り動作のタイムラグ等によって、急激な負荷がかかった場合でも、その負荷を吸収して緩衝することができる。
更に、ジブの先端フレームの開放端部には、油圧ホース等の管体を支持してスムースに繰り出し・巻き取るためのガイド機構として、円弧状に曲成したガイドフレームと、ガイドフレームに回転可能に装備した複数のガイドローラを装備したので、油圧ホース等の管体をガイド機構によって緩やかな円弧状に支持して地中連続壁掘削機まで、連結部分を含めてスムースに延伸・案内することができる。
1,1a,1b,1c…地中連続壁掘削機
2,2a,2b,2c…ベースマシン
2d…ベースマシン(障害物)
3,3a,3b,3c…ジブ
4…支持索
5…掘削域
6,6a,6b,6c…リール
7…管体
7a…油圧ホース
7b…キャブタイヤケーブル
7c…通信ケーブル
10,10a,10b,10c…バケット
11,12…シェル
13,14…タイロッド
15,16…連結ピン
20…第1油圧シリンダ
21…ロッド側端部
22…ヘッド側端部
23,33,64,93,103…ロッド
24…シリンダ
25,26,35,36…固定ピン
30…第2油圧シリンダ
31…ロッド側端部
32…ヘッド側端部
34…シリンダ
40…本体フレーム
41…シェル取付フレーム
42…連結フレーム
40a,41a,42a…窓部
44…摺動板
45a,45b,45c…フランジ
46a,46b,46c…リブ
47,48,49…ピン孔
50…摺動ボックス
51…摺動板
52,53,54,55…ピン孔
56…油圧ポンプ
57…タンク
60…旋回フレーム
61…ピニオンギア
62…ラックギア
63…旋回用油圧シリンダ
65…旋回軸ケーシング
66…旋回軸ケーシング取付フランジ
67,73…ボルト
68…ベアリング
70…支持体
71…旋回軸
72…旋回軸取付フランジ
77…シーブ機構
80…ガイド機構
81…先端フレーム
82…先端シーブ
83…補助シーブ
84…ガイドフレーム
85…ガイドローラ
86…ベースフレーム
87…固定軸
90…緩衝装置
91…緩衝用油圧シリンダ
92…アキュムレータ
94…プラダ
100…姿勢修正装置
101…姿勢修正ボックス
102…姿勢修正用油圧シリンダ
104…姿勢修正板
105…回動軸
106…自由ロッド

Claims (13)

  1. 左右一対のシェルからなるバケットを油圧シリンダによって開閉動作させて掘削溝を掘削する地中連続壁掘削機において、
    バケットの上方に配置した本体フレームと、本体フレーム内に摺動可能に設置した摺動ボックスを有し、
    前記油圧シリンダとして、第1油圧シリンダと第2油圧シリンダからなる2基の油圧シリンダを、相互にロッド側端部を対面させて上下方向に直列配置し
    第1油圧シリンダ及び第2油圧シリンダのロッド側端部を、それぞれ摺動ボックスに固定するとともに、一端をシェルに回動自在に軸支したタイロッドの他端を摺動ボックスに回動自在に軸支した
    ことを特徴とする地中連続壁掘削機。
  2. 2基の油圧シリンダをバケットのセンター線上に配置した請求項1記載の地中連続壁掘削機。
  3. 第1油圧シリンダを上段に、第2油圧シリンダを下段に配置し、第1油圧シリンダが伸長するとともに、第2油圧シリンダが縮小することによってバケットを閉じ、
    第1油圧シリンダが縮小するとともに、第2油圧シリンダが伸長することによってバケットを開く請求項1又は2記載の地中連続壁掘削機。
  4. 本体フレームの上端部に連結フレームを固定し、連結フレームに第1油圧シリンダのヘッド側端部を固定するとともに、
    本体フレームの下端部に左右一対のシェルを回動自在に軸支したシェル取付フレームを固定し、シェル取付フレームに第2油圧シリンダのヘッド側端部を固定した請求項1,2又は3記載の地中連続壁掘削機。
  5. 連結フレームの上端部に固定した旋回フレームを支持体に旋回可能に連結した請求項記載の地中連続壁掘削機。
  6. 第1油圧シリンダ及び第2油圧シリンダの伸縮動作によって、本体フレーム内で摺動ボックスを摺動させて、バケットを開閉する請求項1,2,3,4又は記載の地中連続壁掘削機。
  7. 本体フレームと摺動ボックスの摺動面に、それぞれ摺動板を着脱自在に装着した請求項1,2,3,4,5又は記載の地中連続壁掘削機。
  8. 第1油圧シリンダ及び第2油圧シリンダのロッドの伸長動作を差動回路にて動作可能とした請求項1,2,3,4,5,6又は記載の地中連続壁掘削機。
  9. 第1油圧シリンダのロッドの伸長時において、差動回路によって第1油圧シリンダのヘッド側及びロッド側の双方に油圧を供給可能とした請求項1,2,3,4,5,6,7又は記載の地中連続壁掘削機。
  10. 第2油圧シリンダのロッドの伸長時において、差動回路によって第2油圧シリンダのヘッド側及びロッド側の双方に油圧を供給可能とした請求項1,2,3,4,5,6,7又は記載の地中連続壁掘削機。
  11. 請求項1〜10のいずれかに記載の地中連続壁掘削機をベースマシンに支持索を介して吊支し、バケットの開閉操作を行うことによって、地中連続壁を構築するための所定深さの掘削溝を、安定液を掘削溝内に満たして掘削溝壁の崩壊を防ぎながら、掘削することを特徴とする地中連続壁掘削工法。
  12. バケットにかかる負荷によって、低負荷時は開閉速度を優先し、高負荷時は開閉力を優先するようにバケットの開閉力と開閉速度を制御して掘削溝を掘削する請求項11記載の地中連続壁掘削工法。
  13. 低負荷時は、第1油圧シリンダ及び第2油圧シリンダのロッドの伸長動作を差動回路にて動作させる請求項12記載の地中連続壁掘削工法。
JP2015193081A 2015-09-30 2015-09-30 地中連続壁掘削機及び地中連続壁掘削工法 Active JP6434882B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193081A JP6434882B2 (ja) 2015-09-30 2015-09-30 地中連続壁掘削機及び地中連続壁掘削工法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193081A JP6434882B2 (ja) 2015-09-30 2015-09-30 地中連続壁掘削機及び地中連続壁掘削工法

Publications (2)

Publication Number Publication Date
JP2017066709A JP2017066709A (ja) 2017-04-06
JP6434882B2 true JP6434882B2 (ja) 2018-12-05

Family

ID=58491819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193081A Active JP6434882B2 (ja) 2015-09-30 2015-09-30 地中連続壁掘削機及び地中連続壁掘削工法

Country Status (1)

Country Link
JP (1) JP6434882B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041024B1 (fr) * 2015-09-10 2017-09-29 Soletanche Freyssinet Machine de forage munie d'un dispositif d'ancrage permettant un deplacement horizontal du module de forage en position ancree
JP7055352B2 (ja) * 2018-03-08 2022-04-18 明和機械株式会社 バケット
CN112814060A (zh) * 2021-01-07 2021-05-18 北京宏创天业建设工程有限公司 一种用于地下注浆连续墙施工的开槽机以及施工方法
CN115653034B (zh) * 2022-11-09 2024-07-30 柳工常州机械有限公司 连续墙成槽机及其成槽施工自动控制方法、系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523204A (en) * 1975-06-24 1977-01-11 Hirabayashi Seisakushiyo Kk Excavation device
JPS5376107U (ja) * 1976-11-30 1978-06-24
JPS5827400B2 (ja) * 1980-05-26 1983-06-09 ライト工業株式会社 大口径掘削孔の掘削方法およびその装置
JP2908682B2 (ja) * 1993-12-22 1999-06-21 住友建機株式会社 ケ−シング掘削機の自重制御油圧回路
JP5257608B2 (ja) * 2009-03-04 2013-08-07 株式会社大林組 良液作製管理システム及び方法

Also Published As

Publication number Publication date
JP2017066709A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6434882B2 (ja) 地中連続壁掘削機及び地中連続壁掘削工法
KR101802889B1 (ko) 심굴 굴삭기
JP4256359B2 (ja) 建設機械の作業装置
JP2001317282A (ja) 地盤削孔装置及び地盤削孔方法
US20140205412A1 (en) Power shovel having hydraulically driven dipper actuator
JP6546059B2 (ja) 地中連続壁掘削機及び地中連続壁掘削工法
JP6434883B2 (ja) 地中連続壁掘削機を吊支するジブ及び地中連続壁掘削工法
JP6147029B2 (ja) アースドリル
JP6254670B1 (ja) 連続壁掘削機
US20190186212A1 (en) Negative angle capable blasthole drilling mast
US20140205415A1 (en) Machine having dipper actuator system
JP4949756B2 (ja) 拡径掘削用バケット
JP3978469B2 (ja) 拡開掘削装置および杭底拡大工法
JP3725010B2 (ja) 鉄筋篭運搬建て込み機
JP7359344B2 (ja) 削孔作業車及び削孔方法
JP6559374B1 (ja) 低空頭掘削機及びその組立工法
JP6319839B2 (ja) ボードの水平建込み装置及び水平建込み方法
JP3451275B2 (ja) 深礎掘削機
JP6147028B2 (ja) アースドリル
JP2022013000A (ja) 拡翼掘削機と壁杭の施工方法
JP2018059342A (ja) ボーリング方法及び装置
JPH10205263A (ja) 掘削機の排土装置
JP5748929B1 (ja) 螺旋突条付き現場造成杭の構築方法
JP5526893B2 (ja) 懸垂式掘削機の姿勢制御装置
JP7340238B2 (ja) 油圧ホース保持装置および掘削方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6434882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250